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Notes for Recitation 19 

Problem 1. Suppose that you flip three fair, mutually independent coins. Define the fol
lowing events: 

• Let A be the event that the first coin is heads. 

• Let B be the event that the second coin is heads. 

• Let C be the event that the third coin is heads. 

• Let D be the event that an even number of coins are heads. 

(a)	 Are these events pairwise independent?


Solution. The sample space consists of eight, equiprobable outcomes:


{H, T}
3 = {HHH, HHT,HTH,HTT, THH, THT, TTH, TTT} 

Each sequence of three symbols specifies the outcomes of the three coin tosses. 

The first three events (A, B, and C) are pairwise independent, since they are mu
tually independent. All that remains is to check that each of these is independent 
of D. By symmetry, we need only check just one of the three, say A: 

Pr (A) = 

Pr (D) 

1 
2 

1 

= Pr ({HHT,HTH, THH, TTT}) = 1 
2 

Pr (A ∩ D) = Pr ({HHT,HTH}) =

4 

Therefore, Pr (A ∩ D) = Pr (A) · Pr (D), and so these events are independent. We 
conclude that all four events are pairwise independent. 

(b) Are these events threeway independent? That is, does 

Pr (X ∩ Y ∩ Z) = Pr (X) · Pr (Y ) · Pr (Z) 

always hold when X , Y , and Z are distinct events drawn from the set {A, B, C,D}? 

Solution. Because the coin tosses are mutually independent, we know: 

Pr (A ∩ B ∩ C) = Pr (A) · Pr (B) · Pr (C)
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What remains is to check that equality holds for the other subsets of three events: 
{A, B, D}, {A, C,D}, and {B, C, D}. By symmetry, again, we need only check one, 
say the first one. 

Pr (A ∩ B ∩ D) = Pr ({HHT}) =
 1 
8 

Since this is equal to Pr (A) · Pr (B) · Pr (D), these three events are independent. 

We conclude that all four events are threeway independent. 

(c)	 Are these events mutually independent? 

Solution. No, because: 

Pr (A ∩ B ∩ C ∩ D) = Pr (A) · Pr (B) · Pr (C) · Pr (D) 

The probability on the left is zero, but the product on the right is equal to
 1 
16 

.
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Fact from lecture. If there are N days in a year and m people in a room, then the proba
bility that no two people in the room have the same birthday is about: 

e−m2/(2N) 

Problem 2. Suppose that we create a a national database of DNA profiles. Let’s make 
some simplistic assumptions: 

•	 Each person can be classified into one of 20 billion different “DNA types”. (For 
example, you might be type #13,646,572,661 and the person next to you might be 
type #2,785,466,098.) Let T (x) denote the type of person x. 

•	 Each DNA type is equally probable. 

•	 The DNA types of Americans are mutually independent. 

(a)	 A congressman argues that there are only about 250 million Americans, so even 
if a profile for every American were stored in the database, the probability of even 
one coincidental match would be very small. How many profiles must the database 
actually contain in order for the probability of at least one coincidental match be 
about 1/2? 

Solution. By the birthday principle, the probability of a match is around half when 
the number of entries is: 

2 ln 2 20, 000, 000, 000 = 166, 511 · 

(b)	 Person x is arrested for a crime that was committed by person y. At trial, jurors 
must determine whether x = y. The crime lab says x and y have the same DNA 
type. The prosecutor argues that the probability that x and y are different people is 
only 1 in 20 billion. Write the prosecutor’s assertion in mathematical notation and 
explain her error. 

Solution. The prosecutor is asserting that: 

10−10Pr (x and y are different people | T (x) = T (y)) = 2 · 
This assertion is at best false and arguably not even a wellformed mathematical 
statement. Either x and y are the same person or different people, regardless of the 
DNA types of all the people in the world. Thus, either x and y are the same person 
in every outcome or they are different people. Consequently, the probability above 
is either 0 or 1, but we don’t know which. 

The prosecutor’s argument sounds confusingly similar to a correct assertion: if x and 
y are different people, then: 

Pr (T (x) = T (y)) = 2 10−10 · 

The prosecutor can validly argue that either an amazing 1in20 billion coincidence 
involving DNA has occurred or else x and y are the same person. On this basis, a jury 
might conclude that x is almost surely guilty, but there is nothing in our probability 
model to justify that conclusion directly. 
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Problem 3. Suppose there are 100 people in a room. Assume that their birthdays are in
dependent and uniformly distributed. As stated in lecture notes, with probability > 99% 
there will be two that have the same birthday. 

