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6.  Internal waves 
 

Consider a continuously stratified fluid with ρo(z) the vertical density profile.   
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At a point P raise a parcel of water by small amount ξ from its equilibrium position P 

adiabatically.  The change in pressure experienced by the parcel is 

dp = -ρo gξ 

dpif ρo(z) is the medium density, while the change in density is dρ =
c2

s
  [Remember the 

∂pdefinition of adiabatic compressibility 
∂ρ

⎛ ⎞ 
⎜ ⎟ = c2

s ].  The buoyancy force acting on the 
⎝ ⎠ 

particle induces an acceleration because the density of the particle at the displaced 

position is different from the background density of the medium 

dρ
ρo |P'= ρo |P + o

dz
ξ  and 

−ρρ |  particle  at  P'  =  ρ | ogξ
particle  at  P+dρ  ρ =  o

c2
s

 

Figure 1.
Figure by MIT OpenCourseWare. 
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d2ξ
ρo

dt2
ρ

= g[(ρo + ρozξ) − (ρo − ogξ

c2
s

)] 

d2ξ

dt2
g

=
ρo

ρ[(ρoz + og
c2

s
)ξ] 

d2ξ

dt2
gρ

+ (− oz
ρo

g2
−

c2
s

)ξ = 0 

Define N2 −g(z) =
ρo

dρo
dz

g2
−

c2
s

 the Brünt-Vaisala frequency or buoyancy frequency 

d2ξ2

dt2 + N2ξ = 0 

is the equation of the harmonic oscillator with solution e±iNt. 

Thus the parcel oscillates about its equilibrium position and the Brünt-Vaisala frequency 

is the natural frequency of oscillation determined by the local density stratification and 

the fluid’s compressibility.  As we saw, in the ocean compressibility effects are negligible 

and we can assume 

N2 −g
=

ρo

∂ρo
∂z

 

 The motion is the oscillation of the particle around the equilibrium position with 

frequency N.  Let us compare the frequency of surface gravity waves with the buoyancy 

frequency and use deep water gravity waves 

ωint .
ωsurf.

N
=

gk
1

= (−
kρo

∂ρo
∂z

)1/2 ~ 1(−
ρo

∂ρo
∂z

Δ
λ)1/2 ρ

≈ o( o
ρo

)1/2  

 

1 k ~
λ

∂ρ;  λ o
∂z

= Δρo  density change over λ   
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 Δρo ~10−3   over total depth: 

 ωint << ωsurface . 

 The frequency of internal waves is much less than the frequency of surface 

gravity waves.  The restoring force for surface gravity waves is g; the restoring force for 

Δρinternal waves is o
ρo

g, reduced gravity. 

Internal waves in an unbounded fluid 

 Consider an incompressible, stratified non-rotating fluid characterized by a basic 

state of rest and hydrostatic equilibrium: 

dpu ≡ o,  ρ = ρo(z),  p = po(z)   and   o
dz

= −gρo  

The fluid experiences small amplitude perturbations around the basic state, so we can use 

the linearized equations of motion, assuming also that the motion is frictionless and 

adiabatic: 

∂u(1)  ρo ∂t
∂p

= −
∂x

     ρtotal = ρo+ρ;   ρ<<ρo 

∂v(2)  ρo ∂t
∂p

= −
∂y

     ptotal = po+ρ;   p<<po 

∂w (3)  ρo ∂t
∂p

= −
∂z

− ρg    ρ  = perturbation density 

∂u (4)  
∂x

∂v
+

∂y
∂w

+
∂z

= 0    p = perturbation pressure 

∂p (5)  
∂t

∂ρ
+ w o

∂z
= 0   The basic reference state cancels out in 3 

       

If  u = v = o and p = o, we have the special solution 
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∂w
ρo ∂t

∂ρ
= −ρg;  

∂t
∂ρ

= −w o
∂z

 

