
PLANES, FORMS, AND RECIPROCAL LATTICE: 
Reading Assignment: Zoltai and Stout, pp. 40-63, Appendix 4. 

Planes and forms: 
Planes are natural features associated with the crystalline state. When the 
macroscopic shape of a crystal is considered the bounding surfaces are 
disturbances in the bonding of the atoms.  

They have an associated Gibbs free energy associated with the disturbance 
caused by having the lattice end.  

The specific free surface energy is defined as  
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For each mineral, γ is, in general, a function of the orientation of the surface 
normal with respect to the crystal, of temperature, of pressure, and of the 
chemistry of any pore fluid, gas, or absorbate that is present. The total energy of 
the finite crystal depends on the sum of the product of γI x total area of the 
surface i. Values of  γ≈1-10 J/m2(0.4- 4.0ev or 1-10 x103 ergs/cm2). 

Free energy is minimized when certain special surfaces occur, for example, 
when a crystal is cleaved. In addition, as crystals grow from a solution, the 
growth rate of each face is affected by the orientation of its normal, so, special 
planes also tend to occur during crystal growth, although they may be different 
than the cleavage planes. The observation of these special surfaces led to the 
hypothesis of elementary building blocks (unit cells) by such early 
crystallographers as Huygens, Haüy, Hessell, and Bravais (see following page).  

In addition to the bounding surfaces formed by cleavage or crystal growth, one 
may consider internal surfaces within the crystal. Such surfaces may be 
important when considering mechanical strength, twin structures, grain 
boundaries, antiphase domains, magnetic properties, or x-ray patterns. 



Nomenclature and Definitions 

Planes can be described by  

1. 

2. 
3. 
4. 
5. 

the symmetry of the shape of the face, as in cleavage rhombs in 
calcite.  
the pole symmetry, e.g., 4mm or 4. 
a classical name, pedion, pinacoid, etc.  
a letter, e.g., m, r, f, c, e, … 
a set of three indices called Miller indices. 

 
Planes that intersect along a line common to all are co-zonal. The line along 
which they intersect is called a zone axis or more simply, a zone. 
 

Crystal Forms 
The assemblage of two or more faces/sufaces/planes that are related by 
symmetry are called forms. 
Forms may be open or closed depending on whether or not the surfaces 
completely enclose a volume. Forms that are parallel to some symmetry axis 
(that is, the normal is parallel) are called special forms.  

Of course, γ, like every other crystal property is governed by the symmetry of the 
crystal, thus, planes in the same form have the same specific free energy. 

There are 150 different names for the forms in thirty two different space groups. 
For an exhaustive (and exhausting) look at all the forms see  [Bloss, 1994, 
Chapter 5] and the next two pages . 

Some classical names:  
Name Description Sym. Op. 
Pedion No relationship 1 
Pinacoid Any two parallel (||)faces 1 
Scalenohedron 2 scalene triangles connected on a side  
Domes 2 non-|| faces related by a mirror M 
Sphenoids 2 non-|| faces related by a 2-fold 2 
Disphenoids 2 sphenoids rel. by another element (e.g. m) 2m 2/m 
Prisms 3 or more faces that meet in a zone 3, 4, 6 
Pyramids: 3 or more faces that intersect at a point 3, 4, 6 
Rhombs 6 rhombs related by a three fold 3 
Dipyramid Two pyramid forms 3/m, 4/m 
Dodecahedron  12 rhomb faces Isometric  
Octahedral 8 trianular faces Isometric 
Cubic 6 square faces isometric 
 





MATHEMATICAL DESCRIPTION: MILLER INDICES 
Although the classical names, letter symbols, and structural symmetry of the face 
are often used to describe the external features of the crystal, the most common 
method to describe both external and internal plane orientations is one that 
assigns a set of three indices similar to the method used to describe rational 
lattice vectors. These three indices are called the Miller indices. 

Planes that contain more that one lattice point are called rational planes 
 
Miller indices, (h k l), are used to indicate lattice planes. The Miller indices 
are derived from the inverse of the intercept distance of the plane on the 
crystal axes. The Miller indices are also the coefficients of the equation 
specifying the position of a general point on the plane.  
 

