5.73 Lecture #31 31-1
MATRIX ELEMENTS OF F(i) AND G(i,j)

Last time: orbitals — configurations — states (“terms”)
Fermions: Slater Determinants: Pauli Exclusion Principle
Notation for Slater Determinant: ||main diagonal”.

TODAY: 1. SLATER DETERMINANTAL MATRIX ELEMENTS
A. Normalization

B. F(i) One-e operator  e.g. H* =) a(r)¢, s,

C. G(i,j) Two-e operator e.g. H° =) ¢/,

i>j
Recall: specify standard order (because Determinant changes sign upon binary
permutation)
Goal: make inconvenience of Slater determinants almost vanish — matrix
elements will be almost what you expect for simple non-antisymmetrized

products of spin-orbitals.
pages 31-2,3,4 are repeat of 30-6, 7,8

A. Normalization: |y, )=(ND""?Y (1)’ @[ju,(D))...|uy(N))]
verify that (N!)~12 is correct ?actor
(wnlwn) =N X 0P ol (uy (D] (un ) [y (D). [uy ON)]
reartange into productsof one -¢” overlap integrals

=N Y (—1)p+p,1_N[ <Piui Pi,ui>
0.9 i=1

* ‘ul> are othonormal
* <u(i)‘u(j)> has no meaning because bra and ket must be associated with SAME e~

only nonzero LEGAL terms in ), are those where EACH P, = P/ otherwise get AT LEAST
9.9

* 2 MISMATCHED bra - kets
(w:(B) |, (). (10,0, (0))
-0 =0

(Here the electron names match in each bra-ket but the spin-orbitals do not
match.)

Think of a one- or two-e~ operator as a scheme for dealing with or “hiding” the
small number of mismatched spin-orbitals.
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5.73 Lecture #31 31-2
Thus it is necessary that =g’ , p=p’ , (-1)*"? =+1

and <1//N‘1//N> (NY) Z 80[ u, (1) u1(1)> <uN(N)‘uN(N)>]

=1 =1
each term in sum over g gives + 1, but there are N possibilities for
P,, N —1 possibilities for P,

. N! possibilities for sum over g

<l//N ‘I//N>:<N!)_1Z 1=1

Thus the assumed (N!)~"2 normalization factor is correct.

B. Matrix elements of one-electron operators

F=3 f(r,) e.g. I:=Z ’,

) =(N) ~1)" gla, @)...|ay @)

/2Z
vy)=(N !)_MZ (-1)" g1t

). by @V))

]

<I/IA‘FI// >=(N!) D (—1)p+p,ga[<a1(1)‘...]f(ri)go’[ )

1,90.0

~(' Y D [(Pa@ Py )

1,90.8

R a,G)f(x

Product of N orbital matrix element factors in each term of sum. Of these, N—1 are
orbital overlap integrals and only one involves the one-e~ operator.

P by (N))]

Je,@)) |- [(Buayav)
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5.73 Lecture #31 31-3

SELECTION RULE (¥,[F|¥,)=0 if |y,) and |y,) differ by more than one spin - orbital

(at least one of the orbital overlap integrals would be zero)

two cases remain:

1. differ by one spin-orbital

the mismatched orbitals
are in the same position

)= Hul(l)...ak(k)...uN(N)H}
) = (D)., () ..y ()

use u; to denote common spin-orbitals
use a,, b, # 0 to denote unique spin-orbitals

for this choice, all N P, factors of each g must be identical to all N factors of @’

additional requirement: @ must bring mismatched orbitals into i-th position
so that they match up with the f(r;) operator to give <ak(i)‘f ( :

r)k'>

ANY OTHER ARRANGEMENT GIVES

(0] bO) e }f(x)

—0

U, (l)

7&0

(N — 1)! ways of arranging the e~ in the other N — 1 matched orbitals and

there are N identical terms (in which the e~ is in the privileged location) in
the sum over i

(W, Fly ;) = (N (N = D! N{a,[fb,)
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5.73 Lecture #31 31-4

If the order of spin-orbitals in y, or y; must be arranged away from the

standard order in order to match the positions of a, and b,, then we get an
additional factor of (—1)® where p is the number of binary permutations

for difference
of one
spin-orbital

ie. A=1257
B=|12 3 5/|=-12 5 3|

<WA|F|WB> = _<7|F|3>

2. y, = vy Differ by zero spin-orbitals

(W, [Fly ) =

)P )]

all other factors are =1

N! identical terms from sum over g [again (N—l)!N]

(e o

* : ; comes out almost the same as naive
Normalization expectation WITHOUT need for
* 1-—e Operator F

antisymmetrization!
Examples of £3: v =[3olo — 20
(L,)=nB+1-2)
(L,S,)=r(3+1-1)
J.IBoto =20l = L. [Balo. — 20l + S, [Borlo — 20|
= 10 +10"2 3020 — 20 + 102 [3orte. — 1l + 0 +0 +0]

<WA\F\1//B> )2 <

now G(i,j)
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5.73 Lecture #31 31-5

C. G(1,)) : 4 cases
1. differ by more than 2 spin-orbitals: Matrix Element — 0

2. differ by 2 spin-orbitals: one pair of nonzero matrix elements
3. differ by 1 spin-orbital: sum over pairs of nonzero matrix elements
4. expectation value : differ by 0 spin-orbitals: double sum over pairs of
matrix elements
1. is obvious — only way to make up for orbital mismatch is to hide the
mismatched orbitals in (| g(1,j) | ) (rather than in an overlap integral). But one

can only hide 2-mis-matched pairs in, e.g.
(a.as(G.plbd,)

