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0:00:00 0:00:06 All right. So just a couple of 0:00:08.371 announcements real quick. Can you guys turn this down
a 0:00:12.786 little bit? So, for tomorrow, 0:00:15.075 you guys should all be ready to give these short
presentations 0:00:20.062 on your design projects in recitation. 0:00:23.088 We posted a one-page guide talking
about what it is that 0:00:27.584 you should prepare for next time in class. 0:00:32 These are short presentation.
You shouldn't need to put too 0:00:35.723 much time into getting them together, but please look at the
0:00:39.511 Web page if you're not sure of what it is that you're supposed 0:00:43.428 to be doing in class. Today
what we're going to do is 0:00:46.766 wrap up our discussion of security. 0:00:48.949 And what | want to do is
start off with a fun little diversion 0:00:52.865 which is over the past couple of times that you guys were in
0:00:56.653 class we captured a log of all of the network traffic that was 0:01:00.57 going on while people were in
class on their laptops. 0:01:05 And, for the most part, it turned out that you guys 0:01:08.348 were pretty boring.
Nobody was actually doing 0:01:11.295 anything exciting, but there were a couple of 0:01:14.242 interesting
lessons. In case you're curious as to 0:01:17.457 what we actually did, we ran this TCP dump command.
0:01:20.806 The pseudo command just says run this command as though you 0:01:24.69 are a super user, as
though you are SU. 0:01:27.235 And then TCP dump just says dump out all the traffic on the 0:01:31.12 specific
network interface. In this case, 0:01:34.762 it is dumping out all the traffic on EN1 which on this 0:01:37.873
computer is the wireless network. 0:01:39.751 So we are just dumping out all of the packets that were sent
0:01:43.214 out over EM1. And what you see here is the 0:01:45.62 yellow part is the sort of header of the packet
saying this 0:01:49.024 is an IP packet and specifying who the destination and 0:01:52.135 recipient of this packet
are. And then there is some body 0:01:55.422 text, some sort of payload that is associated with this packet.
0:02:00 In this case, this first packet is some 0:02:02.527 binary data. We cannot make any sense of it,
0:02:05.388 but if you look at some of these other packets, 0:02:08.447 for example, this is a packet which is an
0:02:11.108 HTTP request packet. What you see is that there, 0:02:14.235 in fact, is English text. The HTTP
protocol uses English 0:02:17.893 text to transmit information, and so this is specifying some 0:02:21.818
information about this is the actual HTTP request going out. 0:02:25.742 In this case, it was going out from this
0:02:28.337 laptop. | just set this up as to 0:02:31.599 illustrate what TCP dump does. We ran a command like this
0:02:35.333 while you guys where in class and captured a trace of what you 0:02:39.4 were doing. And we ran a
little Perl script 0:02:42.199 that went through this trace of packets and sucked out all the 0:02:46.266 Web pages
that you guys had been looking at. 0:02:49.133 And so | have pictures of some of the Web pages. 0:02:52.266 A
lot of it, as | said, is pretty boring. 0:02:54.933 There is somebody who is looking to buy a micro drive so
0:02:58.599 they searched for Micro Center cruiser USB high-speed on 0:03:02.266 Google. We saw this page
coming back 0:03:05.627 from Google which was the search request. 0:03:07.953 And, in fact, you sort of poke
around some 0:03:10.337 more and see this person actually found the Micro Center 0:03:13.534 Website and
went to Micro Center and apparently was trying to 0:03:17.023 purchase this thing. There were also a couple of
0:03:19.755 people looking for movies, people who were looking for a 0:03:22.953 movie to see. In fact, we
actually saw this 0:03:25.395 on both days. It wasn't just one day that 0:03:27.72 somebody was looking for
movies, but somebody keeps coming to 0:03:31.209 class and looking for movies. The next one, 0:03:35.151
though, is much more interesting. 0:03:37.987 There are a couple of Web pages where somebody is looking at a
0:03:43.392 tool called Gaim-Encryption. Gaim is the open source AOL 0:03:48.265 Instant Messenger client, and
Gaim-Encryption is a 0:03:52.607 version of the open source Gaim client that encrypts data that 0:03:58.012 gets
transmitted over the network. 0:04:02 And the way it works is when you install this tool it 0:04:04.968 generates
you a public/private key pair. 0:04:07.194 And then, when you have a chat session with somebody else who
0:04:10.62 is also using this Gaim-Encryption tool, 0:04:12.846 it sends that person your public key and then it
uses 0:04:15.814 public/private key encryption and signing in order to protect 0:04:19.24 information that gets
transmitted over the network. 0:04:22.094 So there was somebody who, during class, 0:04:24.32 was looking at
this tool. We see they go to the project 0:04:27.403 page, sourceforge, where this tool is hosted. 0:04:31 And they
are clicking around looking at what the tool does 0:04:34.071 and reading about it. And then you see that they
0:04:36.604 download this tool. And, in fact, 0:04:38.329 after that, at some point, there is a whole lot of AOL
0:04:41.185 Instant Messenger traffic that is going out on the network. 0:04:44.311 | am just surmising that this
traffic actually belongs to this 0:04:47.598 person who downloaded this tool. And you can see that, 0:04:50.455 in
fact, the tool appears to be working. 0:04:52.556 So this traffic is not intelligible. 0:04:54.443 And, in other cases,
when you see this tool actually 0:04:57.191 goes across the network in plain text, the Gaim normally runs in
0:05:00.586 plain text and you can just see the entire transcript of the 0:05:03.766 chat happening if you run this
tool. 0:05:07 There is a very interesting security lesson here which is 0:05:10.538 that sometime later, in this
particular trace of a 0:05:13.634 chat, we see this same person. Person one, their name is 0:05:17.109
transmitted in plain text. You see this same person even 0:05:20.585 when using the Gaim tool. You don't see
their messages in 0:05:24.123 plain text, but you see this person now actually is talking, 0:05:27.851 having a
conversation. And they sort of say oh, 0:05:31.402 | download this Gaim tool, now | can talk encrypted to
0:05:34.501 other people. And yet there is this 0:05:36.488 conversation where it is not encrypted, and this sort of
0:05:39.703 dialogue goes on. They are talking about somebody 0:05:42.509 who is in class and say why doesn't
this person go to class 0:05:45.899 anymore? And they are having this little 0:05:48.179 chat session back and
forth about why this person isn't in 0:05:51.511 class. And the dialogue goes on 0:05:53.265 talking about their
design project and they're worried 0:05:56.363 about it. It is sort of a nice example of 0:05:59.592 a security
problem or a potential security problem, 0:06:02.16 which is that this person actually did something that was
0:06:05.037 sort of nice. They came to security class, 0:06:07.143 they are learning about security in class,
0:06:09.25 they go download this tool and think, OK, I've got this tool 0:06:12.28 installed and now my
conversations are protected. 0:06:14.746 And then. as soon as thev trv and talk to somebodv who isn't



0:06:17.777 also running this version of the tool, their conversations are no 0:06:21.065 longer protected
anymore. This is sort of a nice example 0:06:23.89 of why security is actually a really hard thing to get right.
