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Notes for Recitation 5 

1 Wellordering principle 

Every nonempty set of natural numbers has a minimum element.


Do you believe this statement? Seems obvious, right? Well, it is. But don’t fail to realize 
how tight it is. Crucially, it talks about a nonempty set —otherwise, it would clearly be 
false. And it also talks about natural numbers —otherwise, it might again be false: think 
for example what would happen with the integers, or even the positive rational numbers. 

This statement has a name, it is called the wellordering principle. And, as most 
things we give names to, it’s important. Why? Because it is equivalent to induction. 

Something can be proved by induction iff it can be proved by the wellordering principle. 

We could go on and give a general proof of this, but we won’t. Instead, we’ll just convince 
ourselves of it by going through an example. We’ll reprove something that in the very first 
lecture (see Lecture Notes “Induction I”) was proved by induction. Read the next page. 

For reference, here is the outline that a proof by the wellordering principle has. (Compare 
it with the corresponding outline of a proof by strong induction.) 

To prove that “P (n) is true for all n ∈ N” using the wellordering principle: 

•	 Use proof by contradiction. 

•	 Assume that P (n) has counterexamples. I.e., that P (n) is false on at least one n. 

•	 Define the set of counterexamples C = {n ∈ N | ¬P (n)}. 

•	 Invoke the wellordering principle to select the minimum element c of C. 

•	 Since c is the smallest counterexample to P (n), conclude that both ¬P (c) and 
P (0), P (1), . . . , P (c − 1). Use these to arrive at a contradiction. Watch out: the 
list 0, 1, . . . , c− 1 will contain no numbers at all if c = 0. 

•	 Conclude that P (n) must have no counterexamples. Namely, that (∀n)P (n). 
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2 Recitation 5 

Theorem. For all n ∈ N: 1 + 2 + 3 + · · ·+ n = n(n
2
+1) . 

Proof. By contradiction. Assume that the theorem is false. Then, some natural numbers 
serve as counterexamples to it. Let’s collect them in a set: 

C = n ∈ N | 1 + 2 + 3 + · · ·+ n = n(n
2
+1) . 

By our assumption that the theorem admits counterexamples, C is a nonempty set of 
natural numbers. So, by the wellordering principle, C has a minimum element, call it c. 
That is, c is the smallest counterexample to the theorem. 

Since c is a counterexample (c ∈ C), we know that 

1 + 2 + 3 + · · ·+ c = c(c+1) .
2 

Since c is the smallest counterexample (c minimum of C), we know the theorem holds 
for all natural numbers smaller than c. (Otherwise, at least one of them would also be 
in C and would therefore prevent c from being the minimum of C.) [∗] In particular, the 
theorem is true for c − 1. That is, 

1 + 2 + 3 + · · ·+ (c − 1) = (c−1)c .
2 

But then, adding c to both sides we get 

2

= c −c+2c c(c+1) ,1 + 2 + 3 + · · ·+ (c − 1) + c = (c−1)c + c = 
2 2 2 

which means the theorem does hold for c, after all! That is, c is not a counterexample. But 
this is a contradiction. And we are done. 

Well, almost. Our argument contains a bug. Everything we said after [∗] bases on the fact 
that c − 1 actually exists. That is, that there is indeed some natural number smaller than 
c. How do we know that? How do we know that c is not 0? Fortunately, this can be fixed. 
We know c = 0 because c is a counterexample whereas 0 is not, as 0 = 0(0 + 1)/2. 
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2 Problem: Wellordering principle 

Here is the geometric sum formula, which you proved in a previous recitation. 

31 + r + r 2 + r + . . . + r n =
1− rn+1 

1− r 

Use the wellordering principle to prove that, when r = 1, the formula is true for all n ∈ N. 
Prepare a complete, careful solution! 

Solution. 

Proof. By contradiction. Suppose the theorem is not true on all natural numbers, but 
instead it admits some counterexamples. Let C be the set of these counterexamples: 

| � 1−
1
r
−
n

r 

+1 

C = n ∈ N 1 + r + r 2 + · · ·+ r n = . 

By our assumption, C is a nonempty set of natural numbers. So, the wellordering prin
ciple guarantees C has a minimum element c. So, c is the smallest counterexample to the 
theorem. 

Because c is a counterexample, we know 

1−rc+1 

1 + r + r 2 + · · ·+ r c =� .
1−r 

Because 1 = (1− r1)/(1− r), we know 0 is not a counterexample, and therefore c > 0. 

Because c is the smallest counterexample, we know all numbers smaller than c satisfy the 
theorem —and such numbers do exist, as c > 0. In particular, c− 1 satisfies the theorem 

1−rc 

1 + r + r 2 + · · ·+ r c−1 = 
1−r 

. 

But then, adding rc to both sides of the equation, we get 

1−rc c 1−rc+1c 11 + r + r 2 + · · ·+ r c−1 + r = 
1−r 

+ r c = 
1−r 

[1− r c + r − r c+1] = 
1−r 

which implies c is not really a counterexample, a contradiction. 