A recipe for determining the Miller1 indices is 

1. Find the intercepts of the plane with the crystallographic axes. 

2. Take the reciprocal of each intercept, express the indices as a row or 
column vector. 

3. Multiply the reciprocals by the lowest common denominator to get a set 
of three integral indices 

Parentheses are used to indicate that the indices represent a plane (rather than a 
lattice vector). Braces are used to indicate a form. Thus, in the isometric system, 

 and (100) (100)  are planes within the form { }100 . 

The fact that step 2 can be done for all planes of interest is the law of rational 
intercepts, as surmised by Haüy. If just the intercepts are used, then the indices 
are called the Weiss intercepts, a method that is in disfavor.  

                                            
1 The use of the reciprocal construction and the resulting indices was actually first suggested by 
William Whewell at Cambridge. William Miller succeeded him and popularized their use in a 
crystallography textbook published in 1839. Zoltai, T., and J.H. Stout, Mineralogy: Concepts and 
Principles, 505 pp., Macmillan Publishing Company, New York, 1984. 



Example: 
Determine the Miller indices for the following planes: 

o

 

Try the planes below: 

a

b

c

 

 

Miller indices are useful because all parallel planes have the same Miller 
indices when reduced.  
 
Rational planes have integral values of Miller indices.  
 
 



Equation for a plane: 
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In a three-dimensional space with orthonormal axes, the equation of a line is 

1x y z
A B C
+ + =  where A, B, and C are the intercepts with the x, y, z axes. 

So at least for orthonormal coordinates, the Miller indices are the coefficients 
for the equation of a set of planes. 
So, (h k l) can be thought of as standing for the components of the equation: 

constanthx ky lz+ + =  where the constant gives an indication of the spacing 
between planes. 
 

But, what about non-orthonormal axes? 



RECIPROCAL SPACE AND MILLER INDICES 

Reciprocal Lattice: 
Reciprocal vectors are defined to be perpendicular to two of the three lattice 
vectors and with length equal to 1/length of the third vector. 
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Notice that this definition insures that 
 1 0and= =axa* = bxb* = cxc* bxa* = cxb* = axc*

Or * j j
ia a iδ=i  where the sub and super script denote the three different real and 

reciprocal vectors, respectively. 

Notice that 1
sinγ

=a *
a

 where γ is the angle between  and b . a

Exercise: Below is a plan view of two lattice vectors; assume that the third 
axis extends perpendicular to the paper; draw the reciprocal vectors: 

 

A general real lattice is given below in the left hand picture. Draw the 
reciprocal lattice vectors in the right hand picture. For comparison, the real 
vectors are dotted in the right hand picture: 
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Relation between Miller indices and reciprocal lattice: 
The reciprocal vector formed by using the Miller indices of a plane as its 
components forms a vector in space that is normal to the plane. The length of 
the reciprocal vector for the plane is the distance between two similar planes. 
 

Proof: 

If the normal to the plane is given by *h k l *= + +a * b cr*  Then the dot product of 
the normal with any vector lying in the plane will be zero.  

Consider vector AB which lies in the plane: 

By vector addition, 
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The dot product, ( )* *
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= − + + =

b aAB r* a* b ci  

because of the properties of the reciprocal vectors. 

 

The spacing between planes (h k l) is 1 * . hklg

Proof: In the figure above the spacing between the planes is the projection of 
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 SUMMARY: LATTICES PLANES, CRYSTAL FORMS, AND RECIPROCAL 
LATTICE 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Miller Indices arise from finding the plane intercepts, inverting, forming 
a vector and clearing fractions or common factors 

The Miller indices are the components of the equation for the plane. 

Each set of Miller indices represents a set of parallel planes. Indices 
that are integral multiples of another set are parallel planes with a 
smaller interplanar spacing e.g. (4 4 2) and (2 2 1). 

In general a given direction is not parallel to the pole of a plane with 
the same Miller indices. 

Equivalent planes may be discovered by examining a stereogram and 
considering the symmetry elements. 

Some planes in the crystal (crystal forms) are common enough or 
important enough to be given special names. The naming can be by 
Miller indices, classical terminology, by pole symmetry, or be lower 
case letters. 

Reciprocal vectors are formed by choosing a vector perpendicular to 
two lattice vectors and of length reciprocal to the third lattice vector. 

Linear combinations formed from these reciprocal vectors and the 
Miller indices are vectors that are in the same direction as the poles to 
the corresponding planes. The vector length of this vector is the 
reciprocal of the plane spacing.  
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