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Hydrogen Radial Wavefunctions

The Hydrogen atom is special because it has electronic states and properties that scale
with n and ¢ in a simple and global way. This is “structure” that is more than a
collection of unrelated facts. H serves as our model for “electronic structure” of many-
electron atoms, molecules, and possibly solids.

By showing how E, (r°) (size and shapes), (n/|r|n’¢’) (general matrix element) scale
with n and /, it tells us the kind of behavior to look for in more complex systems.

* as a perturbation on H (quantum defects)

as a hint of relationships useful for extrapolation, assignment,
for recognizing when something behaves differently from naive
expectations.

*

TODAY

Simplified Radial Equation

Boundary conditions at r — 0 and r —
qualitative features of R ,(r)

n-scaling of (r°)

mathematical form of R, ,(r)
regular and irregular Coulomb functions

S e
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For any central force problem

AD @
H= [p_ +—
2u 2ur

2

}— V()

We know that P{, ¥, ¥, commute, so spherical harmonics, Y™ ®,9),

are eigenfunctions of M with eigenvalues R20(0+1).

v(r,8,0) =R(r)Y;"(6,0)
trial form for separation of y

Py =[ﬁ + 25:2 + V(r)}(?‘ (6,0)R(r) =Ey

2

Operate on the Y/ (0, ¢) angular wavefunction and move it through to left.

2 p(r+1
thy = ¥7(6,0) 3+t V(o) R -y
Vf(r)

so we can take Y"(0,0) out of the Schréodinger Equation and we are left with
a 1-D radial equation where the only trace of the angular part is the
(-dependence of V (1), the effective potential energy function.

Since the differential equation depends on ¢, R(r) must also depend on /,
thus R/ (1) is the radial part of y, and it will generally be an explicit
function of two quantum numbers, n and /.

Usually n specifies the number of radial nodes and ¢ the number of angular

nodes, but a special numbering convention for Hydrogen (and hydrogenic
ions) causes a slight distortion of this rule.
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The radial equation, when the explicit differential operator form of P

is derived and inserted, has the form

{_ﬁli } R ISV
! Zurz ! R,(r)=E, R, (r)

\Z

It is customary to simplify this equation by replacing R, (r) by luné (r)
r
1
Rnﬁ (I‘) = ;uné (I')

equation looks simpler
volume element looks simpler
* behavior as r — 0 seems more familiar

insert 1 u,,(r) in place of R ,(r) and then multiply through on left by r
r

w @ e+
2u dr’ 2ur?

+V@r)-E ,|u,@)=0

looks like ordinary 1-D Schrédinger Equation.
Boundary condition:

u,(r)—>0 as r—0 [WHY? Because for all £ >0, V,(0) > <. |

exactly as if V(r)=« r <0, but of course r <0 is impossible, so we had better

be careful about behavior of . ,(r)and R ,(r)asr — 0
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Note also that d°r = r” sin 0drd0d

ES 2 ES
R, . R rdr=u
n't nt

n't’

(r )l/l (r )d”' r? cancelled.
nt
So volume
element looks
just as in 1-D
problem

Return to special situation as r — O.

Why do we care? It turns out that s-orbitals have R _,(0) # 0 and that in ESR
one measures “Fermi-contact” hyperfine structure which is the spin-density
at specific nuclei. It is a direct measure of the ns atomic orbital character
in each molecular orbital!

CTDL, p. 781

What is the worst possible divergence of R _,(r) as r — 0?
Forr -0, R

possible. This is the most strongly divergent part of R ,(r), which
is all we need to be concerned with as r — 0.

(r) will be dominated by r®* where |s| is as small as

n/

Let R, ~ Cr®, where this is a good approximation at r — 0.
Plug this definition into Schrédinger Equation

d’ d®> o !
— 1R, (r) =—Cr*" =(s +1)(s)Cr*~
dr? ¢(r) r?
__r1d
" 2ur dr?
h? . RA+1) .,
HR_,(r)=——C(s +1)(s)r** + ————Cr** + V(r)Cr® -E_,Cr* =0
21 21
: 1 .
if V(r) o< — Asr — 0 V(r) rarely diverges

r more rapidly than1/r, thus

V(r)C r® gives PO

Then, in the limit r — 0, the coefficients of the r*2 term (i.e. the

most rapidly divergent term) must be = 0

—(s+1Ds+¢((+1)=0

“This excludes the stronger divergence of the centrifugal barrier term in V (r).
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satisfied if s= /¢ or s=—(+1)
verify second possibility:
s(s+1)=(—r-1)-r-1+1)==(r+1)(=0) = e(r +1)

) 1
In other words R, (r) %ILKI OR (if s=#((+1))—7 asr—0
well behaved di L .
isaster even if
atr -0

=0

Actually both of these possibilities satisfy the differential equation for

1
V(r) =— (known as the Coulomb - or H atom Hamiltonian), but
r

the one that diverges asr — 0 cannot satisfy the r — 0 boundary condition
for the H atom.

