5.73 Lecture #34 34 -1
92/_11'E and Slater Sum Rule Method

LAST TIME: 1. L2,S? method for setting up | NLM; SMg) many-electron basis
states 1n terms of linear combination of Slater determinants

* M, = 0, Mg = 0 block: I = L.L.

S*>S.S.

* diagonalize S? (singlets and triplets)
* diagonalize L2 in same basis that diagonalizes S*
[Recall: to get matrix elements of L2, first evaluate L2 |||\|I ||>
and then left multiply by <||\|I |H

2. coupled representations |njm¢s)and | NJLSM,)

3. Projection operators: automatic projection of L?
eigenfunctions¥lremove unwanted L. ” part

* preserve normalization of wanted L part

* remove overlap factor

TODAY:

1. Slater Sum Rule Trick (trace invariance): MAIN IDEA OF LECTURE.
2. evaluate Y, ¢’/r, matrix elements  (tedious, but good for you)

i>j

[2-e~ operator, spatial coordinates only, scalar wrt J,L,S]

* multipole expansion of charge distribution due to “other electrons”

* matrix element selection rules for e*/r;; in both Slater determinantal and
many-e~ basis sets

* Gaunt Coefficients (c¥) (tabulated) and Slater-Condon (F¥,G*) Coulomb and

han e pa . Because of sum rule, can evaluate mostly
and ( ba type matrix elements and never <ab‘ ‘cd>
t pe rnatrlx e ements !

3. Apply Sum Rule Method
4. Hund’s 1st and 2nd Rules
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1. Slater’s Sum Rule Method

It is almost always possible to evaluate e’/ r; matrix elements without
solving for all [LM, SM,) basis states.

* trace of any Hermitian matrix, expressed in ANY representation, is
the sum of the eigenvalues of that matrix (thus invariant to unitary
transformation)

g Zez / r; and every scalar operator with respect to J (or I:,é) has
i>j
nonzero matrix elements diagonal in J and M; (or L and M, ) and
independent of M; or (M, ,My)

[W-E Theorem: J is a GENERIC ANGULAR MOMENTUM with
respect to which %/ r;; 1s classified]

Recall from definition of r,,, that ez/rij is a scalar operator with respect to
J, L, S but not with respect to j; or £,.

. . . 2
Interelectronic Repulsion: Ze / 5

i>j

* destroys orbital approximation & $$ for electronic structure calculations

”

* “correlation energy,” “shielding”

e_ -
! ha

F e, at (ri’017¢1)

" e, at (7’2,92,%)

hh =KL —H
scalar with
respect to J, 2 2 ) 2
L, S, s, but > =0 —2hn A+

not j;, ¢

i

no =12 412 = 2| |cos(7,B)]
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- .. (T

expand 7' as power series in (ij
r.
>

where r_ is smaller of |

r|

K

(integrals evaluated in 2 regions : h<n, <H)

lengthy algebra | see Eyring, Walter, and Kimball “Quantum Chemistry”
pages 369-371 and, for relationship between Legendre
polynomials and Y/”(Q,q)), pages 52-59.

20-pole moment (n=0 monopole, n=1 dipole,...)

g 471 r"

multipole l _ - < m m
U DI I ey et (9"’(/5")[1/”%. (© ’mé

> angular momenta
convergent magnitude n, projection m

series

scalar product of 2 angularmomenta, one
for i-th particle, one for j-th

not principal
q.n.!

I* converts m to —-m

n-pole charge distribution & n-th rank tensor & 2n+1 components

No dependence on s, so 1/ I is scalar with respect to S, s,, S;-

[Y;n (ei’q)i) = <ei’¢i

(;=nm, =m>]
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The reason for this rather complicated looking expansion is that it is
well suited for integrals over atomic orbitals which are expressed in
terms of r,, 0, ¢,, which are coordinates of the 1-th e~ with respect to the

center of symmetry (nucleus) rather than the other e~. It enables use of
AO basis states. Otherwise 1/r;; integrals would be nightmares.

Selection rules for matrix elements:

] not principal q. n. |

‘Aﬁi‘gé , Am, =m , Am, =0

, Am, =-m , Am, =0

term in multipole expansion

triangle rule, |(; = {|<n</{; + ]

(steps of 2 because of parity)

overall: AL =0, AS=0, AM; =0, AMg =0, and indep. of M, Mg

Can use any M, Mg from box diagram.

