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5.73 Lecture #26 26 - 1 

HSO + HZeeman in JLSMJ〉 and LMLSMS〉 

Last time: 

HSO = ζl ⋅ s → JLSMJ 

HZeeman = −γBz (LZ + 2SZ ) → LML SMS 

OK to set up H in either basis 

problem about HZeeman in Coupled Basis → need to work out explicit transformation 
between basis sets to evaluate matrix elements of HZeeman in coupled basis. 

Today: 

1. Ladders and Orthogonality method for JLSMJ〉 ↔ LMLSMS〉 
(coupled↔uncoupled) transformation, term by term. 

2. evaluate HZeeman in coupled basis for 2P state. 

3. Correlation Diagram, Noncrossing Rule 
* simple patterns without calculations 
* guidance for “intermediate case” 

War between two limits 
0* one term creates ∆E( )  ≠ 0ij 

1* other term causes H ( )  ≠ 0ij 

The two terms play opposite roles in the two basis sets. 

4. Stepwise picture of level structure working out from 2 opposite limits 
* strong spin-orbit, weak Zeeman 
* strong Zeeman, weak spin-orbit 
Distortions from limiting patterns (via 2nd-order nondegenerate perturbation 

theory) give the “other” (pattern distorting) parameter. 
How does a zero-order picture identify the “picture defining” and the “picture 

destroying parameters. 
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5.73 Lecture #26 26 - 2 

HZeeman = −γBz (Lz + 2Sz ) = −γBz (Jz + Sz ) 
OK Not OK 

for coupled basis 

to evaluate matrix elements of Lz or Sz in JLSMJ 

need to work out JLSMJ = ∑ amL 
LML SMS = MJ − ML 

M L 

ladders and orthogonality J ± = L ± + S± 

begin with "extreme" J L  S MJ = J ; ML = L, MS = S 

basis states where there is a 1 1  correspondence: 

JLSMJ = J = LML = L SMS = S 

= L + S 

+ +J− L S L S L S  = (L− + S− ) LL SS 

1 2+ + + +[(L S)( + +  1) − (L S)( + −  1)] / 
L S L S L S  − 1 = 

1 2  
1 

1 2[L(L + 1) − L(L − 1)] / 
LL − SS + [S(S + 1) − S(S − 1)] / 

LL SS − 1 

/ /1 2  1 2  

L S L S L S  − 1 =
[2L] LL − 1 SS + [2S] LL SS − 1+ + 

/1 2  

+[2(L S)] 
/ /1 2  1 2

 L   S  
+ +L S L S L S  − 1 =  

L S   LL − 1 SS +  
L S   LL SS − 1 

+ + 
for 2P L = 1, S = 1/2 
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u 

orthogonality: there are only 2 MJ = 1/2 possibilities, J = 3/2 and J = 1/2 for specified 
L,S 
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5.73 Lecture #26 26 - 3 
1 2  1 2/ /1

1
1 1 = − 1 10 

1 1 +  2  11 1 2  − 
2 2 2  3 2 2  3 1 2  

(I always choose – sign in front of smaller coefficient - arbitrary phase choice) 

Nonlecture:  Summary for 2P (coupled → uncoupled) 

3
1

1 3 
= 11

1 1 
2 2 2 2 2 

1 2  / (2 3)1 2  3
1

1 1 
=  2  / 

10
1 1 

+  1 1 2  

11
1 

− 
1 

= 

 (1 3)1 2  

 
/ / 

2 2 2  3  2 2  3  2 2 / / 

u 
1 2  1 2/ /

/ / 

 3  10
1 1 

+  2  
11 

1 
− 

1 
= 


 

−(1 3)1 2  1
1

1 1 
= − 1  

2 2  3  2 2  (2 3)1 2  

2 2 2 / / 

u 

continue down to MJ = –1/2, MJ = –3/2 (or start at MJ = –3/2 and ladder up. 