** Regular and Irregular Coulomb wavefunctions — we will return to
these later in the context of Quantum Defect Theory.

So for now we 1nsist that

l
R, (r)—>r as r—0

Rns (O) # O special situation for R_ (r)
R ,.,(0)=0
u,, (0)=0 forall ¢

(no special case for u (1))
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For Hydrogen

HU+1) € q°
V= D e e’ =

2Ur r 4ATE,

m,m
!"l = e P =m
m,+m,
V,(r)
0 roo
0 7~

What do we know from our study
of 1-D problems?

WKB
lIlenve]ope b p_l/2

# of nodes, placement of nodes,
degeneracy, behavior at inner

ASK QUESTIONS and outer turning points,
location of inner and outer

shape of u,, (r) turning points
1st lobe, last lobe

. : h : .
inner vs. outer part of u, (r) - where is the extra 5 of action acquired

(associated with tunneling into nonclassical region)?

1. (E) h
recall J. © p(r)dr =2 (n+1/2)
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, R e*m
Find that Ey=-— R=—7o~
n 2h
At turning point V,(r) =E,,
R AU+ -re2
R A+ € T e
Il2 2},LI‘§ ry _2Mn_9§rf =10l +1) - re’2u

solve for r, as function of n and ¢ Use Quadratic
- formula to find r.(n)

r, =a, [n2 +n(n® — 00 + 1))1/2]

hZ
12 a,=—5— Bohr radius
2 + g(f + 1) ¢ l’Ile
=ayn”|1£|1- P when ¢ << n, where are r, and r_?

Use this equation for the turning points to construct qualitatively correct
cartoons of R _,(r) in crucial regions.

nl

surprising systematic degeneracy

etc.
3s 3p 3d
2s 2p
1s

Because of pattern, we use n to label degenerate groups

R
En[ = 2
n

hence n is not # of radial nodes.
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orbital # of radial nodes

1s 0
2s 1
2p 0 (because it is lowest solution to ¢ =1 equation)
3s 2
3p 1
3d 0

# radial nodes =(n—1)—/
# angular nodal surfaces ¢

total # nodes n-—1

n degeneracy
1 1

2 1+2¢+1)=4
3 1+3+5=9
n n2

n - scaling of (r°)

two limits: 6<0 VS. >0
determined near inner turning outer turning point
point
~n> Bohr model r,, = a,n’
(see argument on (r°) < aSn™
next page)

Expectation values of r° vs. transition moments and off--diagonal matrix
elements of r°. Stationary phase.
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E /_ inner region
Al e
3% of IP<
5 ~3000cm™
\_ 36
pz
T =-—>IP in the “inner region.”
20
variation of Tn=6 to n = <3%
variation of p <1.5%
deBroglie A ~ % independent of n ! Because p is large and

fractional change of p vs. n is negligible.
location of innermost node & P &1

e~ comes into core region fast and leaves fast — At same for all n

. ) . ime insi 2(v/A)™
fraction of time inside core? time inside _ (V/ )

oneperiod  h
En _En+1 En = —9{/112
h 26%
5 7\,/V En+5/2_En—8/2 =?
2 ———
_ |p/m] 4mR
- h = p2n3
2R/n’
probability of finding n-independent

e~ inside core o< n73 !
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fraction of time inside o< n™

28 - 10

amplitude of v, < n™* inside core region

Basis of all Rydberg scaling

1st node does not shift with n
inner lobe

amplitude in first lobe scales as n

3 }Astonishingly important!

. -3/2
all n, n’ matrix elements of r° where ¢ <0 scale as (nn”) / !

Some matrix elements scale this way even when ¢ > 0.

McQuarrie, page 223

( g 1)' 1/2 2 (+3/2 2
n—(-1) - T
Rnf (r)=- r'e r/naOL ET
3 na i na
. Zn[(n + E)!] 0/ 0
normalization -
exponential associated
—0asr — | |Taguerre functions
(polynominals)

Regular and Irre(gular Coulomb functions (E < 0)
(

u,, (r) =rR(r) r—0

regular fIEr) o< ! u(v,/,r)sin Tv — v(v,f,r)e

I — oo

, which is an

increasing exponential except when v is

a positive integer. Need some other way
to satisfy r — co boundary condition

when Vv is not an integer

irregular g(Elr) o< r® —u(v,/,r)cos TtV + v(v,0,r)e™ " which
blows up.
*u(v,/,r) is an increasing exponential as

I — oo

*v(v,l,r) is a decreasing exponential as

I — oo

(see Gallagher, page 16)
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T.F. Gallagher, Rydberg Atoms, page 25

(r) %[3# —0(t+1)]

{r) ”—22[5n2 +1-30(¢+1)]
(1/7) 1/n’

W) T

wr) n*(¢+ 1)(1£ +1/2)¢

(1/r*) 3n” —((( +1)

20°(0+3/2) 0+ 1)(0+1/2)(¢—1/2)

35n* = 52600 +1) = 5]+ 300 +2)(0 + D¢ = 1)

<1/r > 8n (C+5/2)(0+2)(0+3/2) U+ +1/2)0(6—=1/2)—-1)(¢-3/2)

o<-1 scaleasn™!

o>0 scale as n°°!
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