∂2w
ρo

∂t2
∂ρ

= −g
∂t

g∂ρ
= + o

∂z
∂2ww →
∂t2

−g
+ (

ρo

∂ρo
∂z

)w = o 

General equation 

∂Differentiate (4):  
∂t

∂u
∂x

∂
+

∂t
∂v
∂y

∂
+

∂t
∂w
∂z

= 0 

∂uSubstitute into it (
∂t

∂v,
∂t

) given by (1) and (2) 

∂    
∂x

1(−
ρo

∂p
∂x

∂) +
∂y

1(−
ρo

∂p
∂y

∂) +
∂z

∂w(
∂t

) = 0 

∂2w (I)             
∂z∂t

1
=

ρo

∂2
∇2

Hp      where  ∇2
H =

∂x2
∂2

+
∂y2  

Eliminate ρ between (3) and (5) 

∂2w
ρo

∂t2
∂2p

= −
∂z∂t

∂ρ
− g

∂t
∂2p

= −
∂z∂t

dρ
+ gw o

∂z
 

∂2wor   
∂t2

g
+ (−

ρo

∂ρo
∂z

1)w = −
ρo

∂2p
∂z∂t

 

∂2w(II)     
∂t2

1
+ N2w = −

ρo

∂2p
∂z∂t

       

Eliminate p between (I) and (II) taking ∇2
H of (II) 

∇2 ∂2
H

∂t2
1

∇2
Hw + N2∇2

Hw = −
ρo

∂2

∂z∂t2
1

∇2
Hp = −

ρo

∂2

∂t2
∂
∂z

∂w(ρo ∂z
) 

∂2
Take to the LHS and factorize 

∂t2  
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Internal wave equation ∂2
  

∂t2
1

∇2
Hw +

ρo

∂
∂z

∂w(ρo ∂z
⎡ ⎤ 
⎢ )⎥ + N2∇2

Hw = 0 
⎣ ⎦ 

 Consider the last term in square bracket: 

1
ρo

∂
∂z

∂w(ρo ∂z
1) =

ρo

∂ρo
∂z

∂w
∂z

∂2w
+

∂z2  

Ratio 
∂ρo
∂z

∂w
∂z

∂2w
ρo

∂z2

1
=

ρo

∂ρo
∂z

1
•

d
dd2 =

ρo

∂ρo
∂z

d
<<1=

D
 

d = vertical scale of w ~ thickness of thermocline 

and D is the ocean depth or atmospheric height -> valid also in the atmosphere.  So we 

can ignore the first term and we simplify to: 

∂2

∂t2
∂2

∂x2
∂2

+
∂y2

∂2
+

∂z2

⎡ ⎤ 
⎢ ⎥ w + N2 ∂2

⎣ ⎢ ⎦ ⎥ ∂x2
∂2

+
∂y2

⎛ ⎞ 
⎜ ⎟ ⎜ ⎟ w = 0  ⎝ ⎠ 

      total Laplacian                   horizontal Laplacian

∂2

∂t2 ∇2w + N2∇2
Hw = 0   internal wave equation. 

Notice that if N = 0, no stratification, 2∇ ω = 0 the motion is irrotational -> surface 

gravity waves.   

Consider now a plane wave solution in three-dimensions 

w = wocos(kx+ly+mz-ωt) 

(k,l,m)  wave number 

Substituting into the internal wave equation, we obtain the dispersion relationship 

N2
ω2 (k2 + l2)

=
(k2 + l2 + m2)

    



N2
or   ω2 k2

= H
2K

 

k
ω = ±N H

K
 

 

 

 

 

 

 

 

 

ω = ±N cos θ 

And the wave numbers are 

k = Kcosθcoφ, l = Kcosθsinφ; m = Ksinθ 

The dispersion relation for internal waves is of a quite different character from the 

dispersion relation for surface waves: 

ω of surface waves depends only on the magnitude of K and not on its direction 

ω of internal waves is independent of the magnitude of K and depends only on the 

orientation of the wave vector, i.e. on the angle θ of the wavenumber K with the 

horizontal. 

