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Preface

The three stages in which this text came into being give some insight as to how the material
has matured. As '"notes' written in the early 1960's, it was intended to serve as an introduction
to the subject of electrohydrodynamics. Thus, it reflected the author's early research interests.
During this period, the author had the privilege of collaborating with Herbert H. Woodson (now
University of Texas) on the development of an undergraduate subject, "Fields, Forces and Motion'".
That effort resulted in the text Electromechanical Dynamics (Wiley, 1968). There has also been
a strong influence from Hermann A. Haus, with whom the author has collaborated for a number of
years in the development and teaching of an undergraduate electromagnetic field theory subject.
Both Woodson, with his interests in rotating machinery and magnetohydrodynamics, and Haus, who
then worked in areas ranging from electron beam engineering and plasmas to the electrodynamics
of continuous media, stimulated the notion that there was a set of fundamental ideas that perme-
ated many different "specialty areas'. To be taught were widely applicable basic laws, approaches
to modeling and mathematical techniques for disclosing what the models had to say.

The text took its second form in 1972-1973, when the objective was to achieve this broader
and more enduring aspect of the material. Much of the writing was done while the author was on a
Guggenheim Fellowship and a Fellow of Churchill College, Cambridge University, England. During
that year, as a guest of George Batchelor's Department of Applied Mathematics and Theoretical
Physics, and with the privilege of working with Sir Geoffrey Taylor, there was the opportunity
to further broaden the perspective. Here, the influences were toward the disciplines of contin-
uum mechanics.

Unfortunately, the manuscript resulting from this second writing was more in the nature of
two books than one. More integration and culling of material was required if the self-imposed
objective was to be achieved of helping to define a discipline rather than simply covering a
number of interrelated topics.

The third version, this text, would probably not have come into being had it not been for
the active encouragement of Aina Sils. Her editorial help and typewriter artistry provided teach-
ing material that was immediately sufficiently attractive to serve as an incentive to commit nights
and weekends to yet another rewrite.

As a close colleague who has been instrumental in establishing as an area the continuum
electromechanics of biological systems, Alan J. Grodzinsky has been both a source of technical
insight and an inspiration to complete the publication of material that for so many years had
been referenced in theses as "notes.”

Research carried out by still other colleagues at MIT will be seen to have influenced the

scope and content. The Electric Power Systems Engineering Laboratory, directed by Gerald L.
Wilson,is an example with its activities in superconducting machinery (James L. Kirtley, Jr.)
and its model power system (Steven D. Umans). Others are the High Voltage Laboratory (John G.
Trump and Chathan M. Cooke), the National Magnet Laboratory (Ronald R. Parker and Richard D.
Thornton), the Research Laboratory of Electronics (Paul Penfield, Jr. and David H. Staelin),
the Materials Processing Center (Merton C. Flemings), the Energy Laboratory (Janos M. Beer and
Jean F. Louis), the Polymer Processing Program (Nam P. Suh), and the Laboratory for Insulation
Research, (Arthur R. Von Hippel and William B. Westphal).

A great satisfaction and motivation has come from seeing the ideas promolgated here serve
the needs of industry. The author's consulting activities, for more than 30 different companies,
provided many useful examples. In the face of an increasing awareness of the importance of energy
to our societal institutions and our way of life, it has been satisfying to see the concepts pre-
sented here applied not only to the development of new energy systems, but to the conflicting
problem of environmental control as well.

Where possible, examples have intentionally been chosen that can be illustrated with gen-
erally available films. Referenced in Appendix C, these are in two series. The series from the
National Committee on Fluid Mechanics Films was being developed at the Education Development
Center while the author was active in making three films in the series from the National Commit-
tee on Electrical Engineering Films. Interaction with such individuals as Ascher H. Shapiro and
J. A. Shercliff fostered an interest in using films to enliven and undergird classroom education.



While graduate students involved with the subject or carrying out their PhD theses, a number
of people have made substantial contributions. Some of these are James F. Hoburg (Secs. 8.17 and
8.18), Jose Ignacio Perez Arriaga (Secs. 4.5 and 4.8), Peter W. Dietz (Sec. 5.17), Richard S.
Withers (Secs. 5.8 and 5.9), Kent R. Davey (Sec. 8.5), and Richard M. Ehrlich (Sec. 5.9).

Problems at the ends of chapters were typed by Eleanor J. Nicholson. Figures were drawn
by the author.

Solutions to the problems have been prepared in the form of a manual. Intended as an aid to
those either presenting this material in the classroom or using it for self-study, this manual is
available for the cost of reproduction from the author. Requests should be over the signature of
either a member of a university faculty or the industrial equivalent.

James R. Melcher

Cambridge, Massachusetts
January, 1981
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1.1 Background

There are two branches to the area of electromagnetics. One is primarily concerned with electro-
magnetic waves. Typically of interest are guided and propagating waves ranging from radio to optical
frequencies. These may propagate through free space, in plasmas or through optical fibers. Although
the interaction of electromagnetic waves with media of great variety is of essential interest, and in-
deed the media modify these waves, it is the electromagnetic wave that is at center stage in this
branch. Dynamical phenomena of interest to this branch are typified by times, T, shorter than the
transit time of an electromagnetic wave propagating over a characteristic length of the "system'" being
considered. For a characteristic length £ and wave velocity ¢ (in free space, the velocity of light),
this transit time is %/c.

In the chapters that follow, it is the second branch of electromagnetics that plays the major
role. 1In the sense that electromagnetic wave transit times are short compared to times of interest,
the electric and magnetic fields are quasistatic: T >> 2/c. The important dynamical processes relate
to conduction phenomena, to the mechanics of ponderable media, and to the two-way interaction created
by electromagnetic forces as they elicit a mechanical response that in turn alters the fields.

Because the mechanics can easily upstage the electromagnetics in this second branch, it is likely
to be perceived in terms of a few of its many parts. For example, from the electromagnetic point of
view there is much in common between issues that arise in the design of a synchronous alternator and
of a fusion experiment. But, on the mechanical side, the rotating machine, with its problems of vibra-
tion and fatigue, seems to have little in common with the fluid-like plasma continuum. So, the two
areas are not generally regarded as being related.

In this text, the same fundamentals bear on a spectrum of applications. Some of these are re-
viewed in Sec. 1.2. The unity of these widely ranging topics hinges on concepts, principles and
techniques that can be traced through the chapters that follow. By way of a preview, Secs. 1.3-1.7
are outlines of these chapters, based on themes designated by the section headings.

Chapters 2 and 3 are concerned with fundamentals. First the laws and approximations are intro-
duced that account for the effect of moving media on electromagnetic fields. Then, the -force den-
sities and associated stress tensors needed to account for the return influence of the fields on the
motion are formulated.

Chapter 4 takes up the class of devices and phenomena that can be described by models in which
the distributions (or the relative distributions) of both the material motion and of the field sources
are constrained. This subject of electromechanical kinematics embraces lumped parameter electro-
mechanics. The emphasis here is on using the field point of view to determine the relationship between
the lumped parameters and the physical attributes of devices, and to determine the distribution of
stress and force density.

Chapters 5 and 6 retain the mechanical kinematics, but delve into the self-consistent evolution
of fields and sources. Motions of charged microscopic and macroscopic particles entrained in moving
media are of interest .in their own right, but also underlie the limitations of commonly used conduc-
tion constitutive laws. These chapters both introduce basic concepts, such as the Method of Charac-
teristics and temporal and spatial modes, and model practical devices ranging from the electrostatic
precipitator to the linear induction machine.

Chapters 7-11 treat interactions of fields and media where not only the field sources are free
to evolve in a way that is consistent with the effect of deforming media, but the mechanical systems
respond on a continuum basis to the electric and magnetic forces.

Chapter 7 introduces the basic laws and approximations of fluid mechanics. The formulation of
laws, deduction of boundary conditions and use of transfer relations is a natural extension of the
viewpoint introduced in the context of electromagnetics in Chap. 2.

Chapter 8 is concerned with electromechanical static equilibria and the dynamics resulting from
perturbing these equilibria. Illustrated are a range of electromechanical models motivated by Chaps.
5 and 6. It is here that temporal instability first comes to the fore.

Chapter 9 is largely devoted to electromechanical flows. Included is a discussion of flow
development, understood in terms of the same physical processes represented by characteristic times



in the previous four chapters. Flows that display super- and sub-critical behavior presage causal
effﬁch of wave propagation taken up in Chap. 1l1. The last half of this chapter is an introduction
to "direct" thermal-to-electric energy conversion.

Chapter 10 is divided into parts that are each concerned with diffusion processes. Thermal diffu-
sion, together with convective heat transfer, is considered first. Electrical dissipation accompanies
almost all electromechanical processes, so that heat transfer often poses an essential limitation on in-
vention and design. Because fields are often used for dielectric or induction heating, this is a subject
in its own right. This part begins with examples where the coupling is "one-way" and ends by considering
some of the mechanisms for two-way coupling between the thermal and electromechanical subsystems. The
second part of this chapter serves as an introduction to electromechanical processes that occur on a spa-
tial scale small enough that molecular diffusion processes come into play. Here introduced is the inter-
play between electric and mechanical stresses that makes it possible for particles to undergo electro-
phoresis rather than migrate in an electric field. The concepts introduced in this second part are ap-
plicable to physicochemical systems and point to the electromechanics of biological systems.

Chapter 11 brings together models and concepts from Chaps. 5~10, emphasizing streaming interac-
tions, in which ordered kinetic energy is available for participation in the energy conversion process.
Included are fluid-like continua such as electron beams and plasmas.

1.2 Applications

Transducers and rotating machines that are described by the lumped parameter models of Chap. 4
are so pervasive a part of modern day technology that their development might be regarded as complete.
But, with new technologies outside the domain of electromechanics, there come new needs for electro-
mechanical devices. The transducers used to drive high-speed computer print-outs are an example. New
devices in other areas also result in electromechanical innovations. For example, high power solid-
state electronics is revolutionizing the design and utilization of rotating machines.

As energy needs press the capabilities of electric power systems, rotating machines continue to be
the mainstay of energy conversion to electrical form. Synchronous generators are subject to in-
creasingly stringent demands. To improve capabilities, superconducting windings are being incorpo-
rated into a new class of generators. In these synchronous alternators, magnetic materials no longer
play the essential role that they do in conventional machines, and new design solutions are required.

The Van de Graaff machine also considered in Chap. 4 should not be regarded as a serious approach
to bulk power generation, but nevertheless represents an important approach to the generation of ex-
tremely high potentials. It is also the grandfather of proposed energy conversion approaches. An
example is the electrogasdynamic "thermal-to-electric" energy converter of Chap. 9, Sec. 9.

Chapters 5 and 6 begin to hint at the diversity of applications outside the domain of lumped
parameter electromechanics. The behavior of charged particles in moving fluids is important for under-
standing liquid insulation in transformers and cables. Again, in the area of power generation and dis-
tribution, ions and charged macroscopic particles contribute to the contamination of high-voltage in-
sulators. Also related to the overhead line transmission of electric power is the generation of audible
noise. In this case, the charged particles considered in Chap. 5 contribute to the transduction of
electrical energy into acoustic form, the result being a sufficient nuisance that it figures in the de-
termination of rights of way.

Some examples in Chap. 5 are intended to give basic background relevant to the control of particu-
late air pollution. The electrostatic precipitator is widely used for air pollution control. Gases
cleaned range from the recirculating air within a single room to the exhaust of a utility. With
industries of all sorts committed to the use of increasingly dirtier fuels, new devices that also ex-
ploit electrical forces are under development. These include not only air pollution control equipment,
but devices for painting, agricultural spraying, powder deposition and the like.

Image processing is an application of charged particle dynamics, as are other matters taken up in
later chapters. Charged droplet printing is under development as a means of marrying the computer
to the printed page. Xerographic and aerosol printing of considerable variety exploit electrical forces

on particles.

A visit to a printing plant, to a paper mill or to a textile factory makes the importance of
charges and associated electrical forces on moving materials obvious. The charge relaxation processes
considered in Chap. 5 are fundamental to understanding such phenomena.

The induction machines considered in Chap. 6 are the most common type of rotating motor. But
related interactions between moving conductors and magnetic fields also figure in a host of other
applications. The development of high-speed ground transportation has brought into play the linear
induction machine as a means of propulsion, and induced magnetic forces as a means of producing mag-

Secs. 1.1 & 1.2 1.2



netic 1lift. Even if these developments do not reach maturity, the induction type of interaction would
remain important because of its application to material transport in manufacturing processes, and to
melting, levitation and pumping in metallurgical operations. The application of induced magnetic
forces to the sorting of refuse is an example of how such processes can figure in seemingly unrelated
areas.

Chapter 7 plays a role relative to fluid mechanics that Chap. 2 does with respect to electromag-
netics. Without a discourse on the applications of this material in its own right, consider the rele-
vance of topics that are taken up in the subsequent chapters.

Fields can be used to position, levitate and shape fluids. In many cases, a static equilibrium
is desired. Examples treated in Chap. 8 include the levitation of liquid metals for metallurgical
purposes, shaping of interfaces in the processing of plastics and glass, and orientation of ferrofluid
seals and of cryogenic liquids in zero gravity environmments.

The electromechanics of systems having a static equilibrium is often dominated by instabilities.
The insights gained in Chap. 8 are a starting point in understanding atomization processes induced by
means of electric fields. Here, droplets formed by means of electric fields figure in electrostatic
paint spraying and corona generation from conductors under foul weather conditions. Internal in-
stabilities also taken up in Chap. 8 are basic to mixing of 1liquids by electrical means and for elec-
trical control of liquid crystal displays. Both two-phase (boiling and condensation) and convective
heat transfer can be augmented by electromechanical coupling, usually through the mechanism of in-
stability. Perhaps not strictly in the engineering domain is thunderstorm electrification. The
stability of charged drops and the electrohydrodynamics of air entrained collections of charged drops
are topics touched upon in Chap. 8 that have this meteorological application.

The statics and dynamics of hydromagnetic equilibria is now a subject in its own right. Largely
because of its relevance to fusion machines, the discussion of hydromagnetic waves and surface insta-
bilities serves as an introduction to an area of active research that, like other applications, has
important implications for the energy posture. Internal modes taken up in Chap. 8 also have counter-
parts in hydromagnetics.

Magnetic pumping of liquid metals, taken up in Chap. 9, has found application in nuclear reac-
tors and in metallurgical operations. Electrically induced pumping of semi-insulating and insulating
liquids, also discussed in Chap. 9, has seen application, but in a range of modes. A far wider range
of fluids have properties consistent with electric approaches to pumping and hence there is the promise
of innovation in manufacturing and processing. ’

Magnetohydrodynamic power generation is being actively developed as an approach to converting
thermal energy (from burning coal) to electrical form. The discussion of this approach in Chap. 9 is
not only intended as an introduction to MHD energy conversion, but to the general issues confronted in
any approach to thermal-to-electrical energy conversion, including turbine-generator systems. The elec-
trohydrodynamic converter also discussed there is an alternative to the MHD approach that sees periodic
interest. For that reason, its applicability is a matter that needs to be understood.

Inductive and dielectric heating, even of materials at rest and with no electromechanical con-
siderations, are the basis for important technologies. These topics, as well as the generation and
transport of heat in electromechanical systems where thermal effects often pose primary design limi-
tations, are part of the point of the first half of Chap. 10. But, thermal effects can also be
central to the electromechanical coupling itself. Examples where thermally induced property inhomo-
geneities result in such coupling include electrothermally induced convection of liquid insulation.

Electromechanical coupling seated in double layers, also taken up in Chap. 10, relates to proc-
esses (such as electrophoretic particle motions) that see applications ranging from the painting of
automobiles to the chemical analysis of large molecules. One of the reasons for including electro-
kinetic and electrocapillary interactions is the suggestion it gives of mechanisms that can come into
play in biological systems, a subject that draws heavily on physicochemical considerations. The
purely electromechanical models considered here serve to identify this developing area.

The electromechanics of streaming fluids and fluid-like systems, taken up in Chap. 11, has per-
haps its best known applications in the domain of electron beam engineering. Klystrons, traveling-wave
tubes, resistive-wall amplifiers and the like are examples of interactions between streams of charged
particles (electrons) and various types of structures. The space-time issues of Chap. 1l have general
application to problems ranging from the stimulation of liquid jets used to form drops, to electro-
mechanical processes for making synthetic fibers, to understanding liquid flow through "wall-less"
pipes (in which electric or magnetic fields play the role of a duct wall), to beam-plasma interactions
that result in instabilities that are used as a mechanism for heating plasmas.

=
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1.3 Energy Conversion Processes

A theme of the chapters to follow is conversion of energy between electrical and mechanical forms.
The relation between electromechanical power flow and the product of electric or magnetic stress and
material velocity is first emphasized in Chap. 4. Rotating machines deserve to be highlighted in this
basic sense, because for bulk power gemeration they are a standard for comparison. But, even where kine-
matic systems are superseded by those involving self-consistent interactions, there is value in con-
sidering the kinematic examples. They make clear the basic objectives governing the engineering of
materials and fields even when the objectives are achieved by more devious methods. For example, the
synchronous interactions with constrained charged particles are not directly applicable to practical
devices, but highlight the basically electroquasistatic electric shear stress interaction that under-
lies electron beam interactions in Chap. 11.

The classification of energy conversion processes made in Chap. 4 provides a frame of reference
for many of the self-consistent interactions described in later chapters. Thus, d-c rotating machines
from Chap. 4 have counterparts with fluid conductors in Chap. 9, and the Van de Graaff generator is a
prototype for the gasdynamic models developed in Chaps. 5 and 9. Electric and magnetic induction ma-
chines, respectively taken up in Chaps. 5 and 6, are a prototype for induction interactions with fluids
in Chap. 9, And, the synchronous interactions of Chap. 4 motivate the self-consistent electron beam
interactions of Chap. 11.

1.4 Dynamical Processes and Characteristic Times

Rate processes familiar from electrical circuits are the discharge of a capacitor (C) or an in-
ductor (L) through a resistor (R), or the oscillation of energy between a capacitor and an inductor.
One way to characterize the dynamics is in terms of the times RC, L/R and /LC, respectively.

Characteristic times describing rate processes on a continuum basis are a recurring theme. The
electromagnetic times summarized in Table 1.4.1 are the field analogues of those familiar from circuit
theory. Rather than defining the variables, reference is made to the section where the characteristic
times are introduced. Some of the mechanical and thermal ones also have lumped parameter counter-
parts. For example, the viscous diffusion time, which represents the mechanical damping of ponder-
able material, is the continuum version of the damping rate for a dash-pot connected to a mass.

The electromechanical characteristic times represent the competition between electric or magnetic
forces and viscous or inertial forces. In specialized areas, they may appear in a different guise.
For example, with the electric field intensity T that due to the bunching of electrons in a plasma,
the electro-inertial time is the reciprocal plasma frequency. In a highly conducting fluid stressed
by a magnetic field intensity H, the magneto-inertial time is the transit time for an Alfvén wave.

Especially in fluid mechanics, these characteristic times are often brought into play as dimension-

less ratios of times. Table 1.4.2 gives some of these ratios, again with references to the sections
where they are introduced.

1.5 Models and Approximations

There are three classes of approximation, used repeatedly in the following chapters, that should
be recognized as a recurring theme. Formally, these are based on time-rate, space-rate and amplitude-
parameter expansions of the relevant laws.

The time-rate approximation gives rise to a quasistatic model, and exploits the fact that
temporal rates of change of interest are slow compared to one or more times characterizing certain
dynamical processes. Some possible times are given in Table 1.4.1. Both for electroquasistatics
and magnetoquasistatics, the critical time is the electromagnetic wave transit time, Tem (Sec. 2.3).

Space-rate approximations lead to quasi-one-dimensional (or two-dimensional) models. These are
also known as long-wave models. Here, fields or deformations in a "transverse" direction can be approxi-
' mated as being slowly varying with respect to a "longitidunal" direction. The magnetic field in a
narrow but spatially varying air gap and the flow of a gas through a duct of slowly varying cross
section are examples.

Amplitude parameter expansions carried to first order result in linearized models. Often they
are used to describe dynamics departing from a static or steady equilibrium. Long-wave and linearized
models are discussed and exemplified in Sec. 4.12, and are otherwise used repeatedly without formality.

Secs. 1.3, 1.4 & 1.5 1.4



Table.

Table 1.4.1.

Characteristic times for systems having a typical length &.

1.4 & 1.5

Time Nomenclature Section reference
Electromagnetic
Tem = Ll Electromagnetic wave transit time 2.3
T, = €/o Charge relaxation time 2.3, 5.10
Tn = uc£2 Magnetic diffusion time 2.3, 6.2
Tmig = 2/bE Particle migration time 5.9
Mechanical and thermal
T, = 2/a Acoustic wave transit time 7.11
Ty = plzln Viscous diffusion time 7.18, 7.24
T, = T]/pa2 Viscous relaxation time 7.24
Ty = RZ/K Molecular diffusion time 10.2
T, = Zzpcv/kT Thermal diffusion time 10.2
Electromechanical
Tey = n/€E2 Electro-viscous time 8.7
2
Tyy = N/uH Magneto-viscous time 8.6
Tgr = % b/eE“ Electro-inertial time 8.7
2
Tyr = ¥W/ud Magneto-inertial time 8.6
1.4.2. Dimensionless numbers as ratios of characteristic times. The material transit
or residence time is T = /U, where U is a typical material velocity.
Number Symbol Nomenclature Sec. ref.
Electromagnetic
Te/T = gU/%c Re Electric Reynolds number 5.11
Tm/T = UoU R Magnetic Reynolds number 6.2
Mechanical and thermal
Ta/T = U/a M Mach number 9.19
TV/T = plU/n Ry Reynolds number 7.18
TD/T = U/K RD Molecular Peclet number 10.2
TT/T = pcpﬂ,U/kT RT Thermal Peclet number 10.2
TD/TV = n/ek, Pp Molecular-viscous Prandtl number 10.2
'rT/Tv = cpn/kT Pp Thermal-viscous Prandtl number 10.2
Electromechanical
\,Tm/TMV = uHeVo/n H Magnetic Hartmann number 8.6
1,Tmig7TEV; Te/TEV He Electric Hartmann number 9.12
Tm/TV = nuo/p Pm Magnetic—~viscous Prandtl number 8.6
1.5 Secs.



1.6 Transfer Relations and Continuum Dynamics of Linear Systems

Fields, flows and deformations in systems that are uniform in one or more "longitudinal" direc-
tions can have the dependence on the associated coordinate represented by complex amplitudes, Fourier
series, Fourier transforms, or the appropriate extension of these in various coordinate systems.
Typically, configurations are nonuniform in the remaining "transverse" coordinate, The dependence of
variables on this direction is represented by "transfer relations." They are first introduced in
Chap. 2 as flux-potential relations that encapsulate Laplacian fields in coordinate systems for which
Laplace's equation is variable separable.

