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Consider the Parabolic PDE in 1-D 
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• If υ ≡ viscosity → Diffusion Equation 
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Stability Analysis Discretization 

4 

Keeping time continuous, we carry out a spatial 
discretization of the RHS of 

There is a total of 1 grid points such that , 

0,1, 2,...., 
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Stability Analysis Discretization 
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2Use the Central Difference Scheme for u 
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which is second-order accurate. 

• Schemes of other orders of accuracy may be 
constructed. 
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Stability Analysis Discretization 

We obtain at 

0 

0 

Note that we need not evaluate  at  and 
since  and are given as boundary conditions. 
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Stability Analysis Matrix Formulation 

Assembling the system of equations, we obtain 
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Stability Analysis PDE to Coupled ODEs 

Or in compact form 

du Au b
dt 

= 

G G G 

We have reduced the 1-D PDE to a set of 
Coupled ODEs! 
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Stability Analysis 
Eigenvalue and

Eigenvector of Matrix A 

If A is a nonsingular matrix, as in this case, it is then 
possible to find a set of eigenvalues 

{ 1 1, ,...., ,....,j λ λ λ λ − = 

For each eigenvalue , we can evaluate the eigenvector 
consisting of a set of mesh point values , i.e. 

j 
j 

j 
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V 
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Tj j j 

NV v v − =  
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}2 Nλ 

2 
j v  
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Stability Analysis 
Eigenvalue and

Eigenvector of Matrix A 

The ( 1) ( 1) matrix  formed by the ( 1) columns 
diagonalizes the matrix  byj 

N E N 
V 

− ×  − − 

1E AE− = Λ 
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Stability Analysis 
Coupled ODEs to
Uncoupled ODEs 

Starting from du Au b
dt 

= + 

G G G 

1Premultiplication by yieldsE − 

1 1duE E Au E b
dt 

− −= 

G G G 

( 1 1 1duE E A  EE u E b
dt 

− − −= 

G G G 
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( 1 1 1duE E AE E u E b
dt 

− − −= 
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Stability Analysis 
Coupled ODEs to 
Uncoupled ODEs 

1 Let and , we haveU E  u F E b− = 
GG G 

d U F
dt 

= Λ +  
JG JGG 

which is a set of Uncoupled ODEs! 

1 1duE u E b
dt 

− −= Λ  + 

G G G 
Continuing from 

1−= 
G

U 

1 E − 
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Stability Analysis 
Coupled ODEs to 
Uncoupled ODEs 

Expanding yields 

Since the equations are independent of one another, they 
can be solved separately. 

The idea then is to solve for  and determineU EU= 
G GG 

1 
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Considering the case of  independent of time, for the 
general equation,th 

b 
j 

G 
Stability Analysis 

Coupled ODEs to 
Uncoupled ODEs 

1jt 
j j 

j 

U e Fλ 

λ 
= 

is the solution for j = 1,2,….,N–1. 

Evaluating, ( ) 1 tu EU E ce E E bλ − = − Λ 
JJJJGG G 

Complementary 
(transient) solution 

Particular (steady-state) 
solution 

( 11 
1 1where j N 

Tt tt t 
j ce c e c e c e c e λ λλ λ − 

−
 =   

JJJJG 

j c − 

1−= 
G

) 2 
2 

t
N

λ



SMA-HPC ©2002 NUS 

We can think of the solution to the semi-discretized problem 

15 

Stability Analysis Stability Criterion 

( ) 1 tu E  ce E E bλ − = Λ 
JJJJGG G 

This is the criterion for stability of the space discretization (of a 
parabolic PDE) keeping time continuous. 

Since the transient solution must decay with time, 

for all j( )Real 0jλ ≤ 

Each mode  contributes a (transient) time behaviour of the form 
to the time-dependent part of the solution.j t 

j 
e λ 

as a superposition of eigenmodes of the matrix operator A. 

