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Introduction: 

Autonomous control of systems is an important 
topic, as autonomous systems can perform tasks 
that are dangerous, monotonous, or even 
impossible for humans.  For example, Unmanned 
Aerial Vehicles (UAVs) can perform tasks such as 
reconnaissance, fire-fighting, and Mars 
exploration. Issues include the planning problem 
of where to go, and the control problem of how to 
actuate that movement.  Bradley Hasegawa [1] 
posed the planning problem as a Selective 
Traveling Salesman Problem (STSP). Each point 
of interest (for example, a science site) is assigned 
a value, and each edge connecting points is 
assigned a cost.  Then the most valuable and 
feasible ordered set of waypoints is chosen. 
Thomas Leaute [2] worked on the other end of the 
problem; starting from a plan and running the 
control system in a simulator. We hope to 
integrate the two techniques to get an autonomous 
planner and controller that can take a list of sites, 
decide on a plan, and then control the system to 
meet that plan.  This will be a complete system 
that handles high and low level planning to achieve 
a goal.   

Problem Statement: 

Our project addresses the design of an 
autonomous exploratory planner for a UAV.  This 
problem involves extending a continuous 
observation planning system [1] with an improved 
algorithm and merging this system with a kino-
dynamic path planner [2]. 

Previous Work: 

Our project is premised upon 3 main bodies of 
work, namely [1], [2] and [3]. The first step of our 
project involves integrating [1] and [3].   

Continuous Observation Planning for 
Autonomous Exploration [1] 

The thesis [1] presents a new approach for solving 
a robotic navigation path-planning problem. The 
approach first formulates the problem as a 
selective traveling salesman problem (S-TSP), then 
converts it to an optimal constraint satisfaction 
problem and solves it using the Constraint Based 
A* algorithm.  The Solver, shown in the system 
architecture diagram in Figure 1, performs this key 
ability. 



Figure 1: The above diagram is the system architecture for [1].  The navigation architecture starts with a 
partially complete map.  Candidates and obstacles are extracted from the map, which are used to construct a 
visibility graph. The D* search is used to update the candidates.  The candidates are passed to the solver, 
which creates a plan (ordered candidate subset). 

The solver is a continuous observation planner, 
which updates the plan when new observations 
affect the candidate set (possible places to visit). 
The objective of the robot is to map its 
environment. The robot chooses to navigate to 
observation locations, which will maximize 
information gain.  Each observation may affect the 
utility and cost of unvisited observation locations 
(candidates), which necessitates re-planning. 
There is an implicit trade-off between the planning 
horizon and how often the candidates are updated. 
The planning horizon should mirror the expected 
time period between re-planning.  In other words, 
if we look ahead 5 tasks, we want to be able to  
execute those 5 tasks before we have to re-plan.  If 
this does not occur, then our plan is optimized for 
a different planning period than it is executed for. 
This results in sub-optimal planning.   

Ultimately, the system is making an exploration-
exploitation trade-off, which can be generalized to 
other tasks. The tasks must involve observation 
and candidate list utility/cost updates. This 
method is likely to be effective when we have (at a 
minimum) a large-scale prior map of the 
exploration region.   

The thesis [1] addressed a mapping application 
where the candidates frequently changed due to 
new observations.  The finite horizon technique is 
more effective when the candidates do not change 
frequently. Yet the mapping application actually 

favors observation candidates that increase its 
situational knowledge the most.  For these reasons, 
the finite horizon method is more effective when a 
high-level map is known. The attributes of 
continuous finite horizon planning lend 
themselves to exploratory missions with a specific 
objective (i.e. a science exploration application) 
where a prior map is known.  Refining the map 
will affect the cost estimate for the science tasks 
and the utilities of the science tasks may change as 
prior successes affect the probability of future 
successes. This necessitates continuous planning. 
However, the changes should be sufficiently 
infrequent, so that a finite horizon is more 
effective that a purely greedy candidate selection 
strategy. 

Key elements of the framework presented in [1] 
are shown in Table 1. 



Exploration Problem: 

) 
Path Planner: 
Map Type: 
Pose: 

Explore and construct a map of an environment 
Exploration Method: Feature based (Newman, Boss, and Leonard) 
Assumption:   The robot knows the large-scale environment structure 
Path Cost: Path length (physical distance

Visibility Path Planner : F(map, candidates, pose) 
Feature based SLAM map 

  Robot position and heading 
Candidate: An observation point bordering an unexplored area 
Candidate Utility: An estimate of the observable unexplored area 
Candidate Dynamics:  How do candidates change as a robot explores 

This is an open area of statistical learning research 

Table 1: Key attributes of the continuous observation-planning framework. 

Coordinating Agile Systems Through the 
Model-based Execution of Temporal Plans [2] 

This work provides a novel model-based execution 
of a temporally flexible state plan for the purpose 
of UAV navigation. Its kino-dynamic controller is 
a continuous planning framework.  However, the 
high level planner is not.   

Our integration would enable this work to perform 
continuous high-level planning.  The scope of our 
project includes enabling the simulation 
framework to accept TFSP updates. In particular, 
the observations would be considered when 
creating the temporally flexible state plan. 
Continuous high-level planning would allow the 
UAV to adapt its high-level goals to the observed 
environment.  Specifically, it adapts the additional 
information that it learns about its environment 
(i.e. a more accurate map or the ramifications that 
one task has on the utility of future tasks). 
Therefore, this integration would provide a system, 
which observes, learns and updates its higher level 
planning goals. 