At the risk of having a forbidding appearance, most chapters include summaries of transfer rela-
tions in the three common coordinate systems. This is done so that they can be a resource, helping to
obviate tedious manipulations that tend to obscure what is essential in the derivation of a model. The
transfer relations help in organizing a development. Once the way in which they represent the space-
time dynamics of a given medium is appreciated, they are also a way of quickly communicating the
physical nature of a continuum.

Applications in Chap. 4 begin to exemplify how the transfer relations can help to organize the
representation of configurations involving piece-wise uniform media. The systems considered there are
spatially periodic in the "longitudinal" directionm.

With each of the subsequent chapters, the application of the transfer relations is broadened. In
Chap. 5, the temporal transient response is described in terms of the temporal modes. Then, spatial
transients for systems in the temporal sinusoidal steady state are considered. In Chap. 6, magnetic
diffusion processes are represented in terms of transfer relations, which take a form equally applicable
to thermal and particle diffusion.

Much of the summary of fluid mechanics given in Chap. 7 is couched in terms of transfer relatioms.
There, the variables are velocities and stresses. In a wealth of electromechanical examples, coupling
between fields and media can be represented as occurring at boundaries and interfaces, where there are
discontinuities in properties. Thus, in Chap. 8, the purely mechanical relations of Chap. 7 are com~
bined with the electrical relations from Chap. 2 to represent electromechanical systems. More spe-
cialized are electromechanical transfer relations representing charged fluids, electron beams, hydro-
magnetic systems and the like, derived in Chaps. 8-11.

A feature of many of the examples in Chap. 8 is instability, so that again the temporal modes
come to the fore. But with effects of streaming brought into play in Chap. 11, there is a question
of whether the instability is absolute in the sense that the response becomes unbounded with time at
a given point in space, or convective (amplifying) in that a sinusoidal steady state can be
established but with a response that becomes unbounded in space. These issues are taken up in Chap. 1l.

Sec. 1.6 1.6
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2.1 Definitions

Continuum electromechanics brings together several disciplines, and so it is useful to summarize
the definitions of electrodynamic variables and their units. Rationalized MKS units are used not only
in connection with electrodynamics, but also in dealing with subjects such as fluid mechanics and heat
transfer, which are often treated in English units. Unless otherwise given, basic units of meters (m),
kilograms (kg), seconds (sec), and Coulombs (C) can be assumed.

Table 2.1.1. Summary of electrodynamic nomenclature.

Name Symbol Units

Discrete Variables

volts = m2 kg/C sec2

Voltage or potential difference v [(v] =

Charge q [C] = Coulombs = C

Current i [A] = Amperes = C/sec

Magnetic flux A [Wb] = Weber = m2 kg/C sec

Capacitance C [F] = Farad C2 sec2/m? kg

Inductance L [H] = Henry = m2 kg/C2

Force f [N] = Newtons = kg m/sec?
Field Sources

Free charge density Of C/m3

Free surface charge density gs C/m2

Free current density If A/m?

Free surface current density Ks A/m

Fields (name in quotes is often used for convenience)

"Electric field" intensity E V/m
"Magnetic field" intensity H A/m
Electric displacement D C/m2
Magnetic flux density 3 Wb/m2 (tesla)
Polarization density ? C/m2
Magnetization density M A/m
Force density F N/m3
Physical Constants
Permittivity of free space €o = 8.854 x 10"12 F/m
Permeability of free space Yo = 4T x 10-7 H/m

Although terms involving moving magnetized and polarized media may not be familiar, Maxwell's
equations are summarized without prelude in the next section. The physical significance of the un-
familiar terms can best be discussed in Secs. 2.8 and 2.9 after the general laws are reduced to their
quasistatic forms, and this is the objective of Sec. 2.3. Except for introducing concepts concerned
with the description of continua, including integral theorems, in Secs. 2.4 and 2.6, and the dis-
cussion of Fourier amplitudes in Sec. 2.15, the remainder of the chapter is a parallel development of
the consequences of these quasistatic laws. That the field transformations (Sec. 2.5), integral laws
(Sec. 2.7), splicing conditions (Sec. 2.10), and energy storages are derived from the fundamental quasi-
static laws, illustrates the important dictum that internal consistency be maintained within the frame-
work of the quasistatic approximation.

The results of the sections on energy storage are used in Chap. 3 for deducing the electric and
magnetic force densities on macroscopic media. The transfer relations of the last sections are an
important resource throughout all of the following chapters, and give the opportunity to explore the
physical significance of the quasistatic limits.

2.2 Differential Laws of Electrodynamics

In, the Chu formulation,l with material effects on the fields accounted for by, the magnetization
density M and the polarization density P and with the material velocity denoted by v, the laws of
electrodynamics are:

Faraday's law

> o oM > >
VxE-= Mo 3¢ " Ho 3¢ uOV x M x v) (1)

1. P. Penfield, Jr., and H. A. Haus, Electrodynamics of Moving Media, The M.I.T. Press, Cambridge,
Massachusetts, 1967, pp. 35-40.




AmEEre's law
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Gauss' law
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divergence law for magnetic fields

> >

pV-H = -V oM (4)
and conservation of free charge

s> 90
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This last expression is imbedded in Ampére's and Gauss' laws, as can be seen b taking the diver-
gence of Eq. 2 and exploiting Eq. 3. 1In this formulation the electric displacement % and magnetic flux
density B are defined fields:

->
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> >
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2.3 Quasistatic Laws and the Time-Rate Expansion

With a quasistatic model, it is recognized that relevant time rates of change are sufficiently
low that contributions due to a particular dynamical process are ignorable. The objective in this
section is to give some formal structure to the reasoning used to deduce the quasistatic field equa-
tions from the more general Maxwell's equations. Here, quasistatics specifically means that times
of interest are long compared to the time, Top, for an electromagnetic wave to propagate through the
system.

Generally, given a dynamical process characterized by some time determined by the parameters of
the system, a quasistatic model can be used to exploit the comparatively long time scale for proc-
esses of interest. In this broad sense, quasistatic models abound and will be encountered in many
other contexts in the chapters that follow. Specific examples are:

(a) processes slow compared to wave transit times in general; acoustic waves and the model is
one of incompressible flow, Alfvén and other electromechanical waves and the model is less standard;

(b) processes slow compared to diffusion (instantaneous diffusion models). What diffuses can
be magnetic field, viscous stresses, heat, molecules or hybrid electromechanical effects;

(c) processes slow compared to relaxation of continua (instantaneous relaxation or constant-
potential models). Charge relaxation is an important example.

The point of making a quasistatic approximation is often to focus attention on significant
dynamical processes. A quasistatic model is by no means static. Because more than one rate process
is often imbedded in a given physical system, it is important to agree upon the one with respect to
which the dynamics are quasistatic.

Rate processes other than those due to the transit time of electromagnetic waves enter through
the dependence of the field sources on the fields and material motion. To have in view the additional
characteristic times typically brought in by the field sources, in this section the free current
density is postulated to have the dependence
> > > > > > )

= 1
Jg = 0(E + 3,(,0,,H) (1)
_> 3 ]
In the absence of motion, Jv is zero. Thus, for media at rest the conductign model is ohmic, with the
elgctrical conductivity 0 in general a fungtion gf position. Examples of J;, are a convection current
pgv, or an ohmic motion-induced current o(v x uoH). With an underbar used to denote a normalized
quantity, the conductivity is normalized to a typical (constant) conductivity 00:

o =0, o(r,t) ()

To identify the hierarchy of critical time-rate parameters, the general laws are normalized,
Coordinates are normalized to one typical length %, while T represents a characteristic dynamical time:

(x,y,2) = (,Q&,Ql,li); t =1t (3)
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In a system sinusoidally excited at the angular frequency w, T= w_l.

The most convenient normalization of the fields depends on the specific system. Where electro-

mechanical coupling is significant, these can usually be categorized as "electric-field dominated' and
"magnetic-field dominated.' Anticipating this fact, two normalizations are now developed "in parallel,"
the first taking & as a characteristic electric field and the second taking s#as. a characteristic mag-

netic field:

€
-
Beot, b-cgd, v - ot 3, - 223, el Bl ¥ = ok, §, -
- = - - L=
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(4)

It might be appropriate with this step to recognize that the material motiom introduces a characteristic
(transport) time other than T. TFor simplicity, Eq. 4 takes the material velocity as being of the order

of &/T.

The normalization used is arbitrary. The same quasistatic laws will be deduced regardless of the
starting point, but the normalization will determine whether these laws are 'zero-order'" or higher order

in a sense to now be defined.

The normalizations of Eq. 4 introduced into Eqs. 2.2.1~5 result in

>
v.E = V.7 + P V-E = -v.P + Ps (%)
V.H = -V:¥ V.l = V.M (6)
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x—_[_eo Jv+m- T3 vx (P xv) xH=?—0E+Jv+B-§-E+—a-E+ x(P x v) (1)
> > >
5__ ﬁ ﬁ -> > > B_H oM -> >
VXE B[ t + . +Vx Mx v_ VxE-= e s Vx Mxv) (8)
T ap ap
o B+ [v.3 f] - P LA
V.o E + - [V-Jv + T ] =0 V.o E + = v Jv + B = ra 0 9)
m m
where underbars on equation numbers are used to indicate that the equations are normalized and
= 2 =
T, = uocol » Ty = &:o/o0
and . Tem 2
B = - ) Tem =/ﬁ0802 = {/c (10)

In Chap. 6, T_ will be identified as the magnetic diffusion time, while in Chap. 5 the role of the
charge-relaxa?ion time Te is developed. The time required for an electromagnetic plane wave to propa-
gate the distance % at the velocity ¢ is Tem. Given that there is just one characteristic length,

there are actually only two characteristic times, because as can be seen from Eq. 10

TT =T
m e em

11)

Unless Te and Tp, and hence Tgp, are all of the same order, there are only two possibilities for the

relative magnitudes of these times, as summarized in Fig. 2.3.1.

| B K| | BKI
— —_—
| T T —> | T T >
TITI Tem Te v Te Tem Tm T
electroquasistatics magnetoquasistatics

Fig. 2.3.1. Possible relations between physical time constants on a time
scale T which typifies the dynamics of interest.
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By electroquasistatic (EQS) apgroximation it is meant that the ordering of times is as to the left and
that the parameter B = (Tgy/T)¢ is much less than unity. Note that T is still arbitrary relative to Te.

In the magnetoquasistatic (MQS) approximation, § is still small, but the ordering of characteristic times
is as to the right. 1In this case, T is arbitrary relative to Ty.

To make a formal statement of the procedure used to find the quasistatic approximation, the normal-
ized fields and charge density are expanded in powers of the time-rate parameter 8.

-> -> - 2
E=E +BE +B°E, + --.

>

2>
ﬁ=ﬁ°+BH1+BH2+ .

a2
> > > 2

5, = ), +8G), +82G), +

be = (0g)y + Blog)y + B2(0p), + *+

In the following, it is assumed that constitutive laws relate P and ¥ to E and ?i, so that these
densities are similarly expanded. The velocity ¥ 1is taken as given. Then, the series are sub-
stituted into Eqs., 5-9 and the resulting expressions arranged by factors multiplying ascendin%

powers of B, The "zero order" equations are obtained by requiring that the coefficients of B
vanish. These are simply Eqs. 5-9 with B = 0:

> > >
VeEg = VP, + (og), VeE = -V'io + (Pe)g (13)
'+ = - -+ c+ = e .—’ 14
Vel = =VeM_ N Vel = -VeM (14)
oE T
> T > > o > m _* > (15)
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>
oP
et Vx B x V)
> 5
VxE0=0 VxEo=—-a—t-—-a—t——Vx(Moxv) (16)
T 9(p.)
> e > f‘o > T > _
V.o EO +?— [V' (JV)O + 3t jl =0 Vo EO + ;E; V. (JV)O =0 (_:.LJ_)

The zero-order solutions are found by solving these equations, augmented by appropriate
boundary conditions. If the boundary conditions are themselves time dependent, normalization
will turn up additional characteristic times that must be fitted into the hierarchy of Fig. 2.3.1.

Higher order conmtributions to the series of Eq. 12 follow from a sequential solution of the
equations found by making coefficients of like powers of B vanish. The expressions resulting
from setting the coefficients of PR to zero are:

> -+ >
V-E + VR, - (pf)n =0 V-En + V-_fn = (pf)n =0 (18)
vE + V.M =0 H 4+ VM =0
M VR n 19)
oF, T
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Val - i OB - Uy "% Vi -7 0 By - S
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3P oE aP
n > n-1 n-1 >
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> >
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n-1 n-1 > > > n b x>
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m
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To find the first order contributions, these equations with n=1 are solved with the zero order
solutions making up the right-hand sides of the equations playing the role of known driving functionms.
Boundary conditions are satisfied by the lowest order fields. Thus higher order fields satisfy homo-
geneous boundary conditions.

Once the first order solutions are known, the process can be repeated with these forming the

"drives" for the n=2 equations.

In the absence of loss effects, there are no characteristic times to distinguish MQS and EQS
systems. In that limit, which set of normalizations is used 1s a matter of convenience. If a situa-
tion represented by the left-hand set actually has an EQS limit, the zero order laws become the quasi-
static laws. But, if these expressions are applied to a situation that is actually MQS, them first-
order terms must be calculated to find the quasistatic fields, If more than the one characteristic
time Tey is involved, as is the case with finite Te and Ty, then the ordering of rate parameters can
contribute to the convergence of the expansion.

In practice, a formal derivation of the quasistatic laws is seldom used. Rather, intuition and
experience along with comparison of critical time constants to relevant dynamical times is used to
identify one of the two sets of zero order expressions as appropriate. But, the use of normalizations
to identify critical parameters, and the notion that characteristic times can be used to unscramble
dynamical processes, will be used extensively in the chapters to follow.

Within the framework of quasistatic electrodynamics, the unnormalized forms of Eqs. 13-17
comprise the "exact" field laws. These equations are reordered to reflect their relative importance:

Electroquasistatic (EQS) Magnetoquasistatic (MQS)
> -> >

v.soE = -V.P + Pg Vxis= Je (23)
VxE=0 Veu H = Veu (24)

> ->

ap Ju H duM

> f -> _ __0_- _ fe) _ > >
Vi 45— =0 VxE = - —= 5~ MV x B x V) (25)
Vi =3 oot | ot T x v v} =0 26
xH = £ + T +-§E +Vx (Pxv) £= (26)
-> >

V-uo_ﬁ -y “oﬁ Veg E = =V'P + p, 27)

The conduction current Ef has been reintroduced to reflect the wider range of validity of these
equations than might be inferred from Eq. 1. With different conduction models will come different
characteristic times,exemplified in the discussions of this section by T and T, Matters are more
complicated if fields and media interact electromechanically. Then, V is determined to some extent
at least by the fields themselves and must be treated on a par with the field variables. The result
can be still more characteristic times.

The ordering of the quasistatic equations emphasizes the instantaneous relation between the
respective dominant sources and fields. Given the charge and polarization densities in the EQS system,
or given the current and magnetization densities in the MQS system, the dominant fields are known and
are functions only of the sources at the given instant in time.

The dynamics enter in the EQS system with conservation of charge, and in the MQS system with
Faraday'g law of induction. Equations 26a and 27a are only needed if an after-the-fact determina-
tion of H is to be made. An example where such a rare interest in H exists i1s in the small mag-
netic field induced by electric fields and currents within the human body. The distribution of in-
Eernal fields and hence currents is determiqu by the first three EQS equations. Given E, P, and
Jg, the remaining two expressions determine H. In the MQS system, Eq. 27b can be regarded as an
expression for the after-the-fact evaluation of pg, which 1s not usually of interest in such systems.

What makes the subject of quasistatics difficult to treat in a general way,even for a system
of fixed ohmic conductivity, is the dependence of the appropriate model on considerations not con-
veniently represented in the differential laws. For example, a pair of perfectly conducting plates,
shorted on one pair of edges and driven by a sinusoidal source at the opposite pair, will be MQS
at low frequencies. The same pair of plates, open-circuited rather than shorted, will be electroquasi-

static at low frequencies. The difference is in the boundary conditions.

Geometry and the inhomogeneity of the medium (insulators, perfect conductors and semiconductors)
are also essential to determining the appropriate approximation. Most systems require more than one
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characteristic dimension and perhaps conductivity for their description, with the result that more than
two time constants are often involved. Thus, the two possibilities identified in Fig. 2.3.1 can in
principle become many possibilities. Even so, for a wide range of practical problems, the appropriate
field laws are either clearly electroquasistatic or magnetoquasistatic.

Problems accompanying this section help to make the significance of the quasistatic limits more
substantive by considering cases that can also be solved exactly.

2.4 Continuum Coordinates and the Convective Derivative

There are two commonly used representations of continuum variables. One of these is familiar
from classical mechanics, while the other is universally used in electrodynamics. Because electro-
mechanics involves both of these subjects, attention is now drawn to the salient features of the two
representations.

Consider first the "Lagrangian representation." The position of a material particle is a natural
example and is depicted by Fig. 2.4.la. When the time t is zero, a particle is found at the position
?o- The position of the particle at some subsequent time is E. To let £ represent the displacement of
a continuum oé particles, the position variable ro is used to distinguish particles. In this sense, the
displacement then also becomes a continuum variable capable of representing the relative displace-
ments of an infinitude of particles.

/
Y Ay Vixy.z)

> -

() (b)

Fig. 2.4.1. Particle motions represented in terms of (a) Lagrangian coordinates,
where the initial particle coordinate r, designates the particle of
interest, and (b) Eulerian coordinates, where (x,y,z) designates the
spatial position of interest.

In a Lagrangian representation, the velocity of the particle 1s simply

3=%§ V 1)

If concern is with only one particle, there is no point in writing the derivative as a partial deriv-
ative. However, it is understood that, when the derivative is taken, it is a particular particle
which is being considered. So, it is understood that r, is fixed. Using the same line of reasoning,
the acceleration of a particle is given by

+ _3v ~
a= 2)

The idea of representing continuum variables in terms of the coordinates (x,y,z) connected with
the space itself is familiar from electromagnetic theory. But what does it mean if the variable is
mechanical rather than electrical? We could represent the velocit of the continuum of particles
filling the space of interest by a vector function v(x,y,z t) = v(r t). The velocity of particles
having the position (x,y,z,) at a given time t is determined by evaluating the function v(; t). The
velocity appearing in Sec. 2.2 is an example. As suggested by Fig. 2.4.1b, if the function is the
velocity evaluated at a given position in space, it describes whichever particle is at that point at
the time of interest. Generally, there 1s a continuous stream of particles through the point (x,y,z).
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Computation of the particle acceleration makes evident the contrast between Eulerian and Lagrangian
representations. By definition, the acceleration is the rate of change of the velocity computed for a
given particle of matter. A particle having the position (x,y,z) at time t will be found an instant
At later at the position (x + v At,y + vyht,z + vyAt). Hence the acceleration is

V(x + v At,y + v At,z + v At,t + At) - V(X,¥,2,t)
= 1im 4 AE (3)
At+0

>
a

Expansion of the first term in Eq. 3 about the initial coordinates of the particle gives the convective
derivative of v:

> > > >
2=V v v LA\ A
a=otv oo+ Ve 3y Vo323tV Vv (4)

>
v

The difference between Eq. 2 and Eq. 4 is resolved by recognizing the difference in the signi-
ficance of the partial derivatives. 1In Eq. 2, it is understood that the coordinates being held fixed
are the initial coordinates of the particle of interest. In Eq. 4, the partial derivative is taken,
holding fixed the particular point of interest in space.

The same steps_ show that the rate of change of any vector variable K, as viewed from a particle
having the velocity v, is

A_&, 20t 1-12
D—t = 3;:‘ + (v )A, A= A(XQYsz,t) )

The time rate of change of any scalar variable for an observer moving with the velocity ¥ is obtained
from Eq. 5 by considering the particular case in which A has only one component, say X = f(x,y,z,t)i%.
Then Eq. 5 becomes

Df >
Ft— + voVEf (6)

"
i
tirh

Reference 3 of Appendix C is a film useful in understanding this section.

2.5 Transformations between Inertial Frames

In extending empirically determined conduction, polarization and magnetization laws to include
material motion, it is often necessary to relate field variables evaluated in different reference
frames. A given point in space can be designated either in terms of the coordinate T or of the co-
ordinate ¥' of Fig. 2.5.1. By "inertial reference frames," it is meant that the relative velocity
between these two frames is constant, designated by u. The positions in the two coordinate systems
are related by the Galilean transformation:

> >
r' =r-ut; t' =t )]

Fig. 2.5.1

Reference frames have constant

relative velocity ¥. The co~

ordinates ¥ = (x,y,z) and ¥' =

—> (x',y',2z') designate the same
)/ position.

X

It is a familiar fact that variables describing a given physical situation in one reference frame
will not be the same as those in the other. An example is material velocity, which, if measured in one
frame, will differ from that in the other frame by the relative velocity .

There are two objectives in this section: one is to show that the quasistatic laws are invariant

when subject to a Galilean transformation between inertial reference frames. But, of more use is the
relationship between electromagnetic variables in the two frames of reference that follows from this
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proof. The approach is as follows. First, the postulate is made that the quasistatic equations take the
same form in the primed and unprimed inertial reference frames. But, in writing the laws in the primed
frame, the spatial and temporal derivatives must be taken with respect to the coordinates of that ref-
erence frame, and the dependent field variables are then fields defined in that reference frame. In
general, these must be designated by primes, since their relation to the variables in the unprimed frame
is not known.

For the purpose of writing the primed equations of electrodynamics in terms of the unprimed co-
ordinates, recognize that

AR
%+(%+:.V)KE-S—§-+uV-K-VX(-l:xK) @)
Ao dortiow=z Ry

The left relations follow by using the chain rule of differentiation and the transformation of Eq. 1.
That the spatial derivatives taken with respect to one frame must be the same as those with respect

to the other frame physically means that a single "snapshot" of the physical process would be all
required to evaluate the spatial derivatives in either frame. There would be no way of telling which
frame was the one from which the snapshot was taken. By contrast, the time rate of change for an
observer in the primed frame is, by definition, taken with the primed spatial coordinates held fixed.
In terms of the fixed+frame coordinates, this is the convective derivative defined with Eqs. 2.4.5

and 2.4.6. However, v in these equations is in gegeral a function of space and time. In the context
of this section it is specialized to the constant u. Thus, in rewriting the convective derivatives of
Eq. 2 the constancy of u and a vector identity (Eq. 16, Appendix B) have been used.

