MIT OpenCourseWare http://ocw.mit.edu

12.842 / 12.301 Past and Present Climate Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Radiative Transfer Chapter 3, Hartmann

- Shortwave Absorption:
 - Clouds, H₂0, O₃, some CO₂
- Shortwave Reflection:
 - Clouds, surface, atmosphere
- Longwave Absorption:
 - Clouds, H₂0, CO₂, CH₄, N₂O

Planck's Law

- Based on assumption of local thermodynamic equilibrium
 - (Not valid at very high altitudes in atmosphere)

$$B_{\upsilon}(T) = \frac{2\hbar \upsilon^{3}}{c^{2} \left[e^{\hbar \upsilon/kT} - 1 \right]}$$

k = Boltzmann's constant

 $\hbar = Planck's constant$

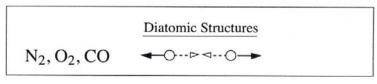
 $\upsilon = frequency$

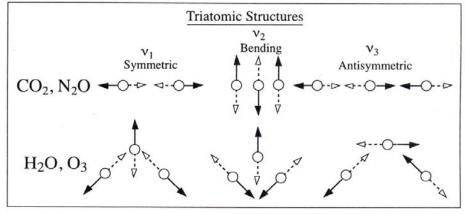
c = speed of light

Stefan-Boltzmann Law is the integral of the Planck function over all frequencies and all angles in a hemisphere:

$$\pi \int_0^\infty B_{\upsilon}(T) d\upsilon = \sigma T^4$$

$$\sigma = \frac{2\pi^5 k^4}{15c^2\hbar^3}$$


Absorption and Emission in a Gas:


Photon energy $E_{\upsilon} = \hbar \upsilon$ Atomic energy levels $E_{\upsilon} = n\hbar \upsilon, \ n = 0, 1, 2, 3...$

An isolated atom can absorb only those photons whose energy is equal to the difference between two atomic energy levels

Molecules have additional energy levels:

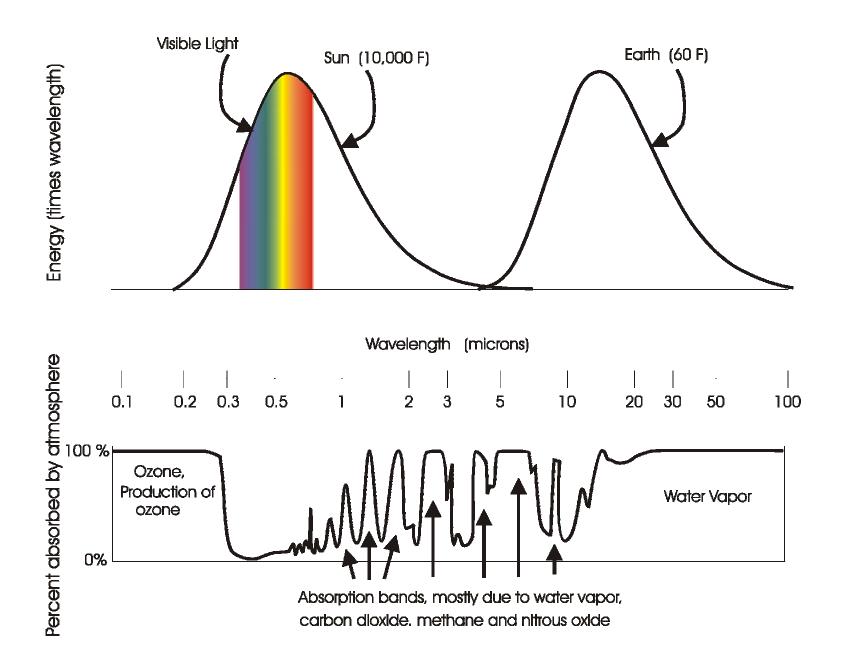
Molecule	Arrangement	Permanent Dipole Moment
N_2	N N	No
O_2	°°	No
CO	C O	Yes
CO_2	$ \overset{\mathrm{O}}{-} \overset{\mathrm{C}}{-} \overset{\mathrm{O}}{-} \overset{\mathrm{O}}{-} $	No
N_2O	$\overset{N}{\otimes} - \overset{N}{\otimes} - \overset{O}{\otimes}$	Yes
H_2O	Н	Yes
O_3	0	Yes
$\mathrm{CH_4}$	H C H	No

These images are copyrighted by Academic Press, NY, 1999. The images are in a chapter entitled "Quasi-equilibrium thinking" (author is Kerry Emanuel) that appears in the book entitled "General circulation model development: past, present and future", edited by D. Randall, Ed. ISBN: 0125780109. Used with permission.

