5.73 Lecture #14

Perturbation Theory I
(See CTDL 1095-1107, 1110-1119)

14 - 1

Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H

[1

[1

“annihilation”
“creation”
“number”

“commutator”

‘selection rules” yn

. .n/2
‘scaling” Xjj o<
dimensionless
quantities

a= 2_1/2(ZC+ 113)

a% — 2_]/2(2?— l[?)

a’a(not aa’)

[a,a’]=+1

a'aln) =n/n)

ij |i—j|£nin steps of 2 (e.g. x> An=i3,il)

aln)=n"*n-1

a'ln)=m+1D"ln+1)
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a little more: 0 V1 0 0 O
— 1172 00 v2 0 0 (one step to right
a01 = a=|0 o0 0 3 0 of main diagonal)
0O 0 0 0 .
0O 0 0 0 O
0 (n!)"? 0 0
(m+1)N"
0 O (T 0
N (n steps
Q= | e e 0 right)
1/2
(n+q)!
’ ( q!
selection rule fora;; j-i=n
selection rule for a’ j-i=-n

i

[n)=[n!]""(a’)"|0)

A ar] = (k) (i) r
a a - 6 k-n+m
[( ) (a) ]jk Nl ._J[ ! )!

(k=n)!(j—m

selection rule

Selection rules are obtained simply by counting the numbers of
a' and a and taking the difference.

The actual value of the matrix element depends on the order in which individual at
and a factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using a, at and afa
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One of the places where these tricks come in handy is perturbation theory.

We already have: 1. WKB: local solution, local k(x), stationary phase
2. Numerov—Cooley: exact solution - no restrictions
3. Discrete Variable Representation: exact solution,
vy as linear combination of H-O.

Why perturbation theory?

* replace exact H which is usually of e dimension by H¢ which is of finite

dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can
be computed with error < some preset tolerance.

Fit model that is physical (because it makes localization and coupling mechanisms
explicit) yet parametrically parsimonious

* derive explicit functional relationship between the n-dependent observable and n
-8 i—n = @, (n+1/2) = @xo(n+1/2)% + 0oy (n+1/2)
c

* establish relationship between a molecular constant (o,, ®.x,, ...) and the

parameters that define V(x) e.g. X3
/!

There are 2 kinds of garden variety perturbation theory:
1. Nondegenerate (Rayleigh-Schrédinger) P.T. — simple formulas

2. Quasi-Degenerate P.T. — matrix Heff

finite Heis corrected for “out-of-block” perturbers by “van Vleck” or “contact”
transformation

~4 Lectures

Derive Perturbation Theory Formulas * correct E_ and y,_ directly for

“neglected” terms in exact H
* correct all other observables indirectly
through corrected v
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Formal treatment
E, = A%E® + 2B 4 22 usually stop at A2

= 0@ 4+ Aly® usually stop at Al
(because all observables involve wx y’)

H = 12O 4+ 2 1g® order-sorting is MURKY

A 1s an order-sorting parameter with no physical significance. Set A = 1 after all is
done. A =0 — 1 is like turning on the effect of H?. Equations must be valid for
0<A<1.

Plug 3 equations into Schr. Equation Hy, = E y, and collect terms according to
order of A.

A0 terms
0 0 0 0
H¢ )“//1(1 )>=E£l ) ‘//51 )>
left multiply by <l//§r? )

0 0
Hg‘nr)l = E; )5mn

requires that H'? be diagonal in 1//1(10)

| o | YL . CALLED BASIS
eigenvalues {En } and eigenfunctions {wn }of H FUNCTIONS

CALLED ZERO ORDER MODEL
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So we choose H® to be the part of H for which:

*

it 1s easy to write a complete set of eigenfunctions and
eigenvalues

it is easy to evaluate matrix elements of common
“perturbation” terms in this basis set

sometimes choice of basis set is based on convenience
rather than “goodness” — doesn’t matter as long as the
basis 1s complete.

examples: Harmonic Oscillator V(x)= %kx2
Morse Oscillator V(x)= D[l —e X ]2
Quartic Oscillatr V(x) = bx*
n-fold hindered rotor V,(9)= (Vg /2)(1 —cosng)

Now return to the Schr. Eq. and examine the A! and A? terms.

