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Notes for Recitation 9 

1 Bipartite Graphs 

Graphs that are 2-colorable are important enough to merit a special name; they are called 
bipartite graphs. Suppose that G is bipartite. Then we can color every vertex in G ei
ther black or white so that adjacent vertices get different colors. Then we can put all the 
black vertices in a clump on the left and all the white vertices in a clump on the right. 
Since every edge joins differently-colored vertices, every edge must run between the two 
clumps. 

Bipartite graphs are both useful and common. For example, every path, every tree, 
and every even-length cycle is bipartite. 

2 Hall’s theorem 

A class contains some girls and some boys. Each girl likes some boys and does not like 
others. Under what conditions can each girl be paired up with a boy that she likes? 

We can model the situation with a bipartite graph. Create a vertex on the left for each 
girl and a vertex on the right for each boy. If a girl likes a boy, put an edge between them. 
For example, we might obtain the following graph: 

Chuck 

Alice 
Tom 

Martha 
Michael 

Sarah 
John 

Jane 
Mergatroid 

In graph terms, our goal is to find a matching for the girls; that is, a subset of edges 
such that exactly one edge is incident to each girl and at most one edge is incident to each 
boy. For example, here is one possible matching for the girls: 
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Chuck 

Alice 
Tom 

Martha 
Michael 

Sarah 
John 

Jane 
Mergatroid 

Hall’s Marriage Theorem states necessary and sufficient conditions for the existence of 
a matching in a bipartite graph. Hall’s Theorem is a remarkably useful mathematical tool, 
a hammer that bashes many problems. Moreover, it is the tip of a conceptual iceberg, a 
special case of the “max-flow, min-cut theorem”, which is in turn a byproduct of “linear 
programming duality”, one of the central ideas of algorithmic theory. 

We’ll state and prove Hall’s Theorem using girl-likes-boy terminology. Define the set 
of boys liked by a given set of girls to consist of all boys liked by at least one of those girls. 
For example, the set of boys liked by Martha and Jane consists of Tom, Michael, and 
Mergatroid. 

For us to have any chance at all of matching up the girls, the following marriage con
dition must hold: 

Every subset of girls likes at least as large a set of boys. 

For example, we can not find a matching if some 4 girls like only 3 boys. Hall’s The
orem says that this necessary condition is actually sufficient; if the marriage condition 
holds, then a matching exists. 

Theorem 1. A matching for a set of girls G with a set of boys B can be found if and only if the 
marriage condition holds. 

Proof. First, let’s suppose that a matching exists and show that the marriage condition 
holds. Consider an arbitrary subset of girls. Each girl likes at least the boy she is matched 
with. Therefore, every subset of girls likes at least as large a set of boys. Thus, the mar
riage condition holds. 

Next, let’s suppose that the marriage condition holds and show that a matching ex-
ists. We use strong induction on |G|, the number of girls. If |G| = 1, then the marriage 
condition implies that the lone girl likes at least one boy, and so a matching exists. Now 
suppose that |G| ≥ 2. There are two possibilities: 

1. Every proper subset of girls likes a strictly larger set of boys. In this case, we have 
some latitude: we pair an arbitrary girl with a boy she likes and send them both 
away. The marriage condition still holds for the remaining boys and girls, so we can 
match the rest of the girls by induction. 
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2. Some proper subset of girls X ⊂ G likes an equal-size set of boys Y ⊂ B. We match 
the girls in X with the boys in Y by induction and send them all away. We will show 
that the marriage condition holds for the remaining boys and girls, and so we can 
match the rest of the girls by induction as well. 

To that end, consider an arbitrary subset of the remaining girls X� ⊆ G − X , and 
let Y � be the set of remaining boys that they like. We must show that |X�| ≤ |Y |. 
Originally, the combined set of girls X ∪ X� liked the set of boys Y ∪ Y �. So, by the 
marriage condition, we know: 

|X ∪ X �| ≤ |Y ∪ Y | 
We sent away |X| girls from the set on the left (leaving X�) and sent away an equal 
number of boys from the set on the right (leaving Y �). Therefore, it must be that 
|X �| ≤ |Y | as claimed. 

In both cases, there is a matching for the girls. The theorem follows by induction. 

There is an efficient algorithm for finding a matching in a bipartite graph, if one exists. 
Thus, if a problem can be reduced to finding a matching, the problem is essentially solved 
from a computational perspective. 