Conflict-directed A* and Its Role in Model-
based Embedded Systems [3] 

This paper [3] introduces a method for 
solving optimal constraint satisfaction 
problems. An Optimal Constraint Satisfaction 
Problem (OCSP) is the problem of finding a 
consistent assignment of variables to values that is 
both consistent and has optimal value.  More 

rigorously, such a problem is a 5-tuple 
D y x ,C , y g ) where, , (x x 

• 	 x  is a set of variables each with domain 
Dx, 

• 	 C is a set of constraints on the variables x 
that define what is a consistent 
assignment, 

• 	 y F ) is a function y ⊂ x ℜ → that 
defines the cost of an assignment. 

( 

Many problems can be formulated as OCSPs. 
Specifically, an S-TSP problem can be represented 
as an OCSP. CDA* has been shown to be an 
efficient implementation for solving OCSPs. For 
this reason, we proposed to replace the Constraint 
Based A* solver in [1] with a CDA* 
implementation. 

Technical Approach: 

Our first step will be to adapt Bradley Hasegawa’s 
work (Continuous Observation Planning for 
Autonomous Exploration) [1] which involves a 
Selective Traveling Salesman Problem (STSP) with 
value updates.  We have Conflict Directed A* 
(CDA*) code (in C++) from Tony Jimenez’s work 
on the second assignment. We hope to gain access 
to the code for [1], and change it so that when it 
frames the STSP as an Optimal Constraint 
Satisfaction Problem (OCSP), it will use our CDA* 
algorithm to solve the OCSP. This may involve a 



lot of work in merging two separately developed 
algorithms. 

Our next step will be to change the STSP solution 
to a Temporally Flexible State Plan (TFSP).  This 
will involve adding time constraints to the ordered 
list of points to visit.  This can be done trivially by 
generating the constraints at random or in a more 
logical manner by estimating times using a 
probabilistic motion model. We will probably use 
a simple C++ program to input the STSP solution 
and output a TFSP. 

Our final goal is to link the work for [1] with the 
work by Thomas Leaute [2] on Coordinating Agile 
Systems Through The Model-based Execution of 
Temporal Plans.  The work for [2] takes a TFSP 
and tests the controller using simulation. 
Conceivably we could start with an STSP, use the 
work for [1] with CDA* to solve it, turn the 
solution into a TFSP, and run the TFSP using 
Thomas Leaute’s code in a simulator.  However, 
[1] uses a STSP with changing values from 
observations, so it will keep producing different 
solutions over time.  In discussion with Thomas 
Leaute, we learned that he thought it would be 
feasible to change the code for [2] to handle 
updates in the TFSP.  Our fallback position would 
be to restart the simulation whenever the TFSP is 
updated. 

As a final implementation though, we note that 
our motivating application is the Mars Airplane, 
where the expected value of future scientific tasks 
is affected by ongoing observations.  The above 
integration of the continuous observation planner 
intends to allow plan updates due to new 
observations. These observations may affect the 
value of the future tasks.  A science exploration 
mission lends itself to continuous (finite horizon) 
observation planning because it embodies an 
implicit exploration-exploitation trade-off.  Our 
integration will, therefore, allow the simulator to 
extend the feedback-control loop to high level 
planning. This feedback-control loop integration, 
however, is left as future work. 

Plan: 

Our minimal plan will be an extension to [1].  To 
accomplish our learning goals, our objective will 
be to master the concepts presented in Bradley 
Hasegawa’s thesis and develop an extension to his 
work by replacing constraint-based A* with 
conflict-directed A*. 

Our baseline plan would be a further extension to 
the above-mentioned algorithm. We will then take 
the algorithm developed by Mr. Hasegawa and 
convert the solution to the Selective Traveling 
Salesman Problem (STSP) into a Temporally 
Flexible State Plan (TFSP). 

Our enhanced plan is a novel cognitive robot 
application. This plan would be to take the 
extension to the previous work from [1] and merge 
it with [2] by modifying it to accept a continuously 
updated TFSP.  The resulting application would be 
able to take as inputs a set of waypoints and 
continuously plan a kino-dynamic path that will be 
optimized according to the utility of the waypoints. 
This cognitive robot application can then be 
executed on a hardware-in-the-loop simulation as 
cited in [2] if that equipment is available from the 
MERS lab. 

Schedule: 

4/11 Turn in proposal 
4/17 Integrate [1] with CDA* 
4/19 Create translation from STSP 

solution to TFSP.   
Reassess situation and schedule 

4/24 Integrate [1] with [2], modify [2] 
to handle updates to TFSP.   
Coding complete 

4/27 Simulations complete 
5/4 Paper complete 
5/7 Presentation complete 



Division of Labor: 

• 	 Adapt Bradley Hasegawa’s work 
� Solve OCSP using CDA* 
� Convert OCSP [1] 

representation to CDA* [2] 
representation 

• Change the STSP solution to a TFSP 
� add time constraints  

• 	 Link Bradley Hasegawa’s work with the 
work by Thomas Leaute 

� 	Adapt his code so that the 
TFSP can be continuously 
replaced with a new one. 

• 	 Overarching Activities: 

� Debugging 

� Interfacing 


o 	 Interfacing can often result 
in unforeseen 
implementation delays. 
Therefore, we intend to 
address most interfacing 
issues upfront, which will 
allow us to properly adapt 
the scope of our project. 

o 	 We intend to do this by 
first implementing the 
interface between the two 
algorithms ([1] and [2]) 
without observations.  Our 
second step will involve 
properly formatting the 
TFSP for the simulation 
interface [2]. The 
simulation framework [2] 
will initially require no 
fundamental changes since 
the TFSP will be static.  
The second spiral of our 
project will then include 
observations and TFSP 
updates.  This will require a 
fundamental change to the 
simulation framework and 
interface [2]. 

� 	Write-up 
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