0:06:28 Because this person may have even believed that this person 0:06:31.459 they were talking to had this
tool installed as well, 0:06:34.56 but you sort of don't know that it is not working until somebody 0:06:38.318 points
out that it is not working, somebody violates, 0:06:41.419 goes in and is able to access this on unprotected data.
0:06:44.64 This is a nice example of why security is hard and why sort of 0:06:48.278 providing protection is
essentially a negative role. 0:06:51.32 You never really know that you are protected until somebody 0:06:54.779
points out that you are not protected. 0:06:58 That was sort of a little lesson about security, 0:07:00.297 and |
hope that it sort of pointing out a reason in which 0:07:03.035 why it is that security is something that is both
difficult 0:07:05.871 and something that you might want to be conscious of. 0:07:08.413 Often times when you're
sitting there using your laptop, 0:07:11.102 you have this perception that is my information | am sending,
0:07:14.035 nobody is going to be able to overhear this information. 0:07:16.724 It is going so fast and being
transmitted so instantly that, 0:07:19.608 of course, | am private. You feel very sort of isolated 0:07:22.248 when
you're having this communication until somebody 0:07:24.742 points out that it is actually very easy, | mean this is
a tool 0:07:27.773 that is standard on all Linux distributions. 0:07:31 And it is one line that we type into our
computer to get this 0:07:34.804 information. It is actually very easy to do 0:07:37.468 this, so it is something that
when you are transmitting 0:07:40.892 sensitive information out over the network over an email or in 0:07:44.76
an Instant Messenger you might want to actually think about 0:07:48.439 whether or not you want to be sending
this information out in 0:07:52.243 the way that you're sending it out. 0:07:54.399 What | want to do now is come
back to something we were 0:07:57.824 talking about last time, finish up our discussion a 0:08:00.995 little bit of
authorization and then talk about how we can start 0:08:04.99 thinking about designing protocols that actually
provide 0:08:08.478 -- How we can reason about these 0:08:12.753 security protocols that we are using.
0:08:16.17 In particular, how we can reason about 0:08:19.683 authentication protocols within networks.
0:08:23.481 If you remember last time, we talked about this idea of 0:08:28.607 building up a secure
communication channel and then 0:08:33.354 we talked about doing authorization on top of that 0:08:38.006
channel. Remember, authorization is this 0:08:42.348 process of determining whether a given user should have
access to 0:08:47.196 a particular resource that they want access to. 0:08:50.681 We talked about two main
techniques for doing this, 0:08:54.469 ACLs and tickets. An ACL is an access control 0:08:57.803 list which is just
a list of users who are authorized to 0:09:01.969 access a particular resource. And so the way typically an
0:09:06.451 access control list works is that the system first 0:09:09.086 authenticates the user to determine what
their identify is 0:09:12.15 and then it checks to see whether that identity is 0:09:14.784 actually on this access
control list and the user is authorized 0:09:18.118 to access this particular resource they want access to.
0:09:21.021 Now, ticket has a slightly different flavor which is 0:09:23.763 typically if a user presents a ticket you
do not need to 0:09:26.72 actually check and see what their identity is. 0:09:30 Simply having the ticket is
sufficient to allow somebody to 0:09:33.258 have access to a resource. The analogy here is very 0:09:36.067
similar to a physical ticket in the real world. 0:09:38.651 You go to a concert, you hand them a ticket and they
0:09:41.516 let you into the concert without checking your ID. 0:09:44.269 A common example of a ticket in the
real world is on the Web you 0:09:47.808 get these cookies which are like tickets. 0:09:50.056 And the reason you
use cookies instead of checking access 0:09:53.202 control list every time is that when you have a particular
0:09:56.404 cookie the system doesn't have to re-authenticate you in order 0:09:59.831 to allow you to have
access to the system every time you 0:10:02.921 revisit a page. | have a cookie for Amazon dot 0:10:07.918 com
on my computer when | am in the process of purchasing some 0:10:13.852 item from Amazon dot com that
identified my identity and my 0:10:19.494 shopping cart and | don't have to sort of re-log in every time 0:10:25.428
| request a new secure page from Amazon. 0:10:30 Specifically, what we are talking about is 0:10:34.712 the
Web. And we had a browser and a Web 0:10:39.08 server. And the browser and the Web 0:10:42.988 server
were talking over one of these secure communication 0:10:49.54 channels. And we said this channel has
0:10:53.793 both been authenticated and is confidential. 0:11:00 0:11:05 Authorization, we said, happens where
there is 0:11:08.698 some guard process in charge. This is our guard. 0:11:12.561 And it sits in front of the
services on the system. 0:11:16.671 When a request comes in to access a service, 0:11:20.205 the Web server
passes that request onto the guard module 0:11:24.726 which does the authorization. And then, if the request is
0:11:29.328 authorized, it goes ahead and passes it onto the service. 0:11:35 0:11:40 We talked about this notion
of how we establish a secure 0:11:44.399 communication channel. Typically, we do that by 0:11:48.08
exchanging, one way that we talk about doing this is where B, 0:11:52.879 for example, would discover W's public
