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Abstract 
Background: Sequence comparison is one of the most prominent tools in biological research, and 
is instrumental in studying gene function and evolution. The rapid development of high-throughput 
technologies for measuring protein interactions calls for extending this fundamental operation to 
the level of pathways in protein networks. 

Results: We present a comprehensive framework for protein network searches using pathway 
queries. Given a linear query pathway and a network of interest, our algorithm, QPath, efficiently 
searches the network for homologous pathways, allowing both insertions and deletions of proteins 
in the identified pathways. Matched pathways are automatically scored according to their variation 
from the query pathway in terms of the protein insertions and deletions they employ, the sequence 
similarity of their constituent proteins to the query proteins, and the reliability of their constituent 
interactions. We applied QPath to systematically infer protein pathways in fly using an extensive 
collection of 271 putative pathways from yeast. QPath identified 69 conserved pathways whose 
members were both functionally enriched and coherently expressed. The resulting pathways 
tended to preserve the function of the original query pathways, allowing us to derive a first 
annotated map of conserved protein pathways in fly. 

Conclusion: Pathway homology searches using QPath provide a powerful approach for identifying 
biologically significant pathways and inferring their function. The growing amounts of protein 
interactions in public databases underscore the importance of our network querying framework 
for mining protein network data. 

Background 
Sequence homology searches have been the workhorse of 
bioinformatics for the past 30 years, providing the means 
to study the function and evolution of genes and proteins. 
Recent technological advances in large-scale measure­
ments of protein-protein interactions (PPIs) such as yeast 
two-hybrid screens [1,2] and protein co-immunoprecipi­

tation assays [3-5] have allowed us to shift our perspective 
from single genes and proteins to more complex func­
tional units, such as protein pathways and complexes. 
Studying the function and evolution of protein modules 
underscores the importance of extending homology 
search tools from the single gene level to the network 
level. 
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The QPath algorithmic flowFigure 1 
The QPath algorithmic flow. (a) Given a query pathway, 
a weighted PPI network, and sequence similarity scores 
between the query proteins and the network proteins, the 
QPath algorithm identifies a set of matching pathways. These 
are scored to capture the tendency of their constituent pro­
teins to have a coherent function. (b) An example of an align­
ment that induces protein insertions (F') and deletions (C). 

In contrast to the vast research on gene and protein 
homology detection, there are only a few studies on 
homology detection at the network level, including stud­
ies on PPI networks [6-8], metabolic networks [9-12], and 
gene expression networks [13-16]. Most of these studies 
have focused on the identification of network regions that 
are conserved across several species. Initial attempts at the 
problem of query searches, i.e. searching for instances of a 
query subnetwork within a given network, have been 
made by Kelley et al. [6] and Pinter et al. [12] but both 
methods were limited in their applicability. The Path-
BLAST algorithm of Kelley et al. was designed to compare 
two protein networks and identify conserved pathways 
(linear, non-branching paths of interacting proteins). By 
constraining one of the networks to be a single pathway, 
PathBLAST was also applied for query searches. The use of 
the PathBLAST algorithm in this context has several draw­
backs: (a) proteins may occur more than once in an iden­
tified matched pathway, which is biologically 
implausible; (b) the algorithm provides limited support 
for identifying non-exact pathway matches, supporting no 
more than a single consecutive deletion of proteins from 
the query pathway and no more than a single consecutive 
insertion of proteins to the matched pathway; and (c) the 
running time of the algorithm involves a factorial func­
tion of the pathway length, limiting its applicability to 
short pathways (in practice, it was applied to paths of up 
to 5 proteins). Pinter et al. have recently developed a path­
way alignment tool called MetaPathwayHunter and 
applied it to mine metabolic networks. The algorithm 
enables fast queries of more general pathways that take 
the form of a tree (a subnetwork with no cycles). How­
ever, it is limited to searching within a collection of trees 

rather than within a general network. Finally, Leser has 
developed a query language for mining biological net­
works [17]. 

