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Notes for Recitation 3 

1 Induction 

Recall the principle of induction: 

Principle of Induction. Let P (n) be a predicate. If 

• P (0) is true, and 

• for all n ∈ N, P (n) implies P (n + 1), 

then P (n) is true for all n ∈ N. 

As an example, let’s try to find a simple expression equal to the following sum and 
then use induction to prove our guess correct. 

1 2 + 2 3 + 3 4 + . . . + n · (n + 1) · · · 

To help find an equivalent expression, we could try evaluating the sum for some small 
n and (with the help of a computer) some larger n: 

n 
0 

sum 
0 

3 × sum 
0 

1 2 6 
2 8 24 
3 20 60 
4 40 120 
5 70 210 
. . . . . . . . . 
10 440 1320 
100 
1000 

343400 ≈ 106/3 
334334000 ≈ 109/3 

1030200 
1003002000 
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Unfortunately, the small sums are not too illuminating. However, the larger sums suggest 
we consider an expression similar to n3/3. So in the third column we’ve multiplied each 

3sum by 3 in hopes of spotting a sequence generated by an expression something like n . 
From the first few terms, you might guess that these new numbers are equal to n(n+1)(n+ 
2). Alternatively, you might notice that the last couple numbers are equal to n3 +3n2 +2n, 
which factors to n(n + 1)(n + 2). So now we have a conjecture: 

Conjecture. For all positive integers, n: 
n(n + 1)(n + 2) 

1 2 + 2 3 + 3 4 + . . . + n(n + 1) = · · ·
3 

Let’s use induction to verify this conjecture. Remember that an induction proof has 
five parts, though the last one is often omitted: 

1. Say that the proof is by induction. 

2. Define the induction hypothesis, a predicate P defined on the natural numbers. 

3. Handle the base case: prove that P (0) is true. 

4. Handle the inductive step: prove that P (n) implies P (n + 1) for all integers n ≥ 0. 

5. Conclude that P (n) is true for all n ∈ N by the principle of induction. 

We noted in Lecture that while the base case is usually n = 0, it could be any non
negative integer, k, in which case the conclusion would simply be that P (n) holds for all 
n ≥ k. 

Proof. We use induction. Let P (n) be the proposition that: 

n(n + 1)(n + 2) 
1 2 + 2 3 + 3 4 + . . . + n(n + 1) = (1)· · ·

3 

Base case n = 1: P (1) is true, because the lefthand side of (??) is 1 ·2 = 2, and the righthand 
side is (1 2 · 3)/3 = 2.·
Inductive step: We must show that P (n) implies P (n+1) for all n ≥ 1. So assume that P (n) 
is true, where n denotes a positive integer. Then we can reason as follows: 

1 2 + 2 3 + · · ·+ (n + 1)(n + 2) · ·
= [1 2 + 2 3 + + n(n + 1)] + (n + 1)(n + 2) · · · · ·

n(n + 1)(n + 2) 
= + (n + 1)(n + 2) by ind. hypothesis (??)

3

n(n + 1)(n + 2) + 3(n + 1)(n + 2)


= 
3


(n + 1)(n + 2)(n + 3)

= 

3 

This shows that P (n + 1) is true, and so P (n) implies P (n + 1) for all n ≥ 1. 

By the induction principle, P (n) is true for all n ≥ 1, which proves the claim. 
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2 Problem: A Geometric Sum 

Perhaps you encountered this classic formula in school: 

31 + r + r 2 + r + . . . + r n =
1− rn+1 

1− r 

Use induction to prove that it is correct for all real values r = 1� . 

Prepare a complete, careful solution. You’ll be passing your proof to another group for “construc
tive criticism”!’ 

Solution. 

Proof. We use induction. Let P (n) be the proposition that the following equation holds 
for all r = 1:�

1− rn+1 
31 + r + r 2 + r + . . . + r n = 

1− r 
Base case: P (0) is true, because both sides of the equation are equal to 1. 