1−− 
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Stability Analysis 
Use of Modal (Scalar)

Equation 

It may be noted that since the solution is expressed as a 
contribution from all the modes of the initial solution, 
which have propagated or (and) diffused with the eigenvalue 

, and a contribution frj 

u 

λ 

G 

om the source term , all the 
properties of the time integration (and their stability 
properties) can be analysed separately for each mode with 
the scalar equation 

jb 

j 

dU U F
dt 

λ =  
 

 + 
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Stability Analysis 
Use of Modal (Scalar)

Equation 

The spatial operator A is replaced by an eigenvalue λ, and 
the above modal equation will serve as the basic equation 
for analysis of the stability of a time-integration scheme 
(yet to be introduced) as a function of the eigenvalues λ of 
the space-discretization operators. 

This analysis provides a general technique for the 
determination of time integration methods which lead to 
stable algorithms for a given space discretization. 
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1 
11 1 12 2 
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du a u  a u
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G du Au
dt 
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G G 

Consider a set of coupled ODEs (2 equations only): 

Example 1 
Continuous Time 

Operator 

+ 

+ 

1

2

a 
A 

a 
= 



SMA-HPC ©2002 NUS 19 

Proceeding as before, or otherwise (solving the ODEs directly), 
we can obtain the solution 

1 

1 

1 11 2 12 

2 21 2 22 

t 
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λ λ 
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11 21 
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where and  are eigenvalues of and  and  are 

eigenvectors pertaining to and respectively. 
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( )j 
As the transient solution must decay with time, it is imperative that 
Real 0 for 1, 2.jλ ≤ 

Example 1 
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Suppose we have somehow discretized the time operator on the 
LHS to obtain 

1 
1 1 1 12 2 

1 
2 1 1 22 2 

n n 
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u u a u 

u u a u 

− − 

− − 
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= 

where the superscript n stands for the nth time level, then 
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a 

−   = =     

G G 

Since A is independent of time, 
1 0 
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Example 1 Discrete Time Operator 
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Example 1 Discrete Time Operator 
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Example 1 Comparison 

Comparing the solution of the semi-discretized problem where 
time is kept continuous 

[ 
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1 1 12 
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to the solution where time is discretized 
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Example 1 Comparison 

In equivalence, the transient solution of the difference 
equation must decay with time, i.e. 

for this particular form of time discretization. 

1nλ < 
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Consider a typical modal equation of the form 

t 

j 

du u ae
dt 

µλ =  
 

where is the eigenvalue of the associated matrix .j Aλ 

(For simplicity, we shall henceforth drop the subscript j). 
We shall apply the “leapfrog” time discretization scheme given 
as 

Substituting into the modal equation yields 

( 
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t nh 
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Example 2 Leapfrog Time Discretization 
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Solution of u consists of the complementary solution cn, and the 
particular solution pn, i.e. 

un = cn + pn 

There are several ways of solving for the complementary and 
particular solutions. shift operator 
S and characteristic polynomial. 

The time shift operator S operates on cn such that 

Scn = cn+1 

S2cn = S(Scn) = Scn+1 = cn+2 

25 

( 
1 

1 2 2 
2 

n 
n n n n n hnu u e u h u u ha e

h 
µ λ 

+ 
+ − 

= ⇒ − − = 

Example 2 Leapfrog Time Discretization 
Time Shift Operator 

One way is through use of the 

)
1 

1
n 

hu a µλ 
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−+ 
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The complementary solution cn satisfies the homogenous equation 