Now work in Coupled Representation for HSO + HZeeman 

HSO + HZeeman = ζnl l ⋅ s − γB J − γB Sz z z z 
h 

diagonal, easy off diagonal in J 
(can’t be off 

l ⋅ =  
2 

( diagonal in 
recall  

s 
h 

2 
[J J  + 1) − L(L + 1) − S(S + 1)] L,S,MJ - WHY?) 

Jz = hMJ 

For 2P, there are 2 2 × 2 MJ = 1/2 and MJ = –1/2 blocks. 

J  L S  MJ 

Evaluate 3 /2 1 1/2 1/2 Sz 3 /2 1  1/2 1/2 

by inserting the above transformation into the uncoupled basis set. 

2 
L ML S MS 

1  



3

1 0 1 2 1 2  Sz 1 0 1 2 1 2  + 1 1 1 / 2 −1 / 2 Sz 1 1 1 / 2 −1 / 2  =/ / / / 
3 

 2  1 1 1  1 
h 

 3 2 +

 3− 

2  = h 6  

THERE ARE NO OFF-DIAGONAL MATRIX ELEMENTS OF HZeeman IN 
THE UNCOUPLED BASIS SET. 
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5.73 Lecture #26 26 - 4 
1 2 1 2  1 2/ /

2  1 2
/  1 2

3 / 2 1 1 / 2 1 / 2 Sz 1 / 2 1  1 / 2 1 / 2 = −  
3  

2 + 
3 − 

2 = −  
3 

etc. for Sz (
2P) Basis State 

/ /1 2   3 2  1 1 / 2 3 / 2 

 
/ / / 1 6  −21 2 / 3 

 
3 2  1 1 / 2 1 / 2 

/ /Sz =h	 
 sym −1 6  

−1 6  +21 2 / 3 
 1 2  1 1 / 2 1 / 2 

 / / 
 3 2 1 1 / 2 −1 / 2/ 

/ / sym 1 6   1 2 1 1 / 2 −1 / 2 
 / / −1 2 

3 2 1 1 / 2 −3 / 2 

(trace Sz = 0) 

2 2 × 2’s and 2 1 × 1’s 

If we had worked in uncoupled representation, HZeeman would have been fully diagonal but HSO 

 
× ( )would be 2 2 2's and 2 1 × 1's. HZeeman produces ∆Eij 

0 ≠ 0 across which HSO has H( 
ij 
1) ≠ 0. 

If we work in coupled representation, HSO is diagonal but HZeeman is off - diagonal.
 ( )HSO produces ∆Eij 

0 ≠ 0 across which HZeeman has Hij 
(1) ≠ 0. 

WAR:	 HSO tries to force system to coupled representation 
HZeeman tries to force system to uncoupled representation 

2 Limiting Cases: weak and strong spin-orbit. 
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extreme level patterns 

Bz → 0,ζnl 
0 

(connect same — MJ states) 
Bz >> 0,ζnl 

→ 0 

COUPLED UNCOUPLED 

(M MS )L , 

2 P / 1 2
3 2  

/ ζnp 
2Bzγ (–1, –1/2) 

0 Bzγ (0, –1/2) 

0 (1, –1/2), (–1, 1/2) 

− Bzγ (0, 1/2) 
2 P /1 2  

−ζnp 
−2Bzγ (1, 1/2) 

correlation diagram: noncrossing rule for MJ: why? 
states of same MJ do not cross 

In coupled (strong spin-orbit) picture HZeeman is H(1) 

In uncoupled picture (strong field) HSO is H(1) 

2 ZeemanP matrices for HSO + H 

coupled uncoupled 

/MJ = 3 2  ζ / 2 − 2γBz 
2 2γBzζ − 

/ 1 2   
MJ = 1 2  j = 3 / 2 ζ / 2 − 2 γBz 

2 γBz  M MS = (1 1 / 2) −ζ 2 2  1 2ζ/ 
L , ,− − / 

j = 1 2  



 3	 3
1 

 (0 1  2)  sym − γBz  
ζ/ sym − −  

3 
γBz 


 

