
6.042/18.062J Mathematics for Computer Science March 25, 2005

Srini Devadas and Eric Lehman Lecture Notes

Counting I

20480135385502964448038 3171004832173501394113017 5763257331083479647409398 8247331000042995311646021
489445991866915676240992 3208234421597368647019265 5800949123548989122628663 8496243997123475922766310

1082662032430379651370981 3437254656355157864869113 6042900801199280218026001 8518399140676002660747477
1178480894769706178994993 3574883393058653923711365 6116171789137737896701405 8543691283470191452333763
1253127351683239693851327 3644909946040480189969149 6144868973001582369723512 8675309258374137092461352
1301505129234077811069011 3790044132737084094417246 6247314593851169234746152 8694321112363996867296665
1311567111143866433882194 3870332127437971355322815 6814428944266874963488274 8772321203608477245851154
1470029452721203587686214 4080505804577801451363100 6870852945543886849147881 8791422161722582546341091
1578271047286257499433886 4167283461025702348124920 6914955508120950093732397 9062628024592126283973285
1638243921852176243192354 4235996831123777788211249 6949632451365987152423541 9137845566925526349897794
1763580219131985963102365 4670939445749439042111220 7128211143613619828415650 9153762966803189291934419
1826227795601842231029694 4815379351865384279613427 7173920083651862307925394 9270880194077636406984249
1843971862675102037201420 4837052948212922604442190 7215654874211755676220587 9324301480722103490379204
2396951193722134526177237 5106389423855018550671530 7256932847164391040233050 9436090832146695147140581
2781394568268599801096354 5142368192004769218069910 7332822657075235431620317 9475308159734538249013238
2796605196713610405408019 5181234096130144084041856 7426441829541573444964139 9492376623917486974923202
2931016394761975263190347 5198267398125617994391348 7632198126531809327186321 9511972558779880288252979
2933458058294405155197296 5317592940316231219758372 7712154432211912882310511 9602413424619187112552264
3075514410490975920315348 5384358126771794128356947 7858918664240262356610010 9631217114906129219461111
3111474985252793452860017 5439211712248901995423441 7898156786763212963178679 9908189853102753335981319
3145621587936120118438701 5610379826092838192760458 8147591017037573337848616 9913237476341764299813987
3148901255628881103198549 5632317555465228677676044 8149436716871371161932035
3157693105325111284321993 5692168374637019617423712 8176063831682536571306791

Two different subsets of the ninety 25digit numbers shown above have the same sum.
For example, maybe the sum of the numbers in the first column is equal to the sum of the
numbers in the second column. Can you find two such subsets? This is a very difficult
computational problem. But we’ll prove that such subsets must exist! This is the sort of
weird conclusion one can reach by tricky use of counting, the topic of this chapter.

Counting seems easy enough: 1, 2, 3, 4, etc. This explicit approach works well for
counting simple things, like your toes, and for extremely complicated things for which
there’s no identifiable structure. However, subtler methods can help you count many
things in the vast middle ground, such as:

•	 The number of different ways to select a dozen doughnuts when there are five vari
eties available.

•	 The number of 16bit numbers with exactly 4 ones.

Counting is useful in computer science for several reasons:

•	 Determining the time and storage required to solve a computational problem— a
central objective in computer science— often comes down to solving a counting
problem.

2	 Counting I

•	 Counting is the basis of probability theory, which in turn is perhaps the most im
portant topic this term.

•	 Two remarkable proof techniques, the “pigeonhole principle” and “combinatorial
proof”, rely on counting. These lead to a variety of interesting and useful insights.

We’re going to present a lot of rules for counting. These rules are actually theorems,
but we’re generally not going to prove them. Our objective is to teach you counting as a
practical skill, like integration. And most of the rules seem “obvious” anyway.

1 Counting One Thing by Counting Another

How do you count the number of people in a crowded room? We could count heads,
since for each person there is exactly one head. Alternatively, we could count ears and
divide by two. Of course, we might have to adjust the calculation if someone lost an ear
in a pirate raid or someone was born with three ears. The point here is that we can often
count one thing by counting another, though some fudge factors may be required. This is
the central theme of counting, from the easiest problems to the hardest.

In more formal terms, every counting problem comes down to determining the size of
some set. The size or cardinality of a set S is the number of elements in S and is denoted
|S|. In these terms, we’re claiming that we can often find the size of one set S by finding the
size of a related set T . We already have a mathematical tool for relating one set to another:
relations. Not surprisingly, a particular kind of relation is at the heart of counting.