For molecules in a gas:

$$E_{\it total} = E_{\it atomic} + E_{\it vibrational} + E_{\it rotational} + E_{\it translational}$$

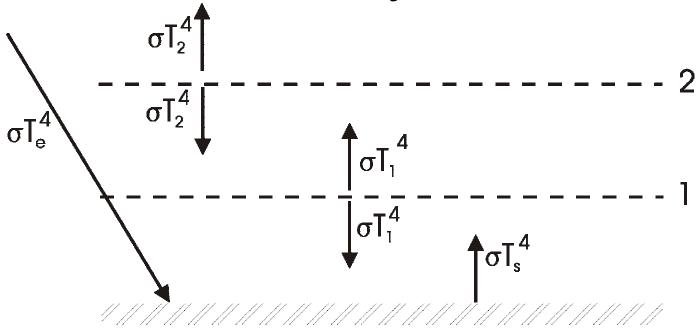
Translational energy is the kinetic energy of molecular motions in a gas, proportional to the gas temperature. Not quantized.


Molecules in a gas can absorb more frequencies than isolated atoms.

Collisions between molecules can carry away energy or supply energy to interactions between matter and photons.

Natural, pressure and Doppler broadening

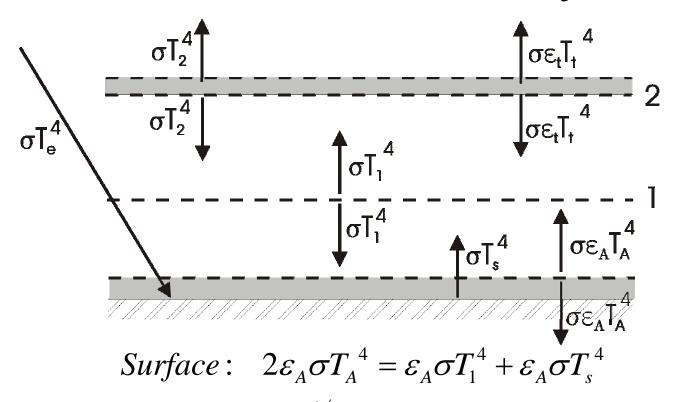
Principal Atmospheric Absorbers


- H₂O: Bent triatomic, with permanent dipole moment and pure rotational bands as well as rotation-vibration transitions
- O₃: Like water, but also involved in photodissociation
- CO₂: No permanent dipole moment, so no pure rotational transitions, but temporary dipole during vibrational transitions
- Other gases: N₂O, CH₄

Radiative Equilibrium

- Equilibrium state of atmosphere and surface in the absence of non-radiative enthalpy fluxes
- Radiative heating drives actual state toward state of radiative equilibrium

Extended Layer Models

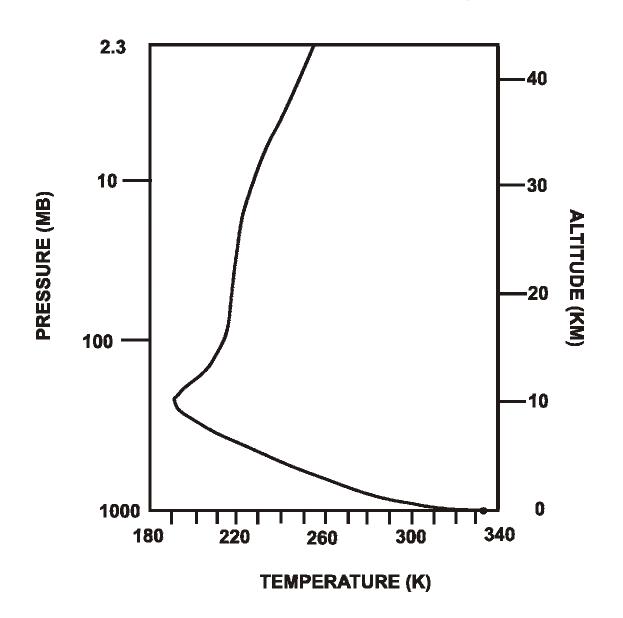

$$TOA: \quad \sigma T_2^4 = \sigma T_e^4 \longrightarrow T_2 = T_e$$

Middle Layer:
$$2\sigma T_1^4 = \sigma T_2^4 + \sigma T_s^4 = \sigma T_e^4 + \sigma T_s^4$$

