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updated September 19,

Last time:  Matrix elements of Slater determinantal wavefunctions
Normalization:  (N!)–1/2

F(i):  selection rule (∆s-o ≤ 1), sign depending on order
G(i,j):  selection rule (∆s-o ≤ 2), two terms with opposite signs

TODAY:  Configuration ∅ which L-S terms? ∅ L-S basis states ∅ matrix elements

Method of crossing out boxes

ladders plus orthogonality

Many worked out examples will not be covered in lecture.

M ML S,  







Longer term goals:  represent “electronic structure” in terms of
properties of atomic orbitals

1. Configuration → L,S terms
2. Correct linear combination of Slater determinants for each

L,S term:  several methods
3. 1/rij matrix elements → Fk, Gk Slater-Condon parameters,

Slater sum rule trick
4. HSO

* ζ(NLS) — coupling constant for each L-S term in an
    electronic configuration
 * ζ(NLS) ↔ ζnl

  one spin-orbit orbital integral for entire
    configuration
* full HSO matrix in terms of ζnl

5. Stark, Zeeman, optical transitions
6. transition strengths

There are a vastly smaller number of orbital parameters than the
number of electronic states.  The periodic table provides a basis for
rationalization of orbital parameters (dependence on atomic number
and on number of electrons.)

matrix elements of ,  g - values
r
r( )

  n r nl l′ +1

KEY IDEAS:

* 1/rij destroys spin-orbital labels as good quantum numbers.
* Configuration splits into widely spaced L-S-J “terms.”
*                 is a scalar operator with respect to L, S, and J thus matrix elements

       are independent of ML, MS, and MJ.
* Configuration generates all possible ML, MS components of each L-S term.
* It can’t matter which ML, MS component we use to evaluate the 1/rij matrix

elements
* Method of microstates and boxes: Book-keeping which L-S states are present,

organize the algebra to find eigenstates of L2 and S2, basis for “sum rule”
method (next lecture).

1/rij
i j>
∑
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Which L-S terms belong to (nf)2

* shorthand notation for spin - orbitals
n m /   e.g.  4f3   ,   could suppress 4 and f

( main diagonal  for Slater determinant,  for simple product

of spin - orbitals)
* standard order (to get signs internally consistent)

3 3 2 2   - 3  - 3  is my standard order for f

 spin orbitals

* which Slater determinants are nonzero and distinct (i.e., not identical when
spin - orbitals are permuted to a different ordering)?

l

l

lα β α

α β α β α β

…

…
+( ) +( ) = ( )( ) =2 1 2 1 7 2 14s

f2 - take any 2 s-o’s and list in standard order

How many nonzero and distinct Slater determinants are there for f2?

14 14 13
2

 spin - orbitals

2 identical electrons



⋅ = 91

general n
p p

p

n
l

l
ll

( ) +( )[ ]
+( ) −[ ]∏ :  

!
! !

2 2 1
2 2 1

1

subshell : one such factor for each subshell

How to generate all 91 linear combinations of Slater determinants that correspond
to the 91 possible LMLSMS〉 basis states that arise from f2?  Next lecture.

* ladders plus orthogonality
* construct and diagonalize L2 and S2 matrices
* projection operators
* 3-j, 6-j, 9-j coefficients

all of these
are labor
intensive

  

2 0 0α α α β β β is OK but 0 2  is not in standard order and 2 2 ≡

Slater determinants!

put p indistinguishable
e– and 2(2l+1)-p holes
into 2(2l+1) boxes
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L2 2 1 2 1 2

1 2 1 2

2

2 1

12 12 2 1 2 2 1 2 1

3 4 2 1 3 4 1 2 1 2

3 4 2 3 3 4 1 0 3 0

28 2 1 10 2 1 12 2

α β

α β α β

α β

α β

α β β α

=

+( ) + ⋅( ) +

⋅ − ⋅[ ] ⋅ − ⋅[ ] +

⋅ − ⋅[ ] ⋅ − ⋅[ ]



















= − + ⋅

h

h

/ /

/ /

−−[ ]1 2 3 0/ α β

∆l = 0, ∆M
l
 = 0

Sometimes all we want to know is “which L-S terms”?
[WHY?  1/rij is scalar with respect to L,S, and J, thus
eigenenergies are independent of ML, MS and MJ.]
EASY because can read Lz = ∑liz and Sz = ∑siz directly from
the spin-orbital labels.

          

Lz
i

iz

LM

2 1 2 1 2 1 2 1

3
1

2

α β α β α β= = +[ ]

=
=
∑ ll h

ML is sum of m
l
’s

MS is sum of mS’s

NONLECTURE

        

What about   Can do this in either of two ways:

as below (very cumbersome)

*  [separately apply each

1e  operator rather than treat entire operator as a 2e  operator.]

very laborious because 

2

– –

L

L L L L L L

L

?

