
Matrix Primer

Add two 3x3 matrices

Pre-conditions: two non-empty 3x3 matrices of integer/ real / complex type
Post-conditions: a new 3x3 matrix of the same type with the elements added

Pseudo-code:
1. Let the matrices A, B be the input matrices
2. Let the matrix holding the sum be called Sum.
3. For I in 1.. 3 loop

i. For J in 1.. 3 loop
1. Sum(I,J) := A(I,J) + B(I,J)

4. Return matrix Sum

Multiply two 3x3 matrices

Suppose that A and B are two matrices and that A is an m x n matrix (m rows and n
columns) and that B is a p x q matrix. To be able to multiply A and B together, A must
have the same number of columns as B has rows (i.e., n=p). The product will be a matrix
with m rows and q columns. To find the entry in row r and column c of the new matrix
we take the "dot product" of row r of matrix A and column c of matrix B (pair up the
elements of row r with column c, multiply these pairs together individually, and then add
their products).

Mathematically,
n

C(I,J) = ∑ A(I,K) B(K,J)
K=1

Where
� I ranges from 1.. m
� J ranges from 1.. q
� K ranges from 1.. n = p

Pre-conditions: two non-empty 3x3 matrices of integer/ real / complex type
Post-conditions: a new 3x3 matrix of the same type with the product of the matrices

Pseudo-code:
1. Let the matrices A, B be the input matrices
2. Let the matrix holding the product be called Product.
3. Use a local variable sum to store the intermediate value of product.
4. For I in 1.. 3 loop

i. For J in 1.. 3 loop
1. Sum := 0;
2. For K in 1 .. 3 loop

a. Sum := Sum + A(I,K) * B(K,J);
3. End K loop
4. Product(I,J) := Sum;

ii. End J loop
5. End I loop
6. Return matrix Product

Transpose a 3x3 matrix

Pre-conditions: 	 A non-empty 3x3 matrix
Post-conditions: 	 A new 3x3 matrix of the same type with the elements in rows and

columns exchanged

Pseudo-code:
1. Let the input matrix be A
2. Let the matrix holding the transpose be called Transpose.
3. For I in 1 .. 3 loop

i. For J in 1.. 3 loop
1. Transpose(I,J) := A(J,I)

4. Return matrix Transpose

Inverse of a 3x3 matrix

The inverse of a 3×3 matrix is given by:

We use cofactors to determine the adjoint of a matrix.

The cofactor of an element in a matrix is the value obtained by evaluating the
determinant formed by the elements not in that particular row or column.

We find the adjoint matrix by replacing each element in the matrix with its cofactor and
applying a + or - sign as follows:
�

and then finding the transpose of the resulting matrix

The determinant of an n-by-n matrix A, denoted det A or |A|, is a number whose value can
be defined recursively as follows. If n=1, i.e., if A consists of a single element a11, det A
is equal to a11; for n > 1, det A is computed by the recursive formula

where sj is +1 if j is odd and.1 if j is even, a1j is the element in row 1 and column j , and Aj

is the n . 1-by-n . 1 matrix obtained from matrix A by deleting its row 1 and column j .

For a 3x3 matrix, the formula can be determined as:

Preconditions: A 3x3 invertible matrix
Postconditions: A new 3x3 matrix which is the inverse of the input matrix

Pseudocode:

1. 	 Let the input matrix be A
2. 	 Let the cofactor matrix be Cofactor
3. 	 Let Determinant be the variable used to store the determinant
4. 	 For I in 1.. 3 loop

a. 	 Compute the indices of the elements to compute the determinant using
the formula:

i. I1 := (I + 1) Rem 3. If I1 = 0 then I1 = 3
ii. I2 := (I + 2) Rem 3. If I2 = 0 then I2 = 3

b. 	 For J in 1..3 loop
i. 	Compute the indices of the elements to compute the

determinant using the formula:
1. 	 J1 := (J + 1) Rem 3. If J1 = 0 then J1 = 3
2. 	 J2 := (J + 2) Rem 3. If J2 = 0 then J2 = 3

ii.	 Cofactor(I,J):=A(I1,J1)*A(I2,J2)- A(I1,J2) * A(I2,J1)

5. Compute determinant as
Determinant 	:= A(1,1)*Cofactor(1,1) + A(1,2)*Cofactor (1,2)+

A(1,3)*Cofactor (1,3)

6. Compute the transpose of the Cofactor matrix
7. For I in 1.. 3

a. For J in 1..3
i. Inverse(I,J) := Cofactor(I,J) / Determinant

8. Return Inverse

Note: The method for computing the cofactor automatically generates the required signs
in the cofactor matrix.