key 0:11:56.159 somehow and then use that public key in order to exchange with W 0:12:01.2 a shared secret key
that they could use to encrypt all their 0:12:05.919 communication. | will show that protocol again 0:12:10.461 in a
minute, but the question, and the question that we are 0:12:15.067 really going to get at today, we want to focus in
more on 0:12:19.514 this question of how it is that B actually discovers W's public 0:12:24.438 key in a public key
system and how it is that B can convince 0:12:29.1283 itself that, in fact, it is actually talking with 0:12:32.935 this
service W. If B wants to have a 0:12:36.152 conversation with Amazon dot com, how does it actually 0:12:39.205
convince itself that this public key that it has, 0:12:41.97 in fact, belongs to Amazon dot com and that it is actually
0:12:45.253 having a conversation with Amazon dot com instead of with 0:12:48.479 somebody else who is
pretending to be Amazon dot com or has lied 0:12:52.108 about Amazon dot com's public key so that it can
overhear 0:12:55.334 Amazon dot com's traffic. We are going to focus in more 0:12:58.444 on that now. Let's look
at this simplified 0:13:02.036 version of an authentication protocol. 0:13:04.634 This is going to be like the
Denning-Sacco Protocol that |1 0:13:08.636 showed with the broken example or like SSL, for example, 0:13:12.497
on the Internet also sort of works roughly in this way. 0:13:16.289 We've got our browser, we've got our Web
server and 0:13:19.799 we've got some certificate authority. 0:13:22.327 This is the kind of picture we drew
before. 0:13:25.276 We said the browser sends to the certificate authoritv a 0:13:29.138 reauest for. sav. the



public key of W. 0:13:33 The certificate authority sends a message back with has the 0:13:36.468 certificate for B
and the certificate for W. 0:13:39.039 And these are simply signed things that the certificate 0:13:42.268 authority
has signed that include the public key for B and 0:13:45.676 W in them, so that is all certificates are. 0:13:48.187
And then B sends a message to W. 0:13:50.041 And there is some trickiness in getting this message right,
0:13:53.509 but this message basically is a signed and encrypted message 0:13:57.037 that tells W that it would
like to initiate a conversation with 0:14:00.744 it. And perhaps it proposes a 0:14:03.502 shared key that it can use
in that conversation. 0:14:06.326 It is a little bit tricky to actually figure out and make 0:14:09.69 sure we get the
format of that message right, 0:14:12.334 and that was there is bug with the Denning-Sacco Protocol, 0:14:15.759
but you get the idea. So W then sends a message back 0:14:18.824 saying perhaps asking user to go ahead and
trying to authorize 0:14:22.489 the user saying, OK, | agree that that is the 0:14:25.133 key, now what is your
name and what is your password, 0:14:28.257 for example. And then, once it has exchanged 0:14:32.347 that
name and password, B is allowed to log into the 0:14:36.208 system and access whatever these resources B
should have access 0:14:40.903 to on the server. The question that | want to 0:14:44.234 focus on is this question
about how B actually decides the 0:14:48.55 certificate authority that it should trust. 0:14:51.731 How does B
initially establish the sort of authenticity of the 0:14:56.349 certificate authority? When we talked about 0:15:00.093
authentication before, we presented this model that 0:15:02.827 was sort of, well, you are going to decide that
0:15:05.342 you trust somebody by, for example, 0:15:07.201 having a conversation with the. | am going to run
into you in 0:15:10.481 the hall and you're going to say my public key is X, 0:15:13.269 and then | am going to be
able to have a conversation with you. 0:15:16.659 But, clearly, that is not what happens in the 0:15:19.065 case of
the Internet. For example, 0:15:20.869 on the Internet, | do not have to call up Amazon 0:15:23.439 dot com or
call up my certificate authority and get 0:15:26.172 the certificate authority's public key from them. 0:15:30
Somehow | have already gotten this thing. 0:15:32.857 And so we sort of want to think about how it is that we can
0:15:37 actually exchange these keys and how it is that these systems can 0:15:41.571 actually decide that they
trust each other and that they are 0:15:45.785 willing to authenticate each other. 0:15:48.214 To do that, what we
are going to do is look at something 0:15:52.142 called authentication logic. 0:15:55 0:16:05 The specific version
of authentication logic we are 0:16:08.485 going to talk about is something called BAN logic. 0:16:11.901 B, A and
N just stand for the names of the three people who 0:16:15.944 proposed this thing so it is not a specific acronym
you need to 0:16:20.266 know. And so what authentication 0:16:22.427 logic is going to do is allow us to reason
about these protocols 0:16:26.819 for deciding whether or not we actually trust something like a 0:16:31.072 given
certificate authority. Just to think about this a 0:16:36.703 little bit more, let's look at a specific 0:16:40.864
example. Suppose that you receive a 0:16:44.399 message over the Internet. Suppose this message says it is
0:16:50.327 some message m and the message says sign is signed m with some 0:16:56.672 key k, call it k sub
A. And suppose that the contents 0:17:03.27 of message m are m equals give A your credit card number.
0:17:09.586 This might be a valid request. We might be purchasing 0:17:15.451 something from Amazon dot com.
In that case, 0:17:20.3 you might think it might be OK, we might expect to receive a 0:17:26.954 request like this.
