5.73 Lecture #26 26 - 1

HSO + HZeeman jy | JLSM ) and | LM;SM)

Last time:
H = ¢¢-s —|JLSM,)
Hemen = _VBZ(LZ + 2SZ) - ‘LML>‘ SMS>
OK to set up H in either basis

problem about H%¢™an in Coupled Basis — need to work out explicit transformation

between basis sets to evaluate matrix elements of H%¢¢™a" in coupled basis.

Today:

1. Ladders and Orthogonality method for | JLSM;) <> | LM; SMy)
(coupled¢<>uncoupled) transformation, term by term.

2. evaluate H%¢™an in coupled basis for 2P state.

3. Correlation Diagram, Noncrossing Rule
* simple patterns without calculations
* guidance for “intermediate case”

War between two limits

* one term creates AE,.(jO) #0

* other term causes H’ # 0
The two terms play opposite roles in the two basis sets.

4. Stepwise picture of level structure working out from 2 opposite limits
* strong spin-orbit, weak Zeeman
* strong Zeeman, weak spin-orbit
Distortions from limiting patterns (via 2nd-order nondegenerate perturbation
theory) give the “other” (pattern distorting) parameter.
How does a zero-order picture identify the “picture defining” and the “picture
destroying parameters.
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H*™" = B,(L, +28.) = -B.(J. +8.)

OK Not OK
for coupled basis

to evaluate matrix elements of L, or S, in ‘JLSM J>
need to work out [JLSM,) = Y a,, |LM,)SMs=M, - M,)
My,

ladders and orthogonality Ji =---, +S,

begin with "extreme" ] =L+S M; =]; M| =L, Mg =S5

basis states where there is a 1:1 correspondence

|JLSM, =J)=|LM, = L) SM, = S)
=L+8
JIL+S L S L+S)=(L_+S ) LL)ISS)

]1/2

[(L+SNL+S+1D—(L+SL+S-1)
(L(L+1)-L(L-1]"

|IL+S L S L+S—-1)=
|LL—1)|SS)+[S(S+ 1) —S(S-1)

1% LL)SS — 1)
lor]”|LL -1)8S) +[28]|LL)SS -1)

IL+S L S L+S-1)= >
[2(L+S)]

1/2 1/2
IL+S L S L+S—1>=( L ] \LL—1>\SS>+( S ] |LL)SS-1)
L+S L+S
for’PL=1,S=1/2

o v ol 3T )

orthogonality: there are only 2 M; = 1/2 possibilities, J = 3/2 and J = 1/2 for specified
L,S
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1.11 1Y |11 2\"?
E455>_{éj|uﬂ55>+tﬂ /2 -12)

(I always choose — sign in front of smaller coefficient - arbitrary phase choice)

Nonlecture: Summary for P

3413 )
22
1/2
01 2).(1)
22 3

2 22
1/2
1oll>+(2)
22 3

3111>_(z)”2
2722/ \3

1111>__(1]”2
2722/ \3

1\ (@/3)""?
115—E>—[(1 /3)1/211

-3

(coupled — uncoupled)

N

—~~

/3)1/2

N

1/3)1/2]

continue down to M = —1/2, M; = —3/2 (or start at M; = —3/2 and ladder up.

Now work in Coupled Representation for H*® + H”*™*"

HSO + HZeeman — C_g(g LS — VBZJZ

diagonal, easy

h2
ceeall | €757 E[J(J +1)-L(L+1)-S(S+1)]

J.=nM,

- szSz

off diagonal in J
(can’t be off
diagonal in
L,S,M,; - WHY?)

For %P, there are 2 2 x 2 M; = 1/2 and M; = —1/2 blocks.

] LS M,

Evaluate

(3/2 1 1/2 1/2[s,[3/2 1 1/2 1/2)

by inserting the above transformation into the uncoupled basis set.

L M,S M,
§<1 0 1/2 1/28.1 0 1/2 1/2>+1
3 3

(GG

<1 1 1/2 -1/28)1 1 1/2 —1/2>}:

THERE ARE NO OFF-DIAGONAL MATRIX ELEMENTS OF HZeeman TN

THE UNCOUPLED BASIS SET.
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<3/2 1 1/2 /28 J1/2 1 1/2 1/2>=

etc. for S, (°P)

1/2
_21/2/3
-1/6

1/6

sym

(trace S, = 0)

-1/6 +2"*/3

sym 1/6

2 2 x2sand21x1’s

26 -4

1/2 1/2 1/2
2 (1}2 (_1)__2
3 2 3 2 3

Basis State

13/2 1 1/2 3/2)
13/2 1 1/2 1/2)
/2 1 1/2 1/2)
13/2 1 1/2 -1/2)
/2 1 1/2 -1/2)
-1/2)13/2 1 1/2 =3/2)

would be 2 2x2's and 2 1x1's. H**™ produces AE{,’ # 0 across which H*® has H; = 0.