It is also clear how to evaluate the angular factors of the atomic orbital matrix
elements using 3-j coefficients. Special tables of “Gaunt Coefficients” (also C&S
pages 178-179, Golding, page 41, see handout).
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general 1/r;, matrix element (Aso = 0, 1, and 2 are possible)

+
€
1 1
(labllt/r,flcdll) = { labll—|ledl ) - { labl]—{ldcl
I ho ho
+
1
1
abl—lcd ) =06(m. ,m_\o(m. ,m_ \o(m, +m, ,m, +m, \X
7 S, s, sy Sy l, ly L. Ly
12 .
Yook Urgy dqes noggpe:ate *% 1/r,, scalar with respect
on spin coodinates A ~ ~
P toL,=1¢(+1{,
> o cHem, em, \cHe,m, 0 o m )X
k 0 a f a ’ C Z ¢ b f b ? d f d
;,_J el— ez_
tensor rank for . )
product of AOs GAUNT COEFFICIENTS —
occupied by e #1 ANGULAR FACTOR OF
must be same INTEGRAL
as for #2 for scalar
product of n-th rank
tensors
k
R (nt ,n,t,nt .n,l,)
radial factor
1/2
V4
om0 1 200+1 B ARLE
C m m,|=|— —m’
, (> (") 20 +1 00 ““m,-m;, ,m;, ,—m,
tabulated Clebsch-Gordan coefficients
that result from integral
over product of 3 spherical
harmonics — one from
operator, two from orbitals
triangle rule: l-vl<k<i+r

(+ 0" +k=even (from properties of Algéf],) (parity)
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restrictions on k and m: @ integra} i n|1 ( Tm=n,
m|_rpr 2
<n1€ m, (Y jntimy, >
|

triangle rule

for intraconfiguration matrix elements, R¥(abcd) takes on especially simple
form (because the same one or two orbitals appear in the bra and in the ket).

R*(ab,ab) = F*(a,b)
“Slater — Condon” parameters

Rk (Clb, ba) = Gk (Cl, b) (these are reduced matrix elements dependent only on 7,
4, L., {4 and not on any of the m, quantum numbers.) All

L-S states from one configuration are expressed in terms
of the same set of F¥, Gk parameters.

spins must match
or K term vanishes

2
labl|“—{labll) = J(a,b) - 8(m, ;m, )K(a.b)

riZ DIRECT EXCHANGE
J(a,b) = abéab = i ck(faméa Lum, )ck(f s ,ébmfb)x Fk(naéa,nb,fb)
g k=0 _

ak(€ Iy, NG WMy, ) [J‘J‘a * (l)a(l)épb * (2)b(2)dT1dT2]

charge distributions

=
L
&
M
Q
S

‘ Q
S
Q

Il

5(msa M, )g{) [ck<f J SLym, )]QGk(naﬁ ool b)

bk(f m fhm“)

a’vr,’

[[[ a* Wb1)0pa)b* 2drdr,

something else!

for special cases, such as nd 2 nt =n/t,and F k=Gt

Now we are ready to use tables of ¢* (or, more conveniently, a* and b*)

to set up e*/r, matrix
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Easy example: nf’ (recall ', °H, 'G, °F, 'D, °P, 'S)

N

these are the only L-S states represented
> by a single Slater determinant —
extremes of M; ,Mg box diagram

'7 60) = [30:38
*H 51) = HSocZocH)

since e2/rij is a scalar operator with respect to L, S, J, matrix elements are M;, Mg,
M; independent — so we can use any M;,Mg component to evaluate the matrix

element — whichever 1s most convenient!

<1 1€ 1> = ¥ ck(331,33)ck(332, 33)F* (nf,nf) - 8(0e, )Y, [¢*(33,33)] G*(nf',f)
I8 k=0,2,4 — &
. L, oneitn o
— Z [ck (33’ 33)]2 Fk (I’lf, I’lf) other spin B

k=0,2,4,6

3H>: > {[ck(33,33)ck(32,32)]Fk(nf,nf)—[ck(33,32)]2Gk(nf,nf)}

2
e
both spins o

k=0,2,4,6 — _
l— Fk(nfz)

(a,a) (b,b) (a,b)
Here is where everyone makes mistakes!

o

<3H

Use table of ¢* in Golding/C&S handout (C&S page 179).