So far, what has been said in this section 1s a matter of coordinates. Now, a physically motivated
postulate is made concerning the electromagnetic laws. Imagine one electromagnetic experiment that is
to be described from the two different reference frames. The postulate is that provided each of these
frames is inertial, the governing laws must take the same form. Thus, Eqs. 23-27 apply with [V + V',

9( )/ot + 3( )/ot'] and all dependent variables primed. By way of comparing these laws to those ex-

pressed in the fixed-frame, Eqs. 2 are used to rewrite these expressions in terms of the unprimed in-
dependent variables. Also, the moving-frame material velocity is rewritten in terms of the unprimed

frame velocity using the relation

VV=v-u 3)

Thus, the laws originally expressed in the primed frame of reference become

-> -> ' > _
Vee E' = -V-P' + pf VxH =J; (4)
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Ve (3 + upp) + 5 0 Vx(E' - u x u_H') TS 5t (6)
-uVx dﬁ' X V)
' > LBy = (T > R TI
Vx (' +ux e E') = (31 + up}) v-ip =0 )
-5
d¢_E' >,
+ a: +g%+vx @' x V)
* > e B = o .+v '
V.uoH' ) -V-qu' v eoE V.P' + os (8)

In writing Eq. 7a, Eq. 4a is used. Similarly, Eq. 5b is used to write Eq. 6b. For the one experi-
ment under consideration, these equations will.predict the same behavior as the fixed frame laws,
Eqs. 2.3.23-27, if the identification is made:
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EQs MQs
E=E AN 9
P =3 M =N (10)
Pg = P =3 a1
3% = jf - Kpf E'=FE+ucx uoﬁ (12)
B o=f-Uxel (13)
and hence, from Eq. 2.2.6 and hence, from Eq. 2.2.7
b =3 =3 (14)

The primary fields are the same whether viewed from one frame or the other. Thus, the EQS elec-
tric field polarization density and charge density are the same in both frames, as are the MQS mag-
netic field, magnetization density and current density. The respective dynamic laws can be associated
with those field transformations that involve the relative velocity. That the free current density
is altered by the relative motion of the net free charge in the EQS system is not surprising. But, it
is the contribution of this same convection current to Ampere s law that generates the velocity depend-
ent contribution to the EQS magnetic field measured in the moving frame of reference. Similarly, the
velocity dependent contribution to the MQS electric field transformation is a direct consequence of
Faraday's law.

The transformations, like the quasistatic laws from which they originate, are approximate. It
would require Lorentz transformations to carry out a similar procedure for the exact electrodynamic
laws of Sec. 2.2. The general laws are not invariant in form to a Galilean transformation, and there-
in is the origin of special relativity. Built in from the start in the quasistatic field laws is a
self-consistency with other Galilean invariant laws describing mechanical continua that will be brought
in in later chapters.

2.6 Integral Theorems

Several integral theorems prove useful, not only in the description of electromagnetic fields but
also in dealing with continuum mechanics and electromechanics. These theorems will be stated here with-
out proof.

If it is recognized that the gradient operator is defined such that its line integral between two
endpoints (a) and (b) is simply the scalar function evaluated at the endpoints, thenl

13
L wdn = p®) - v@) 1)
a

Two more familiar theorems1 are useful in dealing with vector functions. For a closed surface S, en-
closing the volume V, Gauss' theorem states that

[ vokav = § Z3aa (2)
A S

while Stokes's theorem pertains to an open surface S with the contour C as its periphery:

£ V x A.nda = é A4 3)

In stating these theorems, the normal vector is defined as being outward from the enclosed volupe for
Gauss' theorem, and the contour is taken as positive in a direction such that 4% 1s related to n by the
right-hand rule. Contours, surfaces, and volumes are sketched in Fig. 2.6.1.

A possibly less familiar theorem is the generalized Leibnitz rule.2 In those cases where the
surface is itself a function of time, it tells how to take the derivative with respect to time of the
integral over an open surface of a vector function:

1. Markus Zahn, Electromagnetic Field Theory, a problem solving approach, John Wiley & Sons, New York,
1979, pp. 18-36.

2. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Vol. 1. John Wiley & Sons, New York,
1968, pp. B32-B36.(See Prob. 2.6.2 for the derivation of this theorem.)
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(a) (b) (c)

Fig. 2.6.1., Arbitrary contours, volumes and surfaces: (a) open contour C;
(b) closed surface S, enclosing volume V; (c) open surface S
with boundary contour C.

G| Fodaa = [+ oD%, %0 é & x 7 )& “)

Again, C is the contour which is the periphery of the open surface S. The velocity 35 is the velocity
of the surface and the contour. Unless given a physical significance, its meaning is purely geometrical.

A limiting form of the generalized Leibnitz rule will be handy in dealing with closed surfaces.
Let the contour C of Eq. 4 shrink to zero, so that the surface S becomes a closed one. This process can
be readily visualized in terms of the surface and contour sketch in Fig. 2.6.lc if the contour C is
pictured as the draw-string on a bag. Then, if ¢ = V.X, and use is made of Gauss' theorem (Eq. 2),
Eq. 4 becomes a statement of how to take the time derivative of a volume integral when the volume is a
function of time:

g? f Zdv = f %% av + § tv_-nda (5)
v A S
Again, 38 is the velocity of the surface enclosing the volume V.,

2.7 Quasistatic Integral Laws

There are at least three reasons for desiring Maxwell's equations in integral form. First, the
integral equations are convenient for establishing jump conditions implied by the differential
equations. Second, they are the basis for defining lumped parameter variables such as the voltage,
charge, current, and flux. Third, they are useful in understanding (as opposed to predicting) physical
processes. 3Since Maxwell's equations have already been divided into the two quasistatic systems, it
is now possible to proceed in a straightforward way to write the integral laws for contours, surfaceg,
and volumes which are distorting, i.e., that are functions of time. The velocity of a surface S is Ve

To obtain the integral laws implied by the laws of Eqs. 2.3.23-27, each equation is either
(1) integrated over an open surface S with Stokes's theorem used where the integrand is a curl operator
to convert to a line integration on C and Eq. 2.6.4 used to bring the time derivative outside the
integral, or (1i) integrated over a closed volume V with Gauss' theorem used to convert integrations
of a divergence operator to integrals over closed surfaces S and Eq. 2.6.5 used to bring the time
derivative outside the integrationm:

§§ (e E + )-fda = | pedV § H-dp = I 3, nda (1)
S v C
§ Tde=0 § u (# + #)+nda = 0 (2)
S
T2 d '
iJf.nda+a:-£’pde=O ii -Iz=-—fu @ + ¥)-nda (3)
- § Mo x G=v,)-de
c
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dt

$ante = [ Trdda+ 2 [ 2+ By haa §3 2aa =0 @)
c s f s °© s °
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g u (& + ¥)-nda = 0 § (e E + $)-nda = § pV (5)
s v
where where
=3 -% E' = E+ "
f £~ VgPs = Vg X U
ﬁ' =1 - ; X € E
8 [o]

The primed variables are simply summaries of the variables found in deducing these equations. However,
these definitions are consistent with the transform relationships found in Sec. 2.5, and the velocity
of these surfaces and contours, vg, can be identified with the velocity of an inertial frame instan-
taneously attached to the surface or contour at the point in question. Approximations implicit to the
original differential quasistatic laws are now implicit to these integral laws.

2.8 Polarization of Moving Media

Effects of polarization and magnetization are included in the formulation of electrodynamics
postulated in Sec. 2.2. In this and the next section a review is made of the underlying models.

Consider the electroquasistatic systems, where the dominant field source is the charge density.
Not all of this charge is externally accessible, in the sense that it cannot all be brought to some
position through a conduction process. If an initially neutral dielectric medium is stressed by an
electric field, the constituent molecules and domains become polarized. Even though the material
retains its charge neutrality, there can be a local accrual or loss of charge because of the polariza-
tion. The first order of business 1s to deduce the relation of such polarization charge to the polari-
zation density.

For conceptual purposes, the polarization of a material is pictured as shown in Fig. 2.8.1.

2

gl <®

\

Fig. 2.8.1. Model for dipoles fixed to deformable material. The model pictures
the negative charges as fixed to the material, and then the positive
halves of the dipoles fixed to the negative charges through internal
constraints.
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Fig. 2.8.2

Polarization results in net
charges passing through a
surface.

The molecules or domains are represented by dipoles composed of positive and negative charges +q,
separated by the vector distance d. The dipole moment is then 3 = qa, and if the particles have a
number density n, the polarization density is defined as

F = an (1)

In the most common dielectrics, the polarization results because of the application of an external
electric field. In that case, the internal constraints (represented by the springs in Fig. 2.8.1)
make the charges essentially coincident in the absence of an electric field, so that, on the average,
the material is (macroscopically) neutral. Then,.with the application of the electric field, there
is a separation of the charges in some direction which might be coincident with the applied electric
field intensity. The effect of the dipoles on the average electric field distribution is equivalent
to that of the medium they model.

To see how the polarization charge density 1s related to the polarization density, consider the
motion of charges through the arbitrary surface S shown in Fig. 2.8.2. For the moment, consider the
surface as being closed, so that the contour enclosing the surface shown is shrunk to zero. Because
polarization results in motion of the positive charge, leaving behind the negative image charge, the net
polarization charge within the volume V enclosed by the surface S is equal to the negative of the net
charge having left the volume across the surface S. Thus,

[ ppdV = - § nqd.fda = - § P.Ada (2)

S S

Gauss' theorem, Eq. 2.6.2, converts the surface integral to one over the arbitrary volume V. It
follows that the integrand must vanish so that

oy = - V.? (3)

This polarization charge density is now added to the free charge density as a source of the electric
field intensity in Gauss' law:

->
V-eoE = Pg + pp (4)

and Eqs. 3 and 4 comprise the postulated form of Gauss' law, Eq. 2.3.23a.

By definition, polarization charge is conserved, independent of the free charge. Hence, the
polarization current 3b is defined such that it satisfies the conservation equation

ap
v-?r‘p +—E=0 (5)

To establish the way in which 3' transforms between inertial reference frames, observe that in a primed
frame of reference, by dint of Eq. 2.5.2c, the conservation of polarization charge equation becomes

op!
. +' = ' =
v [Jp + upp] +'—a% 0 (6)
->

It has been shown that P, and hence Pps are the same in both frames (Eq. 2.5.10a). It follows that the
required transformation law is

>
J'=J3 - 7
p- % " (7)

If the dipoles are attached to a moving medium, so that the negative charges move with the same

velgcity ¥ as the moving material, the motion gives rise to a current which should be included in
Ampere's lav as a source of magnetic field. Even if the material is fixed, but the applied field is
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time-varying so as to induce a time-varying polarization density, a given surface is crossed by a net
charge and there is a current caused by a time-varying polarization density. The following steps
determine the current density jp in terms of the polarization density and the material velocity.

The starting poilnt is the statement

>, > - ﬂ_ > >
I Jp nda = 3= I P.nda (8)
S

The surface S, depicted by Fig. 2.8.2, is attached to the material itself. It moves with the
negative charges of the dipoles. Integrated over this deforming surface of fixed identity, the polari-
zation current density evaluated in the frame of reference of the material is equal to the rate of
change with respect to time of the net charge penetrating that surface.

With the surface velocity identified with the material velocity, Eq. 2.6.4 and Eq. 3 convert
Eq. 8 to

-
[ 3y-hda = | Gt - o v)-hda + §F x V. )
c
On the left, I is replaced by Eq. 7 evaluated with U= 3, while on the right Stokes's theorem,
Eq. 2.6.3, is Bsed to convert the line integral to a surface integral. The result is an equation in
surface integrals alone. Although fixed to the deforming material, the surface S is otherwilse arbitrary
and so it follows that the required relation between jp and P for the moving material is

>

J = 32 +7x @ xv) (10)

It is this current density that has been added to the right-hand side of Ampére's law, Eq. 2.3.26a,
to complete the formulation of polarization effects in the electroquasistatic system.

2.9 Magnetization of Moving Media

It is natural to use polarization charge to represent the effect of macroscopic media on the
macroscopic electric field. Actually, this is one of two alternatives for representing polarization.
That such a choice has been made becomes clear when the analogous question is asked for magnetization.
In the absence of magnetization, the free current density is the source of the magnetic field, and it
is therefore natural to represent the macroscopic effects of magnetizable media on i through an equi-
valent magnetization current density. Indeed, this viewpoint is often used and supported by the con-
tention that what is modeled at the atomic level is really a system of currents (the electrons in their
orbits). It is important to understand that the use of equivalent currents, or of equivalent magnetic
charge as used here, if carried out self-consistently, results in the same predictions of physical
processes. The choice of models in no way hinges on the microscopic processes accounting for the mag-
netization. Moreover, the magnetization is often dominated by dynamical processes that have more to do
with the behavior of domains than with individual atoms, and these are most realistically pictured as
small magnets (dipoles). With the Chu formulation postulated in Sec. 2.2, the dipole model for
representing magnetization has been adopted

An advantage of the Chu formulation is that magnetization is developed in analogy to polarization.
But rather than starting with a magnetic charge density, and deducing its relation to the polarization
density, think of the magnetic material as influencing the macroscopic fields through an intrinsic flux
density qu that might be given, or might be itself induced by the macroscopic ﬁ For lack of evidence
to support the existence of "free" magnetic monopoles, the total flux density due to all macroscopic
fields must be solenoidal. Hence, the intrinsic flux demsity uoﬁ, added to the flux density in free
space uoﬁ, must have no divergence:

Veuo(E + M) =0 1)

This is Eq. 2.3.24b. It is profitable to think of -V-uoﬁ as a source of ﬁ. That is, Eq. 1 can
be written to make it look like Gauss' law for the electric field:

->
VeuoH = Pms Pm = -V.uoﬁ (2)
The magnetic charge density pp is in this sense the source of the magnetic field intensity.

Faraday's law of induction must be revised if magnetization is present. If uoﬁ is a magnetic flux
density, then, through magnetic induction, its rate of change is capable of producing an induced electric
field intensity. Also, if Faraday's law of induction were to remain valid without alteration, then its
divergence must be consistent with Eq. 1; obviously, it is not.
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To generalize the law of induction to include magnetization, it is stated in integral form for a
contour C enclosing a+surface S fixed to the material in which the magnetized entities are imbedded.
Then, because uo(ﬁ + M) is the total flux density,

§ EedL o= - %? I uo(ﬁ + M).nda 3)
C S

The electric field E' is evaluated in the frame of reference of the moving contour. With the time
derivative taken inside the temporally varying surface integrals (Eq. 2.6.4) and because of Eq. 1,

T - [ @+ ]enda+ [ Vx[vxu (@ +W]-nda )
ot o o
c S S

>
The transformation law for E (Eq. 2.5.12b with ; = v) is now used to evaluate E', and Stokes's theorem,
Eq. 2.6.3, used to convert the line integral to a surface integral. Because S is arbitrary, it then
follows that the integrand must vanish:

] > > > ->
VrxEe- m@E+MI+Vx G xul) (5)
This generalization of Faraday's law is the postulated equation, Eq. 2.3.25b.

2,10 Jump Conditions

Systems having nonuniform properties are often modeled by regions of uniform properties, separated
by boundaries across which these properties change abruptly. Fields are similarly often given a piece-
wise representation with jump conditions used to "splice" them together at the discontinuities. These
conditions, derived here for reference, are implied by the integral laws. They guarantee that the
associated differential laws are satisfled through the singular region of the discontinuity.

Fig. 2.10.1. Volume element enclosing a boundary. Dimen-
sions of area A are much greater than A.

Electroquasistatic Jump Conditions: A section of the boundary can be enclosed by a volume element
having the thickness A and cross-sectional area A, as depicted by Fig. 2.10.1. The linear dimensions of
the cross-sectional area A are, by definition, much greater than the thickness A. Implicit to this
statement is the assumption that, although the surface can be curvilinear, its radius of curvature must
be much greater than a characteristic thickness over which variations in the properties and fields take
place.

The normal vector n used in this section is a unit vector perpendicular to the boundary and directe
from region b to region a, as.shown in Fig. 2.10.1. Since this same symbol is used in connection with
integral theorems and laws to denote a normal vector to surfaces of integration, these latter vectors
are denoted by In'

First, consider the boundary conditions implied by Gauss' law, Eq. 2.3.23a, with Eq. 2.8.3 used to|
introduce Pp- This law is first multiplied by V® and then integrated over the volume V:
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j V* Vee Fav = f Vip,dvV + I Vio_av (1)
o f P
v v v

Here, v is a coordinate (like x,y, or z) perpendicular to the boundary and hence in the direction of ;,
as shown in Fig. 2.10.1.

First, consider the particular case of Eq. 1 with m = O. Then, the integration gives

n-eEll=0.+0 (2)

P

ra I b - - b
where HA.H = %% - %° and Uﬂ)ﬂ = y? - ¥° and the free surface charge density O¢ and polarization surface
charge density 9p have been defined as

1 . 1
O, = lim pdV, o_ = lim p_dv (3)
£ A0 X'[ £ P A—*OKI P

The relationship between the surface charge and the electric field intensity normal to the boundary
can be pictured as shown in Fig. 2,10,2b.

N2 A/2

Fig. 2.10.2. Sketches of the charge distribution represented by the solid lines, and the
electric field intensity normal to the boundary represented by broken lines.
Sketches at the top represent actual distributions, while those below re-
present idealizations appropriate if the thickness A of the region over which
the electric field intensity makes its transition is small compared to other
dimensions of interest: (a) volume charge density to either side of inter-
face but no surface charge; (b) surface charge; (c) double layer.

In view of Eq. 2, the normal electric field intensity is continuous at the interface unless there
is a singularity in charge. Thus, with volume charges to either side of the interface, there is an
abrupt change in the rate of change of the electric field intensity normal to the boundary, but the
field is itself continuous. On the other hand, as illustrated by the sketches of Fig. 2.10.2b, if
there is an appreciable charge per unit area within the boundary, the electric field intensity is
discontinuous, and undergoes a step discontinuity.
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A somewhat less familiar situation is that of Fig. 2.10.2c. Within the boundary there are
regions of large positive and negative charge concentrations with an associated intense electric field
between. In the limit where the boundary becomes very thin, a component of the surface charge density
becomes a doublet, and the electric field becomes an impulse.

The double layer can be pictured as being positive surface charges disposed on one side of the
boundary, and negative surface charges distributed on the other, with an internal component of the
electric field originating on the positive charges and terminating on the negative ones. The mag-
nitude of the double layer is equal to the product of the positive surface charge density and the dis-
tance between these layers, A. In the limit where the layer thickness becomes infinitely thin while the
double-layer magnitude remains constant, the electric field within the double layer must approach
infinity. Thus, associated with the doublet of charge density, there is an impulse in the electric field
intensity, as sketched in Fig. 2.10.2c.

The boundary condition to be used in connection with a double layer 1is found from Eq. 1 by letting
m = 1. The left-hand side of Eq. 1 can be integrated by parts, so that it becomes

f v. (eovﬁ)dv - f e E-Vvav = I V(pg + p)av (%)
\'}

For the incremental volume, the surface double layer density is defined as

v
+
Py = iig-% J v(pf + pp)dV = jv v(pf + pp)dv (5)

and so the right-hand side of Eq. 4 is Apy. The origin of the A axis remains to be defined but A = v -V
To glean a jump condition from the equation, the second EQS law is incorporated. That E is irrotational
Eq. 2.3.24a, is represented by defining the electric potential

E=-v (6)

Thus, the second term on the left in Eq. 4 becomes

— == - . 2
J’ € EVvav = - j € V8 VWV = J‘ e V- (9VV)av + j’ e 3V vV 7
Vv

v A v

Evaluation of V2v gives nothing because V is defined as a local Cartesian coordinate. The last inte-
gral vanishes, and with the application of Gauss' theorem, Eq. 2.6.2, it follows that Eq. 4 becomes

r . ( .1 =
§ eguE Inda + § € 9Vv-1 da = Ap, (8)
S

wn-o

Provided that within the layer, E parallel to the interface and ¢ are finite (not impulses in the limit
4*0), Eq. 8 only has contributions to the surface integrals from the regions to either side of the inter-
face. Thus,

Aeo(v+Ea - v_Eb)'K +'A£°ﬂ of = APy )

The origin of the v axis is adjusted to make the first term vanish. The required boundary condition
to be associated with Eqs. 2.3.23a and 2.3.23b is

e, [ 2 1=p; (10)

The gradient of Eq. 10 within the plane of the interface converts the jump condition to one in
terms of the electric field:

e, T2, 1 =-vgp; (11)

Here Vy is the surface gradient and t denotes components tangential to the interfacial plane.

In the absence of a double-layer surface density, these last two boundary conditions are the
familiar statement that the tangential electric field intenmsity at a boundary must be continous. The
statement given in Eq. 10 that the potential must be continuous at a boundary is another way of stating
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this requirement on the tangential electric field intensity. With a double layer; the tangential elec-
tric field intensity is discontinuous, as is also the potential.

Equations 10 and 11 could also be derived using the condition that the line integral of the electric
field intensity around a closed loop intersecting the boundary vanish. Usually, the tangential electric
field is continuous because there 1s no contribution to this line integral from those segments of the
contour passing through the boundary. However, with the double layer, the electric field intensity with-
in the boundary is infinite; so, even though the segments of the line integral across the boundary vanish
as A + 0, there is a net contribution from these segments of the integration.

It is clear that higher order singularities could also be handled by considering values of m in
Eq. 1 greater than unity. However, the doublet is as singular a charge distribution as of interest
physically.

There are two reasons for wishing to include the doublet charge distribution, one mathematical and
one physical. Just as the surface charge density is a singularity in the volume charge density which
can be used to terminate a normal electric field intensity at a boundary, the double layer is a termination
of a tangential electric field. On the physical side, there are many situations in which a double layer
actually exists within a very thin region of material. Double layers abound at interfaces between liquids
and metals and between metals. The double-layer concept is useful for modeling electromechanical coupling
involving these interfacial regionms.

So far, those EQS laws have been considered that do not explicitly involve time rates of change.
Conservation of charge does involve a dynamic term. Its associated boundary conditions can therefore
be derived only by making further stipulations as to the nature of the boundary. It is now admitted that
the boundary can, in general, be one which is deforming. Because time did not appear explicitly in the
previous derivations of this section, the conditions derived are automatically appropriate, even if the
boundary is moving.

The integral form of charge conservation, Eq. 2.7.3a, is written for a volume V and surface S
tied to the material itself. Thus, with ?r‘s > ¥,

> > > d
SS(Jf - pgv)el da = - 5= j pgdv 12)
5

v

As seen in Fig. 2.10.1, the volume of integration always encloses material of fixed identity and inter-
sects the boundary. Implicit to this statement is the assumption that the boundary is one of demarca-
tion between material regions. The material velocity is presumed to at most have a step singularity
across the boundary. (It is important to recognize that there are other types of boundaries. For
example, the boundary could be a shock front, with a gas moving through from one side of the interface
to the other. In that case, the boundary conditions thus far derived would remain correct, because no
mention has yet been made of the physical nature of the boundary.)