Here we give a novel comprehensive framework for que­
rying linear pathways within a given network. Our algo­
rithm, QPath, searches for matching pathways composed 
of distinct proteins that are similar to the query proteins 
in their sequence and interaction patterns. The matched 
pathways are scored according to their level of variation 
from the query pathway in terms of protein insertions and 
deletions, the sequence similarity of their constituent pro­
teins to the query proteins, and the reliability of their con­
stituent interactions. We provide a computational 
method for estimating the weight of each of these terms in 
the overall score, so as to maximize the fraction of the 
functionally significant matching pathways identified. 

We applied QPath to analyze the PPI networks of the yeast 
S. cerevisiae, the fly D. melanogaster, and human, aiming to 
address two coupled, fundamental questions motivated 
from sequence analysis: (i) Can pathway homology be 
used to identify functionally significant pathways? (ii) 
Can one infer the function of a pathway based on path­
way homology information? We provide positive answers 
to both questions. Notably, our finding that matched 
pathways in fly tend to preserve the function of their cor­
responding query pathways in yeast, has enabled us to 
derive a first annotated map of protein pathways in fly 
that are conserved from yeast. 

Results 
The QPath algorithm 
We developed a novel algorithm for querying a given pro­
tein network with a linear pathway of interest. The algo­
rithm searches for matching pathways that are similar to 
the query in their sequence and interaction patterns. It 
relies on efficient graph-theoretic techniques, allowing it 
to process long pathways (up to 10 proteins) in minutes 
(see Methods and Supp.1 Table 3). While the algorithm 
can be applied to query any gene or protein network, we 
focus the discussion on its applications to mining PPI net­
works. QPath receives as input a query pathway consisting 
of a linear chain of interacting proteins; a PPI network 
with reliability scores for its interactions; and sequence 
similarity scores between the query proteins and the net­
work proteins (Figure 1a). Similar to sequence alignment, 
the algorithm aligns the query pathway to putative path­
ways in the target network, so that proteins in analogous 
positions are sequence similar. Each matched pathway 
may contain a (bounded) number of protein insertions, 
representing proteins not aligned to the query proteins, 
and protein deletions, representing omission of matches 
to some query proteins (Figure 1b). The pathways are 
scored based on a sequence score, which measures their 
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Table 1: Functional significance of yeast and fly pathways. Functional enrichment and expression coherency of high interaction score 
pathways and random pathways in the PPI networks of yeast and fly. 

High interaction score pathways Random pathways 

Number of pathways Functional enrichment Expression coherency (p-value) Functional enrichment Expression coherency (p-value) 
Yeast 271 80% < 1e-300 17% 4.0e-4 
Fly 193 20% 0.024 0% > 0.05 

sequence similarity to the query pathway; an interaction 
score, which measures the reliability of their constituent 
interactions; and the number of protein insertions and 
deletions they employ. The top-scoring pathways are 
identified using a dynamic programming based algorithm 
that guarantees that matched pathways will be comprised 
of distinct proteins. The output of the algorithm is a set of 
non-redundant, significant matching pathways. The 
QPath program is available upon request. 

Pathway queries in the yeast and fly networks 
To evaluate the utility of our algorithm in analyzing PPI 
networks, we applied it to the yeast and fly protein inter­
action networks, which are the largest and most well 
investigated networks in public databases [18]. As a first 
test of the algorithm, similarly to [6] , we queried the yeast 
network with the yeast filamentous growth MAPK cas­
cade. The algorithm correctly recovered two known 
homologous MAPK pathways as the top matches (Supp. 
Figure 6). Next, we wished to perform a systematic evalu­
ation of the algorithm's performance on the yeast and fly 
networks. Since the yeast network is supported by many 
more large-scale experiments [18] and, hence, expected to 
be more complete and accurate, we reasoned that by que­
rying putative yeast pathways within the fly network we 
could reveal novel functional pathways therein, capitaliz­
ing on the more complete information in yeast. 

To obtain a comprehensive set of putative pathways in the 
PPI network of yeast, we applied a modified version of the 
QPath algorithm to search the network for pathways that 
have high interaction scores (not based on specific query 
pathways, see Methods). The search was limited to path­
ways consisting of 6 proteins to achieve reasonable run­
ning times when applying QPath to query those pathways 
while allowing for (up to 3) insertions and deletions. We 
identified a set of 271 non-redundant pathways whose 
scores exceeded those of 99% of randomly chosen path­
ways (see Methods). The full list of identified pathways 
appears on the supplemental website [19]. 

