
3.  Surface gravity waves 

 The most familiar form of wave motions are the waves occurring at the interface 

between the atmosphere and water, like the waves we see on the beach.  The restoring 

force of these waves is gravity, hence they are called surface gravity waves 

 Let us consider a homogeneous layer of fluid with a free surface at z = η(x,y,t) 

and a constant depth –D.  We want to ignore rotation, friction and non-linearity: can we?  

Scale analysis. 

(a) to ignore rotation compare  ∂
∂t

=
1
T

= ω  with Ω.  This implies ω >>Ω or T<<f-1.  The 

period of the motion is small enough to ignore rotation in the equation of motion 

  

d
G
u 

dt
+ 2

G 
Ω ×

G 
u = −

1
ρo

∇p + μ∇2G 
u = gk         

(b) To ignore friction compare 
  
μ∇2 G u  with  ∂

Gu 
∂t .  This is    

  
μ∇2 G u = μ

u
λ2 = μuk2 

with k a typical wave number and 
  
∂
Gu 

∂t
= uω  

This means    ω >> μk2

 (c) To ignore nonlinearity compare 
  
∂
G
u 

∂t
 with    

G
u •∇

G
u  or  

1
T

= ω      with      u2

λ
= u2k  

ω>>uk      

or  u << ω
k

= c 
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the particle speed is much less than the phase speed, i.e. the signal is carried by the wave 

and not by the advective motion. 

(d) Then we want to treat the fluid as incompressible.  Suppose the motion is adiabatic.  

Then entropy is conserved following a fluid particle.   s is the specific entropy and the 

general equation is ds
dt

= H 

where H are heat sources/sinks.  If the motion is adiabatic H = O. 

s = s(p,ρ).  Assume we can linearize: 

ds
dt

=
∂s
∂t

= 0 =
∂s
∂p

∂p
∂t

+
∂s
∂ρ

∂ρ
∂t

 

thus   dp
dt

= −
∂s /∂ρ
∂s /∂p

dρ
dt

=
∂p
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s

∂ρ
∂t

 

The speed of sound in any medium is given by the adiabatic compressibility of the 

medium, i.e. by ∂p
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s
.   

cs
2 =

∂p
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s
  cs = sound speed ≡  adiabatic compressibility of the medium. 

So the relationship between pressure and density perturbation is: 

δp = cs
2δρ ρ = ρ + δρ~ρ   in momentum e.g. as  δρ << ρ 

From horizontal momentum equation: 

∇p = 0 ρ
∂u
∂t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

or   
δp
λ

= 0 ρu
T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   → δpk = 0(ρuω)    
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δp = 0 ρuω
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    

From   δρ = cs
2δρ

δρ =
δρ

cs
2 = 0 ρ uω2

kcs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

and  δ(δρ)
∂t

= 0 ρ uω2

kcs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

Mass conservation  

  
∂ρ
∂t

+ ∇ • (ρ
G 
u ) = 0 

usual conventionρ = ρ + δρ; ρ = grand average = constant 

  
∂(∂ρ)

∂t
+ ∇ • (ρ + δρ)

G 
u [ ]= 0      δρ << ρ  

  
∂(∂ρ)

∂t
+ ρ• ∇ •

G 
u = 0       ->     

  

1
ρ

∂(∂ρ)
∂t

+ ∇ •
G 
u = 0       

But  1
ρ 

∂(∂ρ)
∂t

= 0 uω2

kcs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟       and        ∇ •

G
u = 0(uk)  

So 
  

1
ρ 

∂(∂ρ)
∂t

/∇ •
G 
u = 0   ω2

kcs
2k

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 ω2 /k2

cs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 c2

cs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟     

c = phase speed = 10 to 100 m/sec 

cs = sound speed = 1,500 m/sec in the ocean 

  

1
ρ 

∂(δρ)
∂t

/∇ •
G 
u <<1 ⇒   ∇ •

G 
u = 0  => incompressibility 
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If c << cs then we can consider the fluid as incompressible; cs = 1,500 m/sec in the ocean  

(Not in the atmosphere: cs ~ 300 m/sec, of the order of the phase speed of internal 

waves).  Mass conservation equation for incompressible flow,  

  ∇ •
G
u = 0 

The equations of motion is (keeping nonlinearity for the moment) 

  

d
G
u 

dt
= −

1
ρo

∇p − gˆ k      d
dt

=
∂
∂t

+
G 
u • ∇  

Vorticity is defined as   
G
ζ = ∇ ×

G
u  

Take the curl of the momentum equation and linearize: 

          
  
d
dt

(∇ × u ) = 0   ⇒
d
G
ζ 

dt
= 0  ⇒

∂
G
ζ 

∂t
= 0 

So if the relative vorticity is zero at initial time (or at any other time) it will be zero at all 

times.  In general this gives   
G
ζ   = constant at all times: the constant is arbitrary  0. ≡

If   
G
ζ = ∇ ×

G
u = 0, we can define a velocity potential φ such that   

G
u (x,t) = ∇φ(

G
x ,t) 

Since the fluid is incompressible,   ∇ •
G
u = 0 and 

∇2φ = 0  u=φx,  v=φy, w=φz 

is the equation for the velocity potential, an elliptic problem very simple equation 

describing, among other things, the electric potential of static charges.  The dynamics of 

surface waves is contained in the boundary conditions.   
 

