Problem Set 3

Due: February 26

Reading: Chapter 6, *Induction*; Chapter 7, *Partial Orders*, §§1–3.

Problem 1.

For any sets, A, and B, let $[A \rightarrow B]$ be the set of total functions from A to B. Prove that if A is not empty and *B* has more than one element, then NOT(*A* surj $[A \rightarrow B]$).

Hint: Suppose there is a function, σ , that maps each element $a \in A$ to a function $\sigma_a : A \to B$. Pick any two elements of B ; call them 0 and 1. Then define

diag(a) ::=
$$
\begin{cases} 0 \text{ if } \sigma_a(a) = 1, \\ 1 \text{ otherwise.} \end{cases}
$$

Problem 2.

Fibonacci numbers are defined as follows:

$$
F(0) ::= 0,F(1) ::= 1,F(n) ::= F(n-1) + F(n-2) \qquad \text{(for } n \ge 2).
$$
 (1)

Thus, the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, and 21. Prove by induction that for all $n \geq 1$,

$$
F(n-1) \cdot F(n+1) - F(n)^2 = (-1)^n. \tag{2}
$$

Problem 3.

For any binary string, α , let num (α) be the nonnegative integer it represents in binary notation. For example, num $(10) = 2$, and num $(0101) = 5$.

An $n+1$ -bit *adder* adds two $n+1$ -bit binary numbers. More precisely, an $n+1$ -bit adder takes two length $n + 1$ binary strings

$$
\alpha_n ::= a_n \dots a_1 a_0,
$$

$$
\beta_n ::= b_n \dots b_1 b_0,
$$

and a binary digit, c_0 , as inputs, and produces a length $n + 1$ binary string

$$
\sigma_n ::= s_n \dots s_1 s_0,
$$

Creative Commons 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

and a binary digit, c_{n+1} , as outputs, and satisfies the specification:

$$
num(\alpha_n) + num(\beta_n) + c_0 = 2^{n+1}c_{n+1} + num(\sigma_n).
$$
\n(3)

There is a straighforward way to implement an $n + 1$ -bit adder as a digital circuit: an $n + 1$ -bit *ripple-carry circuit* has $1 + 2(n + 1)$ binary inputs

$$
a_n, \ldots, a_1, a_0, b_n, \ldots, b_1, b_0, c_0,
$$

and $n + 2$ binary outputs,

 $c_{n+1}, s_n, \ldots, s_1, s_0.$

As in Problem 3.5, the ripple-carry circuit is specified by the following formulas:

$$
s_i ::= a_i \text{ XOR } b_i \text{ XOR } c_i \tag{4}
$$

$$
c_{i+1} ::= (a_i \text{ AND } b_i) \text{ OR } (a_i \text{ AND } c_i) \text{ OR } (b_i \text{ AND } c_i), \tag{5}
$$

for $0 \leq i \leq n$.

(a) Verify that definitions [\(4\)](#page-1-0) and [\(5\)](#page-1-1) imply that

$$
a_n + b_n + c_n = 2c_{n+1} + s_n. \tag{6}
$$

for all $n \in \mathbb{N}$.

(b) Prove by induction on *n* that an $n + 1$ -bit ripple-carry circuit really is an $n + 1$ -bit adder, that is, its outputs satisfy [\(3\)](#page-1-2).

Hint: You may assume that, by definition of binary representation of integers,

$$
num(\alpha_{n+1}) = a_{n+1}2^{n+1} + num(\alpha_n).
$$
\n(7)

Problem 4.

Let R and S be transitive relations on a set, A . For each of the relations below, either prove that it is transitive, or give a counter-example showing that it may *not* be transitive.

- R^{-1}
- $R \cap S$
- $R \cup S$
- $R \circ S$

Student's Solutions to Problem Set 3

Collaboration statement: Circle one of the two choices and provide all pertinent info.

- 1. I worked alone and only with course materials.
- 2. I collaborated on this assignment with:

got help from:¹

and referred to:²

DO NOT WRITE BELOW THIS LINE

Creative Commons 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

 1 People other than course staff.

²Give citations to texts and material other than the Spring '10 course materials.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.