1 
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1( ) 0 
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2( )  ( 2 1) 0p S  S h Sλ= − = 

characteristic polynomial 

Example 2 Leapfrog Time Discretization 
Time Shift Operator 

1 0 

0 

2 

2 

n 

n 

n 

h 

h 

−− 

− 

− 

− 

− 



SMA-HPC ©2002 NUS 27 

The complementary solution to the modal equation would then be 

1 1  2 2 
n nc β σ σ= 

The particular solution to the modal equation is 2 

2 
2 

hn h 
n 

h 

ahe e p 
e e 

µ 

µ λ 
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− − 

Combining the two components of the solution together, 

( )  ( )n nu p= 

( ) ( )2 2  2 2  
1 2 

21 
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hn hn 

h 

ahe eh h h 
e e 

µ 

µ β λ  λ β λ λ 
λ 

  = + + − + +   − −  

The solution to the characteristic polynomial is 
2 2( )  1h h hσ λ  λ λ= =  ± + σ1 and σ2 are the two roots 

Example 2 Leapfrog Time Discretization 
Time Shift Operator 
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1 h h 
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For the solution to be stable, the transient 
(complementary) solution must not be allowed to grow 
indefinitely with time, thus implying that 

is the stability criterion for the leapfrog time 
discretization scheme used above. 

( ) 
( ) 

2 2  
1 

2 2  
2 
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σ λ 

σ λ 

= + < 

= − < 

Example 2 Leapfrog Time Discretization 
Stability Criterion 
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Im(σ ) 

Re(σ )-1 1 

Region of Stability 

The stability diagram for the leapfrog (or any general) 
time discretization scheme in the σ-plane is 

Example 2 Leapfrog Time Discretization 
Stability Diagram 
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In particular, by applying to the 1-D Parabolic PDE 
2 

2 

u 
t 

υ∂ ∂ 
= 

∂ ∂ 

the central difference scheme for spatial discretization, we 
obtain 

which is the tridiagonal matrix. 

Example 2 Leapfrog Time Discretization 
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Example 2 Leapfrog Time Discretization 

According to analysis of a general triadiagonal matrix B(a,b,c), the 
eigenvalues of the B are 

2 

2 cos , 1,..., 1 

2 2  cos 

j 

j 

jb c j N
N 

j 
N 

πλ 

π λ 

 = + − 
 

  = −  +   ∆  
The most “dangerous” mode is that associated with the eigenvalue 
of largest magnitude 

max 2 

4 
x 
υλ = −  

∆ 
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2 
max1 ax max 

2 
max2 ax max 

1 

1 

h h 

h h 

σ λ  λ λ 

σ λ  λ λ 

= + 

= + 

i.e. 

which can be plotted in the absolute stability diagram. 
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Example 2 Leapfrog Time Discretization 
Absolute Stability Diagram for σ 

As applied to the 1-D Parabolic PDE, the absolute stability 
diagram for σ is 

Region of 
stability 

Unit 
circle 

Region of 
instability 

σ2 at h = ∆t = 0 

σ2 with h 
increasing 

σ1with h 
increasing σ1 at h = ∆t = 0 

Re(σ) 

Im(σ) 
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Stability Analysis 
Some Important

Characteristics Deduced 

A few features worth considering: 

1. Stability analysis of time discretization scheme can be carried out for 
all the different modes . 

2. If the stability criterion for the time discretization scheme is 

jλ 

valid for 
all modes, then the overall solution is stable (since it is a linear 
combination of all the modes). 

3. When there is more than one root , then one of them is the principal 
root which represents 

σ 

( 
0 

an approximation to the physical behaviour. 
The principal root is recognized by the fact that it tends towards one 
as 0, i.e. lim 1.  (The other roots are spurious, which 
affect the stability 

h 
h 

λ 
λ λ 

→ 
→ 

but not the accuracy of the scheme.) 
)h σ = 
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Stability Analysis 
Some Important

Characteristics Deduced 

1 

4. By comparing the power series solution of the principal root to , 
one can determine the order of accuracy of the time discretization 
scheme.  In this example of leapfrog time discretization, 

1 

he 

h 

λ 

σ = ( ( 
1 

2 2  2 2  4 42 

2 2  

1 

2 2  

1 .1 2 1 
2 ! 