The Chemist and The Maltster 

At Guiness brewery in the early 1900’s, W. S. Gosset (a chemist) and E. S. Beaven (a “malt
ster ”) were working to improve barley. Gosset and Beavan planned to grow several vari
eties of barley in a field and compare the yields. However, local variations in the fertility 
of the field might skew the results. Their solution was to divide the field into many small 
plots and grow each crop in several different places. 

Similar thinking led to the use of Latin squares in experiment design. A Latin square is 
an n × n array of numbers such that each row and each column contains every number 
from 1 to n. For example, here is a 4 × 4 Latin square: 

1 2 3 4 

3 4 2 1 

2 1 4 3 

4 3 1 2 

You can imagine that this array is an agricultural field where each square is a small 
plot, and the number inside indicates the variety of barley planted there. 
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There are some nice connections between Latin squares and graph theory. For exam
ple, see if you can construct a graph Gn such that there is a one-to-one correspondence 
between n × n Latin squares and valid n-colorings of Gn. 

(Recall that an n-coloring of a graph is a way of assigning one of n colors to each vertex 
so that vertices joined by an edge are assigned different colors.) 

Solution. Create a vertex in G for each entry in the Latin Square. Then connect each 
vertex to every other vertex in the same row and to every other vertex in the same column. 
Now color the graph with n colors, each corresponding to a number between 1 and n. 

Notice that every pair of vertices in the same row are connected, so no two vertices in 
the same row can get the same color. Similarly, since every pair of vertices in the same 
column are connected, no two vertices in the same column can get same color either. 
These coloring constraint match the constraints on Latin squares, so there is a one-to-one 
correspondence between colorings of G and n × n Latin squares. 
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Perfect Matching from Hall’s Theorem 

The next question about Latin squares will require a corollary of Hall’s Theorem. A bipar
tite graph is regular if every vertex on the left has degree c and every vertex on the right 
has degree d. Prove the following: 

Corollary. A regular bipartite graph has a matching for the vertices on the left if c ≥ d > 0. 

Solution. We use Hall’s Theorem. Let L denote the set of vertices on the left of the 
regular bipartite graph, and R denote the set of vertices on the right. 

Now let L ⊆ L be any subset of vertices on the left, and let R� be N(L�), namely, the 
set of all vertices on the right adjacent to some vertex in L . 

Since every edge incident to a vertex in L� is also incident to a vertex in R�, the number 
of edges incident to vertices in L� is at most as large as the number of vertices incident to 
R�. But the number of edges incident to L� is c · |L | and the number of edges incident to 
R� is d · |R |. Thus, we have: 

c · |L�| ≤  d · |R�| 

Since c ≥ d > 0 by assumption, this implies |L | ≤ |R |. Thus, the desired condition holds. 
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Completing Latin Squares 

Now we return to Latin squares. 

Suppose your teammate wrote only three lines of a 5 × 5 Latin square before deciding 
to chuck it all and become a maltster: 

2 4 5 3 1 

4 1 3 2 5 

3 2 1 5 4 

Can you fill in the last two lines to extend this “Latin rectangle” to a complete Latin 
square? 

Solution. Here is one possible solution: 

2 4 5 3 1 

4 1 3 2 5 

3 2 1 5 4 

1 5 2 4 3 

5 3 4 1 2 

Show that filling in the next row of a Latin rectangle is equivalent to finding a matching 
in some bipartite graph. 

Solution. Construct a bipartite graph as follows. The vertices on the left are the 
columns of the Latin rectangle, and the vertices on the right are the numbers 1 to n. Put 
an edge between a column and a number if the number has not yet appeared in the column. 
Thus, a matching in this graph would associate each column with a distinct number that 
has not yet appeared in that column. These numbers would form the next row of the 
Latin rectangle. 

Prove that a matching must exist in this bipartite graph and, consequently, a Latin 
rectangle can always be extended to a Latin square. 

Solution. First, we show that the bipartite graph described above has a matching. 
Each column-vertex on the left has degree n − k and each number-vertex on the right has 



7 Recitation 9 

degree n − k as well. Therefore, a matching for the columns exists by the corollary in 
the preceding problem. This implies that we can add rows to the Latin rectangle by the 
procedure described above as long as k < n. At that point, we have a Latin square. 
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