5.73 Lecture #6 6-1

Last time: Normalization of eigenfunctions which belong to continuously
variable eigenvalues.

identities
Wk s Wﬁp s WsEr Whox

trick using box normalization

# states \( # particles

o A5

w1/L for box normalization

d
ﬁ often needed - alternate method via JWKB next lecture

V(x) = ox linear potential

solve in momentum representation, ¢(p), and take F.T. to y(x) — Airy functions
Semi-classical (JWKB) approx. for y(x)
* p() =[E-V(x)2m]"

* \u(x)=|p(x)|_1/2 exp[i%.[: p(x’)dx'}

envelope variable

* visualize y(x) as plane wave with x-dependent wave vector
* useful for evaluating stationary phase integrals (localization, causality)
**%%  gplicing across classical (E > V)|| forbidden (E < V) ] Next lecture

WKB Quantization Condition

X+(E) ’ ’_ h _
Ix_(E) p(x")dx —E(n+1/2) n=0,1,...
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Linear Potential. V(x) = ox

U F

“—+ox
2m
coordinate representation momentum representation
X — x F—p
h o J
— - — X— ih—
P i ox ' ap
note [X, ] = i# in both
representations - prove this?
n o d? ’ d
=————5+0X pf =L tino—
2m dx? 2m dp
2nd order 1st order - easier!

Solve in_momentum representation (a sometimes useful trick)

Schr. Eq. dg—(w = —%(E —p? /2m)¢(p)
P

3
solution o(p) = Ne?P*bP

gives p2 times ¢ (p)

| gives constant times o(p)|

plug into Schr. Eq. and identify, term-by-term, to get |a = ——

(Ep _ p3 / 6m)} easy?

i
710

o(p)=N exp[

O*(Pop =1 - N=1!
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Now p is an observable, so it must be real. Thus ¢(p) is defined for all (real) p
and is oscillatory in p for all p. NEVER exponentially increasing or decreasing!

IT IS STRANGE THAT ¢(p) does not distinguish between classically allowed

and forbidden regions. IS THIS REALLY STRANGE? If we allow p to be
imaginary in order to deal with classically forbidden regions, ¢(p) becomes an

increasing or decreasing exponential.

If we insist on working in the wy(x) picture, we must perform a
Fourier Transform

w0 =N [ ™ op)dp

y(x) = N’_rq exp{% {p((xx —E)+p° /6m”dp

odd function of p: O(p)

e'® = cos0 + isin® J sinO(p)dp =0
even odd -

" since O(p) is odd wrt p — —.

3
cos (ox—E)p+p” / 6m
ol

Ai(z)=n'" J: cos(s°/3 + sz)ds

y(x)=N"[" dp

Surprise! This is a named (Airy) and tabulated integral

* numerical tables for x near turning point i.e., x= E/o
* analytic “asymptotic” functions for x far from turning point

useful for deriving f(q.n.) and for matching across boundaries.

* zeroes of Airy functions [Ai(z,)=0] and of derivatives of Airy
functions [Ai'(z",)=0] are tabulated. (Useful for matching across

center of potentials with definite even or odd symmetry.) [Two
kinds of Airy functions, Ai and Bi.]
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3
Ai(z) = n_l/zj(;o cos[% + szjds

s = p(2mfa)~ /3 (if o> 0)
for our specific problem _ 1/3
Z= M[Zmoc/ hz]
o

Turning point

/ V(x) = ox >0
E

>
x,(E)
X
At turning point E = V(x+) =ox, .. [x,(B)=E/«
Problems with linear potentials: boundary conditions
A
V&) —0x +ox ox

When there is symmetry (or 1/2 symmetry) we need to know where the zeroes of ¥(x)

for odd functions

d dx or o barrier
and dv/ are located.
for even functions

tables of zeroes of
Ai(z) and Ai’(z) See Handout

n " n_’n

Zp

When there is no symmetry, must match Ai (or, more precisely, a linear
combination of Ai and Bi) and Ai” across boundaries, but we do not have to actually

look at the Airy function itself near the joining point.
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E /oc < This is not as bad as it seems because we are
/ usually far from turning point at internal
> joining point and can use analytic asymptotic
/ X expressions for Ai(z).

2 linear potentials of

For o> 0 there are 2 cases (classical and nonclassical) different |slope].