1 ...
2 

and compared to 

1 ..
2! 

is identical up to the second order of .  Hence, the above scheme 
is said to be second-order accurate. 

h 

h h h 

hh 

h e 
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λ 

λ λ λ 

λσ 

λλ 
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− 
+ + + + 

= +  + + 

= +  + + 

λ + ) )
1 
2 . 

2

.
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λ 
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Analyze the stability of the explicit Euler-forward time 
discretization 1n du u u 

dt t 

+ − 
= 

∆ 

as applied to the modal equation 
du u
dt 

λ= 

1 

1 

Substituting  where 

into the modal equation, we obtain (1 ) 0 

n 

n 

du u h h t
dt 

u uλ 

+ 

+ 

= = ∆ 

− + 

Euler-Forward Time Discretization 
Stability Analysis

Example 3 

n

n 

n 

u 

h 

+ 

= 
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Making use of the shift operator S 
1 (1 ) (1 ) [ (1 )] 0n n n nc c Sc h c S h cλ λ+ − +  = − + = − +  = 

Therefore ( ) 1 
and n 

h 
c 
σ λ 

βσ 

= + 

= 

characteristic polynomial 

The Euler-forward time discretization scheme is stable if 

Euler-Forward Time Discretization 
Stability Analysis

Example 3 

1 hσ ≡ + 

or bounded by 1 s.t. 1 in the -plane.h λ σ λ= −  < 

n h λ 

n 

h λ 

1λ < 

hσ 
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Euler-Forward Time Discretization 
Stability Diagram

Example 3 

Im(λh) 

0-1-2 

Unit Circle 

Region of Stability 

Re(λh) 

The stability diagram for the Euler-forward time 
discretization in the λh-plane is 
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Euler-Forward Time Discretization 
Absolute Stability Diagram

Example 3 

max 2 

4As applied to the 1-D Parabolic PDE, 
x 
υλ λ= − 

∆ 

max 

2The stability limit for largest h 
λ 
−

≡ ∆  = 

1-1 

σ leaves the unit circle at λh = −2 

σ at h (=∆t) = 0 

Re(σ) 

Im(σ) 

σ with h increasing 

= 

t 
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Relationship
between σ and λh 

σ = σ(λh) 

Thus far, we have obtained the stability criterion of the time 
discretization scheme using a typical modal equation. 
generalize the relationship between σ and λh as follows: 

• Starting from the set of coupled ODEs 

du Au b
dt 

= + 

G G G 

• Apply a specific time discretization scheme like the 
“leapfrog” time discretization as in Example 2 

1 

2 

n du u u 
dt h 

+ −− 
= 

We can 

1 n
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Relationship
between σ and λh 

σ = σ(λh) 

• The above set of ODEs becomes 
1 

2 

n nnu Au 
h 

+ − 
= + 

G GG 

• Introducing the time shift operator S 

1 

2 

2 

n nn 

nn 

uSu hAu hb
S 

S SA I u  b
h 

− 

= + 

 −
− − 

 

G GG 

GG 

1 

1 
Premultiplying on the LHS and RHS and introducing 

operating on n 
E 

I EE u 

− 

−= 
i 

G 
1 

1 1 1 

2 
nS SE AE E E E u E b

h 

− 
− − − −

− − 
 

GG 

Λ 

1 n u b
−G 

2 n + 


= 

 

G 

1 − 
= 
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Relationship
between σ and λh 

σ = σ(λh) 

• Putting 1 , 
nn nU u F E b− = 
GG G 

1 

2j j 
S S  U 

h
λ 

− −
− = − 

 

we obtain 
1 

1 

2 
n S SE U F

h 

− 
− −

Λ − − 
 

G G 

1 

2 
S S  

h 

−− 

i.e. 
1 

2 
n S S  U 

h 

− −
Λ −  = − 
 

G G 

which is a set of uncoupled equations. 

