
Number Systems 

Introduction 	 Binary Number System 

The goal of this handout is to make you comfortable with the binary number system. We Binary means base 2 (the prefix bi). Based on our earlier discussion of the decimal 

will correlate your previous knowledge of the decimal number system to the binary number system, the digits that can be used to count in this number system are 0 and 1. 

number system. That will lay the foundations on which our discussion of various The 0,1 used in the binary system are called binary digits (bits) 

representation schemes for numbers (both integer and real numbers) will be based. 
The bit is the smallest piece of information that can be stored in a computer. It can have 
one of two values 0 or 1. Think of a bit as a switch that can be either on or off. For 

Decimal Number System example,  

Bit ValueCounting as we have been taught since kindergarten is based on the decimal number 
0 OFF / FALSEsystem. Decimal means base 10 (the prefix dec). In any number system, given the base 
1 ON/ TRUE (often referred to as radix), the number of digits that can be used to count is fixed. For 

example in the base 10 number system, the digits that can be used to count are Table 1. Interpreting Bit Values 

0,1,2,3,4,5,6,7,8,9. 
From the hardware perspective, ON and OFF can be represented as voltage levels 

Generalizing that for any base b, the first b digits (starting with 0) represent the digits that (typically 0V for logic 0 and +3.3 to +5V for logic 1). Since only two values can be 

are used to count. When a number ≥ b has to be represented, the place values are used. stored in a bit, we combine a series of bits to represent more information. Again the 
concept of place values is applicable here as well. 

Example 1. Consider the number 1234. It can be represented as  
Example 3. Consider the binary number 1101. It can be represented as  

1*103+ 2*102 + 3*101 + 4*100 (1) 
1*23+ 1*22 + 0*21 + 1*20  (3) 

Where: 
- 1 is in the thousand’s place 	 This expanded notation also gives you the means of converting binary numbers directly 

- 2 is in the hundred’s place 	 into the equivalent decimal number. 

- 3 is in the ten’s place 
- 4 is in the one’s place. 	 8 + 4 + 0 + 1 = 13 

The equation (1) is an expanded representation of 1234. The expanded representation has Example 4. Consider the binary number 1101.101. It can be represented as: 

the advantage of making the base of the number system explicit.  
1*23+ 1*22 + 0*21 + 1*20+ 1*2-1+ 0*2-2+ 1*2-3 (4) 

Example 2. Consider the number 1234.567. It is represented as  
The same notation is applicable to real numbers represented in binary notation. The 
equivalent decimal number is 1*103+ 2*102 + 3*101 + 4*100+ 5*10-1+ 6*10-2+ 7*10-3 (2) 

Where: 	 13 + 0.5 + 0 + 0.125 = 13.625 

- 5 is in the tenth’s place 
- 6 is in the hundredth’s place 
-	 7 is in the thousandth’s place To represent larger numbers, we have to group series of bits. Two of these groupings are 

of importance: 

In equation (2), the representation includes digits both to the left and to the right of the 	 - Nibble A nibble is a group of four bits 

decimal point.  	 - Byte A byte is a group of eight bits 



byte are shown below in figure 1. 

a7  a6  a5  A4  a3  a2  a1  a0 

Figure 1. Byte 

The most significant b least 
significant b

a7 * 27 + a6 * 26 + a5 * 25 + a4 * 24 + a3 * 23 + a2 * 22 + a1 * 21 + a0 * 20 (5) 

Answer: 255 

Answer: 0 to 255. 

range will change. 

form words. The size of words is dependent on the underlying processor, but is usually an 

In the big-endian 
first). Conversely, in the little-endian 

bi-endian

The term endian

Big-
Endian and Little-Endian
at the big end or the little end. 

lsb 

Byte Big-Endian Little-Endian 
0 00000100 00000001 
1 00000001 00000100 

Table 2. Big-Endian versus Little-Endian Representation of 00000100 00000001 

context, equation (5) refers to the little-endian ordering 

Operations on Numbers 

subtraction. Again, we will correlate the addition and subtraction operations in the 

145 
+ 

401 

If on the other hand, the 

carried over 
significant place). 