We used two standard methods to assess the quality of 
these pathways (see Methods and Table 1): (i) Functional 
enrichment – representing the tendency of the pathway's 
proteins to have coherent Gene Ontology (GO) functions; 
and (ii) Expression coherency – measuring the similarity 

in expression profiles of the pathway's coding genes across 
different experimental conditions. In total, 80% of the 
yeast pathways were functionally enriched. In addition, 
the resulting pathways were significantly coherently 
expressed (Wilcoxon rank p < 1e-300). The significant 
functional enrichment and expression coherency of the 
identified pathways suggest that these pathways are bio­
logically significant. In agreement with the expected lower 
quality of the fly network, we observed lower rates of func­
tional enrichment and expression coherency when ana­
lyzing analogously-computed high-scoring pathways in 
fly (Table 1). 

For each significant pathway in yeast we executed the 
QPath algorithm to search for matching pathways in fly. 
In total, 63% of the yeast queries had matches in fly with 
up to three insertions and deletions. Given a yeast query, 
the probability of finding matching pathways in fly was 
highly correlated with the interaction score of the query 
(Spearman p = 2.1e-04). Only few of the queries had 
matching pathways with no insertions or deletions, 
implying that the algorithm's support for insertions and 
deletions was essential for identifying matching pathways 
(Figure 2a and Supp.1 Table 2a). 

A query pathway potentially gives rise to multiple match­
ing pathways, each with a different sequence score, inter­
action score and indel category, defined by the number of 
insertions and deletions employed by the pathway. In 
order to compare sequence and interaction scores for 
pathways from different indel categories, we normalized 
their scores by the number of proteins and interactions 
they contain, respectively. We found a statistically signifi­
cant correlation between the functional enrichment of the 
matched pathways and their normalized interaction and 
sequence scores (Spearman p = 4e-15 and p = 0.003 for 
interaction and sequence scores, respectively). Further­
more, the indel category of a pathway was also found to 
be correlated with its functional enrichment: as expected, 
fly pathways exhibiting fewer protein insertions and dele­
tions (hence, better conserving the query proteins) tended 
to be more functionally enriched than more distant path­
way matches (Figure 2b and Supp.1 Table 2b). 

Motivated by these observations, we devised a scoring 
scheme that assigns each pathway a score reflecting its 
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Properties of matched pathways in different indel categoriesFigure 2 
Properties of matched pathways in different indel 
categories. (a) The fraction of yeast queries with identifia­
ble matching fly pathway out of all yeast queries within differ­
ent indel categories. (b) The fraction of matched fly pathways 
that are functionally enriched out of all matched fly pathways 
in each indel category. Indel categories not covered by any 
matched pathway were marked as having 0% functionally 
enriched pathways. 

estimated probability to be functionally enriched given its 
inherent characteristics, i.e., the number of insertions and 
deletions it employs and its normalized interaction and 
sequence scores (Methods). For each yeast query we refer 
to the matched pathway with the highest obtained score 
and, hence, most likely to be functionally enriched, as the 
best-match pathway. 

To assess the biological significance of the best-match 
pathways in fly, we compared their functional enrichment 
and expression coherency to that of fly pathways that are 
not the results of a query. In total, 51% of the best-match 
pathways were functionally enriched. Within the set of 
20% of the best-match pathways which were predicted to 
have the highest probability to be functionally enriched, 
91% were indeed functionally enriched (Figure 3a). In 
comparison, the percentage of functionally enriched path­
ways in a set of fly pathways with the same length and dis­
tribution of interaction scores was 5%, which is 
significantly lower (p < 1e-4). The expression coherency of 
the best-match pathways was also significantly higher 
than that of randomly chosen pathways (p < 1e-4, Figure 
3b). These results suggest that best-match pathways are 
biologically significant. 

