5.73 Lecture #2 2-1

free particle V(x)=V, general solution
Y= Aeikx + Be—ikx

Last Time:

A,B are complex constants, determined by “boundary conditions”

k :% (from e™, eigenfunction of ¥, and the real number, p, is the elgenvalue)
k= [E V) 2} for B>V,
probability P(x)=y*y=|A1> +1 B +2Re(A* B)cos 2kx + 2 Im(A * B)sin 2kx
distribution const. wiggly
only get wiggly stuff when 2 or
more different values of k are
superimposed. In this special
case we had +k and —k.
TODAY

' ' and ’ and

1. infinite box
2. 0(x) well

3. 0(x) barrier
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What do we know about y(x) for physically realistic V(x)?
Y(Feo) =?
v * (x)y(x) for all x?

f:w*(x)w(x)dx?
Continuity of y and dy /dx?
Computationally convenient potentials have steps and flat regions.

A

infinite step

finite step

infinitely high but infinitely thin step,“d-function”

Yy continuous

dy d*y | o .
ax 2 not continuous for infinite step, and not for 6-function
dy . . ..
I 1s continuous for finite step
X
More warm up exercises T
1. Infinite box
V(x) :
: >
0 L X

W(x) = Ae™ + Be ™ = C cos kx + Dsin kx

[C=A+B, D=iA — iB]

y(0)=0=C=0
y(L)=0=kL=nn n=1,2,... (why notn = O?)
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2m |n°Tm
recall k* = (E - V())h_z = 12

Insert kL. = nit boundary condition.

Vo =0 here.

B o2 T 2{ h? n = 0 would be E, is integer multiple
" 2ml? 8mL? empty box of common factor, E,.
Important for
E1 o # Of bound levels Wavepackets!
normalization (P=1 for 1 particle in well) .
1=IDF [ dxsin®(n1x) = IDI=(2/L)Y/2  because [/ sin’(nmx)dx =L./2
0
- 1/2 io
v (x) = (2/ L) sin(nmx) D=(@2/L)"" ¢

arbitrary
phase
factor

cartoons of y,(x): what happens to {y,} and {E_} if
we move well:
left or right in x?

up or down in E?

Infinite well was easy: 2 boundary conditions plus normalization requirement.

Generalize to stepwise constant potentials: in each V(x)=constant region,
need to know 2 complex coefficients and, if the particle is confined within a
finite range of x, there is quantization of energy.

* boundary and joining conditions
* normalization
* overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so
obvious. 8(x) well and barrier.
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V(x)

a has units Energy x Length
V() =-aldx)| a>0 (because, as we will see, d(x) has
units of reciprocal length)

= 0 everywhere except V(0) = —a
“strength” of the d-function well

1 5
Schrodinger d_\i; _ _[(E . aS(x)] 2_r2n v
. dx —
Equation E-V(x)
Integrate: O d*y AF . (2mE 2ma
ilil(} ) 2 dx:—llils[:[dx( P y(x)+ Py 8(x)\y(x)ﬂ
d d
LHS = d—i’ id—“x’ = siz(f of discontinuity in
W atx=0
dx
2ma
RHS = {o - - w(0)
2
h
because because, by the definition of a d—fn
2mE
h—z‘V(O) 80w (x)dx = y(0)

is finite and integral
over region of length
2¢ ¢ 0. jiwﬁ(x +a)y(x)dx = y(a)

or, more generally
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Since the potential has even symmetry wrt  x — —x, y(x) must be even or odd (not a
mixture) with respect to x —— x, thus y(x) = ty(—x). If y(x) is even, there must be a

cusp in y(x) at x =0
J \ v(x) is

|
y(x) | continuous
0
OR
|
BUT NOT
Y(x) is not
|
| continuous
atx=0
So what happens
when y(x)
1s an odd function?
dy(+) dw(z) 2ma The new
\gx x \gx == 2 y(0) boundary condition

since there is + reflection symmetry for an even y(x)

dy(+) _ , dy(#)

dx dx
dy(x) _ma
dx Y v(0)

Now find the eigenfunctions and eigenvalues. Standard procedure: divide
space into regions and match y and dy/dx across boundaries.
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Region I E Region 11
|
0 X
V(x)
x[>0
Let E<O E=-1El