Rule Step Result Carry 
1 0 + 0 0 0 
2 0 + 1 1 0 
3 1 + 0 1 0 
4 1 + 1 0 1 

Table 3

Carry 1Carry 1 

The byte is the smallest addressable unit in most computers. The key components of a 

it (msb) is the bit with the highest place value, while the 
it (lsb) denotes the bit position that has the lowest place value. To convert the 

byte to the equivalent integer number, the formula in (5) is used. 

Self Exercise: What is the value of the bit pattern 11111111 ? 

Self- Exercise: What is the range of values represented by an 8-bit binary number? 

Note: When we look at negative number representation using the same 8-bit number, the 

When we want to represent a value larger than 255, we have to group bytes together to 

even number of bytes (typically 4 bytes).  

system, the byte with the largest significance is stored first (big-end-
system, the byte with the least significance is stored 

first (little-end-first). The number 1025 in binary is 00000100 00000001. 

The sequencing of bytes to form larger numbers leads to the issue of which is the first 
byte in the sequence. Many mainframe computers, particularly IBM mainframes, use a 
big-endian architecture. Most modern computers, including PCs, use the little-endian 
system. The PowerPC system is  because it can understand both systems 

 comes from Swift's "Gulliver's Travels" via the famous paper "On Holy 
Wars and a Plea for Peace" by Danny Cohen, USC/ISI IEN 137, 1980-04-01. The 
Lilliputians, being very small, had correspondingly small political problems. The 

 parties debated over whether soft-boiled eggs should be opened 

msb 

The endian system may sometimes be used to represent the bit order within a byte. In this 
of bits within the byte. 

For any given number system, the operations of addition and subtraction are fundamental. 
Operations such as multiplication and division can be implemented using addition and 

decimal number system to the binary number system.  

Example 5. Consider the operation 145 + 256 

256

The algorithm works by starting at the least significant digit and working from right to 
left. At each place position, the digits are added and if the resulting number is a single 
digit, it is entered in the same place position in the sum.
summation operation results in 2 digits, the digit of lower significance is entered into the 
place position of the sum and the digit of higher significance is added along with the 
other digits in the next most significant place (or is to the next most 

The same principle applies to binary addition.  

.Rules for Binary Addition 



1 1 1 0 0 1 0 0 
+ 0 0 0 0 0 1 0 1 

1 1 1 0 1 0 0 1 

Note that at the 2nd bit position, there is a carry of 1 into the 3rd bit position (counting 

correct. 

Answer: 1 1 1 0 0 1 0 0 = 228, 0 0 0 0 0 1 0 1 = 5, 1 1 1 0 1 0 0 1 = 233 = 228+ 5 

significant position. 

445 


189 

subtraction. 

Negative Numbers 

has to be captured in the bit pattern itself. 

Carry 1 

Signed Magnitude Representation 

Bit Pattern Number 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 -0 
1001 -1 
1010 -2 
1011 -3 
1100 -4 
1101 -5 
1110 -6 
1111 -7 

Table 4

Note: +0 and –0 have different bit patterns. 

table: 

0111 
+ 1010 

1 0001 

The bit pattern 0001 is 1 but the result should by 5 0101. 

One’s Complement 

Example 6. Consider the operation: 

from the right with 0 being the first position). 

Self-Exercise: Convert the numbers above into decimal to verify that the answer is 

Decimal subtraction works very similar to decimal addition, the numbers are aligned to 
the same place values and the algorithm proceeds from right to left. The bottom digit is 
subtracted from the top digit, and the result written in the place value position in the 
result. If the top digit is less than the bottom digit, then we must 'borrow' from the next 
place value position. That means decrementing the top digit in the next significant 
position and adding the base to the top digit of this position before performing the 
subtraction. This operation gets even more complicated when there is a ‘0’ in the next 

Example 7. Consider the decimal operation 445 - 256: 

256

The decimal subtraction algorithm can get very complicated and the time taken to 
perform the subtraction can vary greatly. Since the binary addition algorithm is already 
understood and already implemented in hardware, it can be reused to also perform 

The operation x – y can be re-written as x+ (-y). That brings up the question – How are 
negative numbers represented in binary notation? 