The left~hand side of Eq. 12 can be handled in a manner similar to that already illustrated, since
it does not involve time rates of change. The integration is divided into two parts: one over the upper
and lower surfaces of the volume, the other over the parts of the surface which intersect the boundary.
The contributions to a current flow through these side surfaces comes from a surface current. It follows
by using a two-dimensional form of Gauss' theorem, Eq. 2.6.2, that the left-hand side of Eq. 12 is

> - > -> - 0> > > >
de - o1 da + J @, - o)1 da = afm- [ 3; - Vo ] + Vg &, - 0w} 13) -
sl+s" slll

Here, A is the area of intersection between the volume element and the boundary. The right-hand side of
Eq. 12 1s, by the definition of Eq. 3,

d =4
73 £ pde =3t 1 ofda (14)

Note that, if the volume of integration V, and hence the area of integration A, is one always fixed to
the material, then the area A is time-varying. The surface charge density i1s a function only of the

two dimensions within the plane of the interface. Thus, the term on the right in Eq. 14 is a time
derivative of a two-dimensional integral. This is a two-dimensional special case of the situation
described by the generalized Leibnitz rule, Eq. 2.6.5, which stated how the time derivative of a volume
integral could be represented, even if the volume of integration were time-varying. Thus, Eq. 14 becomes

90
d _ f >
i ‘J,'pfdv = A[—at + VZ-(vtO'f)] (15)
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Finally, with the use of Eqs. 13 and 15, Eq. 12 becomes the required jump condition representing charge
conservation:
lej
-> > -> > f
el dg - ogv [ + VpeRp = - 5 (16)

By contrast with Eqs. 10 and 11, the expression 1s specialized to interfaces that do not support charge
distributions so singular as a double layer. In using Eq. 16, note that a partial derivative with
respect to time is usually defined as one taken holding the spatial coordinates constant. A review of
the derivation of Eq. 16 will make it clear that such is not the significance of the partial derivative
on the right in Eq. 16. The surface charge density is not defined throughout the three~dimensional
space. Thus, this derivative means the partial derivative with respect to time, holding the coordinates
within the plane of the interface constant.

The component of current normal to the boundary represented by the first term in Eq. 16 will be
recognized as the free current density in a frame of reference moving with the boundary. A good questio
would be, "why is it that the normal current density appears in Eq. 16 evaluated in the primed frame of
reference, while the surface free current density is not?" The answer points to the physical situation
for which Eq. 16 is appropriate. As the material boundary moves in the normal direction, the material
ahead and behind carries a charge distribution along, but one that never reaches the boundary. By con-
trast, materials can flow in and out within the surface of the volume of interest, and carry with them
a surface charge density of a convective nature. Thus, the surface divergence appearing in the second
term of Eq. 16 can include both a conduction surface current and a convection surface current.

Magnetoquasistatic Jump Conditions: The integral forms of Ampére's law and Gauss' law for magnetic
fields incorporate no time rates of change. Hence, the jump conditions implied by these laws are
familiar from elementary electrodynamics. Ampére's law, Eq. 2.7.1b, is integrated over the surface S
and around the contour C enclosing the boundary, as sketched in Fig, 2.10.3, to obtain

2 x ﬂ 1 ﬂ = Ef 17)

where Kf is the surface current density. Although it is entirely possible to consider a doublet of
current density as a model, this impulsive singularity in the distribution of free current density is
of as high an order as necessary to model MQS electromechanical situations of general interest.

From Gauss' law for magnetic fields, Eq. 2.7.2b,
applied to the incremental volume enclosing the interface,
Fig. 2.10.1, the jump condition is

Kal]uo(-ﬁ+ Wm[=o0 (18)

Faraday's law of induction brings into play the time
rate of change, and it is expected that motion of the
boundary leads to an addition to the jump condition not
found for stationary media. According to Eq. 2.7.3b, the
integral form of Faraday's law, for a contour fixed to the
material (of fixed identity) so that Vg + v, 1s

Fig. 2.10.3. Contour of integration C
enclosing a surface S that inter-
sects the boundary between regions

With Eq. 19, it has already been assumed that the boundary (2) and (b).

is a material one. Consistent with Eq. 17 is the assumption

that it can be carrying a surface current with it as it deforms. If the surface S were not one of fixed

identity, this would mean that the surface integral on the right could be a step function of time as the

boundary passed through the surface of integration. The result would be a temporal impulse on the right

- which would make a contribution to the boundary condition even in the limit where the surface S becomes

vanishingly small. By contrast, because the surface S is one of fixed identity, in the limit where the

surface area vanishes, the right-hand side of Eq. 19 makes no contribution.

§ v )42 = - %E f u, () - Tda (19)
C S

With the assumption that fields and velocity are at most step functions across the boundary, the
integral on the left in Eq. 19 gives

ax JE+Vx uoﬁ I=o0 (20)

This expression is what would be expected, in view of the transformation law for the electric field in
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the MQS system. It states that E{ is continuous across the interface.

Summary of Electroquasistatic and Magnetoquasistatic Conditions: Tagble 2.10.1 summarizes the
jump conditions.

Table 2.10.1. Quasistatic jump conditions; H X H = Ka - Kb.
EQS MQS
> ->
nJeE+P? [|[=0
0 f
ix[E [ - % (21)
> >
n-n P U = - GP
e, (2] =0 g-uoﬂ A+M =0
(22)
>
€ I B [ = “Vy9q ;.uo” i I - O
-> -> -> > 3Uf > -> <>
ne || Jg - pfvﬂ + VZ.Kf = - nx [E+vx U H [=o0 (23)
A lf-Txed =% -0, 203, 1-0 (24)

Included in the summary are several that are either rarely used, are matters of definition, or are
obvious. That the surface polarization charge and surface magnetic charge are related to % and T
respectively follows from Egqs. 2.8.3 and 2.9.2 used in conjunction with Gauss' theorem and the elemental
volume of Fig. 2,10.1., Similarly, Eq. 24b follows from the solenoidal nature of the MQS current density.
Finally, Eq. 24a follows from the EQS form of Ampére's law, integrated over the surface S of Fig. 2.10.3,
following the line of reasoning used in connection with Eq. 20.

2.11 Lumped Parameter Electroquasistatic Elements

Lumped parameter electromechanical models are sufficiently practical that they warrant detailed
examination.l Even though the electromechanical coupling may be of a definitely continuum and dis-
tributed nature, it is most often the case that interest is in inputs and outputs at discrete terminal
pairs. This section reviews the definition of energy storage elements in EQS systems.

An abstract representation of a system of perfectly conducting electrodes, each having a potential
vi relative to a reference electrode, is shown in Fig. 2,11.1. Not only are the electrodes and their
connecting leads perfectly conducting, but the environment surrounding them is perfectly insulating.

Fig. 2.11.1

Schematic view of an electrode
system consisting of n elec-
trodes composed of perfect con-
ductors and immersed in a per-
fectly insulating medium.

reference

1. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Vol. I, John Wiley & Sons, New York,
1968. '
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The charge on each of the n electrodes is the free charge density integrated over a volume enclosin
the electrode:

_ > +
q = I pedV = § D.nda (1)
Vi 54

The total charge on an electrode is indicated by an arrow pointing toward the electrode from the terminal
pair attached to that electrode. The associated voltage is defined in terms of the electric field and
potential by

o [V EEe ce - @

ref

This relation is justified because the electric field is irrotational and hence the negative gradient of
of 9,

Given the geometry of the electrodes at a certain instant in time, displacements £j-<<£j++-Ep are
known, and the condition that the field be irrotational and satisfy Gauss' law leads to equatione that
can in principle be used to determine the charges on the individual electrodes at a given instant:

qi = qi(vl"'vn’ g1°"6m) 3)

If the dielectrics are electrically linear in the sense that D= SE, where €is a function of posi-
tion but not of time or the field, then it is useful to define a capacitance

é eﬁ-gda
c qi 54 %)
ti3 TV, T T,
3 vi*j-o -I t.d2
ref

The capacitance of the ith electrode relative to the jth electrode is the charge on the ith electrode
per unit voltage on the jth electrode, with all other electrodes held at zero voltage. The capacitance
is useful as a parameter because the charge on an electrode in a linear dielectric is proportional to
the voltage itself; hence, the capacitance is purely a function of the electrical properties of the sys-
tem and the geometry:

n
B 7k Cay Cay 7 Oy GreeR) ®)

To define the capacitance as with Eqs. 4 and 5, no reference 1s required to the time rate of
change. In these relations qi, vi, and &4 can all be functions of time. The dynamics enter by virtue
of conservation of charge, which can be written for a volume including the ith electrode as (Eq. 2.7.3a):

+>, > - - d_
éJf-nda T I PV (6)
Si Vi
The quantity on the right in this expression is the negative of the time rate of change of the total free
charge on the ith electrode. The only free current density normal to a surface enclosing the electrode
is that through the wire itself. Note that the normal vector is defined as outward from this surface,

while a positive current through the wire flows inward. Hence, the left-hand side of Eq. 6 becomes the
negative of the total current at the ith electrical terminal pair:

dq
i
=5 ™

With the charge given as a function of the voltages and the geometry by Eq. 3, or in particular by Eq. 35,
Eq. 7 can be used to compute the current flowing into a given terminal of the electrode system.

2.12 Lumped Parameter Magpetoquésistatic Elements

An extremely practical idealization of lumped parameter magnetoquasistatic systems is sketched
schematically in Fig. 2.12,1. Perfectly conducting coils are excited at their terminals by currents iy
and, in general, coupled together by the induced magnetic flux. The surrounding medium is magnetizable
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Fig. 2.12.1

‘Schematic representation

of a system of perfectly
conducting coils. The

ith coil is shown with the
wire assuming the contour
C4 enclosing a surface Si.
There is a total of n coils
in the system.

but free of electrical losses. The total flux Ay linked by the ith coil is a terminal variable, defined
such that

A, = I B.nda 1)

A positive A is determined by first assigning the direction of a positive current ij. Then, the direc-
tion of the normal vector (and hence the positive flux) to the surface Si, enclosed by the contour Cy
followed by the current ij,has a direction consistent with the right-hand rule, as Fig. 2.12.1 illus-
trates.

Because the MQS current density is solenoidal, the same current flows through the cross section
of the wire at any point. Thus, the terminal current is defined by

> >
i, = I Jei, da (2)
84

where the surface s; intersects all of the cross section of the wire at any point, as illustrated in the
figure.

The first two MQS equations are sufficient to deter?ine the flux linkages as a function of the cur=-
rent excitations and the geometry of the coil. Thus, Ampere's law and the condition that the magnetic
flux density be solenoidal are solved to obtain relations having the form

Ai = Ai(il"'insgl"’gm) (3)

If the materials involved are magnetically linear, so that,ﬁ = uﬁ, where Y is a function of position but
not of time or the fields, then it is convenient to define inductance parameters which depend only on
the geometry: -

I uH.nda

S

>

=1 - S
Lij a R (%)

j _ [ J .1 da
ii#j 0 ! f n
3
The inductance Lij is the flux linked by the ith coil per unit current in the jth coil, with all other
currents zero. For the particular cases in which an inductance can be defined, Eq. 3 becomes

n
Ay = Lijij’ Lij = Lij(gl"'g ) (5)

i m

j=1

The dynamics of a lumped parameter system arise through Faraday's integral law of induction,
Eq. 2.7.3b, which can be written for the ith coil as
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‘JS Erede = - g—t J B.nda (6)
c, S1

Here the contour is one attached to the wire and so v_ = v in Eq. 2.7.3b, The line integration can be
broken into two parts, one of which follows the wire from the positive terminal at (a) to (b), while the
other follows a path from (b) to (a) in the insulating reglon outside the wire

§hd - g Bd s ,Z 3.8 ™

Ci a

Even though the wire is in general deforming and moving, because it is perfectly conducting, the electric
field intensity ' must vanish in the conductor, and so the first integral called for on the right in

Eq. 7 must vanish., By contrast with the EQS fields, the electric field here is not irrotational. This
means that the remaining integration of the electric field intensity between the terminals must be care-
fully defined. Usually, the terminals are located in a region in which the magnetic field is sufficiently
small to take the electric field intensity as being irrotational, and therefore definable in terms of the
gradient of the potential. With the assumption that such is the case, the remaining integral of Eq. 7

is written as

a a
” Edg o= - I Vo.dg = (8, - 9,) = -v, (8)
b b

Thus it follows from Eq. 6, combined with Eqs. 1 and 8, that the voltage at the coil terminals is the
time rate of change of the associated flux linked:

dXx

=1 9
Vi =3

With Ai given by Eq. 3 or Eq. 5, the terminal voltage follows from Eq. 9.

2.13 Conservation of Electroquasistatic Energy

This and the next section develop a field picture of electromagnetic energy storage from fundamental
definitions and principles. Results are a first step in the derivation of macroscopic force densities
in Chap. 3. Energy storage in a conservative EQS system is considered first, followed by a statement
of power flow. In this and the next section the macroscopic medium is at rest.

Thermodynamics: Whether in electric or magnetic form, energy storage follows from the definition
of the electric field as a force per unit charge. The work required to tramsport an element of charge,
8q, from a reference position to a position p in the presence of the electric field intensity is

8w = - Ip §qE-dL (1)

ref

The integral is the work done by the external force on the electric subsystem in placing the charge at p.
If this process can be reversed, it can be said that the work done results in a stored energy equal to
Eq. 1. In an electroquasistatic system, the electric field is irrotational. Hence, £ = -vo. Then, if
Oref is defined as zero, it follows that Eq. 1 becomes

Sw = fsqw-a’z = 5q0 )

ref

where use has been made of the gradient integral theorem, Eq. 2.,6.,1. Consider now energy storage in
the system abstractly represented by Fig. 2.13.1. The system is perfectly insulating, except for the
perfectly conducting electrodes introduced into the volume of interest, as im Sec. 2.11. It will be
termed an "electroquasistatic thermodynamic subsystem."

The electrodes have terminal variables as defined in Sec. 2.11; voltages v4y and total charges qi.
But, in addition, the volume between the electrodes supports a free charge density pg. By definitionm,
the energy stored in assembling these charges is equal to the work required to carry the charges from a
reference position to the positions of interest. Thus, the incremental energy storage associated with

incremental changes in the electrode charges, 8qi, or in the charge density, Spg, in a given neighbor-
hood on the insulator, is
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electrode Fig. 2.13.1

Schematic representation
of electroquasistatic
system composed of per-
fectly conducting elec-
trodes imbedded in a per-
! fectly insulating dielec-
! tric medium,

3)

The volume V' is the volume excluded by the electrodes. Note that the reference electrode is not in-
cluded in the summation, because the electric potential on that electrode is, by definition, zero.

work required to place a free charge at its final position correctly accounts for the polarization,
because the polarization charges induced in carrying the free charges to their final position are re-

flected in the potential.

Consider now the field representation of the electroquasistatic stored energy. From Gauss' law
(Eq. 2.3.23a), the contribution of the summation in Eq. 3 can be represented in terms of an integral
over the surfaces S; of the electrodes:

n > >
6w=72 ¢ @,6D-nda + I 98 AV (4)
i=1] *
S ‘A

Here, ®; is the potential on the surface Sj. The surfaces enclosing the electrodes can be joined to-

gether at infinity, as shown in Fig. 2.13.1.

electrodes, the wires
Thus, the surface integration called for with the first term on the right in Eq. 4 can be represented

by an integration over a closed surface.
to a volume integration. However, note that the normal vector used in Eq. 4 points into the volume V'

excluded by the electrodes and included by the surface at infinity. Thus, in using Gauss' theorem,
a minus sign is introduced and Eq. 4 becomes

Sw = - f V. (06B)av + J 98p.dV = j [-8V.8D - 6D-Vo + 86p, 14V (5)
V' v! vt

In rewriting the integral, the identity V~¢E = E-Vw + wV-E has been used.

From Gauss' law, Spf = §V+D = V.6D. It follows that the first and last terms in Eq. 5 cancel.
Also, the electric field is irrotational (E = -V®). So Eq. 5 becomes

Sw = f . 6Ddv (6)

v

>
There is no E inside the electrodes, so the integration is now over all of the volume V.

The integrand in Eq. 6 is an energy density, and it is therefore appropriate to define the in-
cremental change in electric energy density as

oW = T.6D (7)

The

The resulting simply connected surface encloses all of the
as they extend to infinity, with the surface completed by a closure at infinity.

Gauss' theorem is then used to convert this surface integral

X
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The field representation of the energy, as given by Eqs. 6 and 7, should be compared to that for
lumped parameters. Suppose all of the charge resided on electrodes. Then, the second term in Eq. 3
would be zero, and the incremental change in energy would be given by the first term:

n
Sw=12 v,0q (8)
1=1 b B § ‘

Comparison of Eqs. 6 and 8 suggests that the electric field plays a role analogous to the terminal voltage
while the displacement vector is the analog of the charge on the electrodes. If the relationship between
the variables E and 3, or v and q, is single-valued, then the energy density and the total energy in the
continuum and lumped parameter systems can be viewed, respectively, as integrals or areas under curves

as sketched in Fig. 2.13.2.

If it is more convenient to have all of the voltages,
rather than the charges, as independent variables, then

Legendre's dual transformation can be used. That is, with \WoOrE
the observation that
5 5 |
viday = Ov49y - 9449 ® w or W {
dV 4 |
Eq. 8 becomes or . i i
1 : [
oy n 5 , g " SE ! I
w' =1 q,6v.; w' = v.q, - W) (10) :
g o1 1= 11 EEWOI’W!
with w' defined as the coenergy function. P :
i |
In an analogous manner, a coener%y density, W', | ! -
is defined by writing E.6D = §(#.D) - D-6¥ and thus . . D
defining 8q or 8D qor

SW' = D-6E; W' = ED - W (11)

The coenergy and coenergy density functions have Fig. 2.13.2. Geometric repfesentation
the geometric relationship to the energy and energy den- of energy w, coenergy w', energy :
sity functions, respectively, sketched in Fig. 2.13.2. density W, and coenergy density W
In those systems in which there is no distribution of for electric field systems.
charge other than on perfectly conducting electrodes,

Eqs. 6 and 8 can be regarded as equivalent ways of computing the same incremental change in electro-
quasistatic energy. If the charge is distributed throughout the volume, Eq. 6 remains valid.

With the notion of electrical energy storage goes the concept of a conservative subsystem. In
the process of building up free charges on perfectly conducting electrodes or slowly conducting charge
to the bulk positions (one mechanism for carrying out the process pictured abstractly by Eq. 3), the
work is stored much as it would be in cocking a spring. The electrical energy, like that of the spring,
can later be released (discharged). Included in the subsystem is storage in the polarization. For
work done on polarizable entities to be stored, this polarization process must also be reversible. Here,
it is profitable to think of the dipoles as internally constrained by spring-like nondissipative
elements, capable of releasing energy when the polarizing field is turned off. Mathematically, this
restriction on the nature of the polarization is brought in by requiring that P and hence D be a single-~
valued function of the instantaneous f, or that ¥ = f(ﬁ). In lumped parameter systems, this is tanta-
mount to q = q(v) or v = v(q).

Power Flow: The electric and polarization energy storage subsystem is the field theory generaliza-
tion of a capacitor. Just as practical circuits involve a capacitor interconnected with resistors
and other types of elements, in any actual physical system the ideal energy storage subsystem is im-
bedded with and coupled to other subsystems. The field equations, like Kirchhoff's laws in circuit
theory, encompass all of these subsystems. The following discussion is based on forming quadratic
expressions from the field laws, and hence relate to the energy balance between subsystems.

For a geometrical part of the ith subsystem, having the volume V enclosed by the surface S, a
statement of power flow takes the integral form

égi-;da + £ -Z-:-:l av = J'Vq)idv (12)
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Here, S{ is the power flux density, Wi is the energy density, and ¢j is the dissipation density.

Different subsystems can occupy the same volume V., In Eq. 12, V is arbitrary, while i distinguishes
the particular physical processes considered. The differential form of Eq. 12 follows by applying Gauss'
theorem to the first term and (because V is arbitrary) setting the integrand to zero:

oW .
- i _
V'Si+-8-t—'— ¢i (13)

This is a canonical form which will be used to describe various subsystems. In a given region, Wy can
increase with time either because of the volumetric source ¢f or because of a power flux -n-§i into the
region across its bordering surfaces.

For an electrical lumped parameter terminal pair, power is the product of voltage and current. This
serves as a clue for finding a statement of power flow from the basic laws. The generalization of the
voltage is the potential, while conservation of charge as expressed by Eq. 2.3.25a brings in the free
current density. So, the sum of Eqs. 2.3.25a and the conservation of polarization charge equation,

Eq. 2.8.5, is multiplied by ¢ to obtain

o[v. (3f+3p) + g-t- (o +p)1 = 0 (14)

With the objective an expression having the form of Eq. 13, a vector identity (Eq. 15, Appendix B)
and Gauss' law, Eq. 2.3.23a, convert Eq. 14 to

+3)+0 S vVeE=0 (15)
In the last term the time derivative and divergence are interchanged and the vector identity used again
to obtain the expression
3W
Vi, +52=0, (16)

where, with Eq. 2.8.10 used for 3#,

-)
o _E
—- >
§e=_<1>(3f+Jp+ at) @[3+ +vx(3xv)]
w zichi
e 2 o
= -k @J +—'E"5+§§+V ?xwl
¢e = =-E (Jf + Jp) = =K. [ P x Pxv

Which terms appear where in this expression is a matter of what part of a physical system (which subsystem)
is being described. Note that W does not include energy stored by polarizing the medium. Also, it can
be shown that V-§e = V- (% x H), so that §é is the poynting vector familiar from conventional classical
electrodynamics. In the dissipation density, E-Jgf can represent work done on an external mechanical
system due to polarization forces or, if the polarization process involves dissipation, heat energy

given up to a thermal subsystem.

The polarization terms in ¢ can also represent energy storage in the polarization. This is illus-
trated by specializing Eq. 16 to describe a subsystem in which P is a single-valued function of the
instantaneous E, the free current density is purely ohmic, jf = dﬁ, and the medium is at rest. Then, the
polarization term from ¢e can be lumped with the energy density term to describe power flow in a subsystem
that includes energy storage in the polarization:

R W
R Tl @
where 5 3

> > _ > _ >

8, = ook + & 3 215wy = I E6B; ¢, = -of-E

o
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Note that the integral defining the energy density Wg, which is consistent with Eq. 7, involves an inte-
%rand which is time dependent only through the time dependence of B: E = B[D(t)]. Thus, oWg/3t =
(3B/5t).

With the power flux density placed on the right, Eq. 17 states that the energy density decreases
because of electrical losses (note that ¢E < 0) and because of the divergence of the power density.

