
10.  Unbounded domain - non-rotating reflection from a solid boundary 
 

 We consider the reflection from a solid boundary which is at some angle with the 

horizontal.  Consider a two-dimensional solution 

e-iωt+ikx+imz aligning x with the horizontal wave vector kH  

satisfying  

wzz – R2wxx = 0. 

with  R2 =
N2 − ω2

ω2 − f 2   and  m = ±Rk. 

The lines of constant phase are θ = kx+mz-ωt = constant or: 

+kx±Rkz-ωt = constant 

that is 

x ± Rz =
ω
k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ t = constant ;  

energy propagates along the lines of constant phase  

x±Rz = constant that is: 

z =
1
R

x   (positive  slope) z =
−1
R

x   (negative  slope) 
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These lines are the characteristics of the hyperbolic equation for w, i.e. 

w = f(x+Rz) + g(x-Rz) 

Consider first a wave incident and reflected at the horizontal boundary z = 0, i.e. the x-

axis 

 

 

 

  
G
c gi downward: energy propagates along x+Rz=0.  The incident wave number   

G
K i is 

perpendicular to    and upward, Energy is reflected along x-Rz, upward   .  The 

reflected wave number   

G
c gi

G
c gr

G
K r  is downward. 
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ω = Ncosθ is conserved in the reflection.  

G
θ is the angle of   K  with the horizontal.   

G
As ω is determined only by θ, the angle to the horizontal,  K 

G
 i and K   r  must form 

equal angles θ with the horizontal.  In this particular case |
G
 K  i|cosθ = |

G
 K  r |cosθ.   

We can demonstrate that ω is conserved as follows. 

Let us consider the more general case of a wall inclined to the horizontal z = ax and let us 
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consider a 2-D problem.  Then continuity is simply ux+wz=0 and we can introduce a 

streamfunction ψ 

 u = −
∂ψ
∂z

 

     { 

 w = +
∂ψ
∂x

 

The incident wave, in terms of ψ, is: 

 ψI = ψioei(kix+miz - ωit)

and 

 ψR = ψroei(krx + mrz- ωrt)

The total wave field in the reflection is 

 ψ
Total 

= ψI + ψR

and on z = ax   ψT = constant = 0 without loss of generality.  Then  

 ψio ei[(ki+ami)x – ωit] + 

 + ψroei[(kr + amr)x – ωrt] ≡ 0 

This is true only if 

   ωi = ωr
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   ki + ami = kr + amr ->                   ki + tanα mi = kr + tanα mr

   as a = tanα 

   or ki cosα + mi sinα = kr cosα + mr sinα 

G G
or   ˆ K • i = ˆ K • i  if   ˆ i  is the unit vector along z = ax   i B r B B

that is: 

1. ω is conserved in the reflection process 

G G
-> the angle of K   r  and K to th  i e horizontal must have the same magnitude θ  



2.  The component of    and 
G
K i   

G
K r  along the slope must be the same 

Let us consider the geometry of the process: 
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x = z tanθ = R z      tan θ = R 
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θ = tan-1R  α = tan-1a 

The projection of K   i,K r  along the reflecting wall z = ax must be equal: 

 G
| K i | cos[tan−1R − tan−1a] =| K 

G
  r | cos[tan−1R + tan−1a] 

We can evaluate this expression by geometry and the law of cosines: 

 

a2 + b2 − c2
cosγ =

2ab
                     

G G
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cos(tan-1R – tan-1a) = 1+ R2 + 1+ a2 − (R − a)2

2 1+ R2 1+ a2
=

1+ aR

1+ R2 1+ a2
 

cos(tan-1R + tan-1a) = 1+ a2 +1+ R2 − (R + a)2

2 1+ R2 1+ a2
=

1− aR

1+ R2 1+ a2
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And the above expression becomes: 

  
|
G 
K i | 1+ aR

1+ R2 1+ a2
=|

G 
K R | 1− aR

1+ R2 1+ a2
 

or 

  
|
G 
K R |= 1+ aR

1− aR
|
G 
K i | 

or 

kR = (1+ aR
1− aR

)ki 

mr = −(1+ aR
1− aR

)mi  

The reflected wave number   |
G
K R |>|

G
K i | 

 => λR < λi

The wavelength shortens as a consequence of the reflection process. 

Consider now the changes in group velocity   
G
c g 

 For the group velocity the component conserved is the component perpendicular 

to the wall as there cannot be an energy flux into the wall  

cgi |⊥wall −cgr |⊥wall= 0  

cgi |⊥wall= cgr |⊥wall  
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x − Rz = 0

x = z tan θ = Rz

R = tan θ

z = ax

θ = tan-1 R

x + Rz = 0
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tan-1a

tan-1a

tan-1a

tan-1R

 

  |
G
c gi | sin(tan−1 R + tan−1 a) =|

G
c gr | sin(tan−1 R − tan−1 a)  

or    
  

G 
c gr = −

G 
c gi   (1+ aR)

(1− aR)
 

While λ shortens in the reflection process,    
G
c gr  increases  

Notice that if aR->1 the reflected   
G
c gr is very large.  What does this mean?  It means that 

the bottom coincides with the outgoing characteristics:  z = ax -> z  = R-1x.  

As aR → 1,    is very large, kG
c gr r is very large: the reflected wave is very small.  The 

present inviscid analysis fails. 

Rules for sloping bottom: 

1.  Angle θ of    ,     with the vertical must be the same. G
c gi

G
c gr
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2.  The components ⊥ to bottom must be equal 

Figure by MIT OpenCourseWare.



MIT OpenCourseWare 
http://ocw.mit.edu  
 
 
 
 
12.802 Wave Motion in the Ocean and the Atmosphere
Spring 2008
 
 
 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/
http://ocw.mit.edu/terms