So this thing was signed with 0:17:32.076 kA and the message said give A your credit card number, 0:17:35.941
but how do we actually know, you know, maybe A, 0:17:39.234 in this case, is give to Amazon dot com and
0:17:42.241 we know that we are talking to Amazon dot com. 0:17:45.463 And so if this, in fact, were an authentic
0:17:48.398 message, we might be actually willing to give Amazon our 0:17:52.335 credit card number. How do
we actually know, 0:17:55.413 though, that this message, that kA is the key that belongs 0:17:59.494 to Amazon
dot com? We want to answer the question 0:18:05.103 how do we know that or trust that kA, we are going to say,
0:18:11 speaks for A? This notation speaks for just 0:18:15.344 means that if we see something that, for example,
0:18:20.31 is signed with kA that claims to be from A, 0:18:24.655 we might actually trust, in fact, that this thing
came 0:18:30.137 from A. And we want to sort of 0:18:34.304 determine, we are going to try and answer the
question of how 0:18:40.59 do we trust this? One way that we might trust 0:18:45.2 this is true is if we had heard,
for example, 0:18:49.809 some message, let's call it m2 -- 0:18:54 0:19:04 -- from somebody B that had said that
-- 0:19:08 0:19:18 Or this message said kA is A's key. 0:19:20.391 One way that we might start thinking about,
0:19:23.346 one way that we might trust A is if we had heard from somebody 0:19:27.638 else or heard from
some other place that kA was A's key. 0:19:32 But now this is kind of a slippery slope because now you
0:19:35.007 say the question, well, how did you determine 0:19:37.414 that you trust B's key? There is sort of this
infinite 0:19:40.312 process that you could end up going through. 0:19:42.664 And that doesn't sound like a very
good idea. 0:19:45.07 One way in which sort of we might bottom out this recursion, 0:19:48.296 we might end this
sort of infinite process of collecting 0:19:51.304 keys is if we actually sort of, in the example | gave you,
0:19:54.421 heard from one person at some point suppose there is a B and a 0:19:57.757 C and D and E and an
F. And then eventually we get to 0:20:02.076 F. F is our friend who we had 0:20:04.081 talked to, and F had said
my public key is this and here is 0:20:08.233 the public keys for a few people that | know. 0:20:11.384 So you
might trust F and you might believe that F knows a few 0:20:15.68 other people. And then those people who F
0:20:18.544 knows might in turn know a few other people. 0:20:21.622 And eventually we might be able to sort of
have this web of 0:20:25.775 inner connected people all of whom we trust. 0:20:30 So this would be sort of a "web
of trust". 0:20:32.748 We might be able to build up a web of trust like this, 0:20:36.301 but you could imagine that
these relationships are pretty 0:20:40.055 complicated. For example, 0:20:41.664 B might trust a few people and
C might trust a few people and D 0:20:45.821 might trust a few people. And, every time we're presented
0:20:49.575 with some message, we need to have some sort of 0:20:52.659 principled way of thinking about
whether we have a set of these 0:20:56.815 keys, for example, that actually allow us to 0:20:59.698 decide
whether we should accept this message or believe this 0:21:03.653 message or not. If we had a web of trust like
0:21:07.674 this, we would need some way of going about validating or 0:21:10.907 verifying that, in fact, these
messages were 0:21:13.389 messages we should trust. That is what authentication 0:21:16.391 logic is really all
about. This is the simplified band 0:21:19.451 loaic that is presented in the text. 0:21:21.472 It is on paae 11-85. If



you want to copy it down, 0:21:24.243 | will try and leave time for you, but in case you want to 0:21:27.534 just
copy it out of the text you might not need to worry about 0:21:31.055 copying down the exact logic here. 0:21:34
There are three rules in this simplified authentication logic 0:21:39.016 and they use this notation, this speaks for
notation, 0:21:43.364 and they are also going to use some notation that says 0:21:47.795 notation. What this rule
says is if A 0:21:50.806 says B speaks for A then B speaks for A. 0:21:54.066 So this sounds like sort of an
obvious statement. 0:21:59 Saying that A says something means that if we hear A say 0:22:03.298 something that
means that A told us and we believed that this, 0:22:08.066 in fact, was A who told us this thing. 0:22:10.958 So,
in order for A to say something, we have to actually 0:22:15.257 believe this cannot be a message, for example,
0:22:18.774 that we received over an untrusted network. 0:22:22.057 This has to be | sat next to A in the hall and
A actually said 0:22:26.825 B speaks for me. In this case, 0:22:29.091 B might be, for example, some key. 0:22:33
So A might say my public key is kA. 0:22:35.746 If that is true and, in fact, we believe that A is 0:22:39.705 the
person who said this to us then we might be able to infer 0:22:44.552 from that that this key kA actually speaks for
A. 0:22:48.43 This is what the first rule is and this is the base case of you 0:22:53.438 have a trusted
communication channel with communicating with 0:22:58.205 A and you can use that trusted communication
channel to 0:23:02.567 actually build up some belief about, for example, 0:23:06.445 a key representing
somebody. Now, the next rule is one that 0:23:12.462 sort of says given that we have some belief about one of
these 0:23:17.47 things like, for example, if we know that B speaks for A, 0:23:22.067 we know what A's public key
is and we overhear B saying that A 0:23:27.074 says X then we might believe, in fact, that A says X. 0:23:32 A
simple example of this is suppose we get a message that 0:23:36.997 has been signed by this key KA. If we see
that then we might, 0:23:42.351 in fact, believe that kA actually says that A says m. 0:23:46.992 And we might
believe that kA says this because we believe 0:23:51.989 that this sort of sign primitive actually means that if we
see 0:23:57.433 something that was signed with kA's key that, 0:24:01.359 in fact, that thing was generated by KA.
0:24:06 Nobody else could have generated a signed message that 0:24:10.729 worked with kA. We can actually
now receive a 0:24:14.655 message from A that has been signed using kA and we can, 0:24:19.563 in fact,
believe that A said something. 0:24:22.953 Now, the final rule that we have is sort of a transitivity 0:24:28.039 rule
which is a way of expanding this web of who is related to 0:24:33.483 whom. This says if B speaks for A and
0:24:37.363 A speaks for C then what we're going to believe is that B 0:24:41.633 speaks for C. This is just a
transitive 0:24:44.53 relationship. For example, 0:24:46.436 if we know that kA speaks for A and we definitely
overhear B 0:24:50.935 saying A speaks for B, if B delegates and says that A 0:24:54.9 can speak for me then we
might believe that key kA also speaks 0:24:59.551 for B. This is a simple transitivity 0:25:05.349 relationship. The
idea with these rules is 0:25:11.5 that we are going to be able to apply these rules any time we 0:25:20.5 have a
conversation to decide, again, whether we actually 0:25:28.9 trust the people who we are communicating with.