2.14 Conservation of Magnetoquasistatic Energy

Fundamentally, the energy stored in a magnetic field involves the same work done by moving a test
charge from a reference position to the position of interest as was the starting point in Sec. 2,13,
But, the same starting point leads to an entirely different form of energy storage. In a magnetoquasi-
static system, the net free charge is a quantity evaluated after the fact. A self-consistent representa-
tion of the fields 1s built upon a statement of current continuity, Eq. 2.3.26b, in which the free
charge density is ignored altogether. Yet, the energy stored in a magnetic field is energy stored in
charges transported against an electric field intensity. The apparent discrepancy in these statements is
resolved by recognizing that the charges of interest in a magnetoquasistatic system are at least of
two species, with the charge density of one species alone far outweighing the net charge density.

Thermodynamics: Because the free current density is solenoidal, a current "tube" can be defined as
shown in Fig. 2.14.1. This tube is defined with a cross section having a normal 1n in the direction of
the local current density, and a surrounding surface having a normal perpendicular to the local current
density. An example of a current tube is a wire surrounded by insulation and hence carrying a total cur-
rent i which is the same at one cross section as at another.

Fig. 2.14.1

Current tube defined as having
cross-sectional area ds per-
pendicular to the local current
density, and an outside surface
with a normal vector perpendicular
to the current density.

For bipolar conduction, and a stationary medium, the current density within the tube is related
to the charge density by the expression

> ->
J.= 0y, -0 (1)

Here the conduction process is visualized as involving two types of carriers, one positive, with a charge
density p+, and the other negative, with a magnitude p-. The carriers then have velocities which are,
respectively, v+ and v-. Even though there is a current density, in the magnetoquasistatic system there
is essentially no net charge: pf = p+ - p- = 0. In an increment of time &t, the product of the respective
charge densities and net displacements is p+v+6t and - p_v dt. The work done on the charges as they
undergo these displacements is the energy stored in magnetic form. This work is computed by recognizing
that the force on each of the charged species is the product of the charge density and the electric

field intensity. Hence, the energy stored in the field by a length of the current tube d% is to first
order in differentials df% and ds,

-V, - p v ) -Estdsdf = -J_-Estdsds (2)

+ 4+ FeT- £

The expression for the free current density, Eq. 1, is used on the right to restate the energy stored
in the increment of time St. The unit vector 1 is defined to be the direction of jf. Thus, 35 =
(3foIh) ne Because the current density is solenoidal it follows closed paths. The product 3f Inds
is, by definition, constant along one of these paths, and if Ihdl is defined as an increment of the
line integral, it then follows from Eq. 2 that the energy stored in a single current tube is

-3f-Inds (§ E.Indz)cc ' 3)
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Fig. 2.14.2

Schematic representation of
a magnetoquasistatic energy
storage system. Currents
are either distributed in
current loops throughout the
volume of interest, or con-
fined to one of n possible
contours connected to the
discrete terminal pairs.

By contrast with the electroquasistatic system, in which the electric field intensity is induced
by the charge density (Gauss' law), the electric field intensity in Eq. 3 is clearly rotational. This
emphasizes the essential role played by Faraday's law of magnetic induction.

It is helpful to have in mind at least the abstraction of a physical system. Figure 2.14.2 shows
a volume of interest in which the currents are either distributed throughout the volume or confined to
particular contours (coils), the latter case having been discussed in Sec. 2.12.

First, consider the energy stored in the current paths defined by coils having cross-sectional
area ds. From Eq. 3, this contribution to the total energy is conveniently written as

—jf-Inds(§ E-Indx)st =16\ )

C,
i

Faraday's law and the definition of flux linkage, Eqs. 2.12.,1 and 2.12, 6, are the basis for representing
the line integral as a change in the flux linkage.

Because the free current density is solenoidal, the distribution of free currents within the
volume V excluded by the discrete coils can be represented as tke superposition of current tubes. From
Eq. 4 and the integral form of Faraday's law, Eq. 2.7.3b with vg = v = 0 (the medium is fixed), it
follows that the energy stored in a current tube is

_'>.'? ->
Yeurrent tube Je 1nd5(J 6§-nda) )

stube

The magnetic flux density is also solenoidal, and for this reason it is convenient to introduce the mag-
netic vector potential K, defined such that B = V x A, so that the magnetic flux density is automatically
solenoidal. With this representation of the flux density in terms of the vector potential, Stokes's
theorem, Eq. 2.6.3, converts Eq. 5 to

+ r I-> - + . * - + .
Jf.Inds § 8k 1ae § Gg-6h)dsar I 3 6Xav (6)
Ctube Ctube Vtube

Here, jf is by definition in the direction of Iﬁ, so that 3f-6x takes the component of §& in the Ih direc-
tion. The second equality is based upon recognition that the product ds.d% 1s a volume element of the

current tube, and the line integration constitutes an integration over the volume, vtube’ of the tube.

To include all of the energy stored in the distributed current loops, it is necessary only that
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the integral on the right in Eq. 6 be extended over all of the volume occupied by the tubes. The combina-
tion of the incremental energy stored in the discrete loops, Eq. 4, and that from the distributed current
loops, Eq. 6, is the incremental total energy of the system

n > >
Sw=12 1,81, + [ J_.S8AdV 7)
i=1 i 1 IV £

In this expression, V is the volume excluded by the discrete current paths. This incremental magnetic
energy storage is analogous to that for the electric field storage represented by Eq. 2.13.3.

In retrospect, it is apparent from the derivation that the division into discrete and distributed
current paths, represented by the two terms in Eq. 7, is a matter of convenience. In representing the
incremental energy in terms of the magnetic fields alone, it is handy to extend the volume V over all
of the currents within the volume of interest, including those that might be represented by discrete
terminal pairs. With this understanding, the incremental change in energy, Eq. 7, is the last term
only, with V extended over the total volume. Moreover, Ampere's law represents the current density in

terms of the magnetic field intensity, and, in turn, the integrand can be rewritten by use of a vector
identity (Eq. 8, Appendix B):

Sw = f V x H.6Rav = J[ﬁ.v x 6A + V.(H x SA)]av (8)
\Y \Y

The last term in Eq. 8 can be converted to a surface integral by using Gauss' theorem. With the
understanding that the system is closed in the sense that the fields fall off rapidly enough at infinity
so that the surface integration can be ignored, the remaining volume integration on the right in Eq. 8
can be used to obtain a field representation of the incremental energy change. With the curl of the
vector potential converted back to a flux density, Eq. 8 becomes

8w = I He §Bav 9
\Y
The integrand of Eq. 9 is defined as an incremental magnetic energy density
oW = U688 (10)
It is helpful to note the clear analogy between this energy density and the incremental total energy

represented by lumped parameters. In the absence of volume free current densities that cannot be
represented by discrete terminal pairs, Eq. 7 reduces to the lumped parameter form

Sw =

no~s

o1 1180 (11)
The magnetic field intensity plays the continuum role of the discrete terminal currents, and the magnetic
flux density is the continuum analog of the lumped parameter flux linkages. The situation in this mag-
netic case is, of course, analogous to the electrical incremental energy storages in continuum and in
lumped parameter cases, as discussed with Eqs. 7 and 8 of Sec. 2.13.

Just as it is often convenient in dealing with electrical lumped parameters to use the voltage
as an independent variable, so also in magnetic field systems it is helpful to use the terminal currents
as independent variables. In that case, the coenergy function w' is conveniently introduced as an
energy function

n
Sw' = I Aiaii (12)

i=1

In an analogous way, the co-energy density, w', is defined such that

oWw' = BeSH; W' = HB-W (13)

Power Flow: Thus far, the storage of energy in magnetic form has been examined. The postulate
has been that all work done in moving the charges against an electric field is stored. In any system
as a whole this is not likely to be the case. The general magnetoquasistatic laws enable a deduction
of an equation representing the flow of power, and the rate of change of the stored energy. This places
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the energy storage in the context of a more general system.

A clue as to how an energy conservation statement might be constructed from the differential mag-
netoquasistatic laws is obtained from Eq. 2, which makes it clear that the product of the free current
density and the electric field intensity are closely cennected with the statement of conservation of
energy. The dot product of the electric field and Ampere's law, Eq. 2.3.23b, is

E.[vx'ﬁ-:?f] =0 (14)

Use of a vector identity (Eq. 8, Appendix B) makes it possible to rewrite this expression as
E-V X - V-(E X ﬁ) = E-jf (15)

With the additional use of Faraday's law to represent V x E, Eq. 15 takes the form of Eq. 2.13.16, with

_> >
SezExH
w =i, %%
e =2 Mot (16)
ou ;i
= 3.3 _ . °_ _ 3. > >
¢g = B - B - - WV x (gt x V)

These quantities have much the same physical significances discussed in comnection with Eq. 2.13.16.

To place the magnetic energy storage identified with the thermodynamic arguments in the context of
an actual system, consider a material which is ohmic and fixed so that ¥ = 0 and jf = 0E. Then the
second term on the right in Eq. 16c is in the form of a time rate of change of magnetization energy
density. Hence, the power flow equation assumes the form of Eq. 2.13.17, with

§E =ExH
>
B > >

Wy = [ H. 8B a7
o .

b = -0E-E

Implicit is the assumption that fis a single-valued function of the instantaneous B. The resulting
energy density includes magnetization energy and is consistent with Eq. 2.14.10.

2.15 Complex Amplitudes; Fourier. Amplitudes and Fourier Transforms

The notion of a continuum network Is introduced for the first time in the next section. The associ-
ated transfer relations illustrated there are a theme throughout the chapters which follow. Among several
reasons for their use is the organization they lend to the representation of complicated, largely linear,
systems. In this chapter, the continuum networks represent electromagnetic fields. Later, they re-
present fluid and (to some degree) solid mechanics, heat and mass transfer, and electromechanical continua
in general. These networks make it possible to set aside one part of a given problem, derive the associ-
ated relations once and for all and accumulate these for later use. Such relations will be picked up over
and over in solving different problems and, properly understood, are a useful reference.

Complex Amplitudes: In many practical situations, excitations are periodic in one or two spatial
directions, in time or in space and time, The complex amplitude representation of fields, useful in
dealing with these situations, is illustrated by considering the function ®(z,t) which has dependence
on z given explicitly by

o(z,t) =Red(t)e Jk2 (1)

With the wavenumber k real, the spatial distribution is periodic with wavelength A = 2m/k and spatial
phase determined by the complex amplitude 3. For example, if ¥ = 3,(t) is real and k is real, then
d(z,t) = ®o(t) cos kz.

The spatial derivative of ¢ follows from Eq. 1 as

a9

E’

Re {-§k8 (t)e K3 (2)
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The following identifications can therefore be made:
[0(z,8), 22 (2,6) IICS[B(E), - JIB(D)] 3)

with it being understood that even though complex amplitudes are being used, the temporal dependence is
arbitrary. There will be occasions where the time dependence is specified, but the space dependence is
not.. For example, complex amplitudes will take the form

®(z,t) = Red(z)ed¥t (4)

where $(z) is itself perhaps expressed as a Fourier series or transform (see Sec. 5.16).

Most.often, complex amplitudes will be used to represent both temporal and spatial dependences:

3(z,t) = Reded (Wt-k2) (5)

The (angular) frequency w can in general be complex. If & is periodic in time with period T, then T =
2r/w. For complex amplitudes &, the identifications are:

[0(z,6), 32 (2,6), 32 (2,8)1<0C>18,-1k3, Jub] ®

If w and k are real, Eq. 5 represents a traveling wave. At any instant, its wavelength is 2m/k,
at any position its frequency is w and points of constant phase propagate in the +z direction with the
phase velocity w/k.

Fourier Amplitudes and Transforms: The relations between complex amplitudes are identical to tliose
between Fourier amplitudes or between Fourier transforms provided that these are suitably defined. For
a wide range of physical situations it is the spatially periodic response or the temporal sinusoidal
steady state that is of interest. Simple combinations of solutions represented by the complex amplitudes
then suffice, and there is no need to introduce Fourier concepts. Even so, it is important to recognize
at the outset that the spatial information required for analysis of excitations with arbitrary spatial
distributions is inherent to the transfer relations based on single-complex—amplitude solutions.

The Fourier series represents an arbitrary function periodic in z with fundamental periodicity
length £ by a superposition of complex exponentials. In terms of complex Fourier coefficients ﬁn(t),
such a series is '

© —jknz
@(Z,t) = I 35n(t)e

n=—-m

. = -~*=~
sk = 2om/8; 9% =0 | (7)

where the condition on En insures that ¢ is real. Thus, with the identification & - &, and k * kp, each
complex exponential solution of the form of Eq. 1 can be taken as one term in the Fourier series. The
mth Fourier amplitude &, follows by multiplying Eq. 7 by the complex conjugate function exp(jkyz) and.
integrating over the length £ to obtain only one term on the right. This expression can then be solved .
for ¢y to obtain the inverse relation

. +2 Jkpz
o = %—[: d(z,t)e dz (é)

If the temporal dependence is also periodic, with fundamental period T, the Fourier series can also
be used to represent the time dependence in Eq. 7:

L)

=0 9

. A%
mn > “mn -m-n

40 4o jlugt-knz)
o(z,t) = I I & e

m=-—-00 n=-~o

where the condition on the amplitudes insures that ¢(z,t) is real. One component out of this double sum-
mation is the traveling-wave solution represented by the complex amplitude form, Eq. 5. The rules given
by Eqs. 3 and 6 pertain either to the complex amplitudes or the Fourier coefficients.

. The Fourier transform is convenient if the dependence is not periodic. With the Fourier transform
®(k,t) given by .

~ o0

80c,e) = | o(z,t)e*? dz

=00
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the functional dependence on z is a superposition of the complex exponentials

+o . -
d(z,t) = I o(k,t)e Jkz % (11)

«-=00

The relation between the transform and the transform of the derivative can be found by taking the trans-
form of 3®/9z using Eq. 11 and integrating by parts. Recall that Svdu = uv ~ fudv and identify
du + 39/3zdz and v + exp jkz, and it follows that

400
o 4
f -%% ejkz dz = erkz -jk I @ejkz dz (12)

-00

For properly bounded functions the first term on the right vanishes and the second is —jks(k,t). The

transform of 39/9z is simply -jkd and thus the Fourier transform also follows the rules given with
Eq. 3.

Extension of the Fourier transform to a second dimension results in the transform pair

- s 1 (ut-kz) dk dw
d(z,t) = I j d(k,w)e o o
LT (13)
4o 4o
B(k,w0) = j I @(z,t)e—J(wt-kz)dt dz

which illustrates how the traveling-wave solution of Eq. 5 can be viewed as a component of a complicated
function. Again, relations between complex amplitudes are governed by the same rules, Eq. 6, as are the
Fourier amplitudes &(k,w).

If relationships are found among quantities a(t), then the same relatioms hold with & + & and
3( )/9t + jw, because the time dependence exp (jwt)is a particular case of the more general form &(t).

Averages of Periodic Functions: An identity often used to evaluate temporal or spatlal averages of
complex~amplitude expressions is

<{e iedkz po § e-jkz> = -:ZL- Re A B* (14)
z .

where ( >z signifies an average over the length 2m/k-and it is assumed that k is real. This relation
follows by letting : :

Re A e_jkz Re B e~ikz _ % [K e_jkz + K*ejkz}%[]'i e dkz i*ejkz:] _ (15)

and multiplying out the right-hand side to obtain
%I} E e-2jkz + K*‘ﬁ*ezjkzil+ -1—'-,:2 §*+ K*ijl (16)

The first term is a linear combination of cos 2kz and sin 2kz and hende averages to zero. The second
term is constant and identical to the right-hand side of Eq. 14.

i

A similar theorem simplifies evaluation of the average of two periiodic functions expressed in the
form of Eq. 7:

$o -jk,z +o -jk z
<AB> =<  Ky(t) e o I B (t)e '“>
z n=-—o =2 0O Z

o 40 a7
= % AB_ = I AB*
n=-0 n=--0
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0f course, either the complex amplitude theorem of Eq. 14 or the Fourier amplitude theorem of Eq. 17
applies to time averages with kz -+ -wt.

2.16 Flux-Potential Transfer Relations for Laplacian Fields

It is often convenient in the modeling of a physical system to divide the volume of interest into
regions having uniform properties. Surfaces enclosing these regions are often planar, cylindrical or
spherical, with the volume then taking the form of a planar layer, a cylindrical annulus or a spherical
shell. Such volumes and bounding surfaces are illustrated in Tables 2.16.1-3. The question answered
in this section is: given the potential on the bounding surfaces, what are the associated normal flux
densities? Of immediate interest is the relation of the electric potentials to the normal displace-
ment vectors. But also treated in this section is the relation of the magnetic potential to the normal
magnetic flux densities. First the electroquasistatic fields are considered, and then the magnetoquasi-
static relations follow by analogy.

Electric Fields: If any one of the regions shown in Tablés 2.16.1-3 is filled with insulating
charge-free (pf = 0) material of uniform permittivity €,

P = (e - eo)'ﬁ, D = ek 1)
the governing field equations are Gauss' law, Eq. 2.3.23a,

v.d =0 2)
and the condition that % be irrotational, Eq. 2.3.24a. The latter is equivalent to

E=-vo (3)
Thus, the potential distribution within a volume is described by Laplace's equation

V2 = 0 | (4)
In terms of &,

D= -evo 5)

Magnetic Fields: For magnetoquasistatic fields in an insulating region (J¢ = 0) of uniform per-
meability .

M= - 0.3 = (6)
Ho

Thus, from Ampére's law, Eq. 2.3.23b, H is irrotational and it is appropriate to define a magnetic
potential ¥:

>

H=-W )
In addition, there is Eq. 2.3.24b:
v.E=0 : , (8)
Thus, the potential again satisfies Laplace's equation .
VY = 0 | ®
and in terms of ¥, the magnetic flux density is
B = -uw (10)
Comparison of the last two relations to Eqs. 4 and 5 shows that relations now derived for the

electric fields can be carried over to describe the magnetic fields by making the identification
(¢,B,e) ~ (¥,B,1).

Planar Layer: Bouﬁding surfaces at x = A and x = 0, respectively denoted by o and B, are shown
in Table 2.16.1. So far as developments in this section are concerned, these are not physical boundaries,
They are simply surfaces at which the potentials are respectively

®(A,y,2z,t) = Re 5u(t)eXP["j (kyﬁkzz)]; $(0,y,z,t) = Re 6B(t)exp[-j (ky}""kzZ)] (11)

Secs. 2.15 & 2.16 2.32



Table 2.16.1. Flux-potential transfer relations for planar layer in terms of electric
potential and normal displacement ($,Dy). To obtain magnetic relations,
substitute (@,Dx,e) + (Y,B.,1).

Planar layer

[~a | [ 1 ] [ze]
X Dx ~coth(yA) m ¢
= €y (a)
B —_1 pe
_DxJ - |cIReD coth(yA) ] :P ]

v4 éa' [ A 1 1 Ra-
~coth (YA) m Dx
1
. -3k y + I,2) ] ®

® = Re d(x,t) e ~B -1 ~8

P ] _———s Tnh (YD) coth(yA) ] LDXJ
Yy = kz + k2
y P

These will be recognized as generalizations of the complex amplitudes introduced with Eq. 2.15.1. That
the potentials at the o and B surfaces can be quite general follows from the discussion of Sec. 2.15,
which shows that the following arguments apply when ¢ is a spatial Fourier amplitude or a Fourier trans-
form.

In view of the surface potential distributions, solutions to Eq. 4 are assumed to take the form

® = Re d(x,t) exp[-j (ky + k2)] (12)
Substitution shows that
2~

40 _ % - 05 y=VE2 + K2 (13)
dx2 y z

Solutions of this equation are linear combinations of e or giternatively of sinh yx and cosh yx.
With ¥; and ¥, arbitrary functions of time, the solution takes the form

P = 51 sinh yx + 52 cosh yx (14)

The two coefficients are determined by requiring that the conditions of Eq. 11 be satisfied. For the gim-
ple situation at hand, an instructive alternative to performing the algebra necessary to evaluate ($;,%2)
consists in recognizing that a linear combination of the two solutions in Eq. 14 is sinh y(x - A). Thus,
the solution can be written as the sum of solutions that are individually zero on one or the other of the
bounding surfaces. By inspection, it follows that

% . 30 sinh.yx 3B sinh y(x - A)
¢ =20 sinh vyA ° sinh YA (15)

From Eqs. 5 and 15, D can be determined:

-

-jk.y + k_2z)
@_ 9% _ %0 cosh yx _ 3B cosh y(x-A) ] y z
x - €3xE Re Y[% sinh YA 0 sinh YA e (16)

Evaluation of this equation at x = A gives the displacement vector normal to the o surface, with complex
amplitude D¥. Similarly, evaluated at x = 0, Eq. 16 gives D8. The components of the "flux" (ﬁ%,Dﬁ) are
now determined, given the respective potentials (8%,6P). The transfer relations, Eq. (a) of Table 2.16.1,
summarize what is found. These relations can be solved for any pair of variables as a function of the
remaining pair. The inverse transfer relations are also summarized for reference in Table 2.16.1, Eq. (b)
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Fig. 2.16.1. (a) Transfer coefficients as a function of Ay = A V ky + k2.
(b) Distribution of ® across layer. z

That the layer is essentially a distributed capacitance (inductance) is emphasized by drawing
attention to the analogy between the transfer relations and constitutive laws for a system of linear
capacitors (inductors). For a two-terminal-pair system, Eq, 2.11.5 comprises two terminal charges
(q1,92) expressed as linear functions of the terminal voltages (vi,v2). Analogously, the (Dg,DX)
(which have units of charge per unit area and an arbitrary time dependence) are given as linear func-
tions of the potentials by Eq. (a) of Table 2,16.1. A similar analogy exists between Eq. 2.12.5,

expressing (A1,A2) as functions of (i1,i2), and the transfer relations between (B%,BE) (units of flux
per unit area) and the magnetic potentials (WQ,WB).

According to Eq. (a) of Table 2.16.1, Dy is induced by a "self term" (proportional to the potential
at the same surface) and a "mutual term.”" The coefficients which express this self- and mutual-coupling
have a dependence on Ay (2m/y the wavelength in the y-z plane) shown in Fig. 2.16.la. Written in the
form of Eq. 15, the potential has components, excited at each surface, that decay to zero, as shown in
Fig. 2.16.1b, at a rate that is proportional to how rapidly the fields vary in the y-z plane. For long
waves the decay is relatively slow, as depicted by the case Ay = 0.5, and the mutual-field is almost as

great as the self field. But as the wavelength is shortened relative to A (Ay increased), the surfaces
couple less and less.

In this discussion it is assumed that Yy is real, which it is if ky and k, are real. In fact, the
transfer relations are valid and useful for complex values of (ky,kz). If these numbers are purely

imaginary, the field distributions over the layer cross section are periodic. Such solutions are needed
to satisfy boundary conditions imposed in an x-y plane.