A terms

Ha)‘ y©)+ HO|y D) = Eg)‘ y )+

(1)>

multiply by <l//(0)

from H operating to left

H)+E)( (0)\1//(1)> EO Q) (0)\w(1)>
L L

same
get rid of them

(could also require <W1(10) | 1/11(11)> = 0)
we do require this later

14 -5
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(1) _ (1) 1st-order correction to E is just
H = E

expectation value of perturbation term in
H: HO,

return to A! equation and this time multiply by <l//fr? ) ‘

HE +EQ(y 0 [y D) = 04 EO(y Oy )

O, = (y |y -ED)

gD
(O [y D)= W

completeness of {l//(o)}: 2‘ 1//1((0)>< 1//1((0)‘

(1)_2‘ (0)>< (0)“//(1)>

but we know this

o)

* index of y;,’ matches 1st index in denominator

g
511) — Z‘ Wl((0)>wkli_:‘(0) * n =k is problematic. Insist X exclude k =n.

* we could have demanded <\u§10) \Ug)>
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A2 terms

most important in real problems although excluded from many text books.

HO[y D) = ED[y D)+ B2y 0)

multiply by <W§10) <1;/£10) 1/11(11)> 0
0|y, (1 2
<l/,1(1 )‘H< )“/fﬁ)>=0+E§1)
completeness
O gD 14,,(O 0 13,,D\ _ 5@
2 () ) = E
k I
L |
¢))
g 2’&
n,k K E;O) _Eg(O)

H{

(2) Y k,n matrix element squared
E — Z 0 0 over
E( ) E( ) energy difference in “energy
k denominator”
T
always first
we have derived all needed formulas E(O) E(l) E(z) 1// y/fll)
Examples V(x)
Vx)= %kx2 +ax’ (a < O)
2
g _1,2, P
2 2m X
HD = ax3 (actually ax?® term with a < 0 makes all

potentials unbound. How can we pretend
that this catastrophe does not affect the

results from perturbation theory?)
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need matrix elements of x°

two ways to do this
* matrix multip]ication Xi3€ = ZXinijkg
3k
* a,af tricks

312 312 3
x> =(—h ) 353 =(—h ) [2_1/2(a+a7)]
meo mo

32

h

= — [a3+(aTaa+aaTa+aaaT) (aaTa’+aTaaT+a aTa) a”]
2mo

each group in () has their own Av selection rule (see pages 13-8 and 9):
simplify using [a,a’] = 1

Goal is to manipulate each mixed a,a’ term so that “the number operator”
appears at the far right and exploit a'a|n)=n|n)

Only nonzero elements:

a3 3, =[n(n-1)(n-2)]"*
a’d . =[(n+3)(n+2)(n+1)]"?

20430 =

square root
of larger q.n.

T

(aTaa +aa'a+ aaaT) —3aa'a

because a'aa =aa'a+ [aT,a]a —aa'a—a

"=aa'a+ a[a,aT] —aa'a+a

(aaTa) = n3/2
n—1n

aaa
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(aaTaT + aTaaT + aTaTa) = 3aTaTa + 3aJr
3afa’a+3a"|  =3n(n+1)"2+3n+1)"2 =3(n+1)¥>

n+In

So we have worked out all x® matrix elements — leave the rest to P.S. #5.

Property other than E ? Use y = l//go) + l//(l)
e.g. transition probability (electric dipole allowed vibrational transitions)

2
P’ e |Xnn |

forH-O

7l
|Xnn'|2 :( jn>5n no+1
2 >
e

(only An = £1 transitions)

for a perturbed H-O, e.g. H® = ax?

1)
\wn>=\‘l’5?)>+2'H—E<m\ 2)

(0)>Jr nn+3 ‘W(O) > nn+1 ‘W(O) > HSJ_l ‘W(O) > HY) ‘W(O) >
+h® +3hm
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: Allowed
Istindex 54 Tndices

m+3) (n+4,n+2)

n+1 n+2,n ,

For matrix elements of X.
n |[X|{ n+l,n-1
n—1 n,n—2

\n—-3) \n-2,n-4)

cubic anharmonicity of V(x) can give rise to An = +7, +5, +4, £3, +£2, +1, 0 transition

72 172
3 h a (n+7)!
(nlxln+7) = [2 ] ( [ }

3hw)*| n!
7/2

4 =1

2
Xnns7|” = ol n

. 1
other less extreme An transitions go as lower powers of — andn
®
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