
29 - 15.73 Lecture #29

updated September 19,

Begin Many-e– Atoms:  Quantum Defect Theory

See MQDT Primer by Stephen Ross, pages 73-110 in Half Collision
Resonance Phenomena in Molecules (AIP Conf. Proc. #225,
M. Garciá-Sucre, G. Raseev, and S.C. Ross) 1991.

turning points of 

 for 

V r
e

r r

r n a n
n

a n
n

n

l

h l l

l
l l l l

l

( )

,
/

= − + +( )

( ) = ± − +( )













 ≈ ± +( )





<<±

2 2

2

0
2

2

1 2

0
2

2

1

1 1
1

1 1
1

2
m

*

*

*

*

Last Time:

 * µnl
(r)≡rRnl

(r) dominated by small lobe (n-independent nodal position) at

inner turning point, amplitude scales as n–3/2, and large lobe at outer
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TODAY

1. Many-e– atom treated as core plus outer e– that sees shielded core as Z(r).

2. l-dependent energy shifts → n-independent quantum defects

3. energy shifts are actually phase shifts in unl
(r) relative to unl

(r) for H-atom

4. Rigorous QDT
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A. regular and irregular Coulomb functions f,g satisfy Hydrogen-like Schr. Eq.
OUTSIDE core

B. Boundary conditions at r → ∞

C. πµ
l
 is a phase shift

repeated patterns in each integer region of ν

D. Multi-channel QDT
µ matrices

e– colliding with core can also transfer energy and angular
momentum to core-e–

noninteger values of  require mixture of  and 

find  satisfies  boundary condition
 number of members in series of ©s with integer spacings,  constant quantum defect
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* channels rather than eigenstates

* focus on dynamics, but in a “black box” way.  Dynamics happens within a
restricted region of space.  This region of space is always sampled, regardless of
E, in the same way.  Everything is determined by the boundary conditions for
the outgoing wave.

   SCATTERING THEORYrather than EFFECTIVE HAMILTONIAN MODEL.

The goal here is to extract from a complicated many-body problem some regular
features that will help in assigning and modeling experimental data.

ν
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1. Many-e– Atom

e–

outer electron
(valence, Rydberg)

outside core e– sees Z = +1
inside core e– sees Z(r) 1

Z

rcore

2. l-dependent sampling of core

energy stabilization

  

high  :  see 

low : see 

l

l
l

Z r

Z r Zeff

( ) +
( ) = >>

~

  

1

1 

H H H= + ( )( )0 1

− e

r

2

⇓ ⇓

call this ν, effective
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so far we have focussed on Enl

3. What does Z(r) do to unl
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* outside core sees same  as H
* must be same as  for H except for phase shift inward (why inward?)
* all the unique stuff is inside core –  causes the phase shift. 

- nodal structure inside core is invariant wrt n or E
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4. Do all of this more rigorously:  QDT

Mulliken:  “ontology recapitulates phylogeny”
intra-core nodal structure is n-independent
nodal structure encodes all e–↔nucleus dynamics!

* regular Rydberg series, one for each l
* n-scaling of inner lobe amplitude and of all matrix elements
* large quantum defects for small l
* entire Rydberg series and associated ionization continuum (e– ejected

in l-partial wave) is a single entity
follow Ross but not using atomic units

Schrödinger Equation for H (the “Coulomb Equation”)

as variable rather
than as q.n.

well known solutions:
2nd order differential equation - two linearly independent
solutions (at each l,ν)
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These are what
we will obtain.

generalize to noninteger n for non - hydrogen:

and use  (™effective principal quantum number) rather than E as a label for 
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of no use for Hydrogen, but it turns out that we need
both f and g to satisfy r →   ∞ boundary condition.
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for H, we have no use for g
l
(ν,r) because it cannot satisfy boundary

conditions as r → 0

A. For many-e– atoms, beyond some critical r0, Schr. Eq. is identical to that of
H – the only difference is that we must treat the r → 0 boundary condition
differently
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B. But we might want to use a mixture of f
l
 and g

l
 to deal with non-integer

(ν – l), as we will need for many-electron atoms.

H

Na

core

Na   u
l
(ν,r) emerges from core with

extra phase – sucking in of hydrogenic
function

* invariance of intra-core nodal structure – amount of
phase shift should be independent of n.  [We expect
this to be true.]

* mixing of 2 types of function is required in order to
have noninteger ν, yet still satisfy u

l
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TRICK: α
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constraint on ν.  What are all of
the values of ν which are
consistent with this constraint?
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Get this infinite series of ν’s, increasing in steps of 1, simply by

specifying one ν-independent value of µ
l
!

All of the ν-dependence (E-dependence) of ψ
l
(ν,r) is explicitly built

into f
l
(ν,r) and g

l
(ν,r).  µ

l
 describes the relative amounts of f

l
 and g

l

in ψ.  This f,g mixing is determined when the e– leaves the core

with the precise phase shift so that ψ → 0 at r → ∞.

C. How can we show that πµ
l
  is a phase shift?

The asymptotic form of  is ψ
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Coulomb function but with a πµ
l
 phase shift.

If µ
l
 > 0, this corresponds to an advance of the phase of u

l
(ν,r)

relative to that for H.  As expected, ψ is sucked into core by an
amount πµ

l
 [+ an arbitrary number of 2π’s] by the Z(r) core.

πµ
l
 is the phase shift that occurs inside the core.  It is the

boundary condition at r = 0 shifted out to r = r0.  On the other
hand, the r → ∞ b.c.  is satisfied by ν = n – µ

l
 where n is integer.

the
quantum

defect!
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µ >> µ > µ > µ … ≈s p d f 0

everything is repeated in each integer region of ν

ν, not E, is the way to look at Rydberg “patterns”

Finding the way to see a pattern is ALWAYS the route to both
“assignment” and “insight”

exact replica
of  lower-n
pattern
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D. inter-series interactions?  Suppose you have B 2s22p1

B s p+ ( )2 2

B s+ ( )2 2

Separate series converging to 2 series limits
perturbations
autoionization

  B s p P   2 22 2

autoionization

perturbation
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Described by a Multichannel Quantum Defect Theory

Replace etc.

by  matrices, one for each symmetry

µ µ µ
×

s p d,  ,  

 3 3 µµ

more complicated
many-electron
coupling problem

subject of next few
lectures.

off-diagonal elements describe inter-channel interactions (exchange of
angular momentum between Rydberg e– and core e–s.)

describe what happens in a collision of e– with ion-core.  Does it change
the state of the ion?  Does it change the kinetic energy and/or angular
momentum of the e–?  Unified picture of scattering at negative E (bound
states) and at positive E.

Next few lectures:

states of many-electron atoms

How to calculate matrix elements of many-electron (many Fermion)
systems.
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