6 

K

KH

θ

ϕ

(l,y)

(k,x)

m

(m,z)

Figure 2.
Figure by MIT OpenCourseWare. 



Consider the displacement ζ along a line of constant phase by definition perpendicular to 

the phase line 

 

 

 

 

 

 

 

Thus particle motion is along the wave crests i.e., along the lines of constant phase 

d2ζ

dt2
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+ N2ζ = 0 

We can see this also considering 

(u,v,w) = (u ,v ,w )ei(kx+ly+mz−ωt)
o o o  

Continuity equation gives      
G

kuo+lvo+mwo = 0   =>  K • u = 0 

 

Fluid velocity is perpendicular to the wave vector, i.e. is along the crests of the waves 

=> wave motion is transverse 
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Figure 3. Figure by MIT OpenCourseWare. 



 

 

 

 

 

 

 

 

When the wave vector is horizontal, m = o, the particle motion is purely vertical and 

ωmax = N 

A displacement ζ along the phase line gives a vertical displacement 

dz =  ζcosθ 

The buoyancy force in the vertical corresponding to the displacement dz is 

     Fz = -N2dz = -N2ζcosθ     

The component of this force along the phase line is  

Fζ = -N2ζcos2θ 

and the motion of the particle along the phase line is governed by: 

d2ζ

dt2
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d2ζ
= Fζ      →   

dt2 + (N2 cos2 θ)ζ = 0 

Thus ±Ncosθ is the frequency of oscillation of a particle along the phase line.  If θ = 0, 

we have vertical oscillations with frequency N.   

high

high

low

phase propagation

u

u θ3

θ2

θ1

u

K

 

Figure 4. Figure by MIT OpenCourseWare. 



Dispersion effects 

 For internal waves, the surfaces of constant frequency in wavenumber space are 

the cones θ = constant, i.e. 

ω = constant 

ωThe phase velocity  | c |=
K
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N
=

K
cosθ  is directed along the wave vector and therefore lies 

∂ωon the cone.  The group velocity cg = i
∂k

∂
+ ˆ ωj 

∂l
∂

+ ˆ ωk 
∂m

 is the gradient of ω in 

wavenumber space and therefore by definition is perpendicular to the surfaces 

G
ω = constant.  It follows that c g is at right angles with  ( K,c )

G
.    

When the group velocity has an upward component the phase speed has a downward 

component. 

 

Let us explicitly evaluate the group velocity 

k2 + l2Write   ω2 = N2
2k + l2 + 2m

N2k2
= H

2K
 

∂ω 
∂k

N
=

K
m2

K2
k

kH

N
=

K
sinθ(sinθcosφ) 

∂ω
∂k

N
=

K
m2

K2
l

kH

N
=

K
sinθ(sinθsinφ)  

∂ω
∂m

k
= −N Hm

3K
N

= −
K

sinθ(cosθ) 

Note 

ω
m

∂ω
∂m

N2
= − 2K

cos2 θ < 0    
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The vertical phase velocity is always opposite to the vertical group velocity.  Waves 

propagating their phase upwards will be propagating their energy downwards and 

viceversa, 

Nor     cg =
K

sinθ(sinθcosφ,sinθsin φ,−cosθ) . 

Explanation of the Figure 

For internal waves, wave crest AA’ has moved to 4 wavelengths downward to the 

left, the wave group has moved upward parallel to the crests, at right angle to the phase 

propagation. 

G 1For surface gravity waves in deep water, c g =
  2

G 
c     

wavecrest AA’ has again moved 4 wavelengths downward to the left; the wave group has 

moved in the same direction but at half the speed, that is two wavelengths: AA’, with 

respect to the group, has moved 2 wavelengths. 
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Figure 5.

Figure by MIT OpenCourseWare. 
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Figures by MIT OpenCourseWare. 
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Figures by MIT OpenCourseWare. 
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