Problem Set 1

Due: February 12

Reading: Chapters 1, What is a Proof?; 2, The Well Ordering Principle; 3, Propositional Formulas.

These assigned readings do not include the Problem sections. (Many of the problems in the text will appear as class or homework problems.)

Reminder: Comments on the reading using the *NB online annotation system* are due at times indicated in the online tutor problem set TP.2. Reading Comments count for 5% of the final grade.

Problem 1.

A recent class problem proved that there were irrational numbers a, b such that a^b was rational. Unfortunately, that proof was *nonconstructive*: it didn't reveal a specific pair, a, b, with this property. But in fact, it's easy to do this: let $a ::= \sqrt{2}$ and $b ::= 2 \log_2 3$.

We know $\sqrt{2}$ is irrational, and obviously $a^b = 3$. Finish the proof that this a, b pair works, by showing that $2 \log_2 3$ is irrational.

Problem 2.

For n = 40, the value of polynomial $p(n) ::= n^2 + n + 41$ is not prime, as noted in Chapter 1 of the Course Text. But we could have predicted based on general principles that no nonconstant polynomial, q(n), with integer coefficients can map each nonnegative integer into a prime number. Prove it.

Hint: Let c ::= q(0) be the constant term of q. Consider two cases: c is not prime, and c is prime. In the second case, note that q(cn) is a multiple of c for all $n \in \mathbb{Z}$. You may assume the familiar fact that the magnitude (absolute value) of any nonconstant polynomial, q(n), grows unboundedly as n grows.

Problem 3.

Describe a simple recursive procedure which, given a positive integer argument, n, produces a truth table whose rows are all the assignments of truth values to n propositional variables. For example, for n = 2, the table might look like:

T	Т
T	F
F	T
F	\mathbf{F}

Creative Commons 2010, Prof. Albert R. Meyer.

Your description can be in English, or a simple program in some familiar language (say Scheme or Java), but if you do write a program, be sure to include some sample output.

Problem 4.

Prove that the propositional formulas

$P \ \mathrm{Or} \ Q \ \mathrm{Or} \ R$

and

```
(P \text{ and } \operatorname{Not} Q) \text{ or } (Q \text{ and } \operatorname{Not} R) \text{ or } (R \text{ and } \operatorname{Not} P) \text{ or } (P \text{ and } Q \text{ and } R).
```

are equivalent.

Problem 5.

Use the Well Ordering Principle to prove that

$$n \le 3^{n/3} \tag{1}$$

for every nonnegative integer, *n*.

Hint: Verify (1) for $n \leq 4$ by explicit calculation.

2

Student's Solutions to Problem Set 1

Your name:					
Due date:	February 12				
Submission date:					
Circle your TA/LA :	Megumi	Tom	Richard	Eli	

Collaboration statement: Circle one of the two choices and provide all pertinent info.

- 1. I worked alone and only with course materials.
- 2. I collaborated on this assignment with:

got help from:¹

and referred to:²

DO NOT WRITE BELOW THIS LINE

Problem	Score
1	
2	
3	
4	
5	
Total	

Creative Commons 2010, Prof. Albert R. Meyer.

¹People other than course staff.

²Give citations to texts and material other than the Spring '10 course materials.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.