*

( / )( )

,

2 2

2 2

1 2

2

= + +

= ⋅ = +

+ − − +

>
∑ ∑ ∑

z

i j
i j

i
i

i j
i jll ll ll ll ll

L

L

2 2

2

2 1 1 2 1 3

3 0

α β α β≠ +( ) =

= =

∑
i

i i i

L S

f

M M

h l l l  for 

WORK OUT  matrix for  block of f  for future reference2,  

one e– two–e–

        

L2 2 2
1
2

= ⋅ = [ ] + + +( )



∑ ∑ ∑

>
+ − − +

i j
i j

i
i

i j
iz jz i j i j

,

ll ll ll ll ll ll ll ll ll

∆l = 0, ∆M
l
 = 0

∆m
l1 =  –∆m

l2 = ± 1

        

ll ll

ll ll

1 2

1 2

− +

+ −

l(l + 1) m
l1ml2

non-
standard
order

    all are ∆ = ∆ = ∆ =M m mS S S1 2 0

All of the 12, 21 type matrix elements are 0 because of ms mismatch.

Recall ± (〈12|G|12〉 – 〈12|G|21〉).
e.g. spatial part2 1 1 2 0α β β α =
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L

L

L

2

2
1 2 1 2 1 2 1 2

2

2
1 2 1 2 1 2 1 2

2

2
1 2 1 2

3 3 0 3 3 0 6 2 1 6 2 1 30

6 3 0 6 3 0 3 2 1 3 2 1 12

11 3 0 11

h

h

h

− − − −

− − − −

− −

+ + +[ ] = [ ]

+ − −[ ] = [ ]

−

/ / / /

/ / / /

/ /

α β β α α β β α

α β β α α β β α

α β 33 0 3 22 2 1 3 22 2 1 42

3 22 3 0 3 22 3 0 11 2 1 11 2 1 20

1 2 1 2

2

2
1 2 1 2 1 2 1 2

β α α β β α

α β β α α β β α

+ ⋅ − ⋅[ ] = [ ]

⋅ − ⋅ − +[ ] = [ ]

− −

− − − −

/ /

/ / / /L
h

find eigenvalues and eigenvectors of this block ML = 3, MS = 0 of f2

a lot of algebra is not presented here!

* each Slater basis state gets “used up”

* first 2 eigenfunctions are in form αβ + βα → S = 1

second 2 eigenfunctions are in form αβ – βα → S = 0

prove this by applying S2 to above eigenfunctions of L2

END OF NON-LECTURE

L = 5

L = 3

L = 6

L = 4

  

L

L

L

2 2 1 2

2 2 1 2

2 2 1 2

2 1 28 2 1 10 2 1 12 2 3 0

3 0 24 3 0 3 0 12 2 2 1

3 0 24 3 0 12 2 2 1

β α β α α β β α

α β α β α β

β α β α β α

= − + ⋅[ ]
= + ⋅( ) + ⋅[ ]
= + ⋅[ ]

−

−

−

h

h

h

/

/

/

( )

( )

      

L2 2

1 2

1 2

1 2

1 2

3 0

2 1

1 2

0 3

24 0 12 2 0
0 24 0 12 2

12 2 0 28 10
0 12 2 10 28

=
−
−

⋅
⋅

⋅ −
⋅ −



















−

−

−

−

h

α β
α β
α β
α β

/

/

/

/

Many steps skipped …

[the bottom two Slater determinants are intentionally out of standard order to
display decreasing values of m

l
(1) and increasing values of m

l
(2).]

(Note how easy it is to see that normalization is correct.)
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Nonlecture pages were intended to show that applying L2 and S2 to Slater
determinants is laborious — much moreso than Lz and Sz.

This is one reason why we use the “crossing out ML, MS microstates” method
to figure out which L,S states must be considered.  Often this is sufficient —
or can be the basis for some shortcut tricks!

ML, MS method works because:

* each configuration generates the full (2L + 1) (2S + 1) manifold of ML, MS
states associated with a  given L,S term.  Why?  If you have one |MLMS〉
you can generate all of the others using L± and S± operators.

* This must be true because, starting with ML = L, MS = S, L– and S– can be
used to generate the full L,S term without the need to go outside the
specific configuration.

 ML= LMAX L – 1 L – 2 … 0

 MS = SMAX
list all Slater
determinants

S – 1

0

ML, MS method

No need to include negative values of MS or ML.

