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Angular Momentum Matrix Elements

LAST TIME: * all [, ]=0 Commutation Rules needed to block diagonalize

p 2 L2
H="~— +[ >+ V(r)} in [nLM, ) basis set
2 | 2ur

* g, Levi-Civita antisymmetric tensor — useful properties

* Commutation Rule DEFINITIONS of Angular Momentum and
“Vector” Operators [L;,L;] =i e; Ly
k

[Li.V;]= iny. € Vi
k

Classification of operators: universality of matrix elements.

TODAY: Obtain all angular momentum matrix elements from the commutation
rule definition of an angular momentum, without ever looking at a
differential operator or a wavefuncton. Possibilities for phase
inconsistencies. [Similar derivation for angular parts of matrix
elements of all spherical tensor operators, T;" ]

1. Define Components of Angular Momentum using a Commutation Rule.

2. Define eigenbasis for > andJ,  |Au)
3. show A >p’

4 raising and lowering operators (like at, a and x+ip)

J:|Au) gives eigenfunction of J, belonging to p + # eigenvalue and
eigenfunction of J2 belonging to A eigenvalue

5. Must be at least one pmax and one pmin such that
J_(J+ | Apumax)) =0
J+(J- | Auvmw)) = 0

This leads to fmax = h(ﬁj A= rﬂ(ﬁﬂj.
2 2\2

6. Obtain all matrix elements of Jx, Jy, J-, but there remains a phase
ambiguity

7. Standard phase choice: “Condon and Shortley”
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1. Commutation Rule [Ji,Jj]=ih%€ijka

This is a general definition of angular momentum (call it J, L, S, anything!).
Each angular momentum generates a state space.

2. eigenfunctions of J% and J, exist (Hermitian operators. Guaranteed

J ) = A Au) by symmetrization.)
J.| ) = uf )

but what are the values of A,u?

J? and J, are Hermitian, therefore A,u are real
3. find upper and lower bounds for p in terms of A : A > 2
</1u‘(J e | 2)‘&u> =A-u’ Want to show that this is > 0.
but J*=J:+J.+J
P-P=F+J

A—w? = (Al + A
completeness
5 [l )i
+<lu‘J y /l’u’></’t’u’ J y‘lu>]
Hermitian: <k’u’ ) > = < ) ;\/M'> o
2 [K A ’> +‘<7\.M‘Jy 7\,'].L'>2}20
A

Thus A—p’>=0andA=p’ >0
and Hy,y SA7 Py 2 A"
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4. Raising/Lowering Operators

J.=J, i), (not Hermitian: J' = J_) (just like a,aT)
(3. 0.]=[3..3,]+i{3..7,]
= inJ, +i(=ihJ, ) =+HJ, £i] |
= +h]J,
JJ.=J.J th], right multiply by |Au)

3 (JelAw)) = 3o (I | Aw)) £ A | Aw)
= J.u[Au) £ AJ | Ap)
=(u+ h)(JiMu»

(J i\/"tm) is an eigenfunction of J, belonging to eigenvalue | * 7.

Thus J, “raises” or “lowers” J_ eigenvalue in steps of 7.

Similar exercise for []2 , Ji] to get effect of J, on eigenvalue of J°
1232 =[1% 1. ]i[1% 3, | =0 (We already know that [J?, ;] =0)

123 M) = T2 (72 1A0) = A1 [ awr)
(]i|ku>) belongs to same eigenvalue of ]2 as |ML>

J . has no effect on A.
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*  upper and lower bounds on p are £A 2

*  J, raises/lowers pu by steps of &1

*  Since J. = %(L +J )andJ, = %(L -J),

The only nonzero matrix elements of J. in the |Ap) basis set are those where
Ap =0, +h and A A = 0. As for derivation of Harmonic Oscillator matrix

elements, we are not assured that all p differ in steps of . Divide basis states
into sets related by integer steps of 7 in p.

5. For each set, there are M and Hy,y:4 >

Thus, for eachset  J,|Ayuy) =0
J | M) =0
but I I, =( -0, I +10, ) =02+ T3 +i0J, —1T,],
=15 +15 +i[T Ty

=J3 +J5 +i(in] )
=J3+1; -1,
but  J3+J5 =] -], thus
J.J. =1 -1.-1],

0=) T Aunaax) = (52 =12 =40, JPMstneax)
= (7» —Uigax — hHMAX)‘ Miyiax)

A= u“i/IAX + h“*MAX

Similarly for W,

J+J—‘M~LMIN>:O
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JJ =J —Jﬁ +hJ,

subtract 2 equations for A
0= IJ~12v1AX - Miam + h(l‘j’MAX + IJ“MIN) now factor

this equation
0= (HMAX T My )(”‘MAX —Hvn T h)

(impossible)
Thus for each set of |[AlL), WL goes from [,y tO Wy in steps of 7

Hyax = My 7=~y + 1k

IThus u is either integer or half integer or both! |

Thus there will at worst be only two non-communicating sets of | A) because if p

were both integer and 1/2-integer, each would form a set of pu-values, the members of
which would be separated in steps of 7.

Now, to specify allowed values of A:

2
A=y + iy = (ghj + h(gh) = hzg(g +1j

n
let — =7
) J

' j either integer or
half integer or both
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rename our basis states
J°|jm) = 1 + 1) jm)
J.|jm) = hm| jm)
valid for all operators that satisfy [Ai,A j] = ih%eijkAk

OK to define an |ama> basis set for any angular momentum operator defined as above.

6. J,, J,, J. matrix elements

recall page 23-3, but in new notation
|jm£1) = NyJi|jm) (J 4 raises / lowers m by 1)

normalization factor (to be determined below)
1= (jm*1]jm*1)= (NJ.| jm)) (NI |jm))
NI =N;
J.=1J; !

1=|N.[ (jm|3-J.]jm)

use this to evaluate matrix
elements of J-dJ_

J I, =(JFI)J, £3,) =1+ £i{J..],]
=) =) i(in),) =1 - JFh),
=) -J.(J. +n)
1=|N[[#j(j +1) - B (m(m £ 1))]
N, = [j(j +1) = m(m £ D] e

h arbitrary phase factor
from taking square root

Y.l jmy=H[j(j +1) = m(m £ D]"| jm £ 1)e >

Usual phase choice is 0, = 0 for all j,m:
the “Condon and Shortley” phase choice

(sometimes &, = +m/2 —so be careful)
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std. phase choice: 6, =0

<J’m’|Ji|]m>: ho..0 [J(J+1)—m(mil)]”2

Jj T m'm%l

(OI' ho .0 [](] + 1) — m(m,)]l/2) remember matrix

Ji7om'mtl elements of x and

) 1 1n harmonic
since J =—(J, +J_ pir .
* 2( ) oscillator basis set?

'm’ ] h o/ .
<.] m |Jx|]m> = 55” {Sm,m+1[J(] +1)_m(m+1)]1/2

+6,,,[i(j+1) = m(m - 1)]”2}
], =%(J+ 1)

], jm>7ri§6j,j {8, [ J(j +1) = mm+D]"

oy
(Jm
two sign
surprises

/5,”_1[ j(j+1) = m(m—D]"*}

This phase choice leaves all matrix elements of J*,J . and J, real and positive,

but those of J | imaginary

[if use 0, =+1/2, this gives J, real and J ,J. imaginary]

<j,m, ]2 ]m> = 8]"]'Srn'mhzj(j + 1)

<jmﬁjm> = ¥rm

Summary | (jm +1]jm) = (% 1) [jG-+1) ~m(m £ D]

G+, =303+ 0 1)

i

~ L)+ S (Ve i)
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