0:25:37 And you may have noticed, when | was talking about this, 0:25:43.004 that there were a lot of statements
like nobody can 0:25:48.462 actually fake this protocol sign X. 0:25:52.174 We believe that nobody could forge
this message that was 0:25:58.179 signed with kA for example. If we believe that that is true 0:26:03.848 then we
can say kA says this thing. 0:26:05.876 This authentication logic is full of a lot of these sort of 0:26:09.334 like if
we believe this thing is true kinds of assumptions that 0:26:13.032 we are going to be making. 0:26:15 0:26:25 My
example was kind of confusing. 0:26:29.258 In this example, B is actually C. 0:26:33.517 kA is B. It says if we
know that A 0:26:37.908 speaks for B then we might be willing to believe that kA 0:26:45.228 actually speaks for
B, given that kA speaks for A. 0:26:51.749 So we have this transitivity kind of a relationship. 0:27:00 Sorry that the
notation was a little bit confusing. 0:27:03.347 | agree. The challenge here is that we 0:27:05.824 want to try and
make, any time we're using this 0:27:08.903 authentication logic, in order to actually determine 0:27:12.317 that
somebody definitely said something we are going to have 0:27:16.267 to make some set of assumptions about
what we trust and what we 0:27:20.418 believe. And one of the things that is 0:27:22.895 important, any time you
are using this authentication logic, 0:27:26.845 is to actually make these assumptions as explicit as you
0:27:30.527 can. 0:27:32 0:27:42 Let's look at a set of assumptions that we are making 0:27:49.548 here. | said
something like when | 0:27:54.338 see a message that says sign m, kA. 0:28:00 And then | infer from that that A
says m, assuming that 1 0:28:05.09 already know that kA speaks for A, if | have something like this 0:28:10.818
and | make this inference that A says m given that kA speaks for 0:28:16.545 A then that's all a sign thing. | am
making a set of 0:28:21.181 assumptions when | do this. | am making a set of 0:28:25.454 assumption, in
particular, about what this sign protocol 0:28:30.454 does. | am assuming, 0:28:33.293 for example, that sign is
actually secure in 0:28:37.267 some way. | am assuming that this 0:28:40.224 signature is not forgeable, that
somebody else could not 0:28:45.306 have generated a signature unless they actually had access, 0:28:50.666
for example, to the private key or to the 0:28:54.363 private key of A. This signature is not 0:28:57.874 forgeable. |
am also assuming, 0:29:02.984 for example, that any private keys are 0:29:08.795 actually private. | am assuming
that, 0:29:14.45 for example, A hasn't gone out and 0:29:19.633 broadcasted the private key to everybody else in
the world. 0:29:30 Because if A had done that then | wouldn't actually know that A 0:29:33.419 actually said m. It
could have been anybody who 0:29:35.955 said m. | would be in trouble if that 0:29:37.941 were the case. Any
time that | sort of take 0:29:40.257 this and make this inference from seeing a sign like this 0:29:43.345 then that
suggests that | am sort of making these two 0:29:46.213 assumptions. And it is not that these 0:29:48.198
assumptions are wrong or bad, it is just that it is good to 0:29:51.397 think about exclusively what they are.
0:29:53.437 Assuming that the signature is forgeable well, 0:29:55.919 we all know that cryptography can
sometimes be broken. 0:30:00 It is not that cryptography is totally foolproof, 0:30:02.851 but we may have a
relatively high confidence that this 0:30:06 cryptography is going to be difficult for somebody to break. 0:30:09.504
And, while assuming that private keys are actually 0:30:12.415 private, we might sort of know A personally and
believe that Ais 0:30:16.217 outright upstanding individual and we are going to trust that 0:30:19.782 she hasn't
gone and disseminated her key everywhere around the 0:30:23.405 world because that wouldn't really be in her
interest and we 0:30:26.91 take her to be a trustworthv nerson. 0:30:30 This is a bit of a leao of faith that we are



making about 0:30:34.855 this. But if we believe those two 0:30:37.63 things then we can, in fact, infer that A says
m 0:30:41.705 when we see a message that is signed with kA. 0:30:45.52 Let's look at another example that
works with this sort of 0:30:50.462 public key cryptography that we talked about in this example 0:30:55.578 with
this authentication protocol here. 0:31:00 Suppose that A tells me my public key is kA pub and this is 0:31:05.337
done over a secure communication channel like in-person 0:31:10.306 communication, | might then infer that kA
pub 0:31:14.355 actually speaks for A. Now, suppose | see a message 0:31:18.957 that has been signed with kA
private, | might say, 0:31:23.466 and this is an inference, that kA private says that A 0:31:28.251 says m. The
question we want to ask now 0:31:32.153 is should we actually believe that A said m? 0:31:35.141 | saw a
message, | know what A's public key is 0:31:38.267 and | trust A's public key maybe and | saw this sign thing.
