5.73 Lecture #37 37 -1

Infinite 1-D Lattice
CTDL, pages 1156-1168

LAST TIME:
hole (h*) vs. e~ configurations: N s 22N for N> 20+ 1
2
e /rij unchanged
¢(NLS) — -¢(NLS) [CM unchanged]
Hund’s 3rd Rule (Lowest L - S term of /™ only)
N<2/+1 Eyy forJ =L -5 regular
N=20+1 @e+D+ig o S state: no fine structure
2
2
N>20+1 Eyiy forJ=L+S inverted

Zeeman Effect

Wigner-Eckart Theorem used to define g; equal spacings
EZeeman — _MOMJgJBZ
g; as L,S,J diagnostic
J(J+1)+8(8+1)-L(L+1)
g, =1+

2J(J +1)
Confirm by H%¢¢man in Slater determinantal basis

1. H; as example of localization, delocalization, tunneling
2. oo secular equation for simplified 1-D lattice

3. eigenvectors by equal probability trick

4. restrict k to k| < /¢ : 1st Brillouin Zone

5. E(k)= E,—2Acosk! (all of the allowed states?)

6

. Bloch functions y,(x) = e™u,(x)

8. transitions — energy bands and intensity profiles

7. wavepackets, motion, group velocity
next
lecture

9. conductivity
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Start with H;, a lattice with only 2 equivalent sites.

qualitative picture:  atomic energy levels
tunneling between identical localized states
slow behind big barrier (small splitting)
fast behind small barrier (large splitting)
levels — bands, of width related to tunneling rate

o ~R/2 +R/2

E?,
E© 2 atoms J 2 states
R>>q, E, ..=—— and doubly degenerate

for exact degeneracy, can choose any linear combination

P P — 1,70 (0)
Localized basis set Viocalized = Yieft OF Wiignt

- - _0-1/2 0) ()]
Delocallzed baSIS Set Wdelocalized - 2 [l//left * Wright]
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If initially in localized state, tunneling rate depends on
* height (relative to E?) of barrier
* width of barrier

* size of overlap between exponential tails of y3), and y{),

clear that tunneling rate (i.e. splitting) increases
* asnT at constant R (internuclear separation)

* as Rl at constant n

EA

Ih— [

El
> double degeneracy
l/ atR —> oo

R

A is tunneling splitting—gets larger as R{

N ATOMS ALONG A STRAIGHT LINE

¢ N atoms, N states

each electronic state of 1solated atom becomes band of states for « lattice.

Energy width of each band increases as the principal q.n. increases because
atomic states require more room: (r) o a,n%. Tunneling gets faster.

Greater sensitivity to world outside one atom.
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Simplified Model for « 1-Dimensional Lattice: basis for qualitative insights and
early time predictions.

1. Each ion, called q, has one bound state, |Vq>
at E;=(v/Hlv ) [diagonal element of H] (actually 2 spin-orbitals)

2. permit orbitals only on adjacent ions to interact [simplifying assumption] like
Hickel theory.

3. symmetry: all ions are equally spaced, x,, — x, = (, and all adjacent-orbital
Interaction matrix elements are identical

<Vq| H| V) =—A [off-diagonal elements of H]
(SAS would increase as ¢ — O)reasons for — A sign choice later.]
E, -A 0
so H= - B A matrix

since this is infinite, need a trick to diagonalize it.

general variational function
oo
— superposition of AO’s at
‘ ¢> 2 Cq‘ vq> each site
q:—oo

get reguirements on ¢, by plugging this into Schrédinger
equation

Hlp) = E|p)
left multiply by <vq ‘
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q’'th
position

LHS (0...1...0) icks out g-th row of H

!