1.1 Functions

Functions like f(x) = x2 + 1 and g(x) = tan−1(x) are surely quite familiar from calculus.
We’re going to use functions for counting as well, but in a way that might not be familiar.
Instead of using functions that map one real number to another, we’ll use functions that
relate elements of finite sets.

In order to count accurately, we need to carefully define the notion of a function. For
mally, a function f : X Y is a relation between two sets, X and Y , that relates every→
element of X to exactly one element of Y . The set X is called the domain of the function f ,
and Y is called the codomain. Here is an illustration of a function:

3 Counting I

X f Y

-a 1

domain 2 codomainb PPPPPPq
� 3c

�����1PPPPPPd q 4
-e 5

In this example, the domain is the set X = {a, b, c, d, e} and the range is the set Y =
{1, 2, 3, 4, 5}. Related elements are joined by an arrow. This relation is a function because
every element on the left is related to exactly one element on the right. In graphtheoretic
terms, this is a function because every element on the left has degree exactly 1. If x is an
element of the domain, then the related element in the codomain is denoted f(x). We
often say f maps x to f(x). In this case, f maps a to 1, b to 3, c to 4, d to 3 and e to 5.
Equivalently, f(a) = 1, f(b) = 3, f(c) = 4, f(d) = 3, and f(e) = 5.

The relations shown below are not functions:

X Y X Y

a -PPPPPPqb PPPPPPqc PPPPPPqd ������1

1

2

3

4

a

b

c

d

-

PPPPPPq

1

2

3

4

e - 5 e - 5

The relation on the left is not a function because a is mapped to two elements of the
codomain. The relation on the right is not a function because b and d are mapped to zero
elements of the codomain. Tsktsk!

1.2 Bijections

The definition of a function is rather asymmetric; there are restrictions on elements in
the domain, but not on elements in the codomain. A bijection or bijective function is
a function f : X Y that maps exactly one element of the domain to each element of →
the codomain. In graph terms, both domain and codomain elements are required to have
degree exactly 1 in a bijective function. Here is an example of a bijection:

�

�

�

4 Counting I

X f Y

a 1PPPPPP�
domain �q 2 codomainb PPPPPPc � q 3PPPPPPqd � 4

-e 5

In contrast, these relations that are not bijections:

X Y X Y X Y

a - 1 a - 1 a - 1

b PPPPPPqc PPPPPPqd �
�

�
�

��3

e �
�

�
�

��3

2

3

4

b PPPPPPqc Q
Q

Q
Q

QQs
d �

�
�

�
��3 2

3

4

5

b

c

d

e

PPPPPPq�
�

�
�

��3

�
�

�
�

��3

2

3

4

The first function is not bijective because 3 is related to two elements of the domain. The
second function is not bijective because 4 is related to zero elements of the domain. The last
relation is not even a function, because b is associated with zero elements of the domain.

Bijective functions are also found in the morefamiliar world of realvalued functions.
For example, f(x) = 6x+5 is a bijective function with domain and codomain R. For every
real number y in the codomain, f(x) = y for exactly one real number x in the domain. On
the other hand, f(x) = x2 is not a bijective function. The number 4 in the codomain is
related to both 2 and 2 in the domain.

1.3 The Bijection Rule

If we can pair up all the girls at a dance with all the boys, then there must be an equal
number of each. This simple observation generalizes to a powerful counting rule:

Rule 1 (Bijection Rule). If there exists a bijection f : A → B, then |A = B .| | |

In the example, A is the set of boys, B is the set of girls, and the function f defines how
they are paired.

The Bijection Rule acts as a magnifier of counting ability; if you figure out the size of
one set, then you can immediately determine the sizes of many other sets via bijections.

Counting I 5

For example, let’s return to two sets mentioned earlier:

A = all ways to select a dozen doughnuts when five varieties are available

B = all 16bit sequences with exactly 4 ones

Let’s consider a particular element of set A:

0 0 0 0 0 0 0 0 � 0 0 0 0���� ���� � �� ���� ����
chocolate lemonfilled sugar glazed plain

We’ve depicted each doughnut with a 0 and left a gap between the different varieties.
Thus, the selection above contains two chocolate doughnuts, no lemonfilled, six sugar,
two glazed, and two plain. Now let’s put a 1 into each of the four gaps:

���� 1 0 0 0 0 0 0 � 1 0 0 1 0 00 0 1 ���� � �� ���� ����
chocolate lemonfilled sugar glazed plain

We’ve just formed a 16bit number with exactly 4 ones— an element of B!

