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WKB Quantization Condition

x_ (E)
x+ (E)∫ p( ′x )d ′x = h

2
n + 1 2( )  n = 0,1,…

1. identities
2.

trick using box normalization

 

 often needed -  alternate method via JWKB next lecture
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1. V(x) = αx linear potential

solve in momentum representation, φ(p), and take F.T. to ψ(x) → Airy functions

2. Semi-classical (JWKB) approx. for ψ(x)

for box normalization

] Next lecture
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1 2ψ
henvelope variable

      * visualize y(x) as plane wave with x-dependent wave vector
      * useful for evaluating stationary phase integrals (localization, causality)
**** splicing across classical (E > V)|| forbidden (E < V)

Last time:  Normalization of eigenfunctions which belong to continuously
variable eigenvalues.
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Solve in momentum representation (a sometimes useful trick)

Schr. Eq. 
dφ(p)

dp
= − i

hα
E − p2 2m( )φ(p)

solution φ(p) = Neap+bp3

gives constant times φ ( p )

gives p2 times φ ( p )

plug into Schr. Eq. and identify, term-by-term, to get a = –
iE
hα

b = i
6hαm

φ(p) = Nexp − i
hα

Ep − p3 / 6m( )





easy?
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coordinate representation momentum representation
x x p p
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note x, p  in both

representations -  prove this?

2nd order 1st order -  easier!

h
h

h

h
h

Linear Potential.  V(x) = αx

φ φ* ( ) ( ) !p p = 1 ∴ = !N 1



6 - 35.73 Lecture #6

updated 9/12/02 11:39 AM

If we insist on working in the ψ(x) picture, we must perform a
Fourier Transform

ψ φ

ψ
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odd function of p:  O(p)

ψ(x) = ′N −∞
∞∫ cos

(αx − E)p + p3 / 6m
hα












dp

Surprise!  This is a named (Airy) and tabulated integral

* numerical tables for x near turning point i.e., x ≈ E/α
∗ analytic “asymptot ic” functions for x far from turning point

useful for deriving f(q.n.) and for matching across boundaries.

Now p is an observable, so it must be real.  Thus φ(p) is defined for all (real) p
and is oscillatory in p for all p.  NEVER exponentially increasing or decreasing!

IT IS STRANGE THAT φ(p) does not distinguish between classically allowed
and forbidden regions.  IS THIS REALLY STRANGE?  If we allow p to be
imaginary in order to deal with classically forbidden regions, φ(p) becomes an
increasing or decreasing exponential.

e i O p dpi

even odd

θ θ θ= + =
−∞

∞

∫cos sin sin ( ){ { 0

Ai z s sz ds( ) cos/= π +( )−
∞

∫1 2 3

0
3

* zeroes of Airy functions [Ai(zi)=0] and of derivatives of Airy
functions [Ai′(z′i)=0] are tabulated.  (Useful for matching across

center of potentials with definite even or odd symmetry.)  [Two
kinds of Airy functions, Ai and Bi.]

since O(p) is odd wrt p → –p.
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Ai(z) = π−1/2
0
∞∫ cos

s3

3
+ sz







ds

  

s ≡ p(2mha)−1/3 (if α > 0)

z ≡ (αx − E)
α

2mα h2[ ]1/3for our specific problem

Turning point

E

x
x+(E)

At turning point E V x x x E E= ( ) = ∴ =+ + +α α ( ) /

Problems with linear potentials: boundary conditions

V(x) –αx +αx αx

tables of zeroes of

Ai(z) and A ′i (z)

"zn"       " ′zn"

When there is no symmetry, must match Ai (or, more precisely, a linear
combination of Ai and Bi) and Ai′ across boundaries, but we do not have to actually
look at the Airy function itself near the joining point.

ψ(x)
for odd functions

or  barrier∞

{

d dxψ /
for even functions

124 34

When there is symmetry (or 1/2 symmetry) we need to know where the zeroes of

and are located.