Negative binary numbers are represented by the ‘-’ sign followed by the magnitude of the 
number. The computer however does not have a means of representing signs. The sign 

The signed magnitude representation uses the most significant bit to determine if the 
number is positive or negative. The advantage of this notation is that by examining the 
msb alone, it is possible to determine if the number is positive or negative. The 
disadvantage however is that one bit pattern is wasted (there are two possible 
representations for zero) and subtraction cannot be performed using addition alone. Table 
4. shows the signed magnitude representation of numbers using 4 bits.  

. Numbers using 4-bit signed magnitude representation 

Example 8. Consider the following operation 7 – 2. Substituting the bit patterns from the 



Bit Pattern Number 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1111 -0 
1110 -1 
1101 -2 
1100 -3 
1011 -4 
1010 -5 
1001 -6 
1000 -7 

The one’s complement notation represents a negative number by inverting the bits in The two’s complement notation has the advantages that the sign of the number can be 
each place. The one’s complement notation for a 4-bit number is shown in Table 5. Again computed by looking at the msb. The addition operation can be used to perform 
the limitations of the sign magnitude representation are not overcome (there are two bit subtraction. Also, there is only one bit-pattern to represent ‘0’ so an extra number can be 
patterns used to represent 0 and the addition operation cannot be used to perform represented. Table 6 summarizes the 2’s complement notation for a 4-bit number. 
subtraction). The one’s complement is important because it is very easy to perform the 
inversion operation in hardware and it forms the basis of computing the two’s Bit Pattern Number 
complement.  0000 0 

0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1111 -1 
1110 -2 
1101 -3 
1100 -4 
1011 -5 
1010 -6 
1001 -7 
1000 -8 

Table 6. Numbers using 2’s complement representation 

Table 5. Numbers using 1’s complement representation Example 10. Consider the following operation 7 – 2. Substituting the bit patterns from the 
table: 

Example 9. Consider the following operation 7 – 2. Substituting the bit patterns from the 
table: 0111 

+ 1110 
0111 1 0101 

+ 	1101 
1 0100 The bit pattern 0101 is 5, which is the expected result. 

The bit pattern 0100 is 4 but the result should by 5 0101. 	 The limitation with the 2’s complement notation is that the bit patterns are not in order 
i.e. comparing the bit patterns alone does not provide any information as to which 
number is larger. 

Two’s Complement  

The two’s complement notation builds on the one’s complement notation. The algorithm Excess Notation 
goes as follows: 

The excess notation is a means of representing both negative and positive numbers in a 
1. Compute the 1’s complement 	 manner in which the order of the bit patterns is maintained. The algorithm for computing 
2. Add 1 to the result to get the 2’s complement. 	 the excess notation bit pattern is as follows: 



1. 	 Add the excess value (2N-1, where N is the number of bits used to represent the Self-Exercise: What is the range of numbers that can be represented using the Excess-2N-1 

number) to the number. notation? 

2. 	 Convert the resulting number into binary format. Answer: 2N-1- 1 to -2N-1 

The 2N-1 is often referred to as the Magic Number for computing the excess Bias Notation 
representation of the number (except that there is no magic in it). Table 7 presents all the 
numbers that can be represented using the excess-8 notation.  	 The excess notation is a special case of the biased notation. For instance, excess-8 is 

biased around 8 (i.e.0 has the bit pattern associated with decimal 8). Instead of using the 
magic number, any number (bias) can be used. 

Note: This concept becomes important when we address the IEEE Single Precision 
Floating-Point standard. 