(v.[Hlo) = E(v, |0)
L
|_> (0..-AE,-A...0)
C..
= _Acq—l + EOCq - Acq+1
Cc

rRus  El(vilo)|= Ele,]

comes from the

A assumed simple
q+ 1 form of model

0O=c|E,~E|-c,A-c

TRICK: probability of finding e~ on each lattice site should be the same
for all sites (complex amplitudes might differ but probabilities
will be constant)

__ _ikqt
let Cq =€ ‘C

=1 for all ¢

This choice of ¢, 1s a good guess that is consistent with expectation of
equal probabilities on each lattice site.

¢ is distance between adjacent atoms

q is integer

q/ is the coordinate of the g-th site: looks like e plane wave
k is of dimension ¢!

problem reduces to finding allowed values of k. I

periodicity of lattice provides the important result that if k is replaced by k’,

2n
where k’ =k + K the wavefunction does not change (translational symmetry)
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. (ikq£+i2nq£J ot i
C, — ez q ¢ ikq ez ng _ C
q —— q

=1

=e =e

Since all distinguishable |¢) may be generated by choosing k in the interval

T T . . . . .
——<k< E restrict k to this range: called “First Brillouin zone”.

14

Return to question about what happens when % is not in 1st Brillouin Zone next
time [get another part of the band structure using qualitative perturbation
theory rather than a matrix diagonalization calculation].

ikql

Plug c, =e 7 into Schrodinger Equation

q
0=c,(Ey-E) —A(ch +cq_1)

0 = pika! (Eo _ E) _ A(eik(qﬂ)f + eik(q—l)é)

tkqt

divide by e"?" and rearrange

ikl —ikl This is the condition on

E = Eo = A[e + e ] E,k that must be satisfied
\ ~ 4 for all eigenfunctions of

2 cos k! the Schrédinger equation

E=FE,-2Acosk/l
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E varies continuously over finite interval E,+2A

7\
E(kR)

L, +2A
E,+1

—n/€ 0 +7t/€ k

The choice <v JHlv, +1> = —A leads to minimum E at k = 0.

Are these all of the allowed energy levels that arise from a single orbital at
each lattice site? Apparently not — see next time. Only half of the states.
[One orbital per atom — two spin-orbitals per atom. Antisymmetrization gives

another separate band.]

Could repeat calculation for a higher energy state at each site. Would get a
broader band centered at higher energy.
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closer look at spatial form of ¢, (x) = <x‘(0k>

0.00=(xlo,)= 3 e (x]v,)

q__°° Hﬁ_/
vq (%)

goal is to replace infinite sum by single term:

This is called

a Bloch function
N

r

tkx
show that: QDk(x) ~ e uk(X)
A
plane wave periodicity
(Free particle) of lattice

begin by requiring that ¢, (x) = 2 eikqlvq (x)

q:—oo

Translational symmetry imposes a relationship
between v (x) and v,

each v (x) 1s localized at site q.

v, (x) = vo(x — qf)

i shift x by
_ ikqt . —q/ to get
(pk(x ) —z_“oo eV (x qﬁ) from site ¢
= to site 0
@, (x+/0)= Z elkqfvo(x+£ qé)
g=—oo

—Vo( (q 1)()
="y eik(q—ﬁfvo(x ~(g-1)¢)
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re-index sum (replace q—1 by q)

O (x+ 1) = ikggok(x)

translation
by /!

This form of ¢, has all of the symmetry properties we will need. This form
is sufficient to satisfy the symmetry requirements (boundary conditions).
This means, instead of writing ¢, (x) as sum over atom - localized

\% q(x)’s, it is possible to write @ (x) as product of 2 factors
_ ikx
¢,(x) = e u,(x)

1st factor conveys translational symmetry of a plane wave with wavevector &, 2nd
factor builds in translational symmetry of lattice with spacing ¢. This is a more
general expression that incorporates all of the properties of the original definition
of ¢,(x) as a sum over localized orbitals.

uk(x+£) =u,(x)
note that gok(x+€) = et uk(x+€) ‘M[e uk(x)]

=e' g(Pk(x)

as required.

Note also that 3¢, (x + n()32 = 3¢,(x)32 implies that, as required, e~ has
equal probability of being found on each site.
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