Inductive step: We must show that P (n) implies P (n + 1) for all n ∈ N. So assume that 
P (n) is true, where n denotes an arbitrary natural number. We can reason as follows: 

3 n+11 + r + r 2 + r + . . . + r n + r n+1 =
1− rn+1 

+ r 
1− r 

1− rn+1 + (1− r) · rn+1 

= 
1− r 

1− rn+2 

= 
1− r 

The first equation follows from the assumption P (n), and the remaining steps are simpli
fications. This proves that P (n + 1) is also true. Therefore, P (n) implies P (n + 1) for all 
n ∈ N. By the principle of induction, P (n) is true for all n ∈ N. 

Note: You may have encountered a different proof of this formula. We’ll write down a 
sequence of equations and then explain the reasoning. 

3S = 1 + r + r 2 + r + . . . + r n 

3 n+1rS = r + r 2 + r + . . . + r 

S − rS = 1− r n+1 

1− rn+1 

S = 
1− r 

We define S on the first line, multiply by r to get the second equation, subtract the second 
equation from the first to get the third, and then solve for S. This gives the formula above! 

This argument is great! It is a derivation of the formula rather than just a verification. 
But, at some level, we’ve only hidden the use of induction, since the operations we’re 
doing on nterm sums are justified using— you guessed it— induction. 



� � 

� � 

� � 
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3 Problem: A False Proof 

In lecture, we proved that: 

n(n + 1) 
1 + 2 + 3 + . . . + n = 

2 

But now we’re going to prove a contradictory theorem! 

False Theorem 1. For all n ≥ 0, 

n(n + 1) 
2 + 3 + 4 + . . . + n = 

2 

Proof. We use induction. Let P (n) be the proposition that 2 + 3 + 4 + . . . + n = n(n + 1)/2. 

Base case: P (0) is true, since both sides of the equation are equal to zero. (Recall that a sum 
with no terms is zero.) 

Inductive step: Now we must show that P (n) implies P (n + 1) for all n ≥ 0. So suppose 
that P (n) is true; that is, 2 + 3 + 4 + . . . + n = n(n + 1)/2. Then we can reason as follows: 

2 + 3 + 4 + . . . + n + (n + 1) = 2 + 3 + 4 + . . . + n + (n + 1) 

n(n + 1) 
= + (n + 1) 

2 
(n + 1)(n + 2) 

= 
2 

Above, we group some terms, use the assumption P (n), and then simplify. This shows 
that P (n) implies P (n + 1). By the principle of induction, P (n) is true for all n ∈ N. 

Where exactly is the error in this proof? 

Solution. The short answer is that we failed to prove P (0) ⇒ P (1), just as in the 
colored horses problem in lecture. In fact, once again, the error is rooted in the misleading 
nature of the “. . .” notation. 

More precisely, in the inductive step we are required to prove that P (n) implies P (n+1) 
for all n ≥ 0. However, the argument given above breaks down when n = 0. Let’s look 
more closely at the first equation in the indutive step to see why: 

2 + 3 + 4 + . . . + n + (n + 1) = 2 + 3 + 4 + . . . + n + (n + 1) 

This seems completely innucuous; after all, we’ve only grouped terms! However, the left 
side contains no terms when n = 0. The “. . .” is compeletely misleading in this case; 2, 
3, 4, and n + 1 are actually not in the sum. This misimpression becomes an error when 
we “pull out” the (n + 1) term on the right side, disregarding the fact that no such term 
actually existed on the left. Thus, for n = 0, the equation we’ve just written down says: 

2 + 3 + 4 + . . . + n + (n + 1) = 2 + 3 + 4 +� . . . + n + (n + 1) � �� � �� � � �� � 
=0 =0 =1 
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The assertion 0 = 0 + 1 is false, and so we have not shown that P (0) implies P (1). There 
is no way to fix this problem and correctly prove that P (0) implies P (1), because actually 
P (0) is true and P (1) is false. 