V(x) = αx α > 0

See Handout.
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E αx

x

This is not as bad as it seems because we are
usually far from turning point at internal
joining point and can use analytic asymptotic
expressions for Ai(z).

For α > 0 there are 2 cases (classical and nonclassical)

(i) z << 0  ,  E > V(x)  classically allowed region

Ai(z) → π-1/2( −z
positive

{ )−1/4 sin
2
3

( −z
x is in here

{ )3/2 + π / 4
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shift

{



















*

*

 oscillatory,  but wave vector,  k,  varies with x

 Ai vanishes as x  ±  because of (-z)  factor
* Bi is needed for case where Airy function must vanish as x +  in classical region

-1/4→ ∞
→ ∞

(ii) z E V x

z e
positive
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>> <
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 ,  ( )

/

*

/ ( / ) /

 forbidden region

Ai(z)

 not oscillatory,  monotonic
* Ai vanishes as x  +
* Bi vanishes as x  ±  in forbidden region

-1/2

l
decreasing
exponentia

123 1 24 34

well
behaved

Cartoon

| |

need numerical tables
to define ψ(x) in this region

The two asymptotic forms of Ai(z) are not normalized,
but their amplitudes (& phases) are matched.  Links B.C.
at x → +∞  to B. C. at x →  –∞.

2 linear potentials of
different |slope|.

asymptotic form for z << 0.

asymptotic form for z >> 0.
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NonLecture

OTHER CASE:  α < 0 → z ≡ -
(|α|x + E)

|α|
2m|α|

h2





1/3

for this case, need Bi(z) instead of Ai(z)

Bi z z z

Bi z z z
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2
2
3

2
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forbidden region,  z << 0.)

(allowed region,  z >> 0.)

What is so great about V(x) =αx?  ψ(x) is ugly — need lookup tables, complicated solutions!

Ai(z) turns out to be key to generalization of quantization of all (well behaved) V(x)!

There are semi-classical JWKB ψ(x)’s — These blow up near turning points (i.e. on both

sides).  The Ai(z)’s permit matching of JWKB ψ(x)’s across the large gap where ψJWKB is

invalid, ill-defined.

(JEFFREYS)

WENTZEL

KRAMERS

BRILLOUIN

JWKB provides a way to get ψn(x) and En without solving

differential equations or performing a FT.

But actually, the differential equations are easy to solve numerically.   The reason
we care about JWKB is that it provides a basis for:

* physical interpretation (semi-classical)
* RKR inversion from EvJ ♦  VJ(R).

* semi-classical quantization.
* the link to classical mechanics is essential to wavepacket pictures.

E

x

α < 0
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(generalize on eikx for free particle by letting k =p(x)/h  depend explicitly on x (why does this
not violate [x,p]=ih ?)

  

ψJWKB = p(x) −1/2

classical envelope

1 24 34
exp ± i

h
p( ′x )d ′x

c

x

∫









p(x) = 2m(E – V(x)[ ]1/2

p(x) is pure real (classically allowed) or pure imaginary (classically forbidden).  p(x) is not
Q.M. momentum.  It is a classically motivated function of x which has the form of the
classical mechanical momentum and has the property that the             varies with x in a
reasonable way.

λ = h
p

* ( )

* exp ( )

/
p x

i
p x dx

c

x

−

∝ ∝

− ′ ′




∫

1 2
 is probability amplitude envelope because 

probability 
1
v

 so amplitude 
1
v

 is generalization of e  to non - constant V(x).ipx/

h
h

node spacing (x) =
h

p(x)

 easily identifiable stationary phase region for many wiggly integrands.

(Both ’s have same  at xs.p.