0:31:42.297 Now | need to think about do | believe now that A actually said 0:31:46.605 m given that | saw a
message that was signed with kA private? 0:31:50.774 There is something obviously that we need to do which is
that 0:31:54.942 we need to verify this message. Suppose we go and we run this 0:32:00.098 verify step on this
message and this verify comes out to be 0:32:04.296 true. | verify using kA pub that, 0:32:06.611 in fact, this
message was appropriately signed. 0:32:09.94 Verify says yes, the signature on this message 0:32:13.197
checks. Now should | believe that that 0:32:15.875 A actually said m? That depends. 0:32:18.118 There are a
couple of conditions, again, 0:32:20.94 sort of set of assumptions that we are making. 0:32:24.197 One thing we
are clearly doing is assuming that this crypto 0:32:28.394 system is secure. We are also believing that this
0:32:34.006 verification step actually gives us, that by taking something 0:32:39.826 that has been signed with a
private key and then verifying 0:32:45.354 it with the public key that that is as good as A actually saying
0:32:51.464 something. One thing clearly that depends 0:32:55.344 on is that the crypto system is secure. 0:33:00
0:33:10 There are a couple of other assumptions that we are making. 0:33:14.442 One thing is that it definitely,
again, 0:33:17.353 requires that kA private has actually been kept secret. 0:33:21.489 And, furthermore, it
requires that A didn't lie 0:33:25.012 to us about what kA public was. Because if A had given us a 0:33:29.818
wrong KA public then somebody else could have signed this 0:33:33.591 message and then we might try and
verify the message using the 0:33:37.701 lied about kA public and then we might be in trouble. 0:33:41.204 Again,
this is similar to this example with just kA but just 0:33:45.178 showing how it works with public and private key
encryption. 0:33:49.153 It is this case that, again, we sort of need to 0:33:52.252 always think about making our
assumptions as explicit as 0:33:55.957 possible. And that is really what it's 0:33:58.45 about. Deciding that we
trust, 0:34:01.319 for example, the signature is true is 0:34:03.385 analogous to deciding that we have to sort of
trust that we 0:34:06.713 trust the cryptography. It is possible to apply this 0:34:09.639 authentication logic in
other environments as well that aren't 0:34:13.139 necessarily based on cryptography. 0:34:15.032 For example,
instead of trusting that the 0:34:17.327 cryptographic system works, | might trust that a particular 0:34:20.655
communication channel is secure. For example, 0:34:23.18 if | pick up the telephone and call you and give you
some 0:34:26.393 message, you might trust that it's me because, 0:34:28.975 for example, you believe that it
wouldn't be 0:34:31.442 possible for somebody to fake my voice. 0:34:35 And you recognize my voice because
you've come to lecture 0:34:39.117 so many times. That would be an example of a 0:34:42.279 way in which you
might decide that you trust that something is 0:34:46.764 actually true, and that would be an assumption
0:34:50.073 that you're making about somebody not being able to fake 0:34:54.117 my voice. The point of
authentication 0:34:56.764 logic is that it gives us a way to kind of reason about these 0:35:01.176 kinds of
deductions about whether or not we actually 0:35:04.926 believe that somebody said something was true or not.
0:35:10 That is fine. We still, though, 0:35:12.542 at least when we're using public and private key 0:35:16.525
cryptography, haven't exactly answered the 0:35:20 question of how we go about establishing this initial trust
0:35:24.915 step. We said we might establish 0:35:27.542 initial trust by -- At the bottom of this is we 0:35:31.848
have to actually physically overhear somebody say something 0:35:35.819 over a secure communication channel,
we think. 0:35:38.9 We have to have some way to getting this first rule where A 0:35:42.871 says that my, for
example, 0:35:44.582 public key is something so we can learn A's public key so that 0:35:48.759 then we can
bootstrap communication with A. 0:35:51.634 We haven't yet answered the question of how we actually
0:35:55.331 exchange these keys except for by this one method that we 0:35:59.165 talked about, this web of
trust method. 0:36:03 There is this question about establishing some initial trust. 0:36:08.944 One way we might
do this is using this web of trust approach 0:36:14.789 where | meet a friend, that friend tells me about some
0:36:20.04 people who he or she trusts, and then those friends' 0:36:25.092 friends' in term know a few people
and eventually we 0:36:30.145 establish communication with everybody. 0:36:35 There are some computer
systems that work this way. 0:36:37.828 In particular, there is a system called PGP 0:36:40.204 for pretty good
privacy which is an email-based privacy 0:36:43.258 encryption system that works this way. 0:36:45.351 And there
are, in fact, websites where sort of 0:36:47.896 the idea is you find somebody else who has used this system,
0:36:51.234 you share and you exchange public keys with them and then, 0:36:54.458 once you have a few public
keys, you can sort of build out 0:36:57.682 this web of trust to everybody else by trusting people who your
0:37:01.189 friends trust. The problem is, 0:37:03.852 one, clearly the Internet doesn't work this way so you
0:37:06.865 don't have this kind of system that you're using on the 0:37:09.934 Internet and, two, these kinds of
systems are 0:37:12.435 very difficult to set up and maintain and there ends up being 0:37:15.846 some
centralized administration. You end up with having to have 0:37:19.37 some sort of way, it becomes very difficult
to 0:37:21.928 actually discriminate these kinds of public keys in these 0:37:25.111 kinds of systems. The way this
works is there is 0:37:27.783 a centralized website. There is a website for PGP that 0:37:31.97 is a giant database
of keys and you sort of try and discover 0:37:35.72 people's keys by locking this web of trust, 0:37:38.389 but it
tends to be difficult to use. 0:37:40.614 Let's talk a little bit about how this actually works in the 0:37:44.364
context of the Internet. Suppose there is actually some 0:37:47.796 person, P, who is sitting in front of this
browser, 0:37:50.974 and there are some questions that we might want to ask when 0:37:54.661 we're thinking
about decidina whether or not we trust this 0:37:58.283 person. P. One auestion that the Web 0:38:02.607 server



might ask is does W know or trust person P, 0:38:07.717 or how does it? This is a commercial website
0:38:12.202 like Amazon dot com. Actually, the trust story turns 0:38:17.521 out to not be that complicated.
