10. Unbounded domain - non-rotating reflection from a solid boundary

 We consider the reflection from a solid boundary which is at some angle with the horizontal. Consider a two-dimensional solution

 $e^{-i\omega t + ikx + imz}$ aligning x with the horizontal wave vector k_H

satisfying

$$
w_{zz} - R^2 w_{xx} = 0.
$$

with $R^2 = \frac{N^2 - \omega^2}{\omega^2 - f^2}$ and $m = \pm Rk.$

The lines of constant phase are $\theta = kx+mg$ -ωt = constant or:

 $+kx\pm Rkz$ -ωt = constant

that is

$$
x \pm Rz = \left(\frac{\omega}{k}\right)t = \text{constant};
$$

energy propagates along the lines of constant phase

 $x\pm Rz = constant$ that is:

Figure by MIT OpenCourseWare. 1

These lines are the characteristics of the hyperbolic equation for w, i.e.

 $w = f(x+Rz) + g(x-Rz)$

Consider first a wave incident and reflected at the horizontal boundary $z = 0$, i.e. the xaxis

Figure by MIT OpenCourseWare.

ľ \vec{c}_{gi} downward: energy propagates along x+Rz=0. The incident wave number \vec{K}_i is perpendicular to \vec{c}_{gi} and upward, Energy is reflected along x-Rz, upward \vec{c}_{gr} . The reflected wave number $\vec{\text{c}}_\text{gi}$ \rightarrow $\vec{\text{c}}_{\text{gr}}$ \rightarrow K_r is downward.

 $\omega = N \cos\theta$ is conserved in the reflection.

 θ is the angle of \vec{K} with the horizontal.

As ω is determined only by θ , the angle to the horizontal, \vec{K}_i and \vec{K}_j $_{i}$ and K_r must form equal angles θ with the horizontal. In this particular case $|\vec{\mathbf{K}}_i|cosθ = |\vec{\mathbf{K}}_r|cosθ$.

We can demonstrate that ω is conserved as follows.

Let us consider the more general case of a wall inclined to the horizontal $z = ax$ and let us

consider a 2-D problem. Then continuity is simply $u_x + w_z = 0$ and we can introduce a streamfunction ψ

$$
u = -\frac{\partial \psi}{\partial z}
$$

$$
\left\{ \begin{aligned} w = +\frac{\partial \psi}{\partial x} \end{aligned} \right.
$$

The incident wave, in terms of ψ , is:

$$
\psi_I=\,\psi_{io}e^{i(k.x+m\cdot z\ -\ \omega_1 t)}
$$

and

$$
\psi_R = \psi_{ro} e^{i(k\chi + m_r z - \omega_r t)}
$$

The total wave field in the reflection is

$$
\psi_{\text{Total}} = \psi_I + \psi_R
$$

and on $z = ax$ $\psi_T = constant = 0$ without loss of generality. Then

$$
\psi_{io} e^{i[(k_i + am_i)x - \omega_i t]} +
$$

+
$$
\psi_{ro} e^{i[(k_r + am_r)x - \omega_r t]} \equiv 0
$$

This is true only if

$$
\omega_{i} = \omega_{r}
$$
\n
$$
k_{i} + am_{i} = k_{r} + am_{r} \rightarrow k_{i} + \tan \alpha \ m_{i} = k_{r} + \tan \alpha \ m_{r}
$$
\n
$$
as \ a = \tan \alpha
$$
\n
$$
or \ k_{i} \cos \alpha + m_{i} \sin \alpha = k_{r} \cos \alpha + m_{r} \sin \alpha
$$

or $\vec{K}_i \cdot \hat{i}_B = \vec{K}_r \cdot \hat{i}_B$ if \hat{i}_B is the unit vector along $z = ax$

that is:

1. ω is conserved in the reflection process

-> the angle of \vec{K}_r and \vec{K}_i to the horizontal must have the same magnitude θ

2. The component of \vec{K}_i and \rightarrow K_{r} along the slope must be the same

Let us consider the geometry of the process:

Figure by MIT OpenCourseWare.

