Mini-Quiz Feb. 17

Your name:_

- This quiz is **closed book**. Total time is 25 minutes.
- Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the problem. Please keep your entire answer to a problem on that problem's page.
- GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem	Points	Grade	Grader
1	5		
2	10		
3	5		
Total	20		

Creative Commons 2010, Prof. Albert R. Meyer.

2 Your name:___

Problem 1 (5 points).

Prove that $\log_4 9$ is irrational. Your proof should be clear and well-organized, and should explicitly indicate where particular properties of primes are assumed.

Problem 2 (10 points).

Let *A* be the set of five propositional formulas shown below on the left, and let *C* be the set of three propositional formulas on the right. Let *R* be the "implies" binary relation from *A* to *C* which is defined by the rule

F R G iff [the formula (F IMPLIES G) is valid].

For example, (P AND Q) R P, because the formula (P AND Q) does imply P. Also, it is not true that (P OR Q) R P since (P OR Q) does not imply P.

(a) Fill in the arrows so the following figure describes the graph of the relation, *R*:

	A		arrows		C	
	М					
					Q	
	P or Q					
					\overline{P} or \overline{Q}	
	$P \operatorname{xor} Q$					
				M and	O(P implies M)	
	P and Q					
	$\operatorname{NOT}(P \operatorname{AND} Q)$					
(b) Circle the properties below possessed by the relation <i>R</i> :						
	FUNCTION	TOTAL	INJECTIVE	SURJECTIVE	BIJECTIVE	

(c) Circle the properties below possessed by the relation R^{-1} :

FUNCTION TOTAL INJECTIVE SURJECTIVE BIJECTIVE

4 Your name:_____

Problem 3 (5 points).

Prove by the Well Ordering Principle that for all nonnegative integers, *n*:

$$\sum_{i=0}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.