λ

ψ λ
gives

)

Long Nonlecture derivation/motivation.

phase factor: adjustable to
satisfy boundary conditions

*

*

k(x) and p(x) are classical mechanical
functions of x, not QM operators.
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Try ψ(x) = N(x)exp ± i
h

p( ′x )d ′xc
x∫





plug into Schr. Eq. and get a new differential equation that N(x) must satisfy

  

d2ψ
dx2 + 2m

h2 E − V(x)( )ψ = 0

d2ψ
dx2 + 1

h2 p(x)2 ψ = 0

0
2

= ′′ ± ′ ±
′





± ′ ′




∫N

ip x
N

ip x
N

i
p x dx

c

x( ) ( )
exp ( )

h h h
* derived
in box
below

This is a new Schr. Eq. for N(x).  Now make an approximation, to be tested later, that N″  is
negligible everywhere.  This is based on the hope that a slowly varying V(x) will lead to a slowly
varying N(x).

  

dψ
dx

= ′N ± i
h
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
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h
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
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h
′N p ± i

h
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h
′N ± i
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
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
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h

p( ′x )d ′xc
x∫



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= ′′N ± 2i
h

′N p ± i ′p
h

N − p2

h2 N












exp ± i
h

p( ′x )d ′xc
x∫





0 = d2ψ
dx2 + p2

h2 N exp ± i
h

p( ′x )d ′xc
x∫





0 = ′′N ± 2ip(x)
h

′N ± i ′p
h

N





exp ± i
h

p( ′x )d ′xc
x∫





*

**
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so,  if we neglect ′′N ,  we get

2p ′N + ′p N = 0

if p ≠ 0,  then 2p1/2 p1/2 ′N + 1
2

p−1/2 ′p N





= 0

d Np1/2( )
dx

= ′N p1/2 + 1
2

p−1/2 ′p N





∴
d Np1/2( )

dx
= 0

N(x)p1/2(x) = constant

OK, now we have a form for N(x) which we can use to tell us what conditions must be satisfied
for N″(x) to be negligible everywhere.

N = cp−1/2

dp−1/2

dx
= − 1

2
p−3/2 dp

dx
p(x) = 2m E − V(x)( )[ ]1/2

dp
dx

= − dV
dx





 p−1m

∴ dp−1/2

dx
= p−5/2 m

2
dV
dx

d2p−1/2

dx2 = m
2

dV
dx

− 5
2





 p−7/2 − m

p
dV
dx









 + p−5/2 m

2
d2V

dx2

ignore
{

∴  N(x) = cp(x)−1/2
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∴  ′′N = c
5
4

m2p−9/2 dV
dx







2

But we have made several assumptions about N″

* ′′N << 2ip
h

′N = + icm
h

p−3/2 dV
dx

* ′′N << i ′p
h

N = − icm
h

p−3/2 dV
dx

* ′′N << p2

h2 N = c

h2 p+3/2

all of this is satisfied if

  

5
4

mh

i
dV
dx





 p−3 << 1

Is this the JWKB validity condition?

Spirit of JWKB:  if initial JWKB approximation is not sufficiently accurate, iterate:

END OF NONLECTURE

p(x) → ψ0(x) (ordinary JWKB)

ψ0(x) → p1(x)

p1(x) → ψ1(x) (first order JWKB)

e g
d

dx

p
p x

x
d

dx

x p x
i

p x dx
c

x

. .   ( )
( )

( ) ( ) exp ( )

/

/

2
0

2
1
2

2 0 1

2

0

2
0

2

1 2

1 1
1 2

1

0
ψ

ψ
ψ

ψ

ψ

+ = → = −










= ± ′ ′






− ∫
h

h

h

see ** Eq.
on p. 6-8

iterative improvement
of accuracy

p1(x) is not smaller than p0(x).  It has more of the correct wiggles in it.
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Resume Lecture

  

ψ( ) ( ) exp ( )
/

x p x
i

p x dx

V

dx

envelope
c

x
≈ ± ′ ′





− ∫{
1 2

2

h

provided that 
d

 is negligible
2

AND

  

hm

p

dV
dx

p x

N x

| |
( )3 1 1<< < <<







′′required for ( )
to be negligible

same as (x)
dp
dx

 or 
d
dx

1 244 344

λ
λ

Next need to work out connection of ψJWKB(x) across region

where JWKB approx. breaks down (at turning points!).

dλ
dx

→ ∞  at turning point because p(x) → 0

BUT ALL IS NOT LOST — near enough to a turning point
all potentials V(x) look like V(x)=αx!