Floating-Point Notation 

The floating-point notation is used: 
a. 	 To represent integers that are larger than the maximum value that can be held by a 

bit-pattern (the maximum value that can be held by 8 bits is 255). 
b. 	 To represent real numbers. 

Large Integers 

Consider a really large number 1,234,567. The number requires seven places to represent 
the value. If the number of places available to represent the number is limited to say four 

Table 7. Numbers using the Excess-8 representation places, certain digits have to be dropped. The selection of digits to be dropped is based on 
the value associated with the digit. In this case, we will drop the last three digits ‘567’. 

The number of bits used to represent a code in excess-8 is 4 bits (24-1 = 8). Also, the bit The resulting number is: 
patterns are in sequence (the largest number that can be represented has the bit pattern 
1111). 1,234,000 

Example 11. Consider the following operation 7 – 2. Substituting the bit patterns from the The loss of ‘567’ is a loss of precision but if the most significant digits were to be 
table: eliminated, say ‘123’, then the resulting number is 4,567, which presents an even greater 

loss of precision. 
1111 

+ 	0110 Rules for determining significance (integers): 
1 0101 1. A nonzero digit is always significant 

2. The digit '0' is significant if it lies between other significant digits  
The result of the addition operation is the bit-pattern used for 5 in binary. The excess 3. The digit '0' is never significant if it precedes all the nonzero digits
notation representation however takes longer to compute than the 2’s complement 
notation. The excess notation will however play an important part in computing floating- Self-Exercise: What are the significant digits in 0012340? 
point representations. 

Answer: 0012340 

Number Excess Number Bit Pattern 
7 15 1111 
6 14 1110 
5 13 1101 
4 12 1100 
3 11 1011 
2 10 1010 
1 9 1001 
0 8 1000 
-1 7 0111 
-2 6 0110 
-3 5 0101 
-4 4 0100 
-5 3 0011 
-6 2 0010 
-7 1 0001 
-8 0 0000 



1,234,000 can be represented using only four digits as 1234 * 103. This representation is In the binary fixed-point notation, the radix position is fixed at a certain point within the 
called the exponential form. bit pattern. To illustrate the notation, we will consider an 8-bit bit-pattern (byte) as shown 

below. 
The exponential form consists of two parts: 
� 	mantissa – (the significand) the significant digits (1234) 
� 	exponent – the power to which the base is raised before being multiplied by the 

mantissa. (3). a6  a5  a4  a3  a2  a1  a0a7

We can define the fixed-point notation to be: 

Two special forms of representation are: 	 - a7, a6, a5, a4 – contain the integer part in two’s complement form 
-	 a3, a2, a1, a0 – contain the fractional part in normal binary form 

� 1.234 * 106 – the scientific notation, in which the decimal point is to the right of 

the most significant digit. 
 Value Valuea7a6a5a4 a3a2a1a0 

� 	0.1234 * 107 – the normalized notation, in which the decimal point is to the left 0 0 0 0 0 0 0 0 0 0 
of the most significant digit.  0 0 0 1 1 0 0 0 1 0.0625 

0 0 1 0 2 0 0 1 0 0.125 
0 0 1 1 3 0 0 1 1 0.1875 
0 1 0 0 4 0 1 0 0 0.250

Real Numbers 0 1 0 1 5 0 1 0 1 0.3125 
0 1 1 0 6 0 1 1 0 0.375 

Mathematically, real numbers are set of rational and irrational numbers. A rational 0 1 1 1 7 0 1 1 1 0.4375 
number is any number that can be represented as a ratio of two integers (a/b, b ≠ 0). 1 1 1 1 -1 1 0 0 0 0.5 
Irrational numbers are real numbers that are not rational i.e. they cannot be represented as 1 1 1 0 -2 1 0 0 1 0.5625 
a ratio of two integers (typically numbers whose decimal expansion never ends and never 1 1 0 1 -3 1 0 1 0 0.625 
enters a periodic pattern). 1 1 0 0 -4 1 0 1 1 0.6875 