Surface:
$$\sigma T_s^4 = \sigma T_e^4 + \sigma T_1^4$$

$$T_s = 3^{1/4} T_e$$
 $T_1 = 2^{1/4} T_e$

Effects of emissivity<1



$$\rightarrow T_A = \left(\frac{5}{2}\right)^{\frac{1}{4}} T_e \simeq 321K < T_s$$

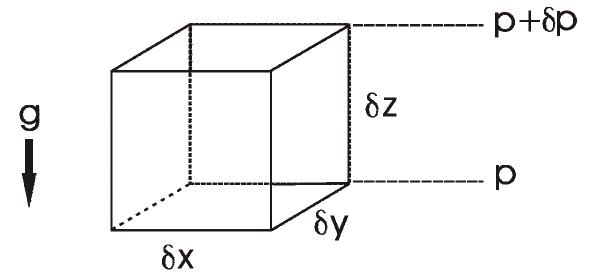
Stratosphere: $2\varepsilon_t \sigma T_t^4 = \varepsilon_A \sigma T_2^4$

$$\rightarrow T_t = \left(\frac{1}{2}\right)^{\frac{1}{4}} T_e \simeq 214K < T_e$$

Full calculation of radiative equilibrium:

Problems with radiative equilibrium solution:

- Too hot at and near surface
- Too cold at a near tropopause
- Lapse rate of temperature too large in the troposphere
- (But stratosphere temperature close to observed)


Missing ingredient: Convection

- As important as radiation in transporting enthalpy in the vertical
- Also controls distribution of water vapor and clouds, the two most important constituents in radiative transfer

When is a fluid unstable to convection?

- Pressure and hydrostatic equilibrium
- Buoyancy
- Stability

Hydrostatic equilibrium:

Weight:
$$-g\rho\delta x\delta y\delta z$$

Pressure:
$$p\delta x\delta y - (p + \delta p)\delta x\delta y$$

$$F = MA: \quad \rho \delta x \delta y \delta z \frac{dw}{dt} = -g \rho \delta x \delta y \delta z - \delta p \delta x \delta y$$

$$\frac{dw}{dt} = -g - \alpha \frac{\partial p}{\partial z}, \qquad \alpha = \frac{1}{\rho} = \text{specific volume}$$

Pressure distribution in atmosphere at rest:

Ideal gas:
$$\alpha = \frac{RT}{p}$$
, $R \equiv \frac{R^*}{\overline{m}}$

$$Hydrostatic: \quad \frac{1}{p} \frac{\partial p}{\partial z} = -\frac{g}{RT}$$

Isothermal case:
$$p = p_0 e^{-\frac{z}{H}}$$
, $H \equiv \frac{RT}{g} = \text{"scale height"}$

Earth: H~ 8 Km

Buoyancy: $\delta z \qquad \rho = \delta z$ $\delta x \qquad \delta y \qquad \delta x$

Weight:
$$-g\rho_b\delta x\delta y\delta z$$

Pressure:
$$p\delta x\delta y - (p + \delta p)\delta x\delta y$$

$$F = MA: \quad \rho_b \delta x \delta y \delta z \frac{dw}{dt} = -g \rho_b \delta x \delta y \delta z - \delta p \delta x \delta y$$

$$\frac{dw}{dt} = -g - \frac{\alpha_b}{\partial z} \frac{\partial p}{\partial z} \qquad but \quad \frac{\partial p}{\partial z} = -\frac{g}{\alpha_e}$$

$$\rightarrow \frac{dw}{dt} = g \frac{\alpha_b - \alpha_e}{\alpha_e} \equiv B$$

Buoyancy and Entropy

Specific Volume:
$$\alpha = \frac{1}{\rho}$$

Specific Entropy: s

$$\alpha = \alpha(p, s)$$

$$\left(\delta\alpha\right)_{p} = \left(\frac{\partial\alpha}{\partial s}\right)_{p} \delta s = \left(\frac{\partial T}{\partial p}\right)_{s} \delta s$$

$$B = g \frac{(\delta \alpha)_p}{\alpha} = \frac{g}{\alpha} \left(\frac{\partial T}{\partial p} \right)_s \delta s = -\left(\frac{\partial T}{\partial z} \right)_s \delta s \equiv \Gamma \delta s$$

The adiabatic lapse rate:

