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Last Time:

A,B are complex constants, determined by “boundary conditions”

general solutionfree particle V(x)=V0

ψ = Aeikx + Be–ikx

and and

probability

distribution

only get wiggly stuff when 2 or
more different values of k are
superimposed.  In this special
case we had +k and –k.

TODAY

1.  infinite box

2.  δ(x) well

3.  δ(x) barrier
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What do we know about ψ(x) for physically realistic V(x)?
ψ
ψ ψ

ψ ψ

ψ ψ

( ) ?
* ( ) ( )

* ( ) ( ) ?

/ ?

±∞ =
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∞

∫
x x

x x dx

d dx

 for all x?

Continuity of  and 

Computationally convenient potentials have steps and flat regions.

infinite step

finite step

infinitely high but infinitely thin step,“ δ-function”

  

ψ

dψ
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,
d2ψ
dx2

dψ
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continuous

not continuous for infinite step, and not for δ-function 

is continuous for finite step

More warm up exercises

1. Infinite box

L0 x

V(x)

ψ

ψ
ψ
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0 0 0

0 1 2 why not n =  0?

[C=A+B, D=iA – iB]
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Insert kL = n  boundary condition.

recall here.

n = 0 would be
empty box

∞ # of bound levelsE1

normalization (P=1 for 1 particle in well)
1
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= π

= π

∫| | sin ( )

( ) ( / ) sin( )/

D dx n x

x L n x

L

nψ

|D|= (2 / L)1/2

D = (2 / L)1/2 eiα

arbitrary
phase
factor

{

cartoons of ψn(x):  what happens to {ψn} and {En} if
we move well:

left or right in x?

up or down in E?

⇒

Infinite well was easy:  2 boundary conditions plus normalization requirement.

Generalize to stepwise constant potentials: in each V(x)=constant region,
need to know 2 complex coefficients and, if the particle is confined within a
finite range of x, there is quantization of energy.

* boundary and joining conditions
* normalization
* overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so
obvious.  δ(x) well and barrier.

En is integer multiple
of common factor, E1.
Important for
wavepackets!

because sin ( ) /2
0

2n x dx L
L π =∫
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V(x)

V(x) = –a δ(x) a > 0

= 0 everywhere except V(0) = –a “∞”

a has units Energy x Length
(because, as we will see, δ(x) has
units of reciprocal length)
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size of discontinuity in

at x = 0dψ
dx

because

is finite and integral
over region of length
2ε ♦ 0.

2mE
h2 ψ(0)

because, by the definition of a δ–fn

 δ(x)ψ(x)dx = ψ(0)∫
or, more generally

  
δ(x ± a)ψ(x)dx = ψ(a)
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Since the potential has even symmetry wrt      x → –x, ψ(x) must be even or odd (not a
mixture) with respect to x → – x, thus ψ(x) = ±ψ(–x).  If ψ(x) is even, there must be a

cusp in ψ(x) at x = 0

0

ψ(x)
ψ(x) is

continuous

OR

BUT NOT

ψ(x) is not

continuous 

at x = 0

dψ(+)
dx

±
dψ(±)

dx
= ±

2ma
h2 ψ(0)

The new 
boundary condition

since there is + reflection symmetry for an even ψ(x)

dψ(+)
dx

= ±
dψ(±)

dx

dψ(±)
dx

= m
ma
h2 ψ(0)

Now find the eigenfunctions and eigenvalues.  Standard procedure:  divide
space into regions and match ψ and dψ/dx across boundaries.

So what happens
when ψ(x)
 is an odd function?



2 - 65.73 Lecture #2

unknowns
determined

ψψψψ(+∞∞∞∞)=0 AR = 0 (2)

ψψψψ(–∞∞∞∞)=0 BL = 0 (2)

ψψψψL(–εεεε)=ψψψψR(+εεεε)0 AL = BR ≡≡≡≡ A (2)

arbitrary phase (1)

normalization (1)

(8)
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Let E < 0

(THIS IS WHAT WE DO WHEN k
WOULD BE IMAGINARY)

ρ = ma

h2

A
  

d
dx
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again 
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ρ
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(8 unknowns, because A and B can
be complex numbers)

required discontinuity in dψ/dx at
x = 0.

Done!
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Only one acceptable value of ρ → one value of E < 0

 
ρ = ma

h2
    
|E|= ρ2h2

2m
= ma2

2h2 = ±E

    
E = ±

ma
2h2

Normalization of ψ

see Gaussian
Handout

    
ψδ = ± ma

h2

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
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1/2
e−ma|x|/h2

only one bound
level, regardless
of magnitude of a

large a, narrower and taller ψ

There is a continuum of ψ’s possible for E > 0.  Since the particle
is free for E > 0, specific form of ψ must reflect specific problem:

e.g., particle probability incident from x < 0 region.  It is even
more interesting to turn this into the simplest of all barrier
scattering problems.  See Non-Lecture pp. 2-8, 9, 10.

Actually, the above solution was specifically for an even ψ(x).  What

about odd ψ(x)?  No calculation is needed.  Why?
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Nonlecture

0 x

V(x) = +αδ(x)

Consider instead scattering off V(x) = + αδ(x) a > 0

 

ψL = ALeikx + BLe−ikx

ψR = AReikx + BRe−ikx
  
k = 2mE

h2

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
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1/2

In this problem we have flux entering exclusively from left.
The entering probability flux is |AL|2.

Two things can happen:

1. transmit through barrier ∝ |AR|2

2. reflect at barrier ∝ |BL|2

ψL(0) = ψR(0) continuity of ψ

AL + BL = AR + BR but BR = 0            AL + BL = AR 

  

dψR(+0)
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±
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dx
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h2 ψ(0)

ikAR ± ikAL − ikBL( ) = 2ma
h2 AR

ik AL + BL( ) − ik(AL − BL) = 2ma
h2 AL + BL( )

There is no way that B  can become different from 0.  Why?

Our goal is to determine A  and B  vs. E

R

R L

2

2 2

AR = AL + BL

ψL(0)

ψR(0)
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What is T(E), R(E)?
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R(E) + T(E) = 1

α = AL/BL

decreasing to zero as E increases

increasing to one as E increases
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Note that: R(E) starts at 1 at E = 0 and goes to 0 at E → ∞

T(E) starts at 0 and increases monotonically to 1 as E increases.

Note also  that, at  E = − ma2

2h2
R → ∞ as E approaches –ma2/2h2 from above and
then changes sign as E passes through –ma2/2h2!

This is the energy of the bound state in the δ(x)-function well

problem.

See CTDL Chapter 1 Problem #3b (page 87) for a
related problem


