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HSO + HZeeman

Coupled vs. Uncoupled Basis Sets
Last time:

matrices for J2, J+, J–, Jz, Jx, Jy in jmj〉 basis for J = 0, 1/2, 1
Pauli spin 1/2 matrices
arbitrary 2 × 2  

When M is ρρρρ → visualization of fictitious vector in fictitious B-field

When M is a term in H → idea that arbitrary operator can be
decomposed as sum of Ji.

TODAY:

1. HSO + HZeeman as illustrative

2. Dimension of basis sets JLSMJ〉 and LMLSMS〉 is same

3. matrix elements of HSO in both basis sets

4. matrix elements of HZeeman in both basis sets

5. ladders and orthogonality for transformation between basis

sets.  Necessary to be able to evaluate matrix elements of

HZeeman in coupled basis.  Why?  Because coupled basis set

does not explicitly give effects of Lz or Sz.
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Suppose we have 2 kinds of angular momenta, which can be coupled to each other to
form a total angular momentum.

The components of L,S, and J each follow the standard angular momentum
commutation rule, but

These commutation rules specify that L and S act like vectors wrt J but as scalars wrt
to each other.

  
Coupled uncoupled  vs.  m  representations.j sm smj sl l

l

* matrix elements of certain operators are more convenient in one basis set than the
other

* a unitary transformation between basis sets must exist
* limiting cases for energy level patterns
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* evaluate matrix elements in both basis sets

* look at energy levels in high field  limit

* look at energy levels in low field  limit
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Notation   
lower case for  atom angular momenta

upper case for many -  angular momenta
:
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two different CSCOs

2.  Coupled and Uncoupled Basis Sets Have Same Dimension
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term for term correspondence between 2 basis sets
∴ a transformation must exist:

Coupled basis state in terms of uncoupled basis states:
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Trade J, MJ for ML, MS, but MJ = ML + MS.
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B.  Uncoupled Representation

a purely diagonal matrix.

diagonal off-diagonal

can’t change L can’t change S

Nonlecture notes for evaluated matrices

S L= =1 2 0 1 2/ , , , 2 2 2S P D, ,  states

A.  Coupled Representation
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NONLECTURE for HSO : COUPLED BASIS
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NONLECTURE for HSO : UNCOUPLED BASIS
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4.  Matrix Elements of

A.  very easy in uncoupled representation

strictly diagonal

B.  coupled representation

easy hard — no clue!

can’t evaluate matrix elements in coupled
representation without a new trick

5. If we wish to work in coupled representation, because it diagonalizes HSO,
need to find transformation

Always start with an extreme ML, MS basis state, where we are
assured of a trivial correspondence between basis sets:
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Thus we have derived a specific linear combination of 2 uncoupled basis
states.

There is only one other orthogonal linear combination belonging to the
same value of ML + MS = MJ: it must belong to the
basis state.
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now use orthogonality:

Continue laddering down to get all 4 J = 3/2 and all 2 J = 1/2 basis states.

You work out the transformation for 2D!

Next step will be to evaluate HSO + HZeeman in both coupled and
uncoupled basis sets and look for limiting behavior.
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