(i) z<<0, E>V(x) classically allowed region

Al = 22y V4sin| 2 =z 2 +n/4| asymptotic form for z << 0.
—= — ——

positive x is in here phase

shift
* oscillatory, but wave vector, k, varies with x
* Ai vanishes as x — +oo because of (—z)'l/ 4 factor

* Bi is needed for case where Airy function must vanish as x — +eo in classical region

(ii) [z>>0, E<V(x) forbidden region

. . /4 —2/3)23R .
Ai(z) > (n1? /2) 2 e @ asymptotic form for z >> 0.

positive decreasing
well exponential

behaved | * not oscillatory, monotonic
* Aivanishesas x — +o

*Bi vanishes as x — +oo in forbidden region

Cartoon

need numerical tables
to define y(x) in this re g#

The two asymptotic forms of Ai(z) are not normalized,
but their amplitudes (& phases) are matched. Links B.C.
atx -+ toB.C.atx > —oo.
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NonLecture

1/3
OTHER CASE: a<0%zz-w[2m|0y2:| E
n

o

for this case, need Bi(z) instead of Ai(z) x

Bi(z) — (ﬂ;'1 /2/2) |z 714 exp{—§|z|3/z} (forbidden region, z <<0.)

2
Bi(z) > /2 12714 cos[§|z|3/2 + g} (allowed region, z>>0.)

What is so great about V(x) =ox? y(x) is ugly — need lookup tables, complicated solutions!

Ai(z) turns out to be key to generalization of quantization of all (well behaved) V(x)!

There are semi-classical JWKB y(x)’s — These blow up near turning points (i.e. on both
sides). The Ai(z)’s permit matching of JWKB y(x)’s across the large gap where x5 1S
invalid, ill-defined.

(JEFFREYS)
WENTZEL
KRAMERS
BRILLOUIN

JWKB provides a way to get v, (x) and E, without solving
differential equations or performing a FT.

But actually, the differential equations are easy to solve numerically. The reason
we care about JWKB is that it provides a basis for:

* physical interpretation (semi-classical)

* RKR inversion from E ; ¢ V(R).

* semi-classical quantization.

* the link to classical mechanics is essential to wavepacket pictures.
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(generalize on e** for free particle by letting k =p(x)/2 depend explicitly on x (why does this
not violate [x,p]=i% ?)
VIWKB = |p(x)|—1/2 exp[iijg(x’)dx’} k(x) and p(x) are classical mechanical
| N — h c

functions of x, not QM operators.

classical envelope

p(x) =[2m(E - V(x)]'"?

phase factor: adjustable to
satisfy boundary conditions

p(x) is pure real (classically allowed) or pure imaginary (classically forbidden). p(x) is not
Q.M. momentum. It is a classically motivated function of x which has the form of the
classical mechanical momentum and has the property that the ) = h Varies withx ina
reasonable way. p

|p(x)|71 s probability amplitude envelope because
probability o 1 so amplitude o< \/I
v v

. '
exp— [% J.C p(x')dx’} is generalization of eP/" to non - constant V().

h
* node spacing A(x) = ——
p(x)
% gives easily identifiable stationary phase region for many wiggly integrands.

(Both y’s have same A at X )

Long Nonlecture derivation/motivation.
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Try y(x) = N(x) exp[i%j: p(x’)dX'}
plug into Schr. Eq. and get a new differential equation that N(x) must satisfy

2m
d‘z" SE-V)y =0

dy 1 2
+—p(x)“y =0 ok
a2 2PV

Tk derived O — |:N” 21p(x) N/ lp (x) N:|exp|:i_%"-x p(x/)dx/j|

in box h h

below

This is a new Schr. Eq. for N(x). Now make an approximation, to be tested later, that N” is

negligible everywhere. This is based on the hope that a slowly varying V(x) will lead to a slowly
varying N(X).

(:1_1! =| N’ % %p(x)} exp[i%j: p(x’)dx'}

2 : - : : '
d vy RS T S 1p( , o1 ﬂ [ iex ., ,}
— = N"2-—Npx—-Np'+—| N =—Np | |exp| £ — x")dx
7 Wt g NP | [exp| £ ] p(x)

” 21 ’ 1P’ P2 |: 1 X ’ /i|
=|N“"+—N N —=N |exp| +— x")dx
N PN } plE- ] P(X)

2 2 .

d \|f p |: 1 (x ’ /j|
0=—>+==Nexp|£—| p(x")dx

<z mz P Jop

O={N 2”;(") £ N}exp[i% jc"p(x')dx'}
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so, if we neglect N”, we get
2pN’ +p’'N =0

if p#0, then 2p1/2[p1/2N’ + %p_llzp’N} =0

d(Npl/z) .
, 172 -1/2_,
= + — N
Ix [ p p P }

2
1/2
_d(Ne'™)
- dx
N(x)pllz(x) = constant

=0

. N(x) = cp(x)"/?2

OK, now we have a form for N(x) which we can use to tell us what conditions must be satisfied
for N”(x) to be negligible everywhere.

