
Machine Language Guide

Basic Program

; Program name : XOR Implementation
;Programmer : Jayakanth Srinivasan
;Last Modified : Feb 18 2003

; code segment

load R1,1 ;Load register R1 with 1
load R2,0xff ;Load register R2 with 11111111
load R3,[first_number] ; move contents of location labeled

; first_number into register R3
xor R4, R3,R2 ; flip the 0's and 1's in the first number
store R4, [result]; store the result in location labeled result
halt ;halt the program.

; data segment

first_number: db 8
result: db 5

Instruction Set

Opcode Instruction Operation

2 RXY load R,XY register[R]:=XY

1 RXY load R,[XY]

3 RXY store R,[XY]

D 0RS load R,[S]

E 0RS store R,[S]

4 0RS move S,R register[S]:=register[R]

5 RST addi R,S,T register[R]:=register[S]+register[T]
integer add

6 RST addf R,S,T register[R]:=register[S]+register[T]
floating-point add

7 RST or R,S,T register[R]:=register[S] OR register[T]

8 RST and R,S,T register[R]:=register[S] AND register[T]

-
-
-

9 RST xor R,S,T register[R]:=register[S] XOR register[T]

A R0X ror R,X register[R]:=register[R] ROR X

B RXY jmpEQ R=R0,XY
0XY jmp XY

F RXY jmpLE R<=R0,X

C 000 halt halt program

The opcode is the first nibble (higher four bits of the first byte) and the three parts of the
operand are the second, third and fourth nibble.

Assembler Syntax

Label

with a digit.

Instruction

16 instructions listed in the previous section.

Comment

Numbers

�)

�)

The basic template of a machine language program is shown below.

register[R]:=memory[XY]

memory[XY]:=register[R]

register[R]:=memory[register[S]]

memory[register[S]]:=register[R]

bitwise OR

Program Header, Contains
Program Name

 Programmer Name
Last Modified

Start of code segment

Start of data segment

bitwise AND

bitwise eXclusive OR

Rotate Right register R for X times

PC:=XY, if R=R0
PC:=XY

PC:=XY, if R<=R0

A label is a sequence of letters, decimal digits and special characters, but it may not start

An instruction starts with a mnemonic, followed by the operands. It has to be one of the

A comment starts after a semicolon ‘;’ and ends at the end of the line. Any character is
allowed after the ‘;’.

A number can be a decimal number, a binary number or a hexadecimal number.

A decimal number is a sequence of decimal digits ('0' up to '9' . It may start with a
'-' to indicate the number is negative. It may end with a 'd' to emphasize that the
number is decimal.

A binary number is a sequence of binary digits ('0' and '1' and ending with a 'b'.

- Different fragments of code are not allowed to overlap.
Examples:� 	A hexadecimal number can be written in 3 ways:

o C-style: The number starts with '0x', followed by a sequence of
org 60h

hexadecimal digits ('0' up to '9' and 'A' up to 'F').
load R0,2 ;put this instruction at address $60

o 	Pascal-style: The number starts with '$', followed by a sequence of immediate load

hexadecimal digits ('0' up to '9' and 'A' up to 'F'). load reg,number

load reg,label

o 	Assembler-style: The number is a sequence of hexadecimal digits ('0' up to - Assign the immediate value (number or address of label) to register reg.
'9' and 'A' up to 'F'), but it may not start with a letter. This sequence is Examples:

load R4,8followed by an 'h'. A number can always be made to start with a decimal
load R9,Label_of_something
digit by prefixing the number with a '0', so ABh is written as 0ABh.

direct load
� 	Spaces are not allowed within a number.

load reg,[adr]
- Assign the memory contents at address adr to register reg.

Remarks - Address adr can be a number or a label.
Examples:

load R4,[8]
All identifiers (labels and mnemonics) and (hexadecimal) numbers are case-insensitive. load R9,[Label_of_something]

This means that load, Load, LOAD and lOaD are all the same and so are 0xAB, 0Xab
indirect loadand 0XAB. 	 load reg1,[reg2]
- Assign the memory contents of which register reg2 holds the address to register reg1.

This editor uses syntax-highlighting: Example:
load R4,[R8]

� 	keywords: load, store, addi
direct store

� numbers: -123, 0x10, 11001011b

� comments: ;this is a comment store reg,[adr]

� syntax errors: 12A3, -0x10, 1+1 - Put the value of register reg at memory location adr.

- Address adr can be a number or a label.
Examples:

store R4,[8]
store R9,[Label_of_something]

Mnemonics and operand combinations
data byte 	 indirect store

store reg1,[reg2]
db dataitem_1, dataitem_2, ..., dataitem_n - Put the value of register reg1 at memory location of which register reg2 holds the address.

- Puts data directly into the memory. 	
Example:

- A dataitem can be either a number or a string. 	
store R4,[R8]

- An unlimited number of dataitems can be specified. 	 move
Examples:

db 1,4,9,16,25,36	 move reg1,reg2
db "Hello world",0 - Assign the value of register reg2 to register reg1.

origin
Example:

move R4,R8

org adr 	 integer addition
- The next code starts at address adr.
- Address adr must be a number. 	 addi reg1,reg2,reg3

- Assign the integer, 2-complement sum of register reg2 and register reg3 to register reg1.

Example: unconditional jump

addi R7,R1,R2
jmp adr

floating point addition 	 - Jump to address adr.
- Address adr can be a number or a label.

addf reg1,reg2,reg3 Examples:
- Assign the floating-point sum of register reg2 and register reg3 to register reg1. 	 jmp 42h
Example: 	 jmp Label_to_some_code

addf R7,R1,R2
stop program

bitwise or
halt

or reg1,reg2,reg3 - Stop the execution of the program.
- reg1 := reg2 OR reg3
Example: Notes:

OR 	 R7,R1,R2 This handout was put together with information from the help section of the Simple Simulator
developed at http://wwwes.cs.utwente.nl/software/simpsim/

bitwise and

and reg1,reg2,reg3
- reg1 := reg2 AND reg3
Example:

AND R7,R1,R2

bitwise exclusive or

xor reg1,reg2,reg3
- reg1 := reg2 XOR regr3
Example:

XOR R7,R1,R2

rotate right

ror reg,num
- Rotate register reg to the right for num number of times.
Example:

ror RC,3

jump when equal

jmpEQ reg=R0,adr
- Jump to address adr when register reg is equal to register R0.
- Address adr can be a number or a label.
Examples:

jmpEQ R7=R0,42h

jmpEQ R2=R0,Label_to_some_code

jump when less or equal

jmpLE reg<=R0,adr
- Jump to address adr when register reg is less than or equal to register R0.
- Address adr can be a number or a label.
Examples:

jmpLE R7<=R0,42h

jmpLE R2<=R0,Label_to_some_code