Cylindrical Annulus: With the bounding surfaces coaxial cylinders having radii o and B, it is
natural to use cylindrical coordinates (r, 6, z). A cross section of this prototype region and the

coordinates are shown in Table 2.16.2. On the outer and inner surfaces, the potential has the respec
tive forms

(a,0,2,t) = Re 3%(c) e d @2 50 0 5 ¢y = Re 3B (r)ed @OHK2) a7

Hence, it is appropriate to assume a bulk potential

® = Re 5(r,t)e-j(me+kz) (18)

Substitution in Laplace's equation (see Appendix A for operations in cylindrical coordinates), Eq. &,
then shows that

2% = 2

L2418 02+ 255 -0 (19)
r dr 2

dr r

By contrast with Eq. 13, this one has space-varying coefficients. It is convenient to categorize the
solutions according to the values of (m,k). With m = 0 and k = 0, the remaining terms are a perfect
differential which can be integrated twice to give the solutions familiar from the problem of the field
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Table 2.16.2. Flux-potential relations for cylindrical annulus in terms of electric potential and
normal displacement (®,D,). To obtain magnetic relations, substitute (<I>,Dr,e)+(‘l’,Br,u).

o = Re 3(r,t)e I (@O + k2)

B2 £,(8,0) g (0,8) |3

=g (a)
Pl g (Bo0)  £,(0,8) (|3
k=0, m=0

(" + Y
£, () =-"Lm_—
y [(y) D™
m 1
gy (6y) =5
(& - O™

k#0, m=0,1,2:..%
Jk[B_(3kx)J] (Jky) - I (Jkx)H] (Jky)]

e e
I LR CO R e

-2 (®)
~B € ~B
3 G, (B,0)  E (@,B)||D;
k=0, m=0

[+ O]
F (x,¥) -X._.Y_____

n [( 5HE - OH™]

2y
G x,y) =
B [ - "

k * 0, m = 0,1,2.

£ (x,y) = [0 Gl (ky) - I Qky)H (Gkx)]

En (%) = RIT GQeOR, Gky) - 3, Gk, Gl

KK (k) T} (ky) - I ()R (ky)]

£ (x,y) = [1_GaX_(ky) - :[m(ky)Km(kx)]

1
Sm(X.Y) = X[Im(kx)Km(ky) - Im(ky)Km(kx)]

. [J,;,qu)nm(jkw - B! (k) (3ky)]
Fal¥) = 3% T GR (0) — 3% GE0R, i) ]

-2
€aY) = T (37 Gky) B (3 -3 (3kx)E] (3ky) ]

L [TLGa0K (ky) = K ()T (ky)]
FaG0oy) = L 7ar <ky)1<' ) = 1 K ()]

1 .
K0 (11 K (k) - 17 (K. (ky) ]

Gm(x’}’) =

o~ <0
n: = €£_(0,0)8%;

5B o 235,
Dr = Sfm( 58073

fm(O yO) = -

kIlzl (ko)

kK (kB)

£ (=8) = - w (d)

See Prob. 2.17.2 for proof that Hy(jkx)Jp(jkx) - Jm(jkx)H'm(jkx) = - 2f(mkx) and Kpy (kx) Iy (kx)

- In(kx)Ky(kx) = 1/kx incorporated into gy and G
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Fig. 2.16.2. (a) Modified Bessel functions. (b) Self-field coefficients of cylindrical
transfer relations in limits where surfaces do not interact.

between coaxial circular conductors. In view of the boundary conditions at r = o and r = B,

SRR -5 B 'O > S in &)
3 = 3% _-% N . B, + (g - ) L5 @b = 0,0 (20)
In @) In @) In ()

For situations that depend on 6, but not on z (polar coordinates) so that k = 0, substitution shows the
solutions to .Eq.19 are r- . By inspection or algebraic manipulation, the linear combination of these
that satisfies the conditions of Eq. 17 is

d =

Bym r\m rm _ O.m
o [0 - @M g (@7 - @Y

+ ;3 (mk) = (m,0) (21)
Bym _ (&ym Bym _ oym ’
(Gm- @™ Q" - @
For k finite, the solutions to Eq. 19 are the modified Bessel functions Ip(kr) and Km(kr). These play
a role in the circular geometry analogous to exp(#Yx)in Cartesian geometry. The radial dependences of

the functions of order m = 0 and m = 1 are shown in Fig. 2.16.2a. Note that I, and Ky are respectively
singular at infinity and the origin.

Just as the exponential solutions could be determined from Eq. 13 by assuming a power series in x,
the Bessel functions are determined from an infinite series solution to Eq. 19. Like ¥, k can in general
be complex. If it is, it 1s customary to define two new functions which, in the special case where k
1s real, have imaginary arguments:

J (Jkr) = ijm(kr), H (jkr) = -12; j'(“’ﬂ) K_(kr) (22)

These are respectively the Bessel and Hankel functions of first kind. For real arguments, Iy and K, are
real, and hence J, and Hy can be either purely real or imaginary, depending on the order.

Large real-argument limits of the functions Im and Km reinforce the analogy to the Cartesian
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exponential solutions:

1 T
lim I_(u) = exp(u); lim K (u) =\/5— exp(-u) (23)
u-+oo m v 21u u->co m 2u P

Useful relations in the opposite extreme of small arguments are

2 2 ) Gu)™
lim jH_ (ju) = —-ln (=)} lim J_(ju) = %4
0 1.781072u’° ;1o ’m iom
m (24)
limH(ju)=QL—_—]-‘&;m#0
m
u*0 Jm(ju)

By inspection or algebraic manipulation, the linear combination of J and H satisfying the boundary
conditions of Eq. 17 is

[H (jkB)J (jkr) - In (jkB)H (3kr)] g [Jm(jka)Hm(jkr) - Hm(jku)Jm(jkr)]

® = ¥ @GR, R - I, GHE, R] ¢ L OWL W) T Ger.GE] @)

The evaluation of the surface displacements (D%,DE) using Egs. 20, 21, or 25 is now accomplished
using the same steps as for the planar layer. The resulting transfer.relations are summarized by
Eq. (a) in Table 2.16.2. Inversion of these relations, to give the surface potentials as functions of
the surface displacements, results in the relations summarized by Eq. (b) of that table. Primes denote
derivatives with respect to the entire specified argument of the function. Useful identities are:

uI;(u) = mlm(u) + ul UI;(U) = “mIm(u) + uIm_l(u)

m+1(u);
uKA(u) = me(u) - uKm+l(u)

Ré(u) = —Rl(u) (26)

uR&(u) = —mRm(u) + uRm_l(u); uRé(u) mR (u) - uR +1( u)

where Ry can be Jm’ Hm’ or the function Nm to be defined with Eq. 29.

Two useful limits of the transfer relations are given by Eqs. (¢) and (d) of Table 2.16.2. 1In
the first, the inner surface 1s absent, while in the second the outer surface is removed many wave-
lengths 2m/k. The self-field coefficients f,(0,0) and fj(w,B) are sketched for m=0 and m=1 in
Fig. 2.16.2b, Again, it is useful to note the analogy to the planar layer case where the appropriate
limit is kA > oo, In fact, for ko or kP reasonably large, the k dependence and the signs are the
same as for the planar geometry:

lim of (0,a) -+ -ka; 1lim BE (=,B) > kB @n
m
koo k>

For small arguments, these functions become

2

lim af 0,0) + - Lea) ; lim BEf («,B) -+ 1
kr0 2" g0 © In [rgigmr]
o 1.781072kB

(28)

lim uf (0,0) > -m for m # 0; lim Bfm(w,B) > m form # 0
ka0 kB+0

In general, k can be complex. In fact the most familiar form for Bessel functions is with k purely
imaginary. 1In that case, Jm is real but Hm is complex. By convention

B () = J (u) + 3N () (29)
where, if u is real, J, and Ny are real and Bessel functions of first and second kind. As might be

expected from the planar analogue, the radial dependence becomes periodic if k is imaginary. Plots
of the functions in this case are given in Fig. 2.16.3.
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Fig. 2.16.3. Bessel functions of first and second kind and real arguments. References
for the Bessel and related functions should be consulted for more details
concerning their properties and numerical values,l+4

Spherical Shell: A region between spherical surfaces having outer and inner radii o and B, respec:
tively, is shown in the figure of Table 2.16.3. In the volume, the potential conveniently takes the
variable separable form

® = Re d(r,t) 0(0)e~I™ (30)

where (r,6,9) are spherical coordinates as defined in the figure. Substitution of Eq. 30 into Laplace's
equation, Eq. 4, shows that the ¢ dependence is correctly assumed and that the (r,0) dependence is
determined from the equations

2

1 d do m 2
—— — [sin 0 53] - —— = -K
sin 00 d6 deé sin2 A
o 31
14 ,248, .2
E dr (r ar) = K

where the separation coefficient K2 is independent of (r,0). With the substitutions

u = cosf, Vvl - u® = sin@ (32)

Eq. 3la is converted to

2 2
- L-uPr@-2poe-o (33)
u 2
du 1-u
For K2 = n(n+l) and n an integer, solutions to Eq. 33 are
0 = B (u) (34)

1. F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J., 1962,
pp. 142-165.

2. S. Ramo, J. R. Whinnery and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley
and Sons, New York, 1965, pp. 207-218.

3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathe
matical Tables, National Bureau of Standards, Applied Mathematics Series 55, U.S. Government Printi:
Office, Washington D. C. 20402, 1964, pp. 355-494.

4.. E. Jahnke and F. Emde, Table of Functions with Formulae and Curves, Dover Publications, New York.
1945, pp. 128-210.




Table 2.16.3. Flux-potential transfer relations for spherical shell in terms of electric

potential and normal displacement (®,D.).
substitute (®,Dy,€) - (‘I’,Br,u).

To obtain magnetic relatioms,

® = Re $(r,t)P"(cos 0)e 3™

Z)m/-Z dml,n
dxm

m

Pn=(1-x
1 2

P°=19 Pl'xs 1’2"5(3:: - 1)

P

3 --;" (5x3 - 3x%)

1
P, =~ 3 (35x" - 3027 + 3)

P P, | By cos md P’; Ptzn cos mf Pl; P'; cos mp
1 |cos 6 -_" 12'- @3 cos? 6-1) t . %— (¢ cos> 6 - 3 cos 8) t
+ +
0 [sin 6 ||+ - |+ | |3 sinBcos® t - t 7 8in8 (5 cos? 8-1) t ™ t
+ - ¥
0 0 3 s1n% 0 -+-~l |15 s1n%6 cos® L - : T *
o] o 0 15 sin> @ -+ H
=0 %0 30 ~0
D, - £,(B,a) g, (®,8) [[0 @ 4 o1 F (8,0) ¢, (a,B) |ID, )
B g,(80) £ (a,8) [[3P #B C e,  F (@8 |BE
Y 0 x\n+l 1l yn_, 1  xntl
£ (ey) = ()" + @) )] P ) = L oy (xi + n+11(y) ]
n [x&" - yD™ " T E®T - DN
- (2n+l) = Y (2n+1) 1
g, (x»y) 2[l(£)n _ l(l)n] Ca(y) =% éﬁ-ﬁ—) [l(g)n - l(l)n]
x y'y XX yvy XX
By
B0 3" Re=-T¢ ©
o > BE = Eg-nslll 58 (@
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where Pg are the associated Legendre functions of the first kind, order n and degree m. In terms of the
Legendre polynomials Pp, these functions are summarized in Table 2.16.3. Note that these solutions are
closed. They do not require infinite series for their representation.

To the second order differential equation, Eq. 33, there must be a second set of solutions Q®
Because these are singular in the interval 0 £ 0 € m, and situations of interest here include the
entire spherical surface at any given radius, these solutions are not included. The functions Pg play
the role of exp(jkz)(say) in cylindrical geometry, while exp(jm¢) is analogous to exp(jm6). The radial
dependence, which is much of the bother in cylindrical coordinates, is actually quite simple in spherical
coordinates. From Eq. 31b it is seen that solutions are a linear combination of rf and r~(0*l), with
the assumption that surface potentials respectively have the form

[0 ]
¢<g,e,¢,t> = Re 3P (£)P] (cost) exp(imb) (35)

it follows that the appropriate linear combination is

ryn _ B\ntl ryn _ Gynt+l

s o [T - @ 1O - @M
¢ =20 O\ 1 Bn+l + 0 Bin Oyt (36)

[ (E) - @] () - (E) 1

The complex amplitudes (QQ,QB) determine the combination of cos m¢ and sin m$, constituting the dis-
tribution of ¢ with longitudinal distance. For a real amplitude, the distribution is proportional to
cos mp. In the summary of Table 2.16.3, the lowest orders of PP (cos ) are tabulated, together with
diagrams showing the zones that are positive and negative relative to each other. In the rectangular
plots, the ordinate is 0 € 6 < 7, while the abscissa is 0 € ¢ € 27, Thus, the top and bottom lines are
the north and south poles while the lines within are nodes. The horizontal register of each diagram is
determined by the complex amplitude, which determines the phase of exp(jm¢).

Evaluation of the transfer relations given in Table 2.16.3 by Eqs. (a) and (b) is now carried out -
following the same procedure as for the planar layer. From these relations follow the limiting situ-
ations of a solid spherical region or one where the outer surface is well removed from the region of
interest summarized for reference by Eqs. (c) and (d) of Table 2.16.3.

Further useful aspects of solutions to Laplace's equation in spherical coordinates, including

orthogonality relations that permit Fourier-like expansions and evaluation of averages, are given in
standard references.

2,17 Energy Conservation and Quasistatic Transfer Relations

Applied to one of the three regions considered in Sec. 2.16, the incremental total electric energy
given by Eq. 2.13.6, can be written as

Sw = - f V0. 6DAV = - [ V. (06D)dV + I oV- 8Dav (1)
v A" \')

Because pf = 0, the last integral is zero. The remaining integral is converted to a surface integral by
Gauss' theorem, and the equation reduces to

bw = - § ®6D-nda ()
S

> Similar arguments apply in the magnetic cases, Because there is no volume free current demsity,
H = -V and Eq. 2.14.9 becomes

6w = - § ¥6B.nda (3)
]

Consider now the implications of these last two expressions for the transfer relations derived in
Sec. 2.16., Discussion is in terms of the electrical relations, but the analogy made in Sec. 2.16 clearly
pertains as well to Eqs. 2 and 3, so that the arguments also apply to the magnetic transfer relationms.

Suppose that the increment of energy 6w 1s introduced through S to a volume bounded by sections of
the o and B surfaces extending one "wavelength" in the surface dimensions. In Cartesian coordinates,

5. F. B. Hildebrand, loc. cit., pp. 159-165.
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this volume is bounded by (y,z) surfaces extending one wavelength in the y and z directions. In cylin-
drical coordinates, the volume is a pie-shaped cylinder subtended by outside and inside surfaces having
length 2m/k in the z direction and 2ma/m and 27B8/m respectively in the azimuthal direction. In spherical
coordinates, the volume is a sector from a sphere with 6 = 2w/m radians along the equator, 6 extending
from 0 + 7 and the surfaces at r = o and r = 8. In any of these cases, conservation of energy, as
expressed by Eq. 2, requires that

R R

The }} indicate averages over the respective surfaces of excitation. The areas (a ,aB) are in
particular
(2w)2/k k Cartesian
o Yy 2z
a” = T cylindrica
8 [ (2m)?/uk] () cylindrical (5)
a
(4ﬂ1m)( 2) spherical
B

In writing Eq. 2 as Eq. 4, contributions of surfaces other than the o and B surfaces cancel because
of the spatial periodicity. It is assumed that (ky,kz), (m,k) and m are real numbers.

The transfer relations developed in Sec. 2,16 take the general form

¢ “A11 A2 ||Pn
- (6)

B -
¢ YY)

(=X
Q

4
L4
8w

The coefficients Aj; are real. Hence, for the gurpose of deducing properties of Ajj, there is no loss
in generality in taking (D DB) and hence (3%,8B) as being real. Then, Eq. 4 takes the form

dw = c[-a"3%6D7 + 2P3PeD) | ) X
where C is 1/2 in the Cartesian and cylindrical cases and is a positive constant in the spherical
case.

With the assumption that w = w(ﬁa,ﬁs), the incremental energy can also be written as

g = B g5 4 2 5pf - (8)

a"D°‘ B
n

where (ﬁa DB) constitute independent electrical "terminal" variables, Thus, from Eqs., 7 and 8,

-a%3% = 3, B3R _ 3w (9)
o aﬁﬁ

n

A reclprocity condition is obtained by taking derivatives of these expressions with respect to ﬁs and
ﬁn’ respectively, and eliminating the energy function. In view of the transfer relations, Eq. 6,

a%A._ = aPa (10)

12 21
Thus, in the planar layer where the areas a® and aB are equal, the mutual coupling terms Ajjs = Ajj.
That the relations are related by Eq. 10 in the spherical case is easily checked, but the complicated
expressions for the cylindrical case simplify the mutual terms (footnote to Table 2.16.2).

The energy can be evaluated by ingegrating Eq. 7 using the "constitutive" laws of Eq. 6. The
integration is first carried out with DP = 0, raising §* to its final value. Then, with D* = §%, bR 1s

raised to its final value

w = cB (D“) BA is“fsB +1 aBAzz (DB)] (11)
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With either excitation alone, w must be positive and so from this relation it follows that
All > 0, A22 >0 (12)

These conditions are also met by the relations found in Sec. 2.16.

2.18 Solenoidal Fields, Vector Potential and Stream Function

Irrotational fields, such as the quasistatic electric field, are naturally represented by a scalar
potential. Not only does this reduce the vector field to a scalar field, but the potential function
evaluated on such surfaces as those of "perfectly" conducting electrodes becomes a lumped parameter
terminal variable, e.g., the voltage.

Solenoidal fields, such as the magnitic flux density i, are for similar reasons sometimes re-
presented in terms of a vector potential A:

B=VxA 1)

Thus, 3 automatically has no divergence. Unfortunately, the vector field i is represented in terms of
another vectoy field A. However, for important two-dimensional or symmetric configurations, a single
component of A is all required to again reduce the description to one involving a scalar function.
Four commonly encountered cases are summarized in-Table 2.18.1.

The first two are two~dimensional in the usual sense. The field -ﬁ lies in the x~y (or r-0) plane
and depends only on these coordinates, The assoclated vector potential has only a z component. The
third configuration, like the second, is in cylindrical geometry, but with B independent of & and hence
with A having only an ig component. The fourth configuration is in spherical geometry with symmetry
about the z axis and the vector potential directed along ¢e.

Like the scalar potential used to represent irrotational fields, the vector potential is closely
related to lumped parameter variables. If B is the magnetic flux demnsity, it is convenient for evalua-
tion of the flux linkage A (Eq. 2.12.1). For an incompressible flow, where B is replaced by the fluid
velocity v, the vector potential is conveniently used to evaluate the volume rate of flow. In that
application, A and A become "stream functions."

The connection between the flux linked and the vector potential follows from Stokes's theorem,
Eq. 2.6.3. The flux @A through a surface S enclosed by a contour C is

%, = £.§-;da = £ V x X.nda =’i X.df (2)

In each of the configurations of Table 2.18.1, Eq. 2 amounts to an evaluation of the surface integral.
For example, in the Cartesian two-dimensional configuration, contributions to the integration around a
contour C enclosing a surface having length £ in the z direction, only come from the legs running in
the z direction. Along these portions of the contour, denoted by (a) and (b), the coordinates (x,y) are

constant., Hence, the flux through the surface is simply L times the difference A{a) - A(b), as sum~-
marized in Table 2.18.1.

In the axisymmetric cylindrical and spherical configurations, r and r sin 6 dependences are
respectively introduced, so that evaluation of A essentially gives the flux linked. For example, in

the spherical configuration, the flux linked by a surface having inner and outer radii r cos © evaluated
at (a) and (b) is simply

a
9, = §%S§i%)—e'{¢.d?€ - ??11\?6 2m(r sin 6) - 2m[ACa) - A(b)] 3
7 .

Used in fluid mechanics to represent incompressible fluid flow, A is the Stokeg's stream function. Note
that the flux is positive if directed through the surface in the direction of n, which is specified in
terms of the contour C by the right-hand rule.

2,19 Vector Potential Transfer Relations for Certain Laplacian Fields

Even in dealing with magnetic fields in regions where 3f = 0,1if the flux linkages are of interest,
it is often more convenient to develop a model in terms of transfer relations specified in terms of a
vector rather than scalar potential. The objective in this section is to summarize these relations for
the first three configurations identified in Table 2.18.1.
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With B represented in terms of X by Eq. 2.18.1, Ampére's law (Eq. 2.3.23) requires that in a region
of uniform permeability yu,

VxVx X = u}f 1)

For a given magnetic flux density %, curl R is specified. But to make K unique, its divergence must also
be specified. Here, the divergence of A is defined as zero. Thus, the vector identity Vx V x A =
V({V:hA) - V2K reduces Eq. 1 to the vector Poisson's equation:

v = -ﬁf; VX =0 (2)

The vector Laplacian is summarized in Appendix A for the three coordinq;e systems of Table 2.18.1. Even
though the region described in the following developments is one where Jf = 0, the source term on the
right has been carried along for later reference.

Cartesian Coordinates: In the Cartesian coordinate system of Table 2.18.1 it is the z component
of Eq. 2 that is of interest. The z component of the vector Laplacian is the same operator as for the
scalar Laplacian. Thus, the situation is analogous to that outlined by Eqs. 2.16.11 to 2.16.16 with
® > A. With solutions of the form A = Re A(x,t) exp(-jky) so that Yy ~ k_ = k, the appropriate linear
combination of solutions is J

~0, sinh kx +BR sinh k(x - A)
A=A - A
sinh kA sinh kA (3)

Because ﬁ = Elu, the associated tangential field intensity is given by Eq. (b), Table 2.18.1,

= _ L1204
By = - 3% (4)

Expressed in terms of Eq. 3 and evaluated at the surfaces x = 0 and x = B, respectively, Eq. 4 gives
the first transfer relations, Eq. (a), of Table 2.19.1. Inversion of these relations gives Eqs. (b).

Polar Coordinates: 1In cylindrical coordinates with no z dependence, it is again the z component
of Eq. 2 that is pertinent. The configuration is summarized in Table 2.18.1. Solutions take the
form A = Re A(r,t) exp(~jmb) and are analogous to Eq. 2.16.21 with & replaced by A:

Bym rym r.m Oy
QD7 - @ (@7 - D]

A=X + (5)
gym _ Om Bym _ Q.m
(" - @M Q" - @M
The tangential field is then evaluated from Eq. (e), Table 2.18.1:
__Ll3a ’
Hg = - Uor (6)

Evaluation at the respective surfaces r = 0. and r = B gives the transfer relations, Eqs. (c) of
Table 2.19.1. Inversion of these relations gives Egs. (d).

