
 
12.005 Lecture Notes 5 

 
 
Quantities in Different Coordinate Systems 
 

How to express quantities in different coordinate systems? 

 

 

 

 

 

 

 

 

Figure 5.1 

 

Direction cosine ij is cosine of angle φij  between  primed axis i and unprimed axis j. 

If ' and represent unit vectors that are the axes of two coordinate systems with the 

same origin, they are related by the equation 

ˆix jx̂

where αij is the cosine of the angle between the primed axis and the unprimed axis .  

For example, α

'ˆix jx̂

12 is the cosine of the angle between and .  α'ˆ1x 2x̂ ij represents a 9-

component matrix called the transformation matrix.  Unlike the stress tensor, it is not 

symmetric (αij ≠ αji). 

 

x3

x3 P
'

x2'
x1' α11 α12 α13

α21 α22 α23

α31 α32 α33

x1 x2 x3

x2'

x3'

x1
'

x2

x1

φ23

φ12

φ11

Direction Cosines 

Axis

Figure by MIT OCW.

3 3

i ij j i ij j ij j
j 1 j 1

ˆ ˆx ' x ,   x ' x x
= =

= α = α → α∑ ∑  

Figure 5.1 



⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

ααα
ααα
ααα

α ij  

 

In matix equations, the transformation law is written 
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The inverse transformation law is written  

 

'ˆˆ jjii xx α=  

 

Consider the following transformation of coordinates: 

 

 

 

 

 

 

 

 

 

Figure 5.1a  
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Figure 5.1a 
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The explicit transformation equations are 
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Since and are both unit length, these equations are easy to verify from the picture. 'ˆix jx̂

 
First-order tensors 

First-order tensors or vectors have two components in 2D coordinates and three 

components in 3D coordinates.  They transform according to the same laws as coordinate 

axes because coordinate axes are themselves vectors.   

 
If uj is a vector in the coordinate system and ujx̂ i’ is a vector in the coordinate system, 

then the following equations describe their transformation:    
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Note that αij is positive if the angle is measured counterclockwise from to .  It is 

negative if the angle is measured clockwise.  

'ˆix jx̂

 

The transformation matrix is  



Second-order tensors 

The transformation law for second-order tensors like stress and strain is more 

complicated than the transformation law for first-order tensors.  It may be derived as 

follows: 

 

1. Begin with the vector transformation of traction Ti to T : k '

 

ikik TT α='                    

 

2. Rewrite T  and Tk ' i using Cauchy’s formulas: 

 

jijilklk nTnT σσ ==   and  '''  

 

Substitute Cauchy’s formulas into the original transformation equation: 

 

jijkilkl nn σασ =''  

 

3. Transform the normal vector nj to nl’ and substitute into the previous equation: 

 

'lljj nn α=  

''' lljijkilkl nn ασασ =  

 

4. Cancel the nl’ term on each side and group the αs: 

 

ijjlkikl σαασ ='  

 



Note that changing the position of the last α term changes the order of its 

subscripts. 

 

 In vector notation, the equation is 

 

 where the double under ~ denote second-rank tensors and the superscript T  

denotes the transpose of matrix α. 

 

Mohr’s Circle 

We explained before that an object resting on a slope will slide down when the shear 

traction on the slope is greater than or equal to the product of the normal traction and the 

coefficient of friction. 

nsf στ =  

 

On a shallow slope, σn is large and the object will not slide.  On a steep slow, τ is large 

and the object will slide.  For any plane with normal , we can calculate if the plane will 

fail if the stress tensor σ

n̂

ij at the interface between the object and the slope is known.  

Calculate σn and , τ as follows: 
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Vector and Tensor Notation
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Summation Notation
Ti = σ ijn j

σ n = Tini

τ = Ti − Tknkni

 

 



This method is straightforward but cumbersome.  A different approach involves rotating 

the coordinate system such that x1’ is along .  In this case σn̂ n and τ are much easier to 

derive: 
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Mohr’s circle may be derived in two or three dimensions.  This lecture explains the 

derivation in two dimensions because it is more straightforward and the results are easier 

to graph and understand.  The derivation assumes that x1, x2, and x3 are principle 

directions.  

Consider the following figure in which the xi coordinate system is rotated clockwise 

about the x3 axis to xi’: 

 

 

 

Figure 5.2  

 

 

 

 

The rotation matrix is: 
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Figure 5.2 



The stress tensor
 ��
σ in the xi coordinate system is transformed to ��

σ ' in the xi’ coordinate 

system by the following equation: 
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Use the double-angle identities for sine and cosine to simplify the expressions for the 

normal stress σ11’ and the shear stress σ12’ become in the new coordinate system: 
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This figure is called Mohr’s circle. 

 

Mohr’s circle plots in stress space.  Admonton’s law may also be plotted in stress space 

as a line with slope fs.  When this line and Mohr’s circle intersect, the criterion for failure 

across a plane is met.   

 

A note on signs. 

As derived, assumed σ 1 > σ 2 .  Simplest case: consider θ = 45o  

 

 

 

 

 

Figure 5.4 
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Figure 5.3 

The expression for the normal stress and shear stress can be shown graphically in shear 

space: 

Figure 5.4 



 

 

 

 

 

 

 

 

 

 

   

 

0) 2θ = 60o

1) 2θ = 90o 

2) 2θ = 180o 

3) 2θ = 270o 

4) 2θ = 300o

 

Back to the landslide: 

Consider a common experiment in soil mechanics or rock mechanics in which scientists 

apply a uniaxial stress σ2 to a cylindrical sample confined by a uniform stress σ1.   

 

 

 

Consider several cases: 
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Figure 5.5 



 

 

 

 

 

Figure 5.6 

 

 

 

 

 

Continue increasing  σ2 until failure. of failure plane typically at  n̂ θ ; 30o from σ1.  

 

 

 

 

 

 

 

Figure 5.7 
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Figure 5.6 

Figure 5.7 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 
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Figure 5.8. Stress-strain curves for Rand quartzite at various confining pressures.
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Figure 5.8 

Figure 5.9 



 

 

 

 

 

 

Figure 5.10 

 

 

 

 

 

 
 

 

 

Figure 5.11 
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Figure 5.10. Stress-strain curves for Carrara marble at various confining 
pressures. The numbers on the curves are confining pressures in bars.
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Figure 5.11. Stress-strain curves for granite at a confining pressure of 5 kilobars 
and various temperatures.
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Figure 5.10 

Figure 5.11 



Analyze this using a Mohr circle diagram: 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 

 

Mohr circle tangent to failure curve  sample breaks. ⇒

 
 

 

 

 

 

Figure 5.13 
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Figure 5.12 

Figure 5.13 



 

µ is the coefficient of friction.     φ = tan−1 µ ; 2θ = 90o − φ

 

 

 

 

 

 

Figure 5.14 
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Since most rocks have a coefficient of friction of about 0.6, the normal vector to the 

failure plane is typically 30°from the direction of the least compressive stress.  Another 

way of saying this is that the failure plane is 30°from the direction of the most 

compressive stress.   

 

Styles of Faulting 

Faults are large-scale failure planes.  Since the normals to failure planes are in the plane 

containing the least compressive and the most compressive stresses and are typically at 

 from the direction of the least compressive stress, different styles of faulting can be 

used to infer the directions of σ

 30o

1, σ2, and σ3. 
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Figure 5.14 



The following diagram shows the deviatoric stresses associated with thrust faults, normal 

faults, and strike-slip faults.   
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