CONTINUED AT BOTTOM OF PAGE 26-6 
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Spin orbit only 

Β z ♦ 0 MJ Zeeman only (ML, MS) 

0 •  
0 

–Bγ 

–2Βγ 

Bγ 

2Bγ (J, MJ) 

–3/2 

–1/2 

1/2 

–1/2 

1/2 

+3/2 

(3/2, –3/2) 

(3/2, +3/2) 

(3/2, –1/2) 

(3/2, +1/2) 

(1/2, –1/2) 
(1/2, +1/2) 

ζ/2 

–ζ 

(–1, –1/2) 

(0, –1/2) 

(1, –1/2) 
(–1, 1/2) 

(0, 1/2) 

(1, 1/2) 

There are only repulsions (shown by vertical arrows) between same-MJ pairs. 

coupled uncoupled 

1 2/ 
B ζ γBz 

 ±
 9 ζ2 + (γBz )2 

− γ ζ E± = same as coupled (evenz 
MJ =1 2  = −  −E± 

/  4 2 16 4 4  though matrices are different) 

/
/ 

/
MJ = −1 2 	 j = 3 / 2 

ζ / 2 + 2γ 
3 
Bz − 2

3

1 2  

γBz 
 

 γBz 2 −1 2  ζ 

j = 1 2  

 sym − +  1 γBz 


  sym −ζ 2 / ζ 

3 

1 2
 ζ γB  B 

/ 

z± 
/  4 

+ 
2 

z 

 ±
 9 ζ 2 + 1 (γBz )

2 
− γ ζ  

E ± =  same as coupledEM J =−1 2  = −  


16 4 4 

 

/ ζ + ζ +EMJ 
= −3 2  2 2γBz 2 2γBz 
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Energy eigenvalues come out to be identical (as they must) in both 
representations. 

Coupled picture is good for 2nd order perturbation theory in the weak field 
(|γΒ| << ζnl

) limit. 
dE

Zeeman splitting (and tuning rates, 
dB 

,  as Bz is varied) 
z 

second order
coupled first order 

correction
picture correction 

Zeeman 2 

H( )  = HSO E( )  = HZee 

E( )  
H ij0 1 

2 = 
E( )  − E( )0 0 

2γΒz 
i j 

} 

+2/3 γΒz 

–2γΒz 

–2/3 γΒz 

+ 4 
27 

+ 4 
27 

} 

1/3 γΒz 

–1/3 γΒz 

MJ = –3/2 

MJ = –1/2 

MJ = 1/2 

MJ = 3/2 

MJ = –1/2 

MJ = 1/2 

∆MJ = 0 
matrix elements 

2(γ )Bz 

ζ


ζ 2
 (γ )2Bz 

ζ 

− 4 (γBz )2 

27 ζ 
–ζ 

2 

4 (γBz )– 27 ζ 
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r r  

z causes L S to uncoupleUncoupled picture is good for strong field limit where B + 
r 

from J and into the laboratory (Paschen - Back limit). 

ZERO-ORDER FIRST-ORDER SECOND-ORDER 

(ML, MS) MJ 

(–3/2) 

2γΒz 

(–1, –1/2) 

+ζ/2 

(–1/2) 

γΒz
+ζ2/2γΒz 

(1/2) 
+ζ2/2γΒz 

–ζ2/2γΒz 

(–1/2) 

–γΒz 

–ζ/2 

(0,–1/2) 

(1,–1/2) 

(–1,1/2) 

(0,1/2) 

–ζ2/2γΒz
(1/2) 

–2γΒz 
(1,1/2) +ζ/2 

(3/2) 

Regular Small distortions Extra distortions. 
Zeeman from equal Repulsions 
Pattern. intervals, from between Same-

which ζ may be MJ components 
determined. 

This is a regular Zeeman pattern, but with small distortions 
(shown as vertical arrors on expanded scale) from equal 
intervals, from which ζ may be determined. 
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