Problem Set 7

Due: April 2

Reading: Notes Ch. [12;](http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#chapter.12) Ch. [14](http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#chapter.14)

Problem 1.

A simple graph is *sevenish* when it has no simple cycles of length less than seven. A *map* is a planar graph whose faces are all simple cycles (no dongles or bridges). Let M be a sevenish, connected, map with $v > 2$ vertices, *e* edges and *f* faces.

(a) Prove that

$$
e \le (7v - 14)/5. \tag{1}
$$

Hint: Similar to the proof of Corollary [12.6.3,](http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#theorem.12.6.3) that $e \leq 3v - 6$ in planar graphs.

(b) Show that M has a vertex of degree at most two.

(c) Part [\(b\)](#page-0-0) can be used to prove that M is 3-colorable by induction on v. The proof is slightly complicated by the fact that subgraphs of M may not be sevenish, connected, maps. For each of the following properties, briefly explain why all connected subgraphs of M have the property, or give an example of a connected subgraph of an M that does not have the property.

- 1. map
- 2. planar
- 3. sevenish
- 4. connected
- 5. 3-colorable

Problem 2.

Prove that the greatest common divisor of three integers a , b , and c is equal to their smallest positive linear combination; that is, the smallest positive value of $sa + tb + uc$, where s, t, and u are integers.

Problem 3.

Two nonparallel lines in the real plane intersect at a point. Algebraically, this means that the equations

$$
y = m_1 x + b_1
$$

$$
y = m_2 x + b_2
$$

Creative Commons @080 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

have a unique solution (x, y) , provided $m_1 \neq m_2$. This statement would be false if we restricted x and y to the integers, since the two lines could cross at a noninteger point:

However, an analogous statement holds if we work over the integers *modulo a prime*, p. Find a solution to the congruences

$$
y \equiv m_1 x + b_1 \pmod{p}
$$

$$
y \equiv m_2 x + b_2 \pmod{p}
$$

when $m_1 \not\equiv m_2 \pmod{p}$. Express your solution in the form $x \equiv ? \pmod{p}$ and $y \equiv ? \pmod{p}$ where the ?'s denote expressions involving m_1 , m_2 , b_1 , and b_2 . You may find it helpful to solve the original equations over the reals first.

Problem 4.

Let $S_k = 1^k + 2^k + \ldots + (p-1)^k$, where p is an odd prime and k is a positive multiple of $p-1$. Use Fermat's theorem to prove that $S_k \equiv -1 \pmod{p}$.

Student's Solutions to Problem Set 7

Collaboration statement: Circle one of the two choices and provide all pertinent info.

- 1. I worked alone and only with course materials.
- 2. I collaborated on this assignment with:

got help from:¹

and referred to:²

DO NOT WRITE BELOW THIS LINE

Creative Commons 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

 1 People other than course staff.

²Give citations to texts and material other than the Spring '10 course materials.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.