1 0 1 1 -5 1 1 0 0 0.75
There are a number of ways of representing a real number in a computer.  1 0 1 0 -6 1 1 0 1 0.8125 

1 0 0 1 -7 1 1 1 0 0.875
1. 	 One notation is the fixed point, wherein the decimal point (radix) is fixed at some 1 0 0 0 -8 1 1 1 1 0.9375

position between the digits. The digits to the left of the radix are integer values 
and those to the right of the radix are fractions of some fixed unit. For example: 	

Table 8. Integer part values Table 9. Fractional Part Values
10.82 = 1 x 101 + 0 x 100 + 8 x 10-1 + 2 x 10-2, the radix is between 0 and 8. This 
notation is limited both in the range of numbers that can be represented as well as 	

Tables 8,9 show the possible values that the different segments of the fixed-point notation 
in the precision of the numbers that can be represented. 	

can take. 

2. 	 Another notation is to use rational notation (represent the real number as a ratio of 
Self-Exercise: What is the range of values that the fixed-point notation can take?


two integers). This representation is not always possible because all real numbers 

are not necessarily rational! 

Answer: -8.9375 to 7.93725 


3. 	 The floating-point notation is the most common of the representation schemes. It 
Self-Exercise: What is the precision of the notation?


is based on either the scientific or normalized representation of the number. 


Answer: The precision is 0.0625. 

Binary Fixed-Point Notation 	
The notation makes an assumption about the representation (primarily the location of the 
radix and the format used for the integer part). For two computers (or two programs for 



that matter), they must understand the representation that is being used. This is captured 1. Determine the value of the exponent 
by means of standards. At the end of this handout, we will discuss the IEEE standard 2. If the exponent x is negative, 
used for representing floating point numbers. a. Add x leading 0’s to the fractional part 
Example12. What is the value represented by the bit pattern 11011110? Assume the radix b. Insert a radix point before the 0’s 
point is between bit positions 3 and 4. 3. If the exponent is positive, 

a. Move the radix point to the right x places. 
The bit pattern can be split into the integer part 1101 and the fractional part 1110. 4. Convert the binary number into decimal 

5. Add the sign based on the a7 bit. 
1101 = -3 
1110 = 0.875 Self-Exercise: Why does step 3 in the algorithm above not address adding zeroes? 

11011110 = -3.875 	 Answer: From the excess table above, it is clear that the maximum positive exponent 
is 3. Moving the radix point right does not move to the right of the fraction part, 
hence, padding (adding leading 0’s or trailing 0’s) to the right is not needed.

Modified Significance Rules 
Excess Number Actual Value Bit-Pattern 

7 3 111 
6 

Rules for determining significance: 
2 110 

5 1 101 
4 

1. 	 A ‘1’ bit is always significant 
0 100 

2. 	 The bit '0' is significant if it lies between other significant bits  3 -1 011 
2 -2 010 

3. 	 The bit '0' is never significant if it precedes all 0’s, even if it follows an embedded 1 -3 001 

radix (in the example above, the radix is embedded between bit positions 3 and 4). 
 0 -4 000 

4. 	 The bit '0' is significant if it follows an embedded radix point and other significant 

bits 


Self-Exercise: What are the significant bits in the bit pattern00.010000? 

Table 10. Excess-4 Conversion Table 

Example 13. What is the decimal value associated with 01111001(assume that the bit 
pattern is in 8-bit floating point format)? 

Answer: 00.010000	 Answer: Split the byte into the respective components, 

0 111 1001 
8-bit Floating Point Notation 

Step 1. Convert the excess-four exponent into its decimal equivalent.  
The 8-bit floating point notation can be describe based on the byte shown below: 

111 = 3, hence the exponent = 3. 
a7  a6  a5  a4  a3  a2  a1  a0 

Step 2. Since the exponent is positive, move the radix point three place to the 
Where right. 