This example suggests a bijection from set A to set B: map a dozen doughnuts consist
ing of:

c chocolate, l lemonfilled, s sugar, g glazed, and p plain

to the sequence:

�0 . . . 0 1 �0 . . . 0 1 �0 . . . 0 1 �0 . . . 0 1 �0 . . . 0�� � �� � �� � �� � �� �
c l s g p

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an element of
B. Moreover, the mapping is a bijection; every such bit sequence is mapped to by exactly
one order of a dozen doughnuts. Therefore, |A = B by the Bijection Rule! | | |

This demonstrates the magnifying power of the bijection rule. We managed to prove
that two very different sets are actually the same size— even though we don’t know
exactly how big either one is. But as soon as we figure out the size of one set, we’ll
immediately know the size of the other.

This particular bijection might seem frighteningly ingenious if you’ve not seen it be
fore. But you’ll use essentially this same argument over and over and over, and soon
you’ll consider it boringly routine.

1.4 Sequences

The Bijection Rule lets us count one thing by counting another. This suggests a general
strategy: get really good at counting just a few things and then use bijections to count
everything else:

6 Counting I

problems
sequence−counting

S

T

all counting problems

bijection

This is precisely the strategy we’ll follow. In particular, we’ll get really good at count
ing sequences. When we want to determine the size of some other set T , we’ll find a bi
jection from T to a set of sequences S. Then we’ll use our superninja sequencecounting
skills to determine |S|, which immediately gives us T . We’ll need to hone this idea | |
somewhat as we go along, but that’s pretty much the plan!

In order to pull this off, we need to clarify some issues concerning sequences and sets.
Recall that a set is an unordered collection of distinct elements. A set is often represented
by listing its elements inside curlybraces. For example, {a, b, c} is a set, and {c, b, a} is
another way of writing the same set. On the other hand, {a, b, a} is not a set, because
element a appears twice.

On the other hand, a sequence is an ordered collection of elements (called components
or terms) that are not necessarily distinct. A sequence is often written by listing the terms
inside parentheses. For example, (a, b, c) is a sequence, and (c, b, a) is a different sequence.
Furthermore (a, b, a) is a perfectly valid threeterm sequence.

The distinction between sets and sequences is crucial for everything that follows. If
you don’t keep the distinction clear in your mind, you’re doomed!

2 Two Basic Counting Rules

We’ll harvest our first crop of counting problems with two basic rules.

2.1 The Sum Rule

Linus allocates his big sister Lucy a quota of 20 crabby days, 40 irritable days, and 60
generally surly days. On how many days can Lucy be outofsorts one way or another?
Let set C be her crabby days, I be her irritable days, and S be the generally surly. In these
terms, the answer to the question is C ∪ I ∪ S . Now assuming that she is permitted at | |
most one bad quality each day, the size of this union of sets is given by the Sum Rule:

Counting I 7

Rule 2 (Sum Rule). If A1, A2, . . . , An are disjoint sets, then:

A1 ∪ A2 ∪ . . . ∪ An = A1 + A2 + . . . +| | | | | | |An|

Thus, according to Linus’ budget, Lucy can be outofsorts for:

= C I SC ∪ I ∪ S| | | | ∪ | | ∪ | |
= 20 + 40 + 60

= 120 days

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the size of a
union of intersecting sets is a more complicated problem that we’ll take up later.

2.2 The Product Rule

The product rule gives the size of a product of sets. Recall that if P1, P2, . . . , Pn are sets,
then

P1 × P2 × . . .× Pn

is the set of all sequences whose first term is drawn from P1, second term is drawn from
P2 and so forth.

Rule 3 (Product Rule). If P1, P2, . . . Pn are sets, then:

P1 × P2 × . . .× Pn = P1| | | | · |P2| · · · |Pn|

Unlike the sum rule, the product rule does not require the sets P1, . . . , Pn to be disjoint.
For example, suppose a daily diet consists of a breakfast selected from set B, a lunch from
set L, and a dinner from set D:

B = {pancakes, bacon and eggs, bagel, Doritos}

L = {burger and fries, garden salad, Doritos}

D = {macaroni, pizza, frozen burrito, pasta, Doritos}

Then B × L×D is the set of all possible daily diets. Here are some sample elements:

(pancakes, burger and fries, pizza)

(bacon and eggs, garden salad, pasta)

(Doritos, Doritos, frozen burrito)

The Product Rule tells us how many different daily diets are possible:

LB × L×D| | = |B| · | | · |D|
= 4 3 5· ·
= 60

� �
 � �
 � �
 � �
 � �
 � �
 � �
 � �

8 Counting I

2.3 Putting Rules Together

Few counting problems can be solved with a single rule. More often, a solution is a flury
of sums, products, bijections, and other methods. Let’s look at some examples that bring
more than one rule into play.