Hence, for each j, j = 1,2,….,N-1, 

1 n E −= 
G

j F


 

nE 


= 
 

nF
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Relationship
between σ and λh 

σ = σ(λh) 

Note that the analysis performed above is identical 
to the analysis carried out using the modal equation 

j 

dU U F
dt 

λ =  
 

All the analysis carried out earlier for a single modal 
equation is applicable to the matrix after the 
appropriate manipulation to obtain an uncoupled set 
of ODEs. 

Each  equation can be solved independently for 
and the 's can then be coupled through . 

th 

n n n 
j 

j 
U u EU= 

GG 

 + 
 

n 
j U 
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Relationship
between σ and λh 

σ = σ(λh) 

1. Uncoupling the set, 
2. Integrating each equation in the uncoupled set, 

3. Re-coupling the results to form the final solution. 

These 3 steps are commonly referred to as the 

ISOLATION THEOREM 

Hence, applying any “consistent” numerical technique 
to each equation in the set of coupled linear ODEs is 
mathematically equivalent to 



SMA-HPC ©2002 NUS 44 

Implicit Time-
Marching Scheme 

Thus far, we have presented examples of explicit time-marching 
methods and these may be used to integrate weakly stiff 
equations. 

Implicit methods are usually employed to integrate very stiff 
ODEs efficiently. 
solution of a set of simultaneous algebraic equations at each 
time-step (i.e. matrix inversion), whilst updating the variables at 
the same time. 

Implicit schemes applied to ODEs that are inherently stable will 
be unconditionally stable or A-stable. 

However, use of implicit schemes requires 
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Implicit Time-
Marching Scheme 

Euler-Backward 

Consider the Euler-backward scheme for time discretization 
1 1n n du u u 

dt h 

+ + − = 
 

tdu u ae
dt 

µλ= 

( 

( ( 

1 
11 

111 

n 
n n 

n n 

u u e
h 
h u  u ahe 

µ 

µ 

λ 

λ 

+ 
++ 

++ 

−  =   

− = 

Applying the above to the modal equation for Parabolic PDE 

yields 

n 

 

+ 

) 

) ) 

n 
h

hn 

u a+

− 
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Implicit Time-
Marching Scheme 

Euler-Backward 

Applying the S operator, 

( ) ( 11 n nh S  u aheµλ + − = 
the characteristic polynomial becomes 

( ) ( ) ( )1 0S Sσ  Ρ Ρ = − − = 
The principal root is therefore 

2 21 which, upon comparison with 1 .... , is only
2 

first-order accurate. 

he hλ λ = +  + + 

2 21 1 .... 
1 

h 
h

σ λ
λ 

= = +  + + 
− 

The solution is 
( 

( 
11 

1 1 

n u 
n 

h 

aheU 
h e 

µ 

µ β 
λ 

+ =  − −  

)1 h−  

1 h λ =  

h λ

hλ 

) 

) 1 

h 

h λ 
 + − 
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Implicit Time-
Marching Scheme 

Euler-Backward 

For the Parabolic PDE, λ is always real and < 0. 
Therefore, the transient component will always tend 
towards zero for large n irregardless of h (≡ ∆t). 

The time-marching scheme is always numerically stable. 

In this way, the implicit Euler/Euler-backward time 
discretization scheme will allow us to resolve different 
time-scaled events with the use of different time-step 
sizes. 
scaled events, and then a large time-step size used for 
the longer time-scaled events. 
hmax. 

A small time-step size is used for the short time-

There is no constraint on 
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Implicit Time-
Marching Scheme 

Euler-Backward 

However, numerical solution of u requires the solution 
of a set of simultaneous algebraic equations or matrix 
inversion, which is computationally much more 
intensive/expensive compared to the multiplication/ 
addition operations of explicit schemes. 
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• Stability Analysis of Parabolic PDE 
� Uncoupling the set. 

� Integrating each equation in the uncoupled set → 
modal equation. 

� Re-coupling the results to form final solution. 

• Use of modal equation to analyze the stability 
|σ(λh)| < 1. 

• Explicit time discretization versus Implicit time 
discretization. 