 

z = - D

z

z = 0 z = η (x, y, t)
Boundary conditions
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Figure 1.



We now derive the boundary conditions keeping nonlinearity, and we shall linearize later.  

At the bottom z = -D we require w = O, i.e. 

φz = 0   at   z = −D 

The free surface η is made of fluid parcels that move with the fluid velocity field which 

never leave the interface.  Consider one such parcel.  It moves vertically (i) if the 

interface rises or falls, or (ii) if the fluid flows horizontally under the sloping interface.  If 

we let z = η(x,y,t) be the interface, then 

w[x,y,η (x,y,t),t] = ηt + uηx + vηy   at   z = η 

This is really just a restatement of Dη/Dt = w.  In terms of  φ, this says 

ηt + φxηx + φyηy = φz       at    z = η 

This is nothing more than as kinematic condition which simply says what we mean by 

calling z = η an interface.   

 The interface is massless.  In the absence of surface tension, therefore it supports 

no pressure differences across it.  The appropriate dynamical boundary condition is 

p(x,y,η,t) =patmosphere 

To write this in terms of φ, η return to 

  
G
u t + (

G
u • ∇)

G
u = −∇p /ρo − gˆ k  

Using the identity 

  (u •∇)
G
u = (∇ ×

G
u + ∇(

G
u •

G
u /2)  

we can rewrite this (exactly) as 

  
G
u t +

G
ζ ×

G
u = −∇p /ρo − ∇(

G
u •

G
u /2) − ∇(gz)  

Now if  ζ  = 0 so that    
G
u = ∇φ ,  then this becomes 
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∇(φt + p /ρo +
1
2

| ∇φ |2 +gz) = 0 

or     φt + gz +
1
2

| ∇φ |2= f(t) −
p

ρo
 

which is the Bernoulli integral.   We apply this at z = η where p = patm 

φt +
1
2

| ∇φ |2 +gη = f(t) − patm /ρ  

We can always add a g(t) to φ without changing its physical meaning:      Add a 

g(t) to φ such as 

∇2φ = 0

∂g
∂t

= f(t) .  In this way we can eliminate f(t).   

We consider free waves i.e. not forced.  Then patm = 0 and f(t) = arbitrary = 0. 

Notice how a specified patm(x,y,t) would enter the problem through this boundary 

condition. 

 The full problem is 

dη
dt

= ηt + φxηx + φyηy = φz    at    z = η  

φt +
1
2

| ∇φ |2 +gη = 0    at    x = η 

∇2φ = 0 

φz = 0   at   z = −D 

3.2 Linear solutions 

To get some idea of possible solutions, we will linearize and solve in one horizontal 

dimension.  For now we just drop the nonlinear terms.  We will check a posteriori that 

they are small compared with the linear terms.  The linearized problem is: 

 

ηt = φz   at   z  = 0 

6 



φt + gη = 0     at    z = 0      

∇2φ = 0    

φz = 0     at     z = -D 

What sets the amplitude of the motion is the amplitude of the free surface a, which is 

small. Linearization, as previously discussed, implies neglecting all nonlinearities.  As 

every dynamic variable is of the order of the amplitude of the motion a, this implies 

neglecting terms of 0(a2), i.e. nonlinear, quadratic terms → a must be small.  Now take 

any of the terms in the two boundary condition equations, and call it G(x,y,η) as they are 

applied at z = η.  Expand it around η = 0: 

G(x,y,η) = G(x,y,o) + η
∂G
∂η

|z=o  + higher order terms 

The first term G(x,y,0) = 0(a).  The second term is of 0(a2).  To be consistent with the 

linearization, we must neglect such quadratic terms.  This implies that we apply the 

surface b.c. at z = 0. 

We seek plane wave solutions 

  η = a e-iωt+ikx  and  φ = A e-iωt+ikxZ(z) 

Notice that we cannot have a three-dimensional plane wave  

φ = A ei(kx+ly+mz-ωt) 

Since the Laplacian operator would imply 

k2+l2+m2 = 0 which is impossible if all wave-number components are real.   

Therefore the solutions are plane waves in two-dimensions in which φ has a vertical 

variation 
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φ = A Z(z) ei(kx+ly-ωt) 
We are for simplicity solving the one-dimensional case which can be immediately 

generalized to two dimensions.   

The interior equation gives –k2Z + Zzz – 0 that is Z(z) = e±kz . 