Passwords

The sum and product rules together are useful for solving problems involving passwords,
telephone numbers, and license plates. For example, on a certain computer system, a
valid password is a sequence of between six and eight symbols. The first symbol must be
a letter (which can be lowercase or uppercase), and the remaining symbols must be either
letters or digits. How many different passwords are possible?

Let’s define two sets, corresponding to valid symbols in the first and subsequent posi
tions in the password.

F = a, b, . . . , z, A, B, . . . , Z}{
S = a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9}{

In these terms, the set of all possible passwords is:

(F × S5) ∪ (F × S6) ∪ (F × S7)

Thus, the lengthsix passwords are in set F×S5, the lengthseven passwords are in F×S6 ,
and the lengtheight passwords are in F × S7. Since these sets are disjoint, we can apply
the Sum Rule and count the total number of possible passwords as follows:

=
 F ×
S7 Sum Rule
S5 S6 S7 F × S5 F × S6(F ×) ∪ (F ×) ∪ (F ×)
 + +
5 6 7S + |F S + |F S Product Rule = |F | · | | | · | | | · | |

= 52 · 625 + 52 626 + 52 627 · ·
≈ 1.8 · 1014 different passwords

Subsets of an nelement Set

How many different subsets of an n element set X are there? For example, the set X =
x1, x2, x3} has eight different subsets: {

x1} x2} x1, x2}{} { { {
x1, x2, x3}{x3} {x1, x3} {x2, x3} {

There is a natural bijection from subsets of X to nbit sequences. Let x1, x2, . . . , xn

be the elements of X . Then a particular subset of X maps to the sequence (b1, . . . , bn)

� ��

Counting I 9

where bi = 1 if and only if xi is in that subset. For example, if n = 10, then the subset
{x2, x3, x5, x7, x10} maps to a 10bit sequence as follows:

subset: x2, x3, x5, x7, x10

sequence:
{
(0, 1, 1, 0, 1, 0, 1, 0, 0, 1

}
)

We just used a bijection to transform the original problem into a question about sequences—
exactly according to plan! Now if we answer the sequence question, then we’ve solved our
original problem as well.

But how many different nbit sequences are there? For example, there are 8 different
3bit sequences:

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

Well, we can write the set of all nbit sequences as a product of sets:

{0, 1} n
={0, 1} × {0, 1} × . . .× {0, 1}�
n terms

Then Product Rule gives the answer:

=|{0, 1} n | |{0, 1}| n

= 2n

This means that the number of subsets of an nelement set X is also 2n. We’ll put this
answer to use shortly.

3 More Functions: Injections and Surjections

Bijective functions are incredibly powerful counting tools. A few other kinds of functions
are useful as well; we’ll look at two now and one more next time. A function f : X Y→
is:

• surjective if every element of Y is mapped to at least once

• injective if every element of Y is mapped to at most once

• bijective if every element of Y is mapped to exactly once

We’ve repeated the definition of a bijective function for comparison. Notice that these
definitions immediately imply that a function is bijective if and only if it is both injective
and surjective. Now the names “surjective” and “injective” are hopelessly unmemorable
and nondescriptive. Some people prefer the terms onto and into, respectively, perhaps
on the grounds that these are hopelessly unmemorable and nondescriptive— but shorter.
Anyway, here are a couple examples:

10 Counting I

X Y X Y

-a 1 a - 1

3 2
3 2

� �
b PPPPPP

b PPPPPP
� �

c � q 3 c Q �
� q 3� �3 Q

PPPPPP
� � �

d � � q d � Q
Q4 4�

� QQe � s 5

The function on the left is surjective (every element on the right is mapped to at least
once), but not injective (element 3 is mapped to twice). The function on the right is injec
tive (every element is mapped to at most once), but not surjective (element 4 is mapped
to zero times).

Earlier, we observed that two sets are the same size if there is a bijection between them.
Similarly, surjections and injections imply certain size relationships between sets.

Rule 4 (Mapping Rule).

1. If f : X → Y is surjective, then |X Y .| ≥ | |

2. If f : X → Y is injective, then |X Y .| ≤ | |

3. If f : X → Y is bijective, then |X = Y .| | |

3.1 The Pigeonhole Principle

Here is an old puzzle:

A drawer in a dark room contains red socks, green socks, and blue socks. How
many socks must you withdraw to be sure that you have a matching pair?