<l|IA ‘G(l,])‘wb> =0 ify,, yg differ by more than 2 pairs of
spin-orbitals

2. differ by two pairs of spin-orbitals
v, =lu ). a,G)..ay (). uy (V)
W, = (—I)T’Hul 0)...5,G)...by () ... uy (V)|

permutations needed to put b,
and b, in the i and j positions

<\|!A|G|I|IB>=(N!)_IZ Z (—1)"*"[orthogonality integrals] x

i>j 9.9

(P, (DI(Pa, ()| )P )| P, ()]

* are (N — 2)! ways of permuting the N — 2 matched u, functions that are
not filled with e~ 1 and j. Moreover these permutations must involve
P, =P’ (all k #1j).

also N(N — 1) identical terms in sum over 1> j
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5.73 Lecture #31 31-6

Thus there are (N —2)I(N — )N = N! identical terms in ), » sums.
> 9.

But there are still two possibilities:

1. p=¢ -p=p and P, =P/, P,=P]
2. g same as g’ except for i,j pair where

P. = P’ +p’
f ! (_l)p P _ 1
P, =P/
the 2 g@’s differ by one binary permutation

THUS: (y,[Gly ;) = H{({a,(Da,(2)[g(1,2)[b, ()b, (2)) - (a,(Da, (2)|g(1,2)}b, (1)5,(2)]

% /\# of permutations needed to make y; match vy,
by 2 spin-orbitals — no sign ambiguity if standard order is

initially specified

3. y,,yp differ by only one pair of spin-orbitals

You work this out (a matched with u,,

(a,b matched) u_ matched with b)
(W.AlGlv,) +Z [( ZJE (2)lg(1, 2)|l.7—(1'—| (2)) - <mn(2>|g<1,2>|nﬂll_)'b_<a>]
- fap2 o)

not arbitrary |

4. differ by zero spin-orbitals : expectation value

(WG, ) =Y, [(1,Du, @)lg. 2, (Du,, (2)) - (1, D, (2|31, 2)u,, (D, (2))]

n>m

DIRECT EXCHANGE
what we would expect unexpected: consequence
without antisymmetrization of antisymmetrization
1),(1,2) ((2)
Ph'& " Pm
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The ONLY real surprise that results from the antisymmetrization requirement
for two-electron operators is one extra term (and some signs) that has no
counterpart if antisymmetrization had been ignored.

SUMMARY
* antisymmetrize — Slater determinants
* matrix elements are hardly more complicated than those of simple spin-

orbital products
*signs due to permutation [Standard order]

*extra terms in G(i,))

Do some examples for p?

1. What L,S terms belong to p? (Lecture #32: method of crossing out microstates)
2. What is the correct linear combination of Slater determinants that corresponds to
a specific L-S term in either the | JLSM;) or the | LM, SM) basis set

*ladders plus orthogonality (Lecture #32)

*L? and S? matrices

* 3-j coefficients
3. e2/rij — F*(nt,n’¢’), G*(nt,n’2’) Slater Condon parameters

relative energies of L -S terms expressed in terms of F* and G*'s
4. Matrix elements of HSC

* C(NLS)

- L(NLS) ¢,

+ full H®C in terms of {,
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EXAMPLES:

Slater : p* [lo1f—'D M, =2,M =0

(L) = (hon gL i)
h:l + 1] = 2h

(s,) = h% + (— %ﬂ = On

12 tI'iCkY! L2Z :2 622 +2 EZ[Z' Easier to do this by
~ i % applyingL, =3 (,

i;tlj

1—e- 9 e twice

— operator operator
The only 2 terms in

sum are 1,2 & 2¢1
2)= w2121+ [<1oc1[3 1a1B>— <10c1[3
i) from spin-mismatch
=2n’ + 12 +12 - 23— 0] = 477 as expected

<S§> = hz[i + l} + hz[—l—i— 0- O} = 0h” as expected

mmﬂ

(e,

(,,

4 4

- =12 +12 = %(L+L_ +LL)
I} = %(L+L_ +LL,)+12

can you show (I?) = #6 for |11 f] of p*?
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5.73 Lecture #31

31-9

Patterns of Lowest-Lying States: “Aufbau” for adults!

Atom C N
lowest config. 1s*2s%2p? 1s*2s%2p°
L-S terms 1S, D, °p 1S, 2P, °D
Lowest Term P, S,
(re gu]ar) (no fine structure)
resultant
excitation  configuration
Transitions to 2pe 258 232p3 282p4
lowest
2 272
configurations 3s < 2p 2s2p3s 2572p73s
2 2
Al ==+1 3d < 2p|2s2p3d 2s72p-3d
5,3S, 3,1P, 3,1D 2,4P, ZD, ZS
5 4
[lowest L-S-J [1 §1§] 241£ 121552] <
term of each 3 o
. . ["Po] ['Py.]
configuration]| L3R 13p 24| 24p 2D G, S
°F,] ['Fs]
characteristic “D
transition . “regular”
(2p &2s) S 1 519
lowest L-S 3G, eeenne- P32
states Of the “inverted”
two relevant “p, 15%
configuration , ' 2 .
P

S

3/2

§2p(c) < C.zZp(N) < C2p(o)

O
1s*2s2p*
'S, 'D, °P

p,
(inverted)

2s2p’
28*2p*3s
2s*2p°3d

1,3P
3

["P,]

5,3S, 3,1P, 3,1D

5

[’S,]

5,3D, 3,1F’ 3,1P’ 1,3G, 1,3S

[’D,]

“Inverted”

0
3p. 1

1
2

—o

3Pp.
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