Axisymmetric Cylindrical Coordinates: By contrast with the two~dimensional configurations so far
considered, where the vector Laplacian of A, is the same as the scalar Laplacian, the vector nature of
Eq. 2 becomes apparent in the axisymmetric cylindrical configuration. The 6 component of Eq. 2 is the
scalar Laplacian of Ap plus (—Ae/rz) (see Appendix A). With Ay = A,

X A

1 9A 3°A
+'? or 2

2 e
N
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2t M O "

Even though solutions do not have a 6 dependence, so that

A = Re A(r,t)e Jkz (8)

equation 7 reduces to a form of Bessel's equation to which solutions are Bessel's and Hankel's func~

tions of order unity:

A=-uJ (9)
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(Compare Eq. 9 to Eq. 2.16.19.) It follows that solutions are of the form of Eq. 2.16.25 with >4
and m = 1: R

s o 5 g BUKBI kD] - 3 QK8 o8, (ko))
=TS TSGR Gl - 3, GRBE Ok

+ A — - (10)
3, (GEayH, (JkB) - B (k)3 (TkB)
The tangential field intensity follows from Eq. 10 and Eq. (h) of Table 2.18.1:
1 2A
Hz = u—r -a—r- (11)

In performing the differentiation, observe from Eq. 2.16.26d that whether Rm is Jm or Hm,

% [rRl(jkr)] = jkrR (jkr) 12)

Evaluation of H_ at the respective surfaces r = 0 and r = B gives the transfer relations, Eqs. (e) of
Table 2.19.1. fInversion of these relations gives Egs. (f).

2,20 Methodology

As descriptions of subregions composing a heterogeneous system, transfer relations (illustrated
for quasistatic fields in Sec. 2.16) are building blocks for describing complicated interactions. By
appropriate ldentification of variables, the same relations can be used to describe different regionms.

As an example, three planar regions are shown in {
Fig. 2.20.1. The symbols in parentheses denote positions = ——(d) — __j\ x'
adjacent to the surfaces demarking subregions. At the = = —]
surfaces, variables can be discontinuous. Hence it is :0;’: =% or a— l
necessary to distinguish variables evaluated on adjacent — —'——(e)” '
sides of a boundary. The transfer relations describe = 4/;—— (f) //E//Z X
the fields within the subregions and not across the Q b///// =b o, —= _I_
boundaries. //%{/ ’éﬁ)/ = ==

The transfer relations of Table 2.16.1 can be C_— —— €0Or pu, X
applied to the upper region by identifying (o) + (d), — — (i) —\

(B) + (e), A+ aand € or u * €4 or Y,. Similarly, r —

for the middle region, (a) > (£), (8) + (g), A > b,

and € or Y * € or Y. Boundary conditions and jump rela~ Fig. 2.20.1. Convention used to denote
tions across the surfaces then provide coupling conditions surface variables.

on the surface variables. Once the surface variables have

been self-consistently determined, the field distributions within the region can be evaluated using the
bulk distributions evaluated in terms of the surface coefficients. With appropriate surface amplitudes
and x + x', where the latter is defined for each region in Fig., 2.20.1, Eq. 2.16.15 describes the
potential distribution.

This approach will be used not only in other geometries but in representing mechanical and
electromechanical processes.

Sec. 2.20 2.46



Problems for Chapter 2

For Section 2.3:

Prob. 2.3.1 Perfectly conducting plane parallel plates are shorted at z = 0 and driven by a distributed

current source at z = -%, as shown in Fig. P2.3.1.

Fig. P2.3.1

(a) Apply the normalization of Eq. 4b to Maxwell's equations used to represent the fields between the
plates. There is no material between the plates, so magnetization, polarization and conduction
between the plates are ignorable.

(b) Simplify these equations by assuming that E=E (z,g)I and H = H (z,t)I .
= =0y = Syl

(c) The driving current is i(t) = Re I, exp jwt. Find Ex’ Ey’ the surface current and surface charge
on the lower plate to second order.

(d) Convert the results of (c) to dimensional expressions.

(e) Solve for the exact fields and expand in B to check the results of (d).

Prob. 2.3.2 The parallel plates of Prob. 2.3.1 are now driven along their left edges by a voltage
source v(t). They are open along their right edges. Carry out the steps analogqys to those of
Prob. 2.3.1. A normalization that makes the EQS limit the zero order approximation is appropriate.

Prob. 2.3.3 Perfectly conducting plane parallel electrodes in the planes x = a and x = 0 "sandwich"
and make electrical contact with a layer of material having conductivity ¢ and thickness a. These
plates are driven along their edges so that the surface current is Re K exp(jwt)I in the lower plate
at z = - and the negative of this in the upper plate. The edges of the plates at z = 0 are "open~
circuit." 1In the conductor, fields take the form Ex(z,t), Hy(z,t).

(a) Show that all of Maxwell's equations are satisfied if

2 ~
d 8 dH

Y o2 _ o v fE N |
+k Hy 0; k= Ao Ho€o = Juu0; E =g Tue)

dzz

(b) Show that

A —ikz _ ejkz jt | g - Re;ﬁjk(e-jkz + ejkz)ejwt
jk& e-jkz)

£~ ¢ _ JU,
JkL - _ e_jkz x (c + jweo)(e

(¢) In Fig. 2.3.1, T » 1/w and provided Te:#'ﬂm’ there are two possibilities:

(1) L. << 1 and we << 1. Show that in this case k& << 1 and

s jwt
K e
Ex > Re (o + jweo)z

so that the system is equivalent to a capacitor shorted by a resistor (what values?).

(ii) Wt << 1, wT, << 1. Show that in this case k + (-1 + j)/dm, where the skin depth
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§ = V¥ 2/wuo, and that Hy is the superposition of "skin-effect'" waves decaying in the direction of
phase propagation.

(d) Now, consider the EQS model from the outset. Under what conditions are the laws (Eqs. 23a - 27a)
valid? Show that the solution for Ey is consistent with part (c).

(e) Consider the magnetoquasistatic laws (Eqs. 23b - 27b) from the outset and show that the result is
consistent with part (c¢). For what conditions are these laws valid?

Prob. 2.3.4 Given the EQS laws, Egs. 23a - 25a, together with conduction and polarization constitutive
laws and the material motions, E, and p gan be determined. This is generally possible because the
constitutive laws do not typically involve H. Then, if T is required, Eqs. 26a and 26b, together with

a magnetization constitutive law, can be used. It is clear that these relations uniquely define ﬁ,
because they stipulate both V x H and V - H. Consider now the analogous question of uniquely deter-

mining in an MQS system. In such a system the conduction and magnetization constitutive laws
respectively take the form

Ef = o(%,0) (& + %uoﬁ) s M= M,V

and Eqs. 23b - 25b together with a knowledge of the material motion can be used to find # and M.

Show that ¥ is then uniquely specified and that recourse to Gauss' Law is made only to make an
"after the fact" evaluation of the charge density.

For Section 2.4:

Prob. 2.4.1 A material suffers a rigid-body rotation about the z axis with constant angular velocity
Q0. The particle at the position (ro,eo) when t = 0 is found at

4 > . e
g(ro,eo,t) = rocos(Qt + 60)1x + r031n(Qt + 60)1y

at a subsequent time t. This Lagrangian description is pictured in Fig. P2.4.1. Use Egs. 2.4.1
and 2.4.2 to show that the velocity and acceleration are respectively

v = in(Qt + 6 )i + Qt + 61

V=T Q[-sin(Qt O)1x cos(Qt O)1y]
->

P

YA Y4 vixyh= (e,
Fig. P2.4.1. Specific example

in which rigid- lg
body steady 6(‘;’ \°’T) \\/ i
. . N r

rotation 1is \ y FTTT A
represented in Ot \ :

(a) Lagrangian Ty :
coordinates and eo 8 !

(b) Eulerian > X k =X
coordinates. (O) (b)

Prob. 2.4.2 One incentive for using an Eulerian representation is that motions which are time
dependent in Lagrangian coordinates can become independent of time. To illustrate, consider the
alternative representation of the rigid body rotation of Prob. 2.4.1.

The material velocity at a given point (r,8) or (x,y) is

0

i.e., the velocity is independent of time. Clearly the acceleration is not obtained by taking the
partial derlvatlve with respect to time, as might be suggested by the misuse of Eq. 2.4.2. Use
Eq. 2.4.4 to find 3 and compare to the result of Prob. 2.4.1.

- -
V= ; Qr = Q(-r sin e?x + r cos e?&) = Q.(—yiX + xi)
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For Section 2.5:

Prob. 2.5.1 A scalar function takes the traveling-wave form ¢ = Rea(x,y) expjant_kz) in the frame
of reference (¥,t). The primed frame moves in the z direction relative to the unprimed frame with
the velocity U. Use the convective derivative to find the rate of change of ¢ for an observer moving
with the velocity Ui . Compute this same time rate of change by expressing & = d(x',y',z',t") and
finding 9/9t'. Use®these results to deduce the tramsformation W' = w - kU. If w' = 0, W = kU,
Explain in physical terms.

> -
Prob. 2.5.2 A vector function A(x,y,z,t) can also be evaluated as A(x',y',z',t') where the prime
coordinates are related to the unprimed ones by Eq. 2.5.1. Show that Eq. 2.5.2b holds.

For Section 2.6:

Prob. 2.6.1 The one-dimensional form of Leibnitz' rule pertains to taking an integral between end-
points (b) and (a) which are themselves a function of time, as sketched in Fig. P2.6.1.

Fig. P2.6.1. One-dimensional form of Qb___ (_i(_]___
Leibnitz' rule specifies how derivative [ n dt

can be taken of the integral between 1 ] X
time-varying endpoints. tXT) q(f)

> >
Define A = f(x,t)iz and use Eq. 2.6.4 with a suitable surface to show that, for the one-
dimensional case, LeibnitZz' rule becomes

a(t) a
4 J f(x,t)dx = J of dx + f(a, t) f(b,t)%%

dt a3t
b(t) b

Prob. 2.6.2 The following steps lead to a derivation of the generalized Leibnitz rule, Eq. 2. 6,4
where S is pictured as S,, and S; at the times t + At and t, respectively. The vector function A
depends on both space and time. However, for convenience, the spatial dependence is not explicitly
indicated in the following. By definition:

-> ->
£ [Afda = 1m £ |aenonaa - [Aw)nda ) &)

Lt+0 Sa S,
so the first integral in brackets on the right must be evaluated to first order in At. To that end,

-
(a) Apply Gauss theorem to the volume V swept out by S during the time At. Note that n is the normal
to the open surface S and show that to first order in At,

[V-Zdv= Jz(t)';da - Jz(t)’zda— At§ v xd (2
52 SA| C1

(b) Argue that also to first order in At, Fig. P2.6.2

->

[Z(t+At)-Kda N F(t)-Kda + I%‘tl(tmt-'ﬁda + e (3)
. ) / i

S, S, Sy -vatxdy dg

(¢) Finally, show that the volume element dV, called for in evaluating the left side of Eq. 2, is
dv = Atv-nda.

(d) Combine these results to evaluate the right-hand side of Eq. 1 and deduce Eq. 2.6.4.
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Prob. 2.6.3 It is sometimes necessary to evaluate the time rate of change of a line integral of a
vector variable having time-varying end points. The problem is to evaluate the derivative

- > -
b (L) B(t + At) b(t)
d > > lim > ve > >
T J Aedg = 7 L A(E + AE)edl - [ACE)dR
2(t) a(t + At) a(t)
At

Here a and b denote time-dependent vector positions in space. What is meant by the line integration
is indicated by Fig. P2.6.3.

b(t+At)

y Fig. P2.6.3. Time-varying
, contour of line integration.

a(t+At)

a(t)

The contour of integration at the time t is instantaneously sketched. At that instanp»each point on
the contour has a velocity vg so that in a time At the contour has moved by an amount vgAt. By defin-
ition, the velocity of the end point is v, evaluated at the end point.

The theorem to be derived shows how the integration can be carried out after the time derivative
has been taken. Thus it is analogous to the generalized Leibnitz rule for differentiation of a surface
integral having time-varying geometry. The desired theorem states that

¥

B(t) HON 3
4 124 - AT + A, t) v (b A0 v (3,8) + | (Vxh)xy -db
Ty A = 3¢ + A(b,t) vs( ,t) - A(a,t) vs(a,t) ( xA)va
a(t) a(t) 5,
a

Show that this rule can be derived following steps motivated by those used in the derivation of the
generalized Leibnitz rule for a time-varying surface integration.

For Section 2.8:

Prob. 2.8.1 To illustrate how the steady-state motion of dipoles results in a 3- and hence an induced
magnetic field, consider a slab of material extending to infinity in the y and z directions between
infinitely permeable surfaces at x = *a. The slak has a thickness 2a, moves in the y direction with
uniform velocity U and supports the polarization P = —(Doa/ﬁ)sin(ﬂx/a)ix, where p, is a given con-’
stant. Fields are in the steady state and there is no free current density.

(a) Obierve that Ampere's law, Eq. 2.2.2, and the boundary conditions are satisfied by making H=73
x V. What is H?

-+ > ->
(b) Compute Jp and then use Ampere's law to find H in much the same way as if Jp were a free current
density.

-5
(c¢) Find pp and show that in this case Jp is simply the result of polarization charge in motion

For Section 2.9:

Prob. 2.9.1 To someone not appreciating the importance of keeping field transformations consistent
with the fundamental laws, it might appear that Faraday's law written in the Chu formulation

(Eq. 2.2.1) would imply that a magnetized and conducting material set into motion would aytomatically
support an electric field that would drive a free current density. 1In fact, ghere is an E, but no Jg.
Consider as a specific case a magnetized slab, having M =-(p,a/Tly)sin (Tx/a)iy, extending to infinity
in the y and z directions, having boundaries at x = #*a in the x direction and suffering a uniform y-
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Prob. 2.9.1 (continued)

directed translation with velocity U. Perfectly conducting walls bound the slab at x = ta. Steady
state conditions prevail.

-->
(a) Find the H induced by the given magnetization.
>
(b) Use Faraday's law to deduce E.

(c) Now, if the material also has a conductivity 0, so th§t an obse;xer gp rgpt in the conductor can
apply Ogm's+;aw+in the form J'. = OE', Because 'jf ='3f but ' = E + vxpoH (Eqs. 2.5.11 and 2.5.12),
Jg = 0(E + vxluH). Show that in fact Jg = 0.

For Section 2.11:

+
Prob. 2.11.]1 A plane parallel capacitor with F‘* Q y! [—*_W
electrodes at potentials v, and vy is used to . -L-
impose a field on a third electrode that is b T
grounded and free to move either longitudinally Ez =

The electrodes, shown in Fig. P2.11.1, have
depth d into paper. Ignore fringing fields
and find the capacitance matrix relating the
charges (ql,qz) to the voltages (vl,vz).

or transversely with displacements (§;, &j). | 3 | HL:Vé

Fig. P2.11.1

For Section 2.12:

Prob. 2.12.1 A pair of perfectly conducting coaxial
one-turn coils have the shape of circular cylinders
of radius a and £, each with a length d >> a.
Currents i, and i, are fed to the coils through
parallel eiectrodes having a spacing that is
negligible compared to other dimensions of

interest. Determine the inductance matrix,

Eq. 2.12.5, relating (Xl, 12) to (11,12).

Fig. P2.12.1

For Section 2.13:

Prob. 2.13.1 For the system of Prob. 2.11.1, find the total coenergy storage w'(vl,vz,gl,iz) by
integrating Eq. 2.13.10.

. a \
Prob. 2.13.2 The dielectric slab shown in Fig. P2,13.2 ¢ LR
is com%osed of material having the constitutive law D = 7 -
eE + fog \/cLZ2 + E2, The slab has depth d into the © b v

paper. Under the assumption that P£=0 in the dielectric A — 3 -——4 N
and that its edges remain well removed from the fringing

fields, find the dependence of the coenergy on (v,£). Fig. P2.13.2

For Section 2.14:

Prob. 2.14.1 For the system described in Prob. 2.12.1,
(a) Find the energy, w = w(kl,lz,g ), (b) the coenergy w' = w'(il,iz,g).

For Section 2.15:

Prob. 2.15.1 Show that the Fourier coefficients given by Eq. 2.15.8 follow from the procedure
outlined in the paragraph following Eq. 2.15.7.
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Prob 2.15.2
=V(t), -2/4 <z < Q/4 and

~

0}

=0, m even and & =
m ? ®m

Prob. 2.15.3

A function &(z,t) is a square-wave function of z with magnitude Vo (t).

That is,

o = =Vo(t), 2/4 < z < 32/4. Show that the Fourler coefficients are

4V (t)sin (E%—)/(kml), m odd

A function ®(z,t) is_zero except in the interval -2/2 < z < £/2, where it is V (t).

Show that its Fourier transform is 3(k,t) = &V o(t) 51n(k£)/(kl/2)

Prob. 2.15.4
completing Eq. 2.15.17.

For Section 2.16:

Prob. 2.16.1

Carry out the spatial average of the product of two Fourier series, as called for in

Start with Eq. 2.16.14 and the relation between potential and flux, Eq. 2.16.5 and

deduce the transfer relations of Table 2.16.1 for a planar layer.

Prob. 2.16.2
Table 2.16.2.
of Egs.

Start with Eqs.
¢ and d.

Prob. 2.16.3

Start with Eq. 2.16.36 and deduce the transfer relations of Table 2.16.3.

2.16.20, 2.16.21 and 2.16.25 and deduce the transfer relations of

Use the properties of the Bessel functions as r— 0 and r+« to deduce the limiting cases

Evaluate the

appropriate limits to arrive at Egqs. c and d.

Prob. 2.16.4
shown in Fig. P2.16.4.

=Q=0a

B.D

XX ~a-~Qa
—-'—" Hz'Ez

A region of free space is bounded by fictitious parallel planes at x

A and x = 0, as

7 77
%i/ :l-‘F-O //%

//

/
/

/
%

X Fields take the form
E = Re E(x) eJ wt-kz) ,
H = Re H(x) o (wt-kz)

so that there is no dependence on y and the time
dependence is explicitly taken as exp (jwt). The
objective is to obtain transfer relations between

g
PEP

—§
BE7

Fig. P2.16.4

tangential and perpendicular field components at
the o and B surfaces without the quasistatic
approximation.

(a) With fields taking the given form,Ashow that all components of E and H can be written in terms

of the axial components of
that E and HZ satisfy the

(b) Write E and Hz in terms of the amplitudes Ez,

on the respectlve surfaces.

(c) Show that the transfer relation

—eﬁf‘: N j%k- coth(Yh)
| |95 vmen
uﬁz 0
_ﬁﬁ_ L 0

where the other components

E

Problems for Chap. 2

E, and H,. (This follows from Ampere's and Faraday's laws). Also show

wave equatlon
A l\a
EB and H

2 79 HE defined as these quantities evaluated

for the layer is

-j% m 0 0 ] Pﬁ‘;‘_

-j%‘ coth(YA) 0 0 o
0 j%% coth(yA) %%-g;;ﬁ%?zy ﬁz
0 %1-{- g—ln—hl(*Y—A—)— -j%i coth(yA) | _ﬁg_

of E and ﬁ are found from

and Y =/ k

wTue
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Prob. 2.16.4 (continued)

(d) Show that in the quasistatic limit the relation reduces to the electroquasistatic and magnetoquasi-
static transfer relations of Table 2.16.1 with appropriate identification of variables for the
electric and magnetic relationms.

(e) To make a connection with TE and TM modes in a plane parallel plate waveguide, let the & and B
surfaces be perfectly conducting electrodes. Thus, the boundary conditions are

>
n
i
]

0 TM modes
Z VA4
B =B =20 TE modes
x X

where the transverse magnetic and transverse electric modes can be separated because of the
form taken by the transfer relations. Use these relations to argue that fields within that
satisfy these homogeneous boundary conditions must also satisfy the dispersion equations

wlue = K&+ (?f)z i n=1,2, 3...

Prob. 2.16.5 A planar region, shown in Table 2.16.1, is filled by an inhomogeneous dielectric, with
a permittivity that depends on x:

e(x) = GB exp2nx, N = Qn(eu /eB )/2A

The free charge density is zero.

(a) Show that the potential distribution is

Y 30 -n(x-A) sinhix _ ~B - nx sinhA(x-A)
¢=0¢ e sinhAA ¢ e sinhAA

where
A= k2+'n2

(b) Show that the transfer relations are

~0 nA
D n n2A e ~Q
X (A - cothAA)e SToid
= 68)\ A
~B _en n "’B
D prETv 3 + cothAA @

Prob. 2.16.6 A planar region, shown in Table 2.16.1, is filled by an anisotropic material having the

constitutive law D = g JE The permittivity coefficients are uniform throughout. Determine the
transfer relations in the form of Eqs. (a) of Table 2.16.1.

For Section 2.17:

Prob. 2.17.1 In developing conditions on coefficients in the transfer relations with the potentials
expressed as functions of the "flux" variables, it is natural to use the energy function as exemplified
in this section. The coenergy function is more convenient in dealing with the potentials as the inde-
pendent variables. For the transfer relations of Sec. 2.16 written in the form

~u =0
) 3

b Bii By

Bl = ~B
_ 3

D, Byy By

derive conditions analogous to those of Eqs. 2.17.10 and 2.17.12.
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Prob. 2.17.2 TUse the reciprocity condition, Eq. 2.17.10 to show

kx[Hm(jkx) J&(jkx) - Jm(jkx) Hé(jkx)] = constant

Use Eqs. 2.16.22 and 2.16.23 to establish that the constant is 2/m. Thus, the numerators of the
functions g, and Gm in the cases k # 0 of Table 2.16.2 are considerably simplified from what is obtained
by direct evaluation.

Prob. 2.17.3 With Eq. 2.17.7, it is assumed that the excitations on the & and B surfaces are in
spatial phase, and that the Ai' are real. By allowing the excitations to have arbitrary phase, it is
possible to learn more about these coefficients. In general, the expression replacing Eq. 2.17.7 in
Cartesian or cylindrical geometry is

Sw = % ¢ Re[-a"8*5(N* + 38565(5ﬁ) *1

Because Re u 8V = GrGVr + ﬁiGVi, this expression becomes

_1 o oza~o oz BxB . ~B BxB.~B
Sw=15C[-a® 8D ~adsD +ad D + adeD . ]

That is, the real and imaginary.parts of the excitations on each suEface~§re independent variables.
Use the fact that the energy is a state variable: w = w(D__, ﬁa., DB , D”.) and show that
nr’ "ni’ "nr’ "ni
"% = B -a¢?=a—"’s 5 Bef o e Bef L Bw
o T 5B o308 SIS
r i r i

~a ~0 ~B ~B

From these relations, derive reciprocity relations between the derivatives of (Qr’ ®.5 0, $.,) with
respect to (Dnr’ D., Dnr’ DP.). Assume that the Aj;j can have real and imaginary parts, and show from
these reciprocity relations Phat All and Ay, must be real and that aaAlz = aBA*Zl.