 $x = z \tan \theta = R z$ tan $\theta = R$

$$
\theta = \tan^{-1} R \qquad \qquad \alpha = \tan^{-1} a
$$

The projection of K_i, K_r along the reflecting wall $z = ax$ must be equal: \rightarrow

$$
|\vec{K}_i|\cos[\tan^{-1} R - \tan^{-1} a] = |\vec{K}_r|\cos[\tan^{-1} R + \tan^{-1} a]
$$

We can evaluate this expression by geometry and the law of cosines:

$$
\cos\gamma = \frac{a^2 + b^2 - c^2}{2ab}
$$

4

Figure by MIT OpenCourseWare.

$$
\cos(\tan^{-1}R - \tan^{-1}a) = \frac{1 + R^2 + 1 + a^2 - (R - a)^2}{2\sqrt{1 + R^2}\sqrt{1 + a^2}} = \frac{1 + aR}{\sqrt{1 + R^2}\sqrt{1 + a^2}}
$$

$$
\cos(\tan^{-1}R + \tan^{-1}a) = \frac{1 + a^2 + 1 + R^2 - (R + a)^2}{2\sqrt{1 + R^2}\sqrt{1 + a^2}} = \frac{1 - aR}{\sqrt{1 + R^2}\sqrt{1 + a^2}}
$$

Figure by MIT OpenCourseWare.

And the above expression becomes:

$$
|\vec{K}_i\mid\!\frac{1+aR}{\sqrt{1+R^2}\,\sqrt{1+a^2}}\!=\!|\vec{K}_R\mid\!\frac{1-aR}{\sqrt{1+R^2}\,\sqrt{1+a^2}}
$$

or

$$
\mid\!\vec{K}_{R}\models\!\frac{1+aR}{1-aR}\!\mid\!\vec{K}_{i}\mid
$$

or

$$
k_{R} = \left(\frac{1 + aR}{1 - aR}\right)k_{i}
$$

$$
m_r = -\left(\frac{1 + aR}{1 - aR}\right) m_i
$$

The reflected wave number | $\overline{}$ $\overline{\mathrm{K}}_{\mathrm{R}}\vartriangleright$ \rightarrow $K_i |$

$$
=>\lambda_{\mathrm{R}}<\lambda_{\mathrm{i}}
$$

The wavelength shortens as a consequence of the reflection process.

Consider now the changes in group velocity \vec{c}_g

 For the group velocity the component conserved is the component perpendicular to the wall as there cannot be an energy flux into the wall

$$
c_{gi} \downarrow_{wall} -c_{gr} \downarrow_{wall} = 0
$$

$$
c_{gi} \downarrow_{wall} = c_{gr} \downarrow_{wall}
$$

Figure by MIT OpenCourseWare.

$$
|\vec{c}_{gi}| \sin(\tan^{-1} R + \tan^{-1} a) = |\vec{c}_{gr}| \sin(\tan^{-1} R - \tan^{-1} a)
$$

$$
\quad \text{or} \quad
$$

$$
\vec{c}_{gr} = -\vec{c}_{gi} \quad \frac{(1 + aR)}{(1 - aR)}
$$

While λ shortens in the reflection process, \vec{c}_{gr} increases

Notice that if aR->1 the reflected \vec{c}_{gr} is very large. What does this mean? It means that the bottom coincides with the outgoing characteristics: $z = ax \rightarrow z = R^{-1}x$.

As aR \rightarrow 1, \vec{c}_{gr} is very large, k_r is very large: the reflected wave is very small. The present inviscid analysis fails.

Rules for sloping bottom:

- 1. Angle θ of \vec{c}_{gi} , \vec{c}_{gr} with the vertical must be the same. $\overline{}$ $\vec{\text{c}}_{\text{gr}}$
- 2. The components \perp to bottom must be equal

12.802 Wave Motion in the Ocean and the Atmosphere Spring 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)