5.73 Lecture #15 15-1

Perturbation Theory 11
(See CTDL 1095-1104, 1110-1119)

Last time:
HO @ = g0y g0 5 diagonal
0 0
{1//1(l )},{Eg1 )} are
basis functions and
zero - order energies
Eg) - HE}J expectation value of
perturbation operator
‘H(l) 2 sum excludes k =n
(2) _ 5 nk . .
E~ =X —0y o) matrix element vs. energy denominator
k En - Ek
T 1st index
_r0) €] (2)
E,=E " +E ~+E;
H
@ _ v nk 0)
Yn = %{ E;O) _ Eg{O) Yk sum excludes k = n

1

mixing coefficient, order

sorting parameter,

convergence criterion

Today:

1. cubic anharmonic perturbation
x3 vs. a,af
ax?  ox and Y,, contributions

2. nonlecture Morse oscillator <> pert. theory for ax?

3. transition probabilities — orders and convergence of p.t.
Mechanical and electronic anharmonicities.
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2

Example 1. H= ;’— + %kx2 +ax®
m L
T S HO
HO
V(x)
(a<0)

unphysical

need matrix elements of x°

one (longer) way xﬁg = D XjjXjkXk/
ik

4 different selection rules: ¢ -1=3,1,-1,-3 pe path

{—1=73 1—-i1+l,i+1-1+2,1+2>1+3
[G+1)i+2)(i+3)]"?
(—1=1 1—-i+1l,i+1-1+2,1+2—>1+1

i-i-1,i-bii->i+1
1—-i1+1l,i+1-1,1—>1+1
There are three 3-step paths from i to: + 1. Add them.

[G+1)G+2)i+2)]"2 +[DE) G+ D] +[E+ DG+ DG+ D)2

algebraically complicated

other (shorter) alternative: a, af, and ata
32 32
h h _ 3
O (_j X3 = (_) [2 1/2(a+adf)]
m me

:(ﬁj3/2(a+f)3

3 3
(a + aT) =ad+ [aTaa +aa’a+ aaaT] + [aaTaT +a'aal + aTaTa] +al
four terms, four different selection rules.
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Use simple a,at algebra to work out all matrix elements and selection
rules by inspection.

recall: aT|n> =(n+ 1)1/2|n +1), ajn)= n1/2|n -1, aTa|n) =n|n)
[a,aT] =1 prescription for
Ta permuting a thru af

“aal =1+a

An=-3 3131_3,n = [(n -2)(n— 1)(n)]1/2
An=+3 a3, =[(n+3)(n+2)n+1)]

n+3,n

1/2

An =-1 [aTaa +aa’a+ aaaT]
n-Ln goal is to rearrange each product so that it
has number operator at right

a'aa =aa‘'a—a

ana' =aa'a+a

aa'a =aa'a
3aa‘a+0

An=-1 [ ] 4, = 3(aaTa)n_1 = (n— 1|3a(aTa)|n> =3n%?

An = +1 [aaTaT + aTaaT + aTaTa]

aaTaJr = aTanr + aJr = aTaTa + 2aJr

a'laa’ =a'a'a+a’
aTaTa = aTaTa
BaTaTa + 3aT

3(n+ 1|(aTaTa +al )|n> = 3(n(n +D)2 +(n+ 1)1/2) =3(n+1)*?2

all done — not necessary to massage the algebra as it would have

been for x? by direct x multiplication!
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Now do the perturbation theory:

E, =B +ED +EP = r0(n+1/2)+0+3’

el

2
1) (0) 0
‘an En o Ei{ )
of B Y
k=n-3 atl 5 (n—2)(n—1)(n) +3hw
mao
A 3
k=n-1 a2 > 9n> +lhw
mao
of 7Y 3
k=n+3 o 9(n+1) —-lhw
mao
of B
k=n+3 a Ey. (n+3)(n+2)(n+1) —3hw
mao

O 2mm [(n -2)(n-1)(n) (n+3)(n+2)(n+1) 9n° _9(n +1)°

o E B 3 B 1
all of the 2 nearly cancelling pairs
constants
2,2
h

R =2 [—30(n+1/2)2—3.5] algebra
8Sm m
2,2
ne |15 2 7
ED=_2" 14107+ L (m’w* = mk?)
" m’e* | 4 ( ) 16

all levels shifted down regardless of sign of a — can’t measure sign
of cubic anharmonicity constant, a, from vibrational structure alone

4| m3e? m’w*
hwexe hYOO
E, = h[YOO + 0o (V+1/2) = 0exo(V+1/2)? + 0y (v+1/ 2)3...]