N = cp!/2
dp~ /2 1 _3/2dp 1/2
— t x)=2m(E - V(x
" P p(x)=[2m(E - V(x))]
@z(_d_"jp—lm
dx dx
Cdp? sp m dV

dx P 2 dx
d*p~ " _Ed_V(_éj [ _mdV], spmd?V
dx? 2 dax\ 2P p dx R

ignore
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2
AN = Cémzp—9/2(ﬂ)
4 dx

But we have made several assumptions about N”

%k |N”| << ZEN’ _
7 A dx

_lem 32 dV
n P

_ ‘+@p—3/2 dv

N[ << %N‘ =‘

2
* |N//|<<p_ :i +3/2

nt e
all of this is satisfied if
Smh(dVY 3
ZT(&)"
Is this the JWKB validity condition?

<<1

Spirit of JWKB: if initial JWKB approximation is not sufficiently accurate, iterate:

p(Xx) = Y (X) (ordinary JWKB)
Yo (x) = p1(X)
p1(X) = y(x) (first order JWKB)
** Eq.
o P, o ay]” .
e'g' de + hZ WO =0—> pl (x) - \I/O (x) dxz on p 6'8
w1 (0 =y G exp{i SN (x’)dx'} feraive improsement

p,(x) is not smaller than p(x). It has more of the correct wiggles in it.

END OF NONLECTURE
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Resume Lecture

weo = o] exp{i%f p(x')dx'}

envelope

2 adjustable phase shift.
provided that ol is negligible
X

AND
hm dV d dA
w—mﬁﬂ << 1[same as k(x)d—i < ‘p(x)‘ or I << 1}
required\%or N”(x)
to be negligible

Next need to work out connection of Y, g(X) across region

where JWKB approx. breaks down (at turning points!).
dA

dx

— oo at turning point because p(x) — 0

BUT ALL IS NOT LOST — near enough to a turning point
all potentials V(x) look like V(x)=ox!

Now our job is to show that asymptotic — AIRY and
JWKB are identical for a small region not too close and
not too far on both sides of each turning point.

THIS PERMITS ACCURATE SPLICING OF
Y(x) ACROSS TURNING POINT REGION!
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II

’
L4
L4
’

0 V(X)) = ox
R o>0

V(x)

E -

approx. linear V(x)

| AIRY |

a-

e
d X

>

Region | E>V(x) classical

_ _ .12
Vi ARy ~ % 2=V sln[g(—z)y 24m 4}

(0x — E) [mﬂ” 3
7=
o h2

at turning point E = V(a) = aa so [ocx - E} =(x—a)
rmo 1/3 ) )
z=(X— a)( > j <<0 whenx<<a Region I/ splice
h using a-Airy.
Region II E <V(x) forbiddenregion, z>>0
-1/2
I T ~1/4_—2/323"2
Va-AIRY ~ ) z e

Now consider g for a linear potential and show that it is identical to a-Airy!
~1/2 i
VIwKB ~ Cx[p(x)[ " exp t p(x")dx
a

both c, and c_additive terms could be present

p(x) = [2m(E - V(x))]"?
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X < a classical , p is real , YIWKM oscillates
x >a forbidden , p is imaginary , YjwkB 1s exponential
pretend V(x) looks linear near x = a (- JWKB)
linear

p(x) =[2moy(a — X)]1/2
J‘:p(xf)dxl — (zma)l/ZJ’;(a _ X/)1/2 dx’

_ 2ma)? (_%)( a—x')2

X

a

— _(2ma)"2 é(a _x)2

Region |
-1/2 i —i
WE—JWKB (x) ~ |P(X)| [Ae ’+Be e]
= lpx)|"*C sin® + ¢)
Define the JWKB phase factor, 0(x):

1/2
1 x 2 2
0= E j p(x")dx’ = —( 2120() —(a- X)3/2

Now compare 0(X) to z(x)

2mar ) 2
but, earlier, z=(x—a) —5 RNVES ——(—z)3/2
h 3
op = (zmah)l/S (_Z)l/2 for exponential factor
-1/2 -1/6 -1/4 - i
‘P‘ - (Zmah) (—Z) for pre-exponential factor

Thus, putting all of the pieces together
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—IpI~1/2 -0

- A |2
vi_jwip =—2mon) V(-4 C sin EH)M —6

I
=WYa_AIRY IfC=-Cmah)/on7 12
0=-n/4

\If%— JwkB €Xactly splices onto \pg_ AIRY
with a[n/4 phase factor|(shifted from what the argument of sine
would have been if one had started the phase integral at x = a

Similar result in Region II

Wik ~ A 4 Be IO

at X — +oo f(x) > o0 .B=0

1/2
_ _ 2mao 2
-yl wks = AQma) Y (x—a) T4 exp[—(h—zj Z(x—-a)Y 2}

which is equal to Wil ry if A =(2mon)™0n 712 /2

. | I 11 1T
Final step:  WjwkB <> Wa—AIRY > VIWKB <> Va—AIRY

require A =—-C/2

perfect match on opposite sides of turning point.

Ai(z) valid in region where y . 18 invalid.
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