Function conservation in yeast to fly pathways 
Next, we investigated whether pathway similarity may be 
used to infer the function of a matched pathway based on 
the known function of the corresponding query pathway. 
Overall, out of the 171 yeast query pathways with an iden­
tified fly best-match pathway, 69 were functionally 
enriched and had a functionally enriched fly best-match 
pathway. Moreover, for 64% of these queries, the fly best-
match pathways preserved one or more functions of the 
corresponding yeast query pathways. In contrast, when 

randomly shuffling the matches between fly pathways 
and yeast queries, only 31% of the fly pathways exhibited 
conservation of function (p < 1e-04). Interestingly, the 
pathway-based conservation of function was also much 
higher than the function conservation level among yeast-
fly best sequence match proteins, which is estimated at 
40% [6]. 

We used the observed function conservation to derive a 
functional annotation of all fly best-match pathways, 
based on the enriched functions of their corresponding 
queries in yeast. Figure 4 summarizes these results in an 
annotated map of conserved fly (best-match) pathways. 
The map exhibits a modular structure, where groups of 
pathways overlap to define distinct network regions with 
common functions (the clustering coefficient is 0.26, sig­
nificantly higher than in random networks that preserve 
vertex degrees (p < 0.05)). To evaluate the statistical signif­
icance of these predicted annotations, we computed for 
each best-match pathway the prevalence of the predicted 
annotation among its proteins (using a hypergeometric 
score), and compared these statistics with results obtained 
after randomizing the matches between yeast and fly 
pathways. The predicted annotations were found to be 
significantly more prevalent (p < 1e-04). 

Querying known signaling pathways from yeast and 
human 
To demonstrate the use of our algorithm in a BLAST-like 
manner to query known protein pathways, we applied it 
to search the fly network for matches to queries consisting 
of known signaling pathways from yeast and human. As a 
first example, we used a ubiquitin-ligation pathway in 
yeast to query the fly network (Figure 5a). We identified a 
putatively homologous pathway in fly that is likely to be 
involved in protein degradation as well. Three out of its 
five proteins were annotated as being involved in ubiqui­
tin-dependent protein degradation: Ubp64E is a putative 
ubiquitin-specific protease; morgue is annotated as a 
ubiquitin conjugating enzyme involved in apoptosis; and 
ago is a bona fide component of the SCF ubiquitin ligase 
complex [20,21]. Eye growth defects common to Ubp64E 
and ago mutants, may suggest that this pathway functions 
in the regulation of growth and apopotosis. 

As a second example, we used two signaling pathways in 
human as queries to the fly network: a MAPK cascade and 
a Hedgehog signaling pathway. The top-scoring pathway 
in each case agreed well with the known functional anno­
tations in fly. The MAPK query and its best-match are 
shown in Figure 5b. As expected for a MAPK-based signal­
ing cascade, Nek2 is a putative receptor signaling protein 
serine/threonine kinase. Tsp is likely a growth factor, 
based on its EGF-like domain, which could serve as a lig­
and for Nek2. Dap160 and Fur2 are experimentally 
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Functional significance of best-match pathways in flyFigure 3 
Functional significance of best-match pathways infly 
Functional enrichment (a) and expression coherency (b) of 
fly best-match pathways obtained by QPath compared to fly 
pathways that are not the result of a query. x-axis: Fraction 
of best-match pathways in fly. y-axis in (a): Fraction of func­
tionally enriched pathways out of the set of pathways deter­
mined by x. y-axis in (b): Mean expression coherency of the 
pathways determined by x. The random pathway curves 
show the mean and standard deviation of the functional 
enrichment and expression coherency computed for random 
choices of pathway sets in fly. 

proven to be involved in receptor processing and internal­
ization, respectively [22]. Although no experimental 
information is available for Rgl, Rap21, Epac and pkc98E, 
all available annotations fit into a G-protein coupled 
receptor protein signaling pathway: Rgl is a putative RAL 
GDP-dissociation stimulator, Rap21 has putative GTPase 
activity, Epac has putative cyclic nucleotide-dependent 
guanyl-nucleotide exchange factor activity, and both 
pkc98E and cdc2c are annotated as protein serine/threo­
nine kinases. Interestingly, RNAi against cdc2c causes 
abnormal growth of cells in culture [23] , and the pheno­
type of mutant Nek2 implicates it in the regulation of 
mitosis [24]. Taken together, these evidences suggest that 
the inferred pathway could be involved in a cell-cell com­
munication signaling cascade that regulates cell prolifera­
tion. 