{If we had worked in uncoupled representation, H**™*" would have been fully diagonal but H*°

H*° produces AEI;.O) # 0 across which H**™" has HI.E.” # 0.

[If we work in coupled representation, H*® is diagonal but H**™" is off - diagonal.

WAR:

H®O tries to force system to coupled representation
HZeeman tpjes to force system to uncoupled representation

2 Limiting Cases: weak and strong spin-orbit.
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extreme level patterns

B,—>0(,>>0 B,>0(,6—0

(connect same — M states)

COUPLED UNCOUPLED
A A
(M, M)
2f;/z ég 1/24,1117 ZBzy - (_1, —1/2)
0 1T By —1 (0,-1/2)
0 —— (1, -1/2), (-1, 1/2)
By — (0, 1/2)
‘R, —F -, 2By —— (1, 1/2)
correlation diagram: noncrossing rule for M ;: why?

states of same M; do not cross

In coupled (strong spin-orbit) picture H**™ is H"
In uncoupled picture (strong field) H*® is H”

2P matrices for H% + HZeeman

coupled uncoupled

M,=3/2 /2-2vB
! Samnm ¢/2-29B,

1/2
M,=1/2 j=3/2 /2 2B 2 B 12
,=1/2 j= C12-29B. o 9B, M, My = (1,-1/2)(-¢/2 27%¢

1 (0,1/2) sym —yB,

j=1/2 sym —C—g}’BZ

CONTINUED AT BOTTOM OF PAGE 26-6
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Spin orbit only

B,¢ 0 M; Zeeman only (M;, My)
J, M)
2BY. (1)
— (0, —1/2)
(312, -3/2)
/2, -1/2\___|
(312, +1/2)-——
(312, +3/2) (1, -1/2)
0 — (-1, 1/2)
a2, -1/2__|
/2, +1/2) s (0, 1/2)
—2B
N a,1/2)

There are only repulsions (shown by vertical arrows) between same-M; pairs.

coupled uncoupled

1/2
: } E, = same as coupled (even
though matrices are different)

1/2
M,=-1/2 j=3/2 §,2+2\;Bz 27

3 B, 27
1

j=1/2 sym —§+EVBZ sym —{/2

¢ Y. [9,, 1, v mel”
+ pZ 2 Pz +
E, _,=|-2+—= || = +—-\1B,) ——= E* = same as coupled
M, =-1/2 [4 2) |:16§ 4(7) 4} p
By, =-3/2 C/2+2yB, C/2+2yB,

updated November 4, 2002



5.73 Lecture #26

26 -7

Energy eigenvalues come out to be identical (as they must) in both

representations.

Coupled picture is good for 2nd order perturbation theory in the weak field

(IvB] <<(,,) limit.

Zeeman splitting (and tuning rates,

——, as B, is varied)

Z
second order

coupled first order .
picture correction correction
Zeeman 2
HO® - gSo ED = (g%*) o ‘ 7
2yB EY -E}
b, i
M, =-3/2
4 (B
+2/3 VB, C
C/ } +i (YBz)Z
27 Q
—2yB,
AM; =0
matrix elements
1/3vB,
A(YBZ)Z
C 27 ¢
2
—1/3 yB, \ _i(yBZ)
27 Q
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Uncoupled picture is good for strong field limit where B, causes L+Sto uncouple

from J and into the laboratory (Paschen - Back limit).

ZERO-ORDER FIRST-ORDER SECOND-ORDER

(M, Mg) M,
(-1, -1/2) (-3/2)

2YB, / ....T....+C/2

A (-1/2)
(0,—1/2) / /r +{2/2yB,

(1,-1/2)

. —_— \ ...... o o ‘T !

-YB, (0,1/2)
~(%/2yB
Ny V )
3/2
-2y8, __ (1,112) oy +§/2 o
Regular Small distortions Extra distortions.
Zeeman from equal Repulsions
Pattern. intervals, from between Same-
which { may be M, components
determined.

This is a regular Zeeman pattern, but with small distortions
(shown as vertical arrors on expanded scale) from equal
intervals, from which { may be determined.
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