For example, picking out three socks is not enough; you might end up with one red, one
green, and one blue. The solution relies on the Pigeonhole Principle, which is a friendly
name for the contrapositive of part (2) of the Mapping Rule. Let’s write it down:

If |X > Y , then no function f : X Y is injective. | | | →

Now let’s rewrite this a second time to eliminate the word “injective” since, by now,
there’s not a ghost of a chance that you remember what that means:

Rule 5 (Pigeonhole Principle). If |X > |Y , then for every function f : X Y there exist | |
two different elements of X that are mapped to the same element of Y .

→

11 Counting I

Perhaps the relevance of this abstract mathematical statement to selecting footwear
under poor lighting conditions is not obvious. However, let A be the set of socks you
pick out, let B be the set of colors available, and let f map each sock to its color. The
Pigeonhole Principle says that if |A > B = 3, then at least two elements of A (that is, at | | |
least two socks) must be mapped to the same element of B (that is, the same color). For
example, one possible mapping of four socks to three colors is shown below.

A f B

1st sock	 - red

- green 2nd sock
3�

�
3rd sock �

� - blue
�

�4th sock

Therefore, four socks are enough to ensure a matched pair.

Not surprisingly, the pigeonhole principle is often described in terms of pigeons: if
more than n pigeons fly into n pigeonholes, then at least two pigeons must fly into some
hole. In this case, the pigeons form set A, the pigeonholes are set B, and f describes the
assignment of pigeons to pigeonholes.

Mathematicians have come up with many ingenious applications for the pigeonhole
principle. If there were a cookbook procedure for generating such arguments, we’d give
it to you. Unfortunately, there isn’t one. One helpful tip, though: when you try to solve a
problem with the pigeonhole principle, the key is to clearly identify three things:

1. The set A (the pigeons).

2. The set B (the pigeonholes).

3. The function f (the rule for assigning pigeons to pigeonholes).

Hairs on Heads

There are a number of generalizations of the pigeonhole principle. For example:

Rule 6 (Generalized Pigeonhole Principle). If |X > k · Y , then every function f : X Y| | |
maps at least k + 1 different elements of X to the same element of Y .	

→

For example, if you pick two people at random, surely they are extremely unlikely to
have exactly the same number of hairs on their heads. However, in the remarkable city of
Boston, Massachusetts there are actually three people who have exactly the same number
of hairs! Of course, there are many bald people in Boston, and they all have zero hairs.
But I’m talking about nonbald people.

12 Counting I

Boston has about 500,000 nonbald peole, and the number of hairs on a person’s head
is at most 200,000. Let A be the set of nonbald people in Boston, let B = {1, . . . , 200, 000},
and let f map a person to the number of hairs on his or her head. Since |A > 2 B , the | | |
Generalized Pigeonhole Principle implies that at least three people have exactly the same
number of hairs. I don’t know who they are, but I know they exist!

Subsets with the Same Sum

We asserted that two different subsets of the ninety 25digit numbers listed on the first
page have the same sum. This actually follows from the Pigeonhole Principle. Let A be
the collection of all subsets of the 90 numbers in the list. Now the sum of any subset of
numbers is at most 90 1025, since there are only 90 numbers and every 25digit number is ·
less than 1025. So let B be the set of integers {0, 1, . . . , 90 · 1025}, and let f map each subset
of numbers (in A) to its sum (in B).

We proved that an nelement set has 2n different subsets. Therefore:

A| = 290|
≥ 1.237 × 1027

On the other hand:

|B = 90 · 1025 + 1 |
≤ 0.901 × 1027

Both quantities are enormous, but |A is a bit greater than B . This means that f maps| | |
at least two elements of A to the same element of B. In other words, by the Pigeonhole
Principle, two different subsets must have the same sum!

Notice that this proof gives no indication which two sets of numbers have the same
sum. This frustrating variety of argument is called a nonconstructive proof .

13 Counting I

Sets with Distinct Subset Sums

How can we construct a set of n positive integers such that all its subsets have
distinct sums? One way is to use powers of two:

{1, 2, 4, 8, 16}

This approach is so natural that one suspects all other such sets must involve larger
numbers. (For example, we could safely replace 16 by 17, but not by 15.) Remarkably,
there are examples involving smaller numbers. Here is one:

{6, 9, 11, 12, 13}

One of the top mathematicans of the century, Paul Erd ̋os, conjectured in 1931 that
there are no such sets involving significantly smaller numbers. More precisely, he
conjectured that the largest number must be Ω(2n). He offered $500 to anyone who
could prove or disprove his conjecture, but the problem remains unsolved.

	Counting One Thing by Counting Another
	Functions
	Bijections
	The Bijection Rule
	Sequences

	Two Basic Counting Rules
	The Sum Rule
	The Product Rule
	Putting Rules Together

	More Functions: Injections and Surjections
	The Pigeonhole Principle