The linear combination of these two solutions that satisfies the boundary condition φz = 0 

at z = -D is 

Z(z) = cosh[k(z+D)] 

The two free surface b.c. can be combined 

∂
∂t

(φt + gη) = 0  →  φtt + gηt = 0  

But  ηt = φz  hence  at z = o φ tt + gφz = o

The solution φ = A ei(kx- ωt) cos[k(z+D)] satisfies the above equation at z = 0 if 

 ω = ± gk tanh(kD)  
       dispersion relation 

  ω2 = gKtanh(kD)

 

 

These waves are dispersive and can propagate in the ± x direction 

From ηt = φz  -iωa ei(kx-ωt) = A ei(kx-ωt) ksinh(kD)    
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ω

ω2 = gk tanh (kD) Dispersion relation

ω =    gk

ω =    gD  k

Figure by MIT OpenCourseWare. Figure 2.



from which  A = −
iωa

ksinh(kD)
  a, the amplitude of the free surface,  

       is the reference term 

A is complex.  We must take this into account when writing the final solutions in real 

form: 

φ =
−iaω

ksinh(kD)
cosh[k(z + D)][cos(kx − ωt) + isin(kx − ωt)] 

Hence, taking the real part: 

η = a cos(kx-ωt)       (1) 

φ =
aω

ksinh(kD)
cosh[k(z + D)]sin(kx − ωt)    (2) 

u = φx =
aω

sinh(kD)
cosh[k(z + D)]cos(kx − ωt)   (3) 

w = φz =
aω

sinh(kD)
sinh[k(z + D)]sin(kx − ωt)    (4) 

Remember that: φt +
p
ρ

+ gz +
1
2

| ∇φ2 |= 0      

linearizing: φt +
p
ρ

+ gz = 0 

We applied this condition at z = η, that is z = 0 for the surface boundary condition but 

this is valid in general. 

Hence: 
p(z) = -ρgz - ρφt  

hydrostatic part 
and 

p(z) = −ρgz +ρω2a
k sinh(kD)

cosh[k(z + D)]cos(kx − ωt)   (5) 
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Notice that the pressure in a surface gravity wave is not hydrostatic but fluctuates around 

the hydrostatic background.  As: 

ω2 = gk tanh(kD) 

these waves are dispersive; the phase speed 

c =
ω
k

=
gk tanh(kD)

k
=

gtanh(kD)
k

 

is different for different wavelengths.  An initial “pattern made up of a superposition of 

plane waves will have each wave moving at a different phase speed and hence the pattern 

will DISPERSE.  The phase speed is different from the group velocity 

cg =
∂ω
∂k

 

2ω
∂ω
∂k

= g[tanh(kD) +
kD

cosh2(kD)
] 

cg =
∂ω
∂k

=
g[tanh(kD) +

kD
cosh2(kD)

]

2 gk tanh(kD)
 

Limiting cases 

a) when the depth is very shallow or the wavelength is very long compared to the 

water depth we have shallow water waves: 

D<<λ  or  kD<<1   →  tanh(kD)~kD 

ω2 = (gD)k2   or   ω =± gD  k  

Then c =
ω
k

= gD;  cg =
∂ω
∂k

= gD;  c = cg 

These waves are non-dispersive because c is the same for all of them and is equal to the 

group velocity. 
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b) when on the other side the wavelength is short compared with the depth, D>>λ:  

i.e. kD>>1  

tanh (kD) ->1; ω2 = gK;  ω = ± gk   

The deep water waves are dispersive 

c =
ω
k

=
g
k

  cg =
∂ω
∂k

=
g

2 gk
=

1
2

g
k

  cg =
1
2

c 

Consider a wave packet containing a short wave, Figs. 3.1 and 3.2.  The amplitude will 

move with cg while individual crests will move with c.  As cg = ½ c we will see 

individual crests appearing at the rear of the packet, moving through it to disappear at the 

leading edge of the packet.  These waves are there even outside the packet, with a very 

small amplitude which first grows and then decays because they are modulated by the 

envelope of the packet.  So it is the wave amplitude (energy) moving with cg that has the 

physical content. 

Let us look again at linearization and when it is valid considering the surface boundary 

condition.   

Full b.c.     φt + gη +
1
2

| ∇φ |2= 0      at   z = η  

linearized φt + gη = 0     at z = o 

Now  φt|z=η
= φt|z=o

+ ηφtz|z=o
+

 = [−iωA + a(−iωkA)ei(kx−ωt) ]ei(kx−ωt)  

Use expression in deep water for simplicity:  

φ = Aekzei(kx−ωt)

η = aei(kx−ωt)
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Then ηφ tz |z=o<< φ t |  provided that    
z=o

-iωkAa << -iωA 

or   ak<<1 → Linearization is valid when the wave slope a/λ is small. 
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Wave packet

A wave packet  propagating with the group velocity carries
a plane wave with crest moving with the phase speed

c

cg

A

A'

(A)

Figure by MIT OpenCourseWare. 

Figure 3.

Figure 4.
Figures by MIT OpenCourseWare. 
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