Therefore, there can’t be any counterexamples to the theorem. The theorem is true. 
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3 Problem: A robot 

A robot lives on a two dimensional grid and is free to walk around. However each move 
it makes is always one step north or south and one step east or west. Its purpose in life is 
to reach point (1, 0). Unfortunately, the robot was born at point (0, 0). Prove that it will 
never see how point (1, 0) looks like. 

Solution. The approach that seems reasonable is to use induction on the number n of 
moves made by the robot. But we must be careful in selecting the inductive hypothesis 
P (n). If it simply corresponds to what we want to prove —that is, if it simply is “after n 
steps the robot is not at point (1, 0)”— we are bound to encounter the same problems as 
in class against the 9Number Puzzle. So, we must prove something stronger. 

Trying out several paths that the robot might take, we soon see that the robot can reach 
only points that lie on the line x+y = 0 and every other parallel of it. One way to describe 
this set of positions is to say that a point (x, y) belongs to it iff the sum x + y is even. We are 
now ready to prove the following theorem, which is stronger than the one we were asked 
to prove. 

Theorem. The sum of the robot’s coordinates is always even. 

Proof. The proof is by (simple) induction on the number n ∈ N of moves made by the 
robot. The inductive hypothesis P (n) is this: after n moves, the sum of the robot’s coor
dinates is even. 

Base case: We show that P (0) is true. Indeed, after 0 steps, the robot is still at its birthpoint 
(0, 0), and the sum of its coordinates is 0 + 0 = 0, as required. 

Inductive step: We show that P (n) implies P (n + 1), for all n ∈ N. So, fix any n ∈ N and 
assume that P (n) is true; that is, after its nth move, the robot is at a position (x, y) such 
that x + y is even. 

After the n+1st moves, the robot will have moved one step north or south (which changes 
its xcoordinate by 1) and one step east or west (which also changes its ycoordinate by 1). 
So, if (x�, y�) is the new point, we have 

x� = x± 1 and y� = y ± 1 

so that the new sum of coordinates is 

x� + y� = (x± 1) + (y ± 1) = (x + y) + [(±1) + (±1)] = (x + y) + d 

where d ∈ {−2, 0, +2}. In all cases, x� + y� is a sum of two even numbers. So, P (n + 1) 
holds. 

Therefore, by induction, P (n) is true for all n ∈ N. The theorem holds. 

Now, to prove that the robot never reaches point (1, 0), we just need to observe that the 
sum 1 + 0 = 1 is not even. 
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4 Square Infection 

The following problem is fairly tough until you hear a certain oneword clue. Then the 
solution is easy! Suppose that we have an n × n grid, where certain squares are infected. 
Here is an example where n = 6 and infected squares are marked ×. 

× × 
× 

× × 

× 
× × 

Now the infection begins to spread in discrete time steps. Two squares are considered 
adjacent if they share an edge; thus, each square is adjacent to 2, 3 or 4 others. A square is 
infected in the next time step if either 

• the square was previously infected, or 

• the square is adjacent to at least two alreadyinfected squares. 

In the example, the infection spreads as shown below. 

× × 
× 

× × 

× 
× × 

⇒ 

× × × 
× × × 

× × × 
× 
× × 
× × × × 

⇒ 

× × × × 
× × × × 
× × × × 

× × × 
× × × 
× × × × 

Over the next few timesteps, the entire grid becomes infected. 

Theorem. An n × n grid can become completely infected only if at least n squares are initially 
infected. 

Prove this theorem using induction and some additional reasoning. If you are stuck, ask 
your recitation instructor for the oneword clue! 

Solution. Define the perimeter of an infected region to be the number of edges with 
infection on exactly one side. Let I denote the perimeter of the initiallyinfected region. 

Proof. We use induction on the number of time steps k to prove that the perimeter of the 
infected region never increases. The inductive hypothesis P (k) is this: after k time steps, 
the perimeter of the infected region is at most I . 
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Base case: P (0) is true by definition; the perimeter of the infected region is at most I after 
0 time steps, because I is defined to be the perimeter of the initiallyinfected region. 

Inductive step: We now show that P (k) implies P (k + 1) for all k ≥ 0. So, fix any k ≥ 0 
and assume that P (k) is true; that is, after k steps, the perimeter of the infected region is 
at most I . 

After step k+1 the primeter can only change because some squares are newly infected. By 
the rules above, each newlyinfected square is adjacent to at least two previouslyinfected 
squares. Thus, for each newlyinfected square, at least two edges are removed from the 
perimenter of the infected region, and at most two edges are added to the perimeter. 
Therefore, the perimeter of the infected region can not increase and is at most I after k +1 
steps as well. Hence, P (k + 1) is true. 

By induction, we conclude that P (k) is true for all nk ≥ 0. 

Now, if an n × n grid is completely infected, then the perimeter of the infected region is 
4n. Thus, the whole grid can become infected only if the perimeter is initially at least 4n. 
Since each square has perimeter 4, at least n squares must be infected initially. 