-	 a7 – sign bit 
-	 a6 a5 a4 – exponent in excess-4 notation The binary number  = 0.1001 * 23

-	 a3 a2 a1 a0 – fractional part in normal binary    = 100.1 

The algorithm for converting from 8-bit floating point to decimal is detailed below: 	 Step 3. Convert the binary number to decimal, 100.1 = 4.5 



Step 4. Add the sign, hence 01111001 = 4.5 

decimal to 8-bit floating point is detailed below: 

1. Set the sign bit (a7

2. 
3. 

significant bit). 
4. Convert the exponent into excess-4 notation 

6 a5 a4 to the exponent value. 
6. 3 a2 a1 a0). 

below: 
-
- The lowest negative exponent is –4 
-

Answer: 

0 a6  a5  a4  a3  a2  a1  a0 

2 

Step 4. Convert the exponent to excess-4, 2 = 110 

Step 5. Fill in the exponent 
0 1 1 0 a3  a2  a1  a0 

0 1 1 0 1 0 1 1 

Hence 2 ¾ = 01101011 

IEEE 754 Single Precision Floating Point Notation 

bit is 1.This allows us to gain an additional bit of precision in the representation. 

Figure 2. IEEE 32 bit floating point notation 

The single precision 
also defines a double precision 
single precision standard. 

1. 
a. set the sign bit to ‘1’ 

2. 
a. Set the sign bit to ‘0’ 

3. 
4. 

5. Convert the exponent into bias-127 notation 
6. 
7. 

1. 

2. 

Sign Bit 8 bit exponent in 
bias 127 notation 

23 bits to represent a 24 bit 

The algorithm for converting from 

) to 1 if the number is negative, 0 otherwise 
Convert the number into binary representation.  
Normalize the binary number (move the radix point to the left of the most 

5. Set a
Select the 4 most significant bits and enter them into the fraction part (a

There are some limitations of the 8-bit floating-point notation. Some of them are listed 

The maximum positive exponent is 3 

The precision is determined by the exponent 

Example 14: Convert 11/4 into 8-bit floating-point notation. 

 Step 1. 

Step 2. Convert the number into binary form,11/4 = 2 ¾ = 0010.11 

Step 3. Normalize 0010.11 = 0.1011 * 2

Step 6. Fill in the fraction 

Given that the normalization procedure always has a 1 in the first significant bit position, 
it is possible to use scientific notation instead and always implicitly assume that the first 

representation uses 32 bits as shown in Figure 2 above. The standard 
standard that uses 64 bits. We will only be discussing the 

The method for converting decimal numbers into the 754 standard representation is as 
follows: 

If the number is negative 

If the number is positive 

Convert the decimal number into binary form. 
Convert the binary number into scientific notation (move the radix immediately 
right of the most significant bit). 

Fill in the 8 bits demarcated for the exponent 
Fill in the bits (except the most significant bit) into the mantissa from left to right. 
Pad any remaining spaces with 0’s. 

The exponent is computed as bias-127. The algorithm for computing the biased exponent 
is as follows: 

Add 127 to the decimal value of the exponent (The exponent value is negative if 
the radix is moved to the left). 
Convert the decimal value into binary 

mantissa 



Answer: 

Step1. Fill in the sign bit 

0 

194 = 11000010 
0.375 = 0.011 

194.375 = 11000010.011 

Step 3. Convert to scientific notation 

7 

Step 4.Convert the exponent into bias-127 notation 

7 + 127 = 134 = 10000110 

Step 5.Fill in the exponent 

0 1 0 0 0 0 1 1 0 

0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hence 194.375 = 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Endnote 

Example 15. Convert 194.375 into IEEE-754 single precision representation. 

Step 2. Convert the decimal number into binary. 

  1.1000010011 * 2

Step6. Fill in the mantissa without the most significant bit. 

This handout was developed for Unified Engineering, Department of Aeronautics and 
Astronautics, MIT. Any errors of commission or omission are mine 