Y=y, =A™ +Be™
Ve =Yy = Age™ +Bre™”

(8 unknowns, because A and B can
be complex numbers)

b= [' E 'fmr (THIS IS WHAT WE DO WHEN k
h WOULD BE IMAGINARY)
unknowns
determined
\|[(+oo)=0 —_—> AR =0 (2)
Y(—=<)=0 — > B.=0 (2)
v = AeP*
YL(—€)=yr(+)0 ——> A . =Br=A (2) Y = Ae ™
arbitrary phase (1)
normalization (1)
(8) Done!

]
dWR(—i_) — pAef() — za WAO)
dx
ma
N
]
dWL(_) +0 +ma
=+pAe’ = 0
dx p P YAO)
again p= ma

required discontinuity in dy/dx at
x=0.
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Only one acceptable value of p— one value of E <0

2.2 2
ma
p="3 =B M2 _.p
h 2m 2h
ma
E=+—o
252

Actually, the above solution was specifically for an even y(x). What
about odd y(x)? No calculation is needed. Why?

Normalization of y

1= 1yl dx

Wy = Ae ™"

1=2[1AP e Py =21 AP (;;aj
A= i(?)m Mo

1/2 only one bound
_ 4 Ma e—malxl/h2 level, regardless
Vs == hz of magnitude of a

large a, narrower and taller y

There is a continuum of ’s possible for E > 0. Since the particle
is free for E > 0, specific form of yw must reflect specific problem:

e.g., particle probability incident from x < 0 region. It is even
more interesting to turn this into the simplest of all barrier
scattering problems. See Non-Lecture pp. 2-8, 9, 10.
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Nonlecture

Consider instead scattering off V(x) = + ad(x) a>0

V(x) = +00(x)

>
O X
y = Apel™ +Bpe ™ I (ZmE )1/ 2
WR — AReIkX +BRe—ﬂ(X hz

In this problem we have flux entering exclusively from left.
The entering probability flux is | A |2

Two things can happen:

1. transmit through barrier < |Agz|?

2. reflect at barrier < | B |?

There is no way that |BR|2 can become different from 0. Why?

Our goal is to determine |A|* and [B, " vs. E

W,(0) = yy(0) continuity of y
A_+ B_ = A, + B, but By = 0 A_+ B_ = A,

|:dl|IR(+O) n Ch|IL(‘|_'O):| — 4 2ma \II(O)

dx dx K2
ikAg +(ikA, —ikBy ) = ZHZ‘a AR <—wz0)
Ay=A, +B, h 2
ik(Aj +By )—ik(A; =By )="22 (A +B
(Ap +Bp) L=PL)="3 I( L L)I

v1.(0)



5.73 Lecture #2

2ma

2lkBL = h—Z(AL + BL)

BL(Zik —%) _2ma,

h2

2ik — —=—

Ap 2 ( 2ma

By, 2ma 2
_ikn?

ma

+1

AR:AL+BL :AL]]:—L

ma

122
Ag =BL(lkh )

Transmission 1s

Reflection 1s

What is T(E), R(E)?

)
jzlkh 1
ma

L

T =

Ag[

ALf

+BL:OCBL +BL=BL(OC+1)

o=A;/B,

Ag[* =[BL|

* 2
AL AL ) _| k7
BL BL ma

|AL|2 = LS +1=
|BL|2 )

l’I'l.?J.2

ma2

21%E

R(E) = =
2h2E + ma2

2
By 2B _

|

ma

ma2

2h2E + ma2 -
R(E)+T(E)=1

|

+
2h%E

2-l-

_ 2h2E + ma2

decreasing to zero as E increases

increasing to one as E increases
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Note that: R(E) starts at 1 at E =0 and goes to 0 at E —

T(E) starts at 0 and increases monotonically to 1 as E increases.

ma2

Note also that, at [E=———p R — o« as E approaches —ma?/24? from above and
M then changes sign as E passes through —ma?/2a2!

This is the energy of the bound state in the 6(x)-function well

l problem.

See CTDL Chapter 1 Problem #3b (page 87) for a
related problem



