
Matrix Primer 

Add two 3x3 matrices 

Pre-conditions: two non-empty 3x3 matrices of integer/ real / complex type 
Post-conditions: a new 3x3 matrix of the same type with the elements added 

Pseudo-code: 
1. Let the matrices A, B be the input matrices 
2. Let the matrix holding the sum be called Sum. 
3. For I in 1.. 3 loop 

i. For J in 1.. 3 loop 
1. Sum(I,J) := A(I,J) + B(I,J) 

4. Return matrix Sum 

Multiply two 3x3 matrices 

Suppose that A and B are two matrices and that A is an m x n matrix (m rows and n 
columns) and that B is a p x q matrix. To be able to multiply A and B together, A must 
have the same number of columns as B has rows (i.e., n=p). The product will be a matrix 
with m rows and q columns. To find the entry in row r and column c of the new matrix 
we take the "dot product" of row r of matrix A and column c of matrix B (pair up the 
elements of row r with column c, multiply these pairs together individually, and then add 
their products). 

Mathematically, 
n 

C(I,J) = ∑ A(I,K) B(K,J) 
K=1 

Where  
� I ranges from 1.. m 
� J ranges from 1.. q 
� K ranges from 1.. n = p 

Pre-conditions: two non-empty 3x3 matrices of integer/ real / complex type 
Post-conditions: a new 3x3 matrix of the same type with the product of the matrices 

Pseudo-code: 
1. Let the matrices A, B be the input matrices 
2. Let the matrix holding the product be called Product. 
3. Use a local variable sum to store the intermediate value of product. 
4. For I in 1.. 3 loop 



i. For J in 1.. 3 loop 
1. Sum := 0; 
2. For K in 1 .. 3 loop 

a. Sum :=  Sum + A(I,K) * B(K,J); 
3. End K loop 
4. Product(I,J) := Sum; 

ii. End J loop 
5. End I loop 
6. Return matrix Product 

Transpose a 3x3 matrix 

Pre-conditions: 	 A non-empty 3x3 matrix 
Post-conditions: 	 A new 3x3 matrix of the same type with the elements in rows and  

columns exchanged 

Pseudo-code: 
1. Let the input matrix be A 
2. Let the matrix holding the transpose be called Transpose. 
3. For I in 1 .. 3 loop 

i. For J in 1.. 3 loop 
1. Transpose(I,J) := A(J,I) 

4. Return matrix Transpose 

Inverse of a 3x3 matrix 

The inverse of a 3×3 matrix is given by: 

We use cofactors to determine the adjoint of a matrix. 

The cofactor of an element in a matrix is the value obtained by evaluating the 
determinant formed by the elements not in that particular row or column. 

We find the adjoint matrix by replacing each element in the matrix with its cofactor and 
applying a + or - sign as follows: 
� 



and then finding the transpose of the resulting matrix  

The determinant of an n-by-n matrix A, denoted det A or |A|, is a number whose value can 
be defined recursively as follows. If n=1, i.e., if A consists of a single element a11, det A 
is equal to a11; for n > 1, det A is computed by the recursive formula 

where sj is +1 if j is odd and.1 if j is even, a1j is the element in row 1 and column j , and Aj 

is the n . 1-by-n . 1 matrix obtained from matrix A by deleting its row 1 and column j . 

For a 3x3 matrix, the formula can be determined as: 

Preconditions: A 3x3 invertible matrix 
Postconditions: A new 3x3 matrix which is the inverse of the input matrix 

Pseudocode: 

1. 	 Let the input matrix be A 
2. 	 Let the cofactor matrix be Cofactor 
3. 	 Let Determinant be the variable used to store the determinant 
4. 	 For I in 1.. 3 loop 

a. 	 Compute the indices of the elements to compute the determinant using 
the formula: 

i. I1 := (I + 1) Rem 3. If I1 = 0 then  I1 = 3 
ii. I2 := (I + 2) Rem 3. If I2 = 0 then  I2 = 3 

b. 	 For J in 1..3 loop 
i. 	Compute the indices of the elements to compute the 

determinant using the formula: 
1. 	 J1 := (J + 1) Rem 3. If J1 = 0 then  J1 = 3 
2. 	 J2 := (J + 2) Rem 3. If J2 = 0 then  J2 = 3 

ii.	 Cofactor(I,J):=A(I1,J1)*A(I2,J2)- A(I1,J2) * A(I2,J1) 



5. Compute determinant as 
Determinant  	:= A(1,1)*Cofactor(1,1) + A(1,2)*Cofactor (1,2)+ 

A(1,3)*Cofactor (1,3) 

6. Compute the transpose of the Cofactor matrix 
7. For I in 1.. 3 

a. For J in 1..3 
i. Inverse(I,J) := Cofactor(I,J) / Determinant 

8. Return Inverse 

Note: The method for computing the cofactor automatically generates the required signs 
in the cofactor matrix.  