SMAX = (# of e–)/2.
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6 5 4 3 2 1 0

1 3 3 3 2 3 1 3 0 2 0 3 2 3 3

2 2 2 1 3 1 2 1 2 2

1 1 1 0 1 1

0 0

0 3 3 3 2 3 1 3 0 2

( ) ( ) ( ) ( ) ( ) ( ) ( )I H G F D P S

α α α α α α α α α α α α α α
α α α α α α α α α α

α α α α α α
α α

α β α β α β α β

− −
− − −

−

αα β α β α β
β α β α β α β α β α β α

α β α β α β α β α β
β α β α β α β α

α β α β α β
β α β α

α β

0 3 2 3 3

3 2 3 1 3 0 2 0 3 2 3 3

2 2 2 1 3 1 2 1 2 2

2 1 3 1 2 1 2 2

1 1 1 0 1 1

1 0 1 1

0 0

− −
− −

− − −
− − −

−
−

ML

MS

Slaters
for f2

need not include MS < 0 or ML < 0 because these are identical to the
 ML > 0 and MS > 0 quadrant.

Notice that as you go down in ML, the number of Slater determinants in
each ML, MS box increases only by one.  This is a prerequisite for using
the L– plus orthogonality method!  This useful simplicity does not occur
as you go down a column in MS.

f2

This convenient situation does not occur for d3 or f3.  Why?  Because there
are more than one L-S term of a given symmetry.
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S P D F G H I K
L = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7

No J

Start in extreme ML, MS corner — This generally contains only one Slater
determinant

L M S ML SMAX MAX
= =, so we have one of the L - S terms

–

–

L M L

S M S
L

S

≤ ≤
≤ ≤

This L-S term
includes one of each
ML, MS in the range

This means this L-S term will “use up” the equivalent of one Slater
determinant in each ML,MS box

bookkeeping — cross out one Slater determinant, any one, from each
relevant ML,MS box

now repeat, again starting at the extreme ML,MS corner

etc. * 3H 3 × 11 = 33
* 1I 1 × 13 = 13
* 3F 3 × 7 =21
* 1G 1 × 9 = 9
* 3P 3 × 3 =9
* 1D 1 × 5 =5
* 1S 1 × 1 =1

91 as required!

Since there is only one Slater determinant in the ML = 5, MS = 1 box, generate
all triplets by repeated application of L– to ||3α2α|| (plus orthogonality) and
generate all singlets by L– on
||3α3β||.  Many orthogonalization steps needed!  Especially for singlets.
Need S– also.
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l (nl)2 (nl)3

s 1S —
p 1D, 3P, 1S 4S, 2D, 2P
d 1G, 3F, 1D, 3P, 1S 2H, 2H, 2F, 4F, 2D(2), 4P, 2P
f 1I, 3H, 1G, 3F, 1D, 3P, 1S
g

a simple, memorable
pattern

rather complicated

simple vector coupling

Before illustrating the ladders plus orthogonality method, it is useful to
show some patterns and list some tricks.

Most difficult cases are (nl)m where m = 2, 3,… 2l.

Easy to combine nl with n′l′ because no need for special bookkeeping.

2G,

  n n n L L L LS S S
l l l l l l l( ) ′ ′[ ] ⊗ ′( )= + ′ + ′ − − ′( )+ +( )2 2 2 1 2 2 2 2

1
,

, ,
 and 

L

same L-S states for 2 and 3 “holes” instead of electrons.
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3

3

1 2 3 1 2 1 2

3

3

3 1 2

51 2 3 2

5 6 5 4 41 3 4 3 2 2 2 3 4 2 1 3 1

41 3 1

41 3 1

31 1 3 2 1 2 3

H M M

H

H

H

H

H

L S

i

i

=

=

⋅ − ⋅[ ] = ⋅ − ⋅[ ] + ⋅ − ⋅( )

=

= Σ

= ( ) + (

−

−

−

−

L

h

L

ll

ll

α α

α α α α

α α

α α

α α

h
/ / /

// /

big surprise!

))1 2 3 0/ α α

Ladder and Orthogonality Method

f2 example

Start with 2 extreme UNIQUE states

Use this to generate all triplets by applying L– repeatedly and using
orthogonality when necessary.  Note that # of determinants in each ML,MS=1
box increases no faster than in steps of 1.

To get to 3P, must not only apply orthogonality several times, but must follow
each L state down to the ML = 1 box!

To get singlets, start with

Again, as L– takes us to successively lower ML boxes, # of determinants
increases in steps of 1.  But some of these steps are due to triplets with MS = 0.
Need to step triplets down into MS = 0 territory using S– once.  Lots more
orthogonality steps, lots more trails being followed.  AWFUL, but do-able.

Nonlecture

  
3 5 1 3 2H M ML S= = =, α α

  
1 6 0I M ML S= =, .