2 2
E, =ho(n+1/2)—p>| 2" (V+1/2)2—hll[ ahj

ax® makes contributions exclusively to Y,, and o,
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Nonlecture
Morse Oscillator via perturbation theory
V(x)=D[1- e“)"‘]2

E, :h[(n+1/2)a)—(n+1/2)2wx]

15-5

by WKB or DVR

known in advance — compare to pert. theory
applied to Taylor series expansion of V(x)

Our initial goal is to re-express the Morse potential in terms of ® and wx rather than

D and 0. Then we will expand VMORSE in 3 Taylor series and look at the coefficient of

the x3 term. First we must take derivatives of E, with respect to v=n + 1/2

at dissociation, df” =0 =h(w-2(n+1/2)wx)
v

[0
— = +1/2
2mx }F—D /

at dissociation asymptote

2 X 4@52

np+1/2 (np+172)

2
.'.D=EnD:h( © ow-2 a)x}

2
D=r%_
4wx

now expand V(x)
V(0)=0

2
V/(x) = %[uae‘“" - 2ae‘20"‘] . V(0)=0

V7(x) = +4a

2
ha [—20526_“X
4wx

2
V///(X) — hi[+2a3e—(xx _ 8a3e—20m] V”’(O) —_
4wx
but
2.2 1/2
VA(0)=k = me o2 = ha A 2ma)xj
3/2
V(0) = _Eha) (2ma)x)
V(x)= 2kx2+ax3 thus V”(x)=6a
|10) (mexf/z » low “m3wx
a=—— —Sat=—
4 wx h 2 h

2e—2ax] . V7(0)=

2 2.2
hw 202 = o w
4wx 2wx

3hw’o’

2wx

now we can eliminate o from
higher derivatives (at x = 0).
This 1s to be compared to V”(0)

for the cubic anharmonic
potential.
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a2h
wx =2 34 . .
m 260 same functional form but different
from pert. theory (#15-4) @x = 15 33 h4 numerical factor (2 vs. 3.75)
m°®

One reason that the result from second-order perturbation theory applied
directly to V(x) = kx?/2 + ax?® and the term-by-term comparison of the power
series expansion of the Morse oscillator are not identical 1s that contributions
are neglected from higher derivatives of the Morse potential to the (n + 1/2)?
term in the energy level expression. In particular

ho

Yo :lx4/24
wx
<n‘x4‘n> = (ﬁjz[%n +1/ 2)2 + 2]

contributes in first order of perturbation theory to the (n + 1/2)? term in E ..

(1)_ 124 4 _
EV = v77(0)x /4!_[7/2

ED = T ox(n+1/2) + L ax
12 24

Example 2 Use perturbation theory to compute some property other than Energy
need y,, = I/II(IO) + l//fll) to calculate matrix elements of the operator in question,

for example, transition probability, x: for electric dipole transitions, transition

probability is P, e |x,.
ForH-O n—>nzxl1 only
2 7 Standard result. Now allow for
Kot = (Zm w)(n +1) mechanical and electronic
anharmonicity.
for perturbed H-O H® = ax3
o
0 ’ 0
Vo =y x k(0

0 0
k B0 —E(

HD HD HD
— /(0 3,,0) 1,,0) -1
V=V, 't % Vhiz T % Vot +% Y- 3o Vh-3
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initial 1//1(10) i ‘/’1(11) effect a.nharmonic
state of x final state
(0) n
v, n+7 |, n+5, n+4, n+3,n+1
n n+5, n+3, n+2,n+1, n-3
n+1 n
X n
n

n
n
n

+4
+2
< +1 n+4, n+2, n+1, n, n—2
n+3, n+1, n, n—1, n-3
1{ n+2, n, n—-1, n—2, n—4
n—2
n+1, n—1, n—-2, n—-3, n-5
n—4

n-1, n-3, n-4, n-5, n-7

Many paths which interfere constructively and destructively in |Xnn’

n=n+7n+5n+4n+3n+2,n+ln,n-1,n-2,n-3,n—-4,n—-5n-7
| — |
only paths for H-O!

The transition strengths may be divided into 3 classes

1. direct: n > n+1

2. one anharmonicstep n—n+4,n+2, nn-2 n—-4

3. 2 anharmonicsteps n—n+7,n+5n+3,n+1,n-1,n-3,n—-5n-"7
Work thru the An = -7 path

1/2

h 3/2+3/2+1/2 a2
<n|x|n + 7> = (m) T T m (n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)
Xn,n+3 Xn+3,n+4 Xn+4,n+7
*n,n+3 Xn+3.n+4
3
Xn+4,n+7
2 73a%n’
|Xnn+7 | o 357 ol
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* you show that the single-step anharmonic terms go as

1/2

" )3/2+4/2 [(n_+1)014_2)014—3)01*‘4)]

‘Xnn+4‘ oc (m

h2a2n4
3204 m*w°

(-3hw)

‘Xnn+4‘2 o<

*  Direct term

hl

— _(n+1
32m1w1( )

‘Xnn+1 ‘2 o<

3.2
hAn~a
each higher order term gets smaller by a factor(3223m3 wSJ

which is a very small dimensionless factor.
RAPID CONVERGENCE OF PERTURBATION THEORY!

What about Quartic perturbing term bx*?

Note that E) = <n‘bx4‘n> =0
and is directly sensitive to sign of b!
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