Note that [1/7361 - 64] Y2 is implicit after the first entry for {2, k£ = 6.

k=0 2 4 6
c(33,33) 1 -1/3 /11 —[1/7361+64]"*
c(32,32) 1 0 —7/33 —[6/7361964]"*
c"(33,32) 0 +1/3 -30"/33 —[7/7361+64]"*
D, 1 225 1089 = 33? 736164
omvenio—
factor
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D, is a factor that simplifies the expressions. Each term has the forrn F</D,. Call
this ratio F,. Get simpler looklng expressions when you replace F* by D, F, (D
appears in denornmators of ck as [.../D,]"2)

2
e\ e (1) 1 . 1 6 Always have two
< Ir_ I>— F +(§jF +(EJF +(7361-64)F factors of ck. Thus Fk
12 gets divided by D, to
= F, +25F, + 9F, + F yield Fy.

e

2
SH_
P

"H > =+ K‘ %j(()) -1/ 3)2}?2 T K%)(;gj 333033}74 ’ {%}FG

— FO_lFZ_ 51 F4 -13 FG
9" (337 736164

= F, - 25F, - 51F, —13F,

A lot of book — keeping, but easy to learn how to use tables of ck, a*, b, D,.

But it is much more work for f* than for 2.

SUM RULE METHOD:

Basic idea is that the sum of diagonal elements in the single Slater determinant basis
set within an M;, Mg box is equal to the sum of the eigenvalues!

Look at M, =3, M, =1box: |3z0al and [2a1al. This box generates |*H 31) and |*F 31),
but trace |s E(SH) + E(3F) and we already know E(3H)!

So ) =(|30:3p]))
( )= (Ba20l])
E( F) = (Bo0all) + {2odall) — ECH)
'G) = (|BoutB) + ([3B10d) + (2e2Bf) — £('1) - ECH)
'D) = (3o~ 1B} + <H3B Lot} + ([[2c0B]) + ([2B0od)
+{||toutBlf) - £('1) - E('G) - ECH) — ECF)
ECP)={Bo.—20l) + <||20c —lall) + (o0l — ECH) - ECF)

E('S) = sum of seven <H H> — sum of six E(***'L)

updated September 19,



5.73 Lecture #34 34-9

This seems rather laborious, but it 1s much easier than:
generating each | LM, =L SMg = S) as an explicit linear combination of Slater

determinants
then calculating matrix elements of e?/r,;, because there are many nonzero off-

1)°

diagonal matrix elements between Slater determinants in the same M; ,Mg box.

2 25+1

Here is the final result for the energies of all (nf) L terms:

E — E(O) +E(1) +E(2)

Bare nucleus

E" = sum of orbital energies from 2® = — =, hydrogenic orbital
n? energy — or partly
9 shielded by filled shells.
Y <e > + <Hso>
Y. v
Y next lecture
ready now
EY = (in@configurational spin—orbit)+(in’gconfigurational e2/rij)
CI
shielded shielded
For nf* | 0 all filled by same
subshells subshell
'1 2¢, + Ry(nf?) +25E(nf?) +9F () + F(nf?)
H 2¢, +F, ~25F, ~51F, ~13F,
'G 2e, + I -30F, +97F, +78 F;
°F 2¢, + K ~10F, ~33F, ~286 F,
'D 2¢e, +F +19F, -9 F, +715F,
P 2¢, +F, +45F, +33F, - 1287 F,
'S 2¢, +F, +60F, +198 F, +1716 F,
' | | I
shielded-core intraconfiguration L-S term splittings
configurational
energy

(there is NO center of Gravity Rule for degeneracy weighted L-S terms)
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Now it is easy to show that all F\’s are > 0 and F, >> F, ,, etc. (roughly factor of 10
per step in k)

From this we get an empirical rule

Lowest E of all L—S terms is the one with

* MAXIMUM S
* of those with Maximum S, lowest 1s the one with MAXIMUM L

These are Hund’s first and second (of three) rules.

Note also that Hund’s rules do nothing about predicting the energy order of L-S terms
except for the identity of the single, lowest energy L-S term.
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Nonlecture

There are several interesting problems also solved by this e?/r;; formalism.

1. Energy splittings between and Slater determinantal characters of two or more L,S
terms of the same L and S that belong to the same L,S configuration

e.g. d® — two °D terms
see pages 47 - 50 of Golding for 2 x 2 secular determinant for *D of d*

2. matrix elements of e?/r;; between same—L,S terms that belong to two different
configurations

eg. nd’ S3P'D’F)'G
'S;’P'D,’F)G
ndn’d 777777 7 tno Pauli restrictions
3S,1P,3D,1F,3G
so there will be  'S~'S
'D~'D
‘F~F
'G~'G
interconfigurational CI’s, and each of these 5 interaction matrix elements will
NOT be of the same magnitude.
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