Amazon dot com doesn't really 0:38:23.779 care that you are who you claim to be, as long as you give them
0:38:30.245 the money that they want. You can go on and tell them 0:38:35.836 that you are Oscar the Grouch,
they don't care, 0:38:38.964 as long as you give them the money that they want for 0:38:42.501 whatever it is that
you order. That is all that matters to 0:38:46.377 them. So, in fact, 0:38:47.534 what Amazon does is they don't
actually know who you are 0:38:51.274 exactly but they might decide that they trust you because the 0:38:55.355
credit card number is good and is verified by the credit card 0:38:59.435 company. When they try and charge your
0:39:03.721 credit card they get the money and they are happy. 0:39:08.32 And there is this other question,
though, 0:39:12.074 about how does P trust W? And the way that this works on 0:39:17.236 the Internet is
basically like the way that this authentication 0:39:23.055 protocol that | have shown you here works, this is how
SSL 0:39:28.404 works. And it turns out to be very 0:39:32.227 subtle. It can be quite hard to 0:39:34.702 actually
convince yourself that you should trust a given website 0:39:39.9 if you actually start grilling down on it.
0:39:43.282 The way that it is going to decide that it trusts W is by 0:39:47.902 checking with some certificate
authority. 0:39:51.202 That is how it works on the Internet. 0:39:54.172 And there are some issues with it, which is
how does the 0:39:58.71 certificate authority authenticate W? 0:40:03 How does the certificate authority decide
what W's key 0:40:09.022 was and how do they securely exchange keys? 0:40:13.795 How did the user get the
CA's public key? 0:40:18.34 And then what if somebody's private keys are stolen? 0:40:24.136 For example, W or
the certificate 0:40:27.772 authority's private keys are stolen. 0:40:33 What | want to do is just sort of show you, at
a high level, 0:40:36.162 how this actually works on the Internet. 0:40:38.253 | thought it might be instructive just
to see an 0:40:40.772 example of what is actually going on, on the Internet, 0:40:43.613 and to kind of illustrate
how some of these issues are and are 0:40:46.883 not properly addressed by the current sort of SSL-based
0:40:49.778 Internet architecture. | have a couple of websites 0:40:52.404 open here. | have an Amazon dot com
0:40:54.227 website and | have, in this case, 0:40:55.942 an Apple developer website, both of which you will
notice 0:40:58.944 have HTTPS URLs associated with them. 0:41:02 In this browser, if | click on this little
0:41:04.81 secure icon here, almost any browser would have a 0:41:08.101 similar sort of feature, a little lock
somewhere that 0:41:11.666 when you are viewing an HTTPS page. 0:41:13.997 What | see is something that
lists how it was that this site 0:41:18.042 actually decided that this was a secure site that it should 0:41:22.018
communicate with. When that little lock appears 0:41:25.172 it means that my browser has actually decided that it
trusts 0:41:29.217 this site. We are at the point where we 0:41:33.055 have already said we trust this site.
0:41:35.698 And the reason that we trust this site, it says, 0:41:39.149 is because this site is WWW dot Amazon
dot com and we have this 0:41:43.701 certificate for this site that was issued by RSA Data Security 0:41:48.179
Incorporated. You might say who is RSA Data 0:41:51.263 Security Incorporated? | have never heard of these
0:41:54.86 people. | have never exchanged any 0:41:57.283 information with them. But they are the certificate
0:42:01.76 authority. That is the person who signed 0:42:04.212 this thing. | can look and sort of drill 0:42:06.664
down on this. And what you will see is some 0:42:09.304 information about Amazon dot com. 0:42:11.316 This is
the actual certificate itself. 0:42:13.642 This is some information about the certificate authority, 0:42:17.163
including information about what algorithm the certificate 0:42:20.746 authority has used to generate this
certificate. 0:42:23.701 And then now what we have is this public key information, 0:42:27.222 the actual public
key that corresponds to Amazon dot com. 0:42:32 The certificate contains Amazon dot com's public key that was
0:42:36.124 encrypted using the RSA algorithm. 0:42:38.392 And then there also is some information, this
signature that 0:42:42.447 goes with this public key. This is the signature that was 0:42:46.297 signed by this RSA
corporation. If | go to a different site 0:42:50.283 like, for example, this Apple site over here, 0:42:53.308 we see
that this thing was actually signed by somebody 0:42:56.951 else. This certificate is signed by 0:42:59.288
somebody called VeriSign Incorporated. 0:43:03 Again, you have no idea who VeriSign Incorporated is,
0:43:06.072 but you will notice that these are two different certificate 0:43:09.557 authorities. It is not the case that
there 0:43:11.98 is one master certificate authority out there on the 0:43:14.993 Internet that is in charge of
everything. 0:43:17.356 On a Mac anyway, the same is true of most other 0:43:20.074 operating systems, there is
a way that we can go 0:43:22.851 and look at the actual list of all the people who we trust are. 0:43:26.514 This is
sort of an instructive thing to do. 0:43:30 To go and see who it is that you actually trust that is on 0:43:34.5 this
computer. | can click on this certificate 0:43:38.052 over here. This is a list of all the 0:43:40.815 certificates on
this machine that | have and where | would 0:43:45.315 accept things from. You can see there are a very
0:43:49.026 large number of certificates that this machine has installed. 0:43:53.763 These are not just certificates
but actual certificate 0:43:57.947 authorities. People who | would actually 0:44:02.519 trust to sign a
communication with a given site to provide me 0:44:08.119 with a certificate for, say, some Web server that |
0:44:12.786 want to communicate with. Now the question is so where 0:44:17.733 did these things come from?