Figure 5c shows the fly pathway that best matches the 
human hedgehog signaling query. The known annotation 
of the pathway's proteins agrees well with its putative role 
in hedgehog signaling: ptc is a bona-fide receptor of 
hedgehog located at the plasma membrane [25]. Csk, 
annotated as a protein-tyrosine kinase, could well serve to 
further transmit the signal from ptc downstream. The cyc­
lin-dependent protein kinase Cdk5, in association with 
the cyclin CycE, are well poised to further transmit the sig­
nal to the ultimate transcription factor ci. Ample experi­
mental data show that ci, like ptc participates in the 
hedgehog signaling pathway, which in flies regulates cell 
growth in many tissues [25]. 

Discussion and conclusion 
We have presented a novel framework for querying linear 
pathways in PPI networks, allowing both deletions of pro­
teins from the query pathway and insertions of proteins to 
the matched pathway. Matched pathways are assigned 
with scores reflecting their tendency to be functionally 
enriched, based on their variation from the query path­
way, the sequence similarity of their proteins to the query 
proteins, and the reliability of their constituent interac­
tions. 

The effectiveness of the algorithm was demonstrated in 
querying the fly PPI network using protein pathways from 
yeast and human. When applying the algorithm to search 
for yeast pathway queries in fly, the matching pathways 
were significantly more functionally enriched compared 
to arbitrary pathways in the fly network. The resulting 
pathways tended to preserve the function of the original 
query pathways, demonstrating the applicability of our 
tool for predicting pathway function much in the same 
way as gene and protein functions are predicted using 
BLAST. 

As with any PPI network study, it is important to deal with 
the vast amounts of noise present in the protein interac­
tion data [26-28]. To handle false positive interactions we 
have assigned confidence scores to the interactions. To 
examine the contribution of the confidence scores for 
finding biologically-meaningful pathways, we repeated 
the functional enrichment and expression coherency anal­
yses for sets of randomly chosen pathways from the yeast 
and fly networks obtained by discarding the interaction 
confidence scores. The percent of functionally enriched 
pathways and expression coherency rates found in these 
random sets were significantly lower than those found for 
high-scoring pathways (Table 1, Supp. Figure 7). Moreo­
ver, for both yeast and fly we found a statistically signifi­
cant correlation between interaction scores and functional 
enrichment (Spearman correlation of 0.47 and 0.29, 
respectively, with p < 1e-300). 

Accommodating for false negatives is a difficult challenge, 
but QPath handles those to some extent by allowing the 
introduction of protein indels to the matching pathway. 
Incorporating genetic interactions in the network may 
also help to tackle the problem of false negatives, as 
genetic interactions may indicate physical interactions 
between proteins [29]. In particular, for fly, the set of 
genetic interactions reported in FlyGRID [30] has signifi­
cant overlap with the physical network, with a hyper-geo­
metric p-value of 3.9e-7. To test whether merging genetic 
and physical interactions contributes to the identification 
of functionally significant pathways, we applied QPath to 
re-query the human MAPK pathway in the merged net­
work of fly (Figure 5b). The pathway identified is a variant 
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Fly best-match pathway mapFigure 4 
Fly best-match pathway map. A map of yeast best-match 
pathways in fly. Nodes represent best-match pathways and 
edges connect pathways that share at least two proteins. 
Each node is colored according to the enriched function of 
the corresponding query pathway in yeast. Pathways whose 
predicted annotation is also enriched among their constitu­
ent proteins appear as boxes; all other pathways appear as 
ellipses. Specific pathways can be looked up according to 
their number in the supplemental website [19]. 

of the EGFR receptor-kinase-signaling cascade, and five 
out of its seven proteins appear in the curated homolo­
gous fly pathway in KEGG [31]. The hypothetical signal is 
transmitted to the EGF receptor, and further relayed 
through ksr and C3G, a proven kinase and an annotated 
Ras guanyl-nucleotide exchange factor, respectively, to 
Ras85D. The latter has been shown experimentally to acti­
vate phl [32]. The putative signal is further transmitted to 
the MAP kinase kinase Dsor1, and downstream to rl, an 
annotated nuclear MAP kinase which likely activates spe­
cific transcription factors. Furthermore, ksr, phl, Dsor1 
and rl are all required for modulation of the EGFR-medi­
ated Ras85D mitogenic response [33]. Using genetic inter­
actions is crucial for identifying this pathway as 5 out of 
its 7 interactions are genetic. This result suggests that 
merging both genetic and physical interactions may help 
coping with undetected protein-protein interactions. 