Now suppose you find out the birthdays of all the people in the room except one—call 
her “Jane”—and find all 99 dates to be different. 

(a) What’s wrong with the following argument: 

With probability greater than 99%, some pair of people in the room have 
the same birthday. Since the 99 people we asked all had different birth
days, it follows that with probability greater than 99% Jane has the same 
birthday as some other person in the room. 

Solution. Here’s the problem with the argument: Let A be the event that some two 
people in the room have the same birthday. Let B be the event that the 99 people 
we asked all have different birthdays. 

It is true that Pr (A) > 0.99 (that is indeed the probability spoken about in the lecture 
notes). However, that is the a priori probability, i.e., assuming all the birthdays are 
uniform and independent, with no other constraints. The argument above makes 
the erroneous assumption that event A has probability of at least 99% even once we 
know that event B holds. But once we know that event B holds, the birthdays are 
no longer independent. Thus Pr (A | B) is not necessarily equal to Pr (A) (in our 
case, they are actually quite different, as will be computed in part (b)). 

(b)	 What is the actual probability that Jane has the same birthday as some other 
person in the room? 

Solution. Let S be the set of birthdays of the 99 people in the room other than Jane. 
By assumption, |S| = 99. Let b be the date of Jane’s birthday. Since b is uniformly 
distributed over a set of size 365, and b is independent of all the birthdays in S, we 
have 

S 99 
Pr (A B) = Pr (b ∈ S) = 

| | 
=| 

365 365 
≈ 27.1%, 

where B is the event that the 99 people we asked all have different birthdays. 



5 Recitation 19 

Problem 4. There were n Immortal Warriors born into our world, but in the end there can 
be only one. The Immortals’ original plan was to stalk the world for centuries, dueling one 
another with ancient swords in dramatic landscapes until only one survivor remained. 
However, after a thoughtprovoking discussion of probabilistic independence, they opt 
to give the following protocol a try: 

1. The Immortals forge a coin that comes up heads with probability p. 

2. Each Immortal flips the coin once. 

3. If exactly one Immortal flips heads, then he or she is declared The One. Otherwise, 
the protocol is declared a failure, and they all go back to hacking each other up with 
swords. 

(a)	 One of the Immortals (the Kurgan from the Russian steppe) argues that as n 
grows large, the probability that this protocol succeeds must tend to zero. Another 
(McLeod from the Scottish highlands) argues that this need not be the case, pro
vided p is chosen very carefully. What does your intuition tell you? 

Solution. Your intuition tells you that a short nap would be nice right now. As 
would a couple cookies to dunk in a cold glass of milk. 

(b) What is the probability that the experiment succeeds as a function of p and n? 

Solution. The sample space consists of all possible results of n coin flips, which we 
can represent by the set {H, T}n. Let E be the event that the experiment successfully 
selects The One. Then E consists of the n outcomes which contain a single head. In 
general, the probability of an outcome with h heads and n − h tails is: 

hp (1 − p)n−h 

Summing the probabilities of the n outcomes in E gives the probability that the 
procedure succeeds: 

Pr (E) = np(1 − p)n−1 

(c)	 How should p, the bias of the coin, be chosen in order to maximize the probability 
that the experiment succeeds? (You’re going to have to compute a derivative!) 

Solution. We compute the derivative of the success probability: 

d 
np(1 − p)n−1 = n(1 − p)n−1 − np(n − 1)(1 − p)n−2 

dp 
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Now we set the right side equal to zero to find the best probability p: 

n(1 − p)n−1 = np(n − 1)(1 − p)n−2 

(1 − p) = p(n − 1) 

p = 1/n 

This answer makes sense, since we want the coin to come up heads exactly 1 time 
in n. 

(d)	 What is the probability of success if p is chosen in this way? What quantity does 
this approach when n, the number of Immortal Warriors, grows large? 

Solution. Setting p = 1/n in the formula for the probability that the experiment 
succeeds gives: 

1 
n−1 

Pr (E) = 1 − 
n 

In the limit, this tends to 1/e. McLeod is right. 
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