They came from one of two 0:44:22.586 places. Either | added them to the 0:44:25.666 system myself. In this
case, 0:44:28.87 | have, for example, an MIT certification authority. 0:44:32.284 If any of you have ever used MIT
certificates like when 0:44:35.899 you're logging onto Websys, in order to be able to access 0:44:39.648 that
system you had to add support for a given certificate 0:44:43.464 to your browser. This MIT certification
0:44:46.008 authority is a certificate that came from MIT and this keychain 0:44:50.158 thing which shows me on
my certificates has this funny sort 0:44:54.041 of message that says this certificate is not in the 0:44:57.389
trusted root database. The reason it says that is, 0:45:01.525 this is a certificate for the MIT certification authority,
0:45:04.745 | just got this certificate for the certification authority off 0:45:08.248 the Web somewhere. And | didn't
do something that 0:45:10.96 it wanted me to do to actually verify that this, 0:45:13.615 in fact, was a legitimate
certificate from the certificate 0:45:16.836 authority. Somebody could have put this 0:45:18.983 thing on the Web
and said this is a certificate for the MIT 0:45:22.259 certificate authority and you should use it to discover
0:45:25.31 certificates for anvbodv who claims to be comina from MIT dot 0:45:28.7 edu. Thev could have lied



about it 0:45:31.839 and then | would be in trouble. It is possible that this is a 0:45:35.644 fake certificate for the
MIT certificate authority, 0:45:38.816 but | sort of have made this trust, this assumption that it 0:45:42.494 is not
because | downloaded it from a website. 0:45:45.348 And | believe that, in fact, this is a valid 0:45:48.076
certificate. The other things you see here 0:45:50.676 are this large number of certificates. 0:45:53.023 For
example, one of the ones that we see, 0:45:55.56 let's see if we can find RSA here, this RSA security. 0:46:00
Here | see RSA security. And this thing actually says 0:46:02.872 this certificate is valid. Now there is this question
0:46:05.745 about where did RSA security come from? 0:46:07.845 And the way that this works is that this
browser and, 0:46:10.718 in this case, the operating system itself has 0:46:13.149 actually been shipped with a
bunch of certificates from a 0:46:16.243 bunch of different certificate authorities. 0:46:18.563 And so these have
been installed by the operating 0:46:21.215 system manufacturer. And | am saying | trust Apple 0:46:23.922 to
have gotten the appropriate certificates and loaded them 0:46:27.127 appropriately into the computer. And any
time you download a 0:46:31.394 browser basically that browser already has a set of 0:46:33.977 certificates for a
set of certificate authorities already 0:46:36.87 installed in it. And that is where all of these 0:46:39.247 base
certificate authorities come from. 0:46:41.21 You can see that when you are using one of these things you
0:46:44.206 have already placed quite a bit of trust and made a number of 0:46:47.306 assumptions about who
you trust and what you should trust just 0:46:50.457 by using this system. We have answered this question
0:46:53.092 now about where did the user get the public key for the 0:46:55.881 certificate authority? Either they
explicitly added it 0:46:59.76 by downloading it from a website, for example, 0:47:02.315 or it came with the
browser. What about this question how 0:47:05.495 does the certificate authority authenticate an actual website?
0:47:08.958 How does Amazon dot com get a certificate from VeriSign? 0:47:12.082 The answer to this turns out
to be that Amazon dot com probably 0:47:15.602 paid VeriSign some money. And it is not even clear you
0:47:18.611 can say that, but in the case of VeriSign you 0:47:21.11 are probably pretty sure that Amazon dot
com paid them some 0:47:24.403 money. And you can probably go to the 0:47:26.447 VeriSign website and see a
list of things that they claimed to 0:47:29.911 have done in sort of authenticating Amazon dot com. 0:47:34 They
may have forced Amazon dot com to present them with some 0:47:37.582 information that actually suggests that
they are the 0:47:40.626 company Amazon dot com or they own some right to the name 0:47:43.97 Amazon dot
com or that they are incorporated under the name 0:47:47.432 Amazon dot com. Basically, the certificate
0:47:49.88 authority has some protocol that it uses to authenticate W. 0:47:54 And we don't know what that
protocol is, but you're sort of 0:47:57.001 implicitly trusting that all these certificate authorities 0:47:59.951 that
Apple has already approved for you, in fact, 0:48:02.435 use some process that we will be reasonably assured of
0:48:05.178 guarantying your privacy or guarantying that the websites 0:48:08.076 that you are connecting to are,
in fact, valid websites that 0:48:11.13 you should feel comfortable giving your credit card number 0:48:14.08 to.
You can see that this is a 0:48:15.58 little bit dicey. If feels a little bit like it 0:48:17.961 is not clear that this is
incredibly secure. 0:48:20.186 And then the last question is well, what if your private keys 0:48:23.292 are stolen?
If your private keys are stolen 0:48:26.431 in this particular example, the certificates that you have 0:48:29.063
from Amazon dot com, if Amazon dot com's private 0:48:31.233 keys are stolen and one of the certificate
authority's private 0:48:34.05 keys are stolen then you are in trouble. 0:48:35.85 These certificates typically have
expiration dates associated 0:48:38.621 with them, but these expiration dates are often like a year or 0:48:41.437
more into the future. And so you are going to 0:48:43.469 continue to trust that certificate until this 0:48:45.501
certificate expires in the future when you will go try and 0:48:48.133 get a new one. For that whole time that you
0:48:50.072 trust that certificate somebody who had access to the private 0:48:52.843 keys from that certificate
authority or from that website 0:48:55.428 would be able to pretend to be that certificate authority or 0:48:58.153
that website. So that might be problematic. 0:49:01.912 That is sort of the end of this little discussion about how
0:49:05.736 certificate authorities work. | hope you can see that this 0:49:09.494 authentication logic is sort of a
way that we can start to get 0:49:13.516 at thinking about what the trust assumptions that we are making
0:49:17.604 are when we are using these systems. 0:49:19.912 This wraps up our discussion of security.
0:49:22.549 We have one class session last. And the last class session is 0:49:26.505 actually going to be a guest
lecturer. 0:49:30 It is going to be somebody talking about how law and 0:49:33.341 computers and technology
interact with each other. 0:49:36.551 We are kind of step back and talk much more about high-level 0:49:40.417
pictures like policy and law next time, and hopefully it will 0:49:44.348 give you a good wrap-up for the whole class
of 6.033. 0:49:47.755 We will see you next time. Please come to class because 0:49:51.293 there will be
questions on the guest lecturer on the exam, 0:49:55.027 so you want to make sure you don't miss it.