We have only just begun to explore the world of protein 
networks, with the first drafts of the human PPI network 
just coming out [34,35]. With an ever increasing amount 
of genomes sequenced and protein interaction networks 
recovered, it is becoming increasingly important to 
develop tools for interpreting these data to provide 
detailed models of cellular machinery across organisms. 
We expect QPath to take a growing role in this explora­

tion, giving essential means to use existing knowledge for 
inferring novel pathways and their function. 

Methods 
Data acquisition and processing 
Protein-protein interaction data for yeast and fly were 
downloaded from DIP ([18] ; April 2005 download) and 
contained 15,166 interactions among 4,726 proteins in 
yeast, and 22,837 interactions among 7,028 proteins in 
fly (for fly, we complemented the DIP data by interactions 
from [36] ). Additional 2378 genetic interactions in fly 
were downloaded from FlyGRID [30]. To assign confi­
dence scores to these interactions we used the logistic-
regression-based scheme employed in [8]. Briefly, true 
positive and true negative interactions were used to train 
a logistic regression model, which assigns each interaction 
a reliability score based on the experimental evidence for 
this interaction, which includes the type of experiments in 
which the interaction was observed, and the number of 
observations in each experimental type. For yeast, we par­
titioned the experiments into four categories: co-immu­
noprecipitation screens [3,4] , yeast two-hybrid assays 
[2,37,38] , large scale experiments (other studies denoted 
as exp:g class in DIP) and small scale experiments 
(denoted as exp:s class in DIP). For fly, due to the smaller 
number of interaction screens available, we used each of 
three available large-scale screens [36,39,40] as a separate 
category. In addition, we used small scale fly experiments 
as a fourth category. 

Pathway alignment 

We represent a PPI network using an undirected weighted 
graph G with a set V of n vertices, representing proteins, a 
set E of m edges, representing interactions, and an edge 
weight function w(·,·) representing interaction reliabili­
ties. Given a pathway query Q = (q1,...,qk), let h(qi, j) 

denote a sequence similarity score between query node qi 

and vertex j ∈ V. An alignment of Q in G is defined as a 
pair (P, M), where P = (p1,...,pk) is a matched path in G, 

and M is a mapping of query nodes onto P ∪ {0}. The 
alignment allows up to Nins insertions and up to Ndel dele­

tions, where deleted query nodes are mapped to 0 by M. 
The weight of an alignment is a summation of the interac­

l−1 
tion score, w p  ,p  and the sequence score,∑ ( i i+1 )


i=1


k 

∑ h qi ,M  pi ) . Edge weights were set to logarithm ( ( )  
i=1,pi ′≠0 

of the reliability estimation of the corresponding interac­
tions. The sequence similarity score, h(qi, j), between 

query node qiand vertex j∈ V was set to logarithm of the 
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Yeast and human queries and their best-matches in flyFigure 5 
Yeast and human queries and their best-matches in 
fly. Yeast and human pathway queries and their best-matches 
in fly. (a) Yeast ubiquitin ligation pathway query in fly. (b) 
Human MAPK pathway query in fly. The pathway denoted by 
an asterisk is the result of querying a combined network of 
PPIs and genetic interactions (appearing in red). (c) Human 
Hedgehog pathway query in fly. 

BLAST E-value between the corresponding proteins, nor­
malized by the maximum score over all pairs. 

Pathway search module 
The goal of the algorithm is to identify a matched pathway 
with distinct vertices yielding an optimal alignment to the 
query. To this end, we adapt the color coding technique of 
Alon et al. [41] , which serves to find simple paths (i.e., 
paths with distinct vertices) of a fixed length k in a graph. 
In color coding, one assigns a randomly chosen color 
from {1,...,k} to every vertex in the graph, transforming 
the problem of finding a simple length-k path to that of 
finding a path of length k that spans distinct colors. Since 
any particular path may be assigned non-distinct colors 
and, hence, fail to be discovered, many random coloring 
trials are executed. Below, we describe one iteration of 
color coding tailored to the query case. 