0
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3

1 2

50
1
2

3 2 3 2H =




 +[ ]

/

α β β α

Try a detour into singlet territory, and then check for self-consistency.

ML
MS

MS = 0

There are 4 Slater determinants in ML = 3, MS = 0 box.  We can’t find the other
two singlet linear combinations uniquely without using L– on the extreme singlets.

wrong order

    
orthogonality: 3

1 2 1 2

31
2
3

2 1
1
3

0F =




 −





 3

/ /

α α α α

  

and so on,  to get all  many electron functions.3 1L L  

     

S s− =




 −



















⋅ − ⋅[ ] =




 ⋅ − −















 +( )



−∑3

1 2 1 2

1 2
3

1 2 1 2

31
2
3

2 1
1
3

3 0

1 2 1 0 30
2
3

1
2

3
2

1
2

1
2

2 1 2 1

F

F

i
i

/ /

/
/ /

α α α α

β α α βh h





−






[ ] +( )1
3

1 3 0 3 0
1 2

1 2
/

/
β α α β

  

3

1 2 1 2

30
1
3

2 1 2 1
1
6

3 0 3 0F =




 +[ ] −





 +[ ]

/ /

β α α β β α α β

   
S s− =





 +

















−∑3

1 2 1 2

31
1
3

2 1
2
3

3 0H i
i

/ /

α α α α

    

3

1 2 1 2

30
1
6

2 1 2 1
1
3

3 0 3 0H =




 +[ ] +





 +[ ]

/ /

β α α β β α α β

          

L− =

⋅ − ⋅[ ] = ⋅ − ⋅[ ] +( )
−∑1

1 2
1

1 2

60 3 3

6 7 6 5 50 3 4 3 2 2 3 3 2

I

I

ill α β

α β α βh h
/ /

  

1

1 2

50
1
2

3 2 3 2I =




 −[ ]

/

α β β α

           
L− =





 −[ ]−∑1

1 2

50
1
2

3 2 3 2I ill

/

α β β α

orthogonality
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wrong order

wrong order

orthogonality

At last we are ready to enter the ML = 3, MS = 0 block!

Finally, by orthogonality:

IMPORTANT →

    

1

1 2 1 2

40
5
22

3 1 3 1
6

11
2 2I =





 −( ) +



















/ /

α β β α α β

    

3

1 2
1 2 1 2

40
1
20

6 2 2 2 2 10 3 1 3 1H =






( ) +( ) + ( ) +( )[ ]
/

/ /
α β β α α β β α

    

3

1 2

40
1
2

3 1 3 1H =




 +( )

/

α β β α

    

1

1 2 1 2

40
3

11
3 1 3 1

5
11

2 2G =




 −( ) −







/ /

α β β α α β

     

It is clear that if we apply  to  we will get the same form we 

already derived starting from   Let' s lower 
-L 3

3 1

40

51 40

H

H I.

              

L− =




 −[ ] +










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
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
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

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1
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1 2
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40
5
22
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6
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2 2

30 30
5
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6 2 1 2 1
5
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12 3

I

I

i
i
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/ /

/
/

/
/

/

α β β α α β

α β β α α00 3 0

6
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10 2 1 2 1
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1
22

4
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2 1 2 1
2
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3 0 3 0

1 2
1 2

1

1 2 1 2 1 2

β β α

α β β α

α β β α α β β α
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
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
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
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/ /

α β β α α β β α

        Does this match what one would get from –L 1 40G ?

1
1 2

1 2 1 240
1
44

10 3 1 3 1 6 2 2 2 2I = 



 ( ) −( ) + −( )[ ]

/
/ /α β β α α β β α



32 - 125.73 Lecture #32

updated September 19,

IMPORTANT →

checks!

As you see, this is extremely laborious.  There is a better way!

**
.

There are several patterns:  singlets for  always have the 

form  and triplets always 

MS =

−( ) +( )





0

αβ βα αβ βα

This can be generalized for any value of S (page 61 of Hélène Lefebvre-
Brion-Robert Field Perturbations book)
[M. Yamazaki, Sci. Rep. Kanezawa Univ. 8, 371 (1963).]

2. Failure and Inconvenience of ladder method
The ladder method is OK when you have a single target
state, especially when it is near an edge of the ML,MS box
diagram.  Essential that # of Slater determinants in each MLMS
box increases in steps of 1 as you step down in ML or MS.

LM SML S

Fails when there are 2 L-S terms of same L and S in a given configuration
— must set up 2 × 2 secular equation anyway.

3. L2 and S2 Matrix Method
Another method is based on constructing L2 and S2 matrices in
the Slater determinantal basis set.  This is no cakewalk either!

Since usually SMAX << LMAX for a configuration, it is best to start with S2

because it is simpler.

              

L−

−

=




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
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
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