Now our job is to show that asymptotic – AIRY and
JWKB are identical for a small region not too close and
not too far on both sides of each turning point.

THIS PERMITS ACCURATE SPLICING OF
ψ(x) ACROSS TURNING POINT REGION!

adjustable phase shift.
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Region I            E > V(x)   classical

 

ψa−AIRY
I ~ π−1/2(−z)−1/4 sin

2
3

(−z)3/2 + π 4





z = (αx − E)
α

2mα
h2






1/3

at turning point E = V(a) = αa so 
αx - E

α






= (x − a)

z = (x − a)
2mα
h2







1/3
<< 0      when x << a

Region II            E < V(x)   forbidden region,    z >> 0

ψa−AIRY
II ~

π−1/2

2
z−1/4e−2/3z3/2

  

ψJWKB ~ c± p(x) −1/2 exp ± i
h

p( ′x )d ′x
a

x

∫









both c+ and c– additive terms could be present

p(x) ≡ 2m E − V(x)( )[ ]1/2

I II

V(x) = αx
          α > 0

approx. linear V(x)

JWKB JWKB

a-AIRY a-AIRY

V(x)

E

a x

Region I/II splice
using a-Airy.

Now consider ψJWKB for a linear potential and show that it is identical to a-Airy!
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ψ

θ φ
θ

θ
α

θ

θ θ
l

h h

−
− −

−

+[ ]
= +

= ′ ′ = −



 −( )∫

JWKB
I i i

a

x

x p x Ae Be

p x C

p x dx
m

a x

( ) ~ ( )

( )  sin( )

( )

/

/

/
/

1 2

1 2

2

1 2
3 21 2 2

3

Define the JWKB phase factor,  (x):

Now compare (x) to z(x)

 

but,  earlier,   z = (x − a)
2mα
h2







1/3
∴θ = − 2

3
(−z)3/2

∴ p = 2mαh( )1/3 −z( )1/2

p −1/2 = 2mαh( )−1/6 −z( )−1/4

x < a classical , p is real , ψJWKM  oscillates
x > a forbidden , p is imaginary , ψJWKB  is exponential

pretend V(x) looks linear near x = a               (l-JWKB)
linear

p(x) = 2mα a − x( )[ ]1/2

p( ′x )d ′xa
x∫ = (2mα )1/2 a − ′x( )1/2 d ′xa

x∫

= (2mα )1/2 − 2
3





 a − ′x( )3/2

a

x

= −(2mα )1/2 2
3

a − x( )3/2

Region I

Thus, putting all of the pieces together

for exponential factor

for pre-exponential factor
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ψl−JWKB
I = −(2mαh)−1/6(−z)−1/4

−|p|−1/2
6 74444 84444

C  sin
2
3

(−z)3/2

−θ6 74 84

− φ

















= ψa−AIRY
I

If C = −(2mαh)1/6 π−1/2

φ = −π 4

 ψl−JWKB
I  exactly splices onto  ψa−AIRY

I

with a O/4 phase factor (shifted from what the argument of sine
would have been if one had started the phase integral at x = a

Similar result in Region II

ψJWKB
II ~ Ae−f (x) + Be+f (x)

at x → +∞ f(x) → ∞ ∴B = 0

∴ ψl−JWKB
II = A(2mα)−1/4(x − a)−1/4 exp − 2mα

h2






1/2 2
3

(x − a)3/2











which is equal to ψa−AIRY
II  if A = (2mαh)+1/6 π−1/2 2

Final step:   ψJWKB
I ↔ ψa−AIRY

I  ,  ψJWKB
II ↔ ψa−AIRY

II

require A = –C/2

perfect match on opposite sides of turning point.

Ai(z) valid in region where ψJWKB is invalid.