Our algorithm starts by assigning every vertex v ∈ V a color 
c(v) drawn uniformly at random from the set C ={1,...,k + 
Nins}. For a given coloring, we use dynamic programming 
to find an optimal matching pathway. We let W(i, j, S, 
θdel) denote the maximum weight of an alignment for the 
first i nodes in the query that ends at vertex j∈ V, induces 
θdel deletions, and visits a vertex of each color in S. W(i, j, 
S, θdel) is computed recursively as follows: 

 , ,  − ( )  del , + h q( (( , ) EW i( −1 m S c j ,θ ) + w ( m j ) i , j ) m j ∈ 


W i j S, ,  ,θ ) = max 
 

W i m S  − c ( ) ,θ ) w m j ) m j )( del 
m V  

 ( , ,  j del + ( , ( , ∈ E 
∈ 

 W i  −1 j S,θ −1) θdel ≤≤( , ,  del Ndel 

The maximum weight of an alignment is max , 
∈ , ⊆C,θ≤Ndelj V S  

W (k, j, S, θ), and the corresponding alignment is 
obtained through standard dynamic programming back­
tracking. In fact, the algorithm outputs not only the opti­
mal match but a set of high scoring matches for each 
combination of number of insertions and deletions 
employed. The running time of each trial depends on the 
length of the query, the size of the network and the 
number of insertions and deletions allowed, and is 
2O(k+Nins)mNdel. The probability that any given path is 

assigned k distinct colors is at least e -k-Nins. Thus, for any ε 
∈ (0,1), the running time of the algorithm for obtaining 

the optimal match with probability at least 1-ε is ln(n/ 

ε)2O(k+Nins)mNdel. We used ε = 0.01 for all runs of the algo­

rithm, yielding a practical time of a few minutes per query 
(Supp.1 Table 3). The resulting pathways were filtered to 
remove pathways that overlap by at least 20% of their pro­
teins. 

To search a network for pathways with high interaction 
scores, regardless of a specific query, we ran the algorithm 
with a dummy path query, consisting of dummy proteins 
that were defined to have the same sequence similarity 
score with respect to all network vertices. To search a net­
work for random pathways, regardless of their interaction 
score, we assigned an equal interaction score for all inter­
actions. 

Pathway scoring module 
We assigned protein pathways a functional significance 
score that represent their tendency to be functionally 
enriched given four parameters characterizing each path­
way: a normalized sequence score, a normalized interac­
tion score, number of insertions, and number of 
deletions. Given a set of matched pathways, logistic 
regression [42] was used to predict their functional enrich­
ment based on these parameters alone. To avoid over-fit­
ting, the set of pathways was partitioned into five equal 
parts. For each part, we trained the logistic regression on 
the remaining four parts, and used the inferred parameters 
to derive the scores of the pathways in the left-out part. 

Functional enrichment 
Functional enrichments of protein pathways were com­
puted based on GO process annotations [43] for their pro­
teins. Yeast GO annotations were obtained from SGD [44] 
, and fly GO annotations were obtained from FlyBase 
[45]. For a given pathway P and a given term t, the func­
tional enrichment score was computed as follows: sup­
pose P has let n(t) proteins that are annotated with term t 
(or with a more specific term). Let p(t) be the hypergeo-
Page 7 of 9 
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metric probability for observing n(t) or more proteins 
annotated with term t in a protein subset of size |P|. Hav­
ing found a term t0 with minimal probability p(t0), the 
score was set to the p-value of the enrichment under term 
t0, computed by comparing p(t0) with the analogous 
probabilities for 10,000 random sets of proteins of size 
|P|. 

Expression coherency 
Expression coherency of a pathway was measured as the 
mean absolute value of the pairwise Pearson correlations 
between the expression patterns of the genes that code for 
the pathway's proteins. To assess the significance of the 
expression coherency of a set of pathways, we compared it 
to the expression coherency distribution of a random set 
of pathways with the same size distribution. Gene expres­
sion measurements were obtained from Stanford microar­
ray database [46] and included 973 and 170 conditions 
for yeast and fly, respectively. 
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