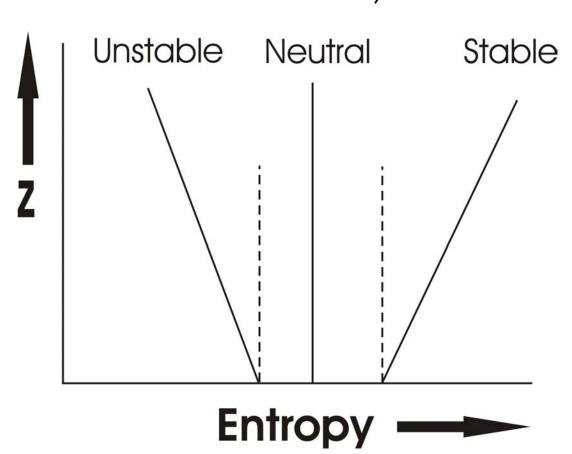
First Law of Thermodynamics:

$$\dot{Q} = T \frac{ds_{rev}}{dt} = c_v \frac{dT}{dt} + p \frac{d\alpha}{dt}$$

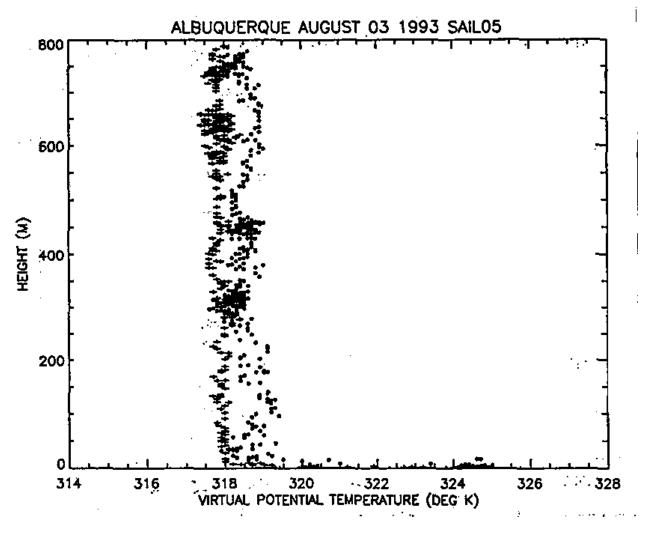
$$= c_v \frac{dT}{dt} + \frac{d(\alpha p)}{dt} - \alpha \frac{dp}{dt}$$

$$= (c_v + R) \frac{dT}{dt} - \alpha \frac{dp}{dt}$$

$$= c_p \frac{dT}{dt} - \alpha \frac{dp}{dt}$$

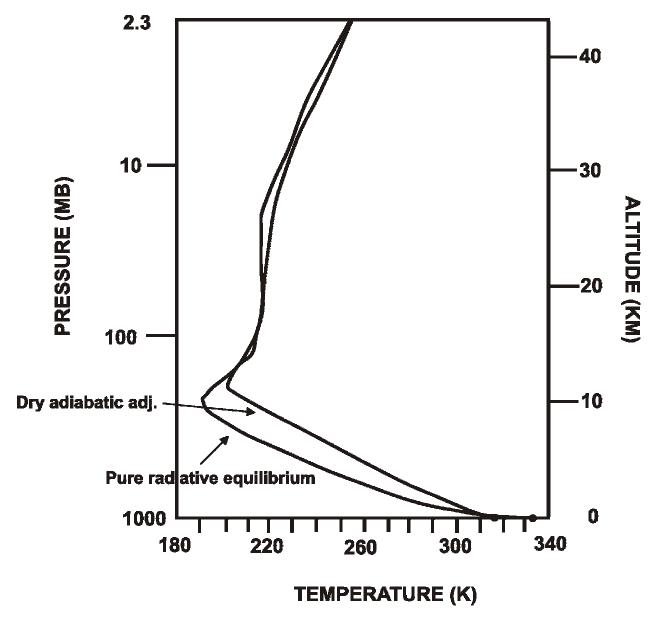

Adiabatic: $c_p dT - \alpha dp = 0$

 $Hydrostatic: c_n dT + g dz = 0$


$$\rightarrow \left(\frac{dT}{dz}\right)_{s} = -\frac{g}{c_{p}} \equiv -\Gamma_{d}$$

$$\Gamma = \frac{g}{c_p}$$

Earth's atmosphere:
$$\Gamma = \frac{1 K}{100 m}$$



Model Aircraft Measurements (Renno and Williams, 1995)

Radiative equilibrium is unstable in the troposphere Re-calculate equilibrium assuming that tropospheric stability is rendered neutral by convection:

Radiative-Convective Equilibrium

Better, but still too hot at surface, too cold at tropopause