Thus, we’ve only established P (0), P (1) ⇒ P (2), P (2) ⇒ P (3), and so forth. The 
induction argument falls apart because of the missing link P (0) �⇒ P (1). 
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4 Problem: The Volcanic Island 

There is a village on a volcanic island with b ≥ 1 blueeyed people and g ≥ 0 greeneyed 
people. There are no mirrors and no one ever discusses eye color. Therefore, everyone 
knows the colors of everyone elses’ eyes, but not their own. Good thing, because an 
islander who learns that he or she has blue eyes must leap into the volcano at the end of 
the same day! 

The villagers live in happy ignorance for years. But one day an explorer arrives and 
loudly proclaims, “I see that at least one person here has blue eyes.” Assuming that all 
the villagers are master logicians, what happens? 
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What happens is that at the end of the bth day, all the blueeyed villagers jump into the 
volcano. 

Use induction to prove that your conclusion is correct. We suggest the following hypoth
esis P (n) that asserts all of the following are true on day n: 

1. If b > n, then all blueeyed people survive the day. 

2. If b = n, then all blueeyed people jump into the volcano. 

3. If b < n, then all blueeyed people are already dead. 

Solution. Note that a greeneyed villager shouldn’t ever conclude that she has blue 
eyes, since she doesn’t, and we’re assuming the villagers always reason correctly from 
what they know (and what they know from the explorer is also true). So no greeneyed 
person should ever jump into the volcano. 

Theorem 2. All the blueeyed people jump into the volcano on day b. 

Proof. We use induction. Let P (n) be the proposition that all of the following are true on 
day n: 

1. If b > n, then all blueeyed people survive the day. 

2. If b = n, then all blueeyed people jump into the volcano. 

3. If b < n, then all blueeyed people are already dead. 

Base case: We must verify that the three parts of P (n) hold on day n = 1. 

1. Suppose b > 1. Consider events on day 1 from the perspective of a blueeyed vil
lager. The explorer says that someone has blue eyes, and she can indeed see at least 
one other person with blue eyes. Therefore, the facts available to her are consistent 
with her having either blue or green eyes. So she survives the day. 

2. Suppose b = 1. The single blueeyed villager sees no one else with blue eyes, con
cludes that he must have blue eyes, and jumps into the volcano. No one else jumps 
in because everyone else does see the blueeyed villager and they have no reason at 
this point to think they too are blueeyed. 

3. This statement is vacuously true, because the ifpart (b < 1) is false; the problem 
statement says that b ≥ 1. 

Therefore, P (1) is true. 

Inductive step: Now suppose that P (n) is true where n ≥ 0. We must verify the three parts 
of P (n + 1). 
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1. Suppose b > n + 1. Then b > n so all the blueeyed people survived the preceding 
day by part 1. of P (n). Furthermore, each blueeyed villager can see at least n+1 > n 
other blueeyed people, so the observation that everyone survives is consistent with 
she herself having either blue or green eyes by P (n) as well. Thus, each blueeyed 
villager survives the day. 

2. Suppose b = n + 1. Then b > n, so all the blueeyed people survived the preceding 
day by part 1. of P (n). Thus, on day n + 1 each blueeyed villager knows b > n , but 
sees only n other people with blue eyes. Thus, each blueeyed villager realizes that 
she has blue eyes and jumps into the volcano. 

3. Suppose b < n + 1. Then either b = n (in which case all blueeyed people jumped 
into the volcano on day n by part 2. of P (n)) or else b < n (in which case all blue
eyedpeople were already dead on day n by part 3. of P (n)). In either case, all the 
blueeyed people are already toast. 

Therefore P (n) implies P (n + 1) for all n ≥ 0. 

By the principle of induction, P (n) is true for all n ≥ 0, and the theorem follows. 
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