Prob. 2.17.4 TUse the results of Prob. 2.17.1 to show that the transfer relations of Prob. 2.16.5
satisfy the reciprocity relatioms.

For Section 2.18:

Prob. 2.18.1 TFor the axisymmetric cylindrical case of Table 2.18.1, show that Eq. (h) follows from
Eq. (g) and that Eq. 2.18.2 can be used to deduce the expression for the total flux, Eq. (i).

Prob. 2.18.2 Show that Eq. (k) of Table 2.18.1 follows from Eq. (j).

For Section 2.19;

Prob. 2.19.1 Derive Eqs. (e) and (f) of Table 2.19.1.
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Electromagnetic Forces, Force
Densities and Stress Tensors




3.1 Macroscopic versus Microscopic Forces

Most important in this chapter is the distinction between forces on fundamental particles and
forces on macroscopic media. It is common to speak of the "force on a charge" or the "force on a current"
even though what 1s meant is the force on ponderable material. Interest might actually be in electric
and magnetic forces acting on collections of fundamental charge carriers., (Motions of electron beams in
vacuum are an example. The charged particles in that case constitute the continuum, in the sense that
it is the electron inertia that enters into the equation of motion.) But, more commonly, the charged
particles are imbedded in media, and it is the resulting force on the material that is of interest.
Examples are as obvious as the electrical force of attraction between the capacitor plates of an electro-
static voltmeter or the magnetic torque exerted on current-carrying conductors in a meter movement.

Section 3.2 develops a specific model to illustrate how momentum imparted to charged particles by
the fields is transferred to the neutral media that support those particles. That macroscopic forces
are more than simply an average over the forces on fundamental charges is further emphasized by consider-
ing the practical cases of polarization and magnetization forces. Force densities of engineering signifi-
cance exist even in regions where the free charge and free current (and for that matter polarization
charge or magnetization charge) are absent. Such forces can be associated with a microscopic picture,
discussed in Sec. 3.6, in which electrical forces on dipoles are transferred to the media.

Although the dipole model is useful for forming a microscopic picture of electric polarization
forces, it is restricted to cases where the dipoles do not significantly interact. In the pursuit of
a less restricted force density, developments in Secs. 3.7-3.8 are based on such measured macroscopic
parameters as the permittivity and permeability. It is the business of thermodynamics to convert that
information into the desired force densities. In its own way, the line of reasoning presented in
Secs. 3.5, 3.7 and 3.8 exemplifies a more basic point of view than one geared to a particular microscopic
model. Thermodynamic concepts provide a means for replacing detalled and specialized derivations by
carefully defined physical measurements.

The stress-tensor representation of electromagnetic forces which concludes this chapter will see

continual application in the following chapters. The tensor concept itself, introduced in Sec. 3.9,
will also be applied to the formulation of continuum mechanical and electromechanical equations.

3.2 The Lorentz Force Density

Although macroscopic forces were the first measured in the development of electricity and mag-
netism, it is now normally accepted that the fundamental force is that on a "test" charge. This charge
might be a gingle electron in free space. If the charged particle has a total charge q and moves with
a velocity Vps then the Lorentz force acting on the particle supporting the charge is

- + > :
% - qE + qvp x U H (1)

This statement, like the electrodynamic laws summarized in Chap. 2, is an empirical one. In most of the
areas of continuum electromechanics, it is forces due to many charges that are of interest, and it is
therefore appropriate to sum the individual forces of Eq. 1 over the charges within a given unit of
volume to arrive at the Lorentz force density

> > > >
F=pE+J; xulH (2)

Incremental volumes of interest have dimensions much greater than the characteristic distances between
particles. But also, for the average electrical field to have meaning, it must be primarily due

to sources external to the differential volume of interest. This ensures that, over an incremental
volume, each particle experiences essentially the same electric field. The contribution to the field
of the charges within the differential volume is negligible. Similar arguments apply to the magnetic
field intensity, which must be produced over a given differential volume largely by currents outside
the volume.

Equation 2 represents the force density acting on a ponderable medium if means are available for
the force on the particles to be transmitted to the medium. The mechanisms by which this happens are
diverse, and implicit to the conduction process. Whether the fundamental carriers are electrons in a
metal, holes and electrons in a semiconductor or ions in a liquid or gas, the average motions of
fundamental charge carriers are superimposed on random motions. The flights of fundamental carriers
are interrupted by collisions with lattice molecules (in a solid) or molecules that are themselves in
a Brownian equilibrium (in a liquid or gas) with a frequency that is usually extremely high compared
to reciprocal times of interest. These collisions transfer momentum from the fundamental charge
carriers to the ponderable medium.
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To more fully appreciate the transition from the force acting on fundamental carriers, Eq. 1, to
that on a material, Eq. 2, it is helpful to make a formal derivation. Although the discussion leads
to rather general conclusions, only two families of carriers are now considered, one positive with
charge per particle qﬁ and number density n, and the other negative with a magnitude of charge q_ and
number density n_. The average Lorentz force, Eq. 1, is in equilibrium with an average force repre-
senting the effect of collisions on the net migration of the particles:

-f.+ - > > >
q, q+(v+ +v) x HH = myV v,

3)
e E-q G +V)x uo'ﬁ =nvyv

The retarding forces on the right are much as would be conceived for a swarm of macroscopic particles
moving through a viscous liquid The average carrier velocities v+ are measured relative to the medium,
which itself has the velocity V. Hence, on the right it is relative velocities of particles and medium
that appear, while in the Lorentz force it is total particle velocities that are appropriate. The co-
efficients for the collisional forces are written as the product of the particle masses my and collision
frequencies v, as a matter of convention. Note that the inertial force on the carriers is ignored com-
pared to that"due to collisions. This approximation would be invalidated in a plasma 1f the frequency
of an applied electric field intensity were extremely high. But, in many conductors and certainly in the
most usual electromechanical situations, the inertial effects of the charge carriers can be ignored (see
(Problem 3.3.1.).

The charge density and current density are written in terms of the microscopic variables as

Pe = m,q, - n_q_ (4)

S n g, @+ -0 g G+ "

_ > > >
=nqv, -nqv_ + pfv

The average force density acting on the ponderable medium is the sum of the right-~hand sides of Eq. 3,
respectively, multiplied by the particle densities n:

-> -+
F = nqp+y+y+ +nmV v (6)

The point in writing this equation is to formalize the statement that, through some collisional process,
the force on the fundamental carriers becomes the force on the medium, It is evident from the next
step that, at least in so far as the Lorentz force density i1s concerned, the details of the collisional
equilibrium are not important. The left-hand sides of Eq. 3 (regardless, for example, of whether my+
are functions of vy or are constant) are substituted for the respective terms in Eq. 6 to obtain

F=o L9, =0 q_)E + [( - n_q_;;) + (nq, - n_q_);j x uoﬁ )]

In view of the definitions given by Eqs. 4 and 5, this expression is the Lorentz force density of Eq. 2.
Its validity hinges on there being an instantaneous equilibrium between the forces on the fundamental
carriers and the "collisions" with the ponderable medium, but not on the details of that interactionm.

3.3 Conduction

There are three objectives in this section. The first is to have a microscopic picture of the
carrier motions to associate with ohmic or unipolar conduction models. The second is to illustrate
how constitutive laws for media in motion can be derived from models based on particular microscopic
models, or (on the basis of the field transformations) found by generalizing empirically determined
laws established in the laboratory for materials at rest. Finally, a byproduct of the discussion
is an introduction to Hall effect.

Consider the carrier motions represented by Eqs. 3.2.3, with the magnetic field H = H i ex-
ternally imposed. The components of these equations then respectively become

- “ [~ T ™ i
1 0 0 vxi ib+Ex
0 1 +b u H =
+Ho"o vyt ibiEY : bi’vzuono @
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where particle mobilities are defined as bi = qt/miyi.

These three equations can be inverted to find the relative carrier velocities in terms of (E,ﬁ,z):

B T B b+ ar .

Vx4 I, 0 O 1%

v, | == 1] o0 b b2uH||E +vuH (2)
v+ A -+ + 00 y zoo

v, + 0 - +uoH° +b + Ez - vyu oHo

2
where A+ 1 +.(u°H°bi) .

These velocity components can now be introduced into Eq. 3.2.5 to express the free current density

as
n,q,b n qb
+ >, 4940 APl - ,
Jf (n+q+b+ + n_q_b_)Exix +-( A+ + N > (Eyiy + Eziz)
2 2
n,q,b n_qb
IR P -V > > >
+< A+ - 5 >uoE x Ho + Pev (3)

where E' = E +V x [} ﬁ is the electric field in a frame of reference moving with the material (for a
magnetoquasistatic system).

From Eq. 3, it is clear that there are two components to the current density, one in the direc-
tion of the imposed electric field and the second perpendicular to it. The latter term is called the
Hall current and is due to the tendency of the particles to move perpendicular to theilr own velocity
and to the imposed magnetic field intensity. This last term is ignorable 1if

uouobi << 1 (4)

A typical magnetic flux density is y H = 1 (10,000 gauss, which is in the range where magnetic mate-
rials saturate). Electrons in coppeg Rave a mobility on the order of 3 x 10-3 m2/volt sec, so that

the parameter on the left is then much less than 1. Ions in liquids have mobilities that are typically
5 x 1078 m2/volt sec and the approximation is even better. But in silicon or germanium, where the
electron mobility is in the range of 10"l m2/volt sec, the Hall effect is coming into play by the time
UoH, is of the order of unity. With the inequality of Eq. 4 satisfied, Eq. 3 reduces to the familiar
form

jf = (n+q+b+ + n_q_b_)E' + pf;' (5)

If the number density of charge carriers n; and/or n_ remains essentially the same in spite of the
application of f, then the factor multiplying % in Eq. 5 i8 usefully regarded as a parameter character-
izing the material, the electrical conductivity 0. This case of ohmic conduction is displayed by mate-
rials ranging from metallic conductors, where the carriers are electrons and essentially immobile ions,
to electrolytes, where ions of at least two species participate in the conduction. In any of these
cases, for the ohmic model to be valid, the conduction must involve at least two species with both
npq, and n_q. greatly exceeding the net charge pg. By introducing the conductivity as a parameter,

the detailed analysis necessary to determine the self-consistent distributions of the individual
carriers is avoided. But to examine the conditions under which the conductivity model is valid, it

is necessary to formulate the laws that govern the self-consistent carrier motions. This is best done
in the context of molecular diffusion (Chap. 10) so that other important limitations on the model can
also be identified.

Even though in accounting for  conduction it is useful to have in mind microscopic mechanisms, it
is also important to recognize the far-reaching implications of empirical relations. Given any con-
duction law based on laboratory measurements made with a fixed sample, effects of material motion can
be brought in by using the transformation laws. For example, if it is known that the conductor obeys
Ohm's law when stationary, then in a primed inertial frame moving with the velocity ¥ of the conductor,
the experiment shows that

3y = of (6)
+>y > -+ > ->

In an electroquasistatic system, including polarization, Jf = Je = Pgv (Eq. 2.5.12a) and E' = E
(Eq. 2.5.9a). Hence, Eq. 6 becomes Eq. 5. In a magnetoquasistatic system, including magnetization,
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3% =3 (Eq. 2.5.11b) and B =FE+vax ! i (Eq. 2.5.12b). Substitution in Eq. 6 now gives Eq. 5, except
for the charge convection term pf3. In a magnetoquasistatic system, this term is second-order, as will
be argued in the next section.

Fundamental to the use of an empirical law determined for the stationary material is the assump-
tion that material acceleration and deformation do not influence the conduction. 1In any case, if
acceleration did effect the conduction, the close tie between conduction and the Lorentz force density,
illustrated in this and the previous section, calls into question the notion that the electromechanics
can be modeled by a single continuum subject to the Lorentz force density.

3.4 Quasistatic Force Density

The Lorentz force density, Eq. 3.2.2, is composed of what will be termed, respectively, an elec-
tric force density and a magnetic force density

- > > +
F=pE+J xyuH @

It is found in a wide range of applications that the force density is predominantly one or the other
of these contributions. Polarization and magnetization force densities, not included in Eq. 1, are
similarly identified with the respective quasistatic systems. In this section, dimensional arguments
are given that demonstrate that the electric force density generally dominates in electroquasistatic
systems, while the magnetic force density dominates in magnetoquasistatic systems.

The line of reasoning is an extension of that introduced in Sec. 2.2. The force density is
normalized in accordance with Eq. 2.3.4 and the free current density is represented as having the
form of Eq. 2.3.1. Thus,

-f eogz > Tm Te > >

=T[pr+?(UE+TJV)xH] EQS 2)
2

> quf Tem 2 Tm > > >

F=— [(—T—) e E+ (— E+J) x H] MQS 3)

The relative values of the time constants are summarized by Fig. 2.3.1. In the electroquasi-
static system, T, /1<< 1 and ‘rm're/‘r2 = (‘rem/'t)2 << 1. Hence, the free charge density term is zero-
order in Eq. 1, and the magnetic term is consistently ignoredl In the magnetoquasistatic force
density of Eq. 3, ('rem/‘r)2 << 1, and the free charge force density is negligible compared to the mag-
netic term. Hence, the second term of Eq. 1 is used to the exclusion of the first in magnetoquasi-
static systems.

3.5 Thermodynamics of Discrete Electromechanical Coupling

In this section, the thermodynamic electric and magnetic energy storage subsystems are expanded
to include the possibility of a finite number of discrete mechanical displacements of macroscopic
material. .Based on the notion of an energy function and a thermodynamic equilibrium, the force of
electrical origin associated with each of these displacements is determined. Typically, the method
exploits a knowledge of the electrical terminal relations to determine the forces. The approach
is generalized in Secs. 3.7 and 3.8, where constitutive laws are the basis for finding the force
density of electric origin. Except for mathematical manipulations, the derivations now reviewed draw
upon all of the demanding issues confronted later in deriving force densities. '

Electroquasistatic Coupling: An example of a lumped-parameter electroquasistatic system is given
with Fig. 2.11.1, including a schematic representation of a finite number of mechanical displacements.
Associated with each of the displacements is an electromechanical force tending to displace a lumped
element by an amount ;.

Conservation of energy for the system with the geometry fixed is expressed by Eq. 2.13.8. Now,
an incremental increase in the total energy caused by placing an increment of charge qu on an electrode
having the voltage vy can be diminished by an amount equal to the work done on the external environ-
ment by the forces of electrical origin acting through the displacements of the associated mechanical
entities. Thus, energy conservation requires that

n m

6w= I v.0q, -~ X £,85,; w=w(q,°°°q ,E " 1
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1. Electrons in vacuum can have a velocity approaching that of light. 1In that case an imposed mag-
netic field can have a crucial effect on the EQS dynamics (See Sec. 11.2).
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Given the charges qj.--.q, and the displacement £3::*§, as independent variables, the energy function
is uniquely determined. The "displacements' should be recognized as generalized variables in that they
could just as well be angular deflections, in which case the associated "forces" would be torques.

To determine w, constitutive relations vy(qj««-qp, gl---gn) must be known so that Eq. 1 can be
integrated. The integration is a line integral in a state~space composed of the independent variables.
Because the f;'s are not known, and are defined as equal to zero in the absence of electrical excita-
tions, integration on the mechanical variables Ej is carried out first. This gives no contribution
because as the displacements are brought to their final values, f; = 0 (no work is required to assemble
the system with the q4's = 0). Then, the integration on successive electrical variables is carried
out, first on qi with all other q = 0, then on q2 with q] at its final value and all others zero,
etc. Formally, the integration o% Eq. 1 gives

w= I [ v .(q4+q},0:¢:0, &, E;0++E )Oq} ()
j=1f°jlj 10 %2"" "B

Because the energy function is a state function specified by the independent variables, an incre-
mental change 1n the total energy can also be written as

n I m
w= I S sq + I Do ©)
1=1 %% 3=1 353 ]

If the q's and the £'s are independent variables in the sense that Eqs. 1 and 3 hold for arbitrary
combinations of incremental changes in these electrical and mechanical variables, then

_ow_ _ ow
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Note that the q's and £'s are not necessarily independent of each other unless the system is isolated
from the total system in which it is imbedded. Given w from Eq. 2, the electrical forces are determined.

A consequence of the conservation of energy expressed by Eq. 1 is the reciprocity condition between
pairs of terminal variables. For example, derivatives of Eq. 4a, first with respect to qj and then of
the same equation but with i replaced by j, and with respect to qi, are related by

ov 2 ov
__i a 8 '5—1 (5)
99,  9q;9q;  dq,

Other reciprocity conditions follow from Eq. 4 by taking cross-derivatives to relate forces and volt-
ages to each other.

In dealing with practical lumped-parameter systems, it is often convenient to use the voltages
rather than the charges as independent variables. If all of the voltages are to be independent
variables, it is appropriate to recognize that

n

1§1 v,8q, = 21 [S(Viqi) - qiévi] (6)
so that substitution into Eq. 1 gives

. n m
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where a coenergy function has been defined in terms of the energy function as
n
w' (Vl'..vns Eln‘gm) = iil Viqi -w (8)

The coenergy function is a particular case of an arbitrarily large number of functions that can be

defined. Any combination of charges and voltages can be independent variables, and a hybrid energy

function, appropriately defined as a state function of this combination. With the voltages as inde-
pendent variables, an equation similar to Eq. 2 is found with the charges replaced by the voltages,

and the voltages and displacements the independent variables:

_@_. - ol (9)
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The coenergy function, like the energy function, is found from purely electrical considerations, as
described in Sec. 2.13.

Magnetoquasistatic Coupling: Lumped-parameter electromechanical coupling in a magnetic field system,
described schematically by Fig., 2.12.1, can be given the same thermodynamic representation as that out-
lined for electroquasistatic systems. The statement of conservation of energy for the system of dis-
crete coils and mechanical displacements is the generalization of Eq. 2.14.11, with the addition of the
mechanical work done as an electrical force f4 causes an incremental displacement GEj:

n n
Sw = izl iiGAi - Z fj6£ (10)

All of the arguments given for the electric systems follow for the magnetic field systems if variables
are identified:
q, > Ay, v, > i,
i R § i (11)
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The magnetic force is the negative partial derivative of the magnetic energy with respect to the
appropriate associated displacement, with the other displacements and all of the flux linkages held

constant. Similarly, the force can be found from the coenergy function by taking the derivative with
respect to the associated displacement with the other displacements and the currents held constant.

3.6 Polarization and Magnetization Force Densities on Tenuous Dipoles

Forces due to polarization and magnetization lend further emphasis to the importance of making a
distinction between forces on microscopic charged particles and macroscopic forces on materials sup-
porting those charges. The experiment depicted by Fig. 3.6.1 makes it clear that (1) there is more
to the force density than accounted for by the Lorentz iorce
density, and (2) the additiopal force density is not p (or
in the magnetic analogue, (o H).

A pair of capacitor plates are dipped into a dielectric </{:>\\>
liquid. With the application of a potential difference v, it + - X
is found experimentally that the liquid rises between the R
plates.® To make it clear that the issues involved can be e -

understood in terms of lumped~parameter concepts, the liquid
between the plates is replaced by a solid dielectric material
having the same polarizability as the liquid, so that the
problem is reduced to one of a solid dielectric slab rising
between the plates as it is pulled from the liquid below.

Recall that if the interface is well removed from the
edges of the plates, an exact solution satisfying the quasi-
static differential equations and boundary conditions in the
neighborhood of the interface is E = (v/d)i,. Of course,
there is a fringing field in the neighborhood of the edges
of the capacitor plates. However, because the slab and the
liquid have the same dielectric constant and pf = 0, the
fringing field has the same distribution as 1f the dielec-
tric were not present.

It might be tempting to take the force as being the
product of the net charge at any given point and the local
electric field, or pyE. However, everywhere in the dielec-
tric bulk the polarization density is proportional by the
same constant to the electric field (Eq.+2.16.1). Because Fig. 3.6.1.
pg = 0, it follows from Gauss' law that E and hence P have
no divergence, and so there is also no polarization charge
in the dielectric. Furthermore, because the electric field
is uniform and tangential to the interface, there is not even
a polarization surface charge density at the interface
(Eq. 2.10.21). Throughout the dielectric, on the interface and in the bulk, there is no polarization
charge. Clearly, the force which makes the dielectric rise between the plates cannot be accounted for
by a polarization charge density.

Experiment demonstrating
the existence of polarization
forces that are not explicable
in terms of forces on single
charges.

*
In an experiment, a-c voltage is used with a sufficiently high frequency that the material responds

only to the rms field and free charge cannot accumulate in the bulk.
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If the polarized material is composed of individual dipoles, each
subject to an electrical force, and each transmitting this electrical ¢>/
force to the neutral medium, it is clear that there is really no reason

+(

to expect that the force density should take the same form as that for ( )
free charges. With free charges, it is the individual charges that vavz d
transmit their forces to the neutral medium through mechanisms dis-

cussed in Sec. 3.2. Now concern is with the force on individual dipoles r ._(1

which transmit that force to the neutral medium, either because they are
tied to a lattice structure (Fig. 2.8.1) or through collisional mecha-

nisms similar to those discussed for charge carriers in Sec. 3.2. 3(
In the following, it is assumed that the dipoles are subject to
an electric field that is the average, or macroscopic, electric field. Z
The development ignores the distortion of the electric field intensity
at one dipole because of the neighboring dipoles. For this reason, Fig. 3.6.2. Definition of dis-
the result is designated a force density acting on tenuous dipoles. placement and charge loca-

tions for dipole.
A single dipole is shown in Fig. 3.6.2. The dipole can be pictured
as a pair of oppositely signed charges having the vector separation d. The negative charge is located
at ¥, With the assumption that the force on the dipole is transmitted to the medium, the procedure
is to compute the force on a single dipole, and then to average this force over all the dipoles. The
net force in the ith direction on the pair of charges taken as a unit is

g = ym e, G + ) - £, @] (2)
d->

q-)oo
The limit is one in which the spacing of the charges becomes extremely small compared to other distances
interest and, at the same time, the magnitude of the charges becomes very large, so that the product
q = P remains finite. The dipole moment is defined as p. The required limit of Eq. 2 becomes

OE

in qlE, e)+ -E @] =p, — (3)
%+0 j j i h| 3xj
q-m

Thus, there is a net force on each dipole given in vector notation by
t=3VE (4)

Note that implicit to this vector representation is the definition of what is meant by the operator
A-VB

By assumption, the net force on each dipole is transmitted to the macroscopic medium and it is
appropriate then to think of averaging these polarization forces over all dipoles within the medium.
In general, this average would have to be taken with recognition that the microscopic dipoles could
assume a spectrum of polarizations in a given electric field intensity. For present purposes, the
average can simply be represented as the multiplication of Eg. 4 by the number of dipoles, n, per unit
volume. With the definition of the polarization density as P = np, the Kelvin polarization force
density is found:

Can the force density given by Eq. 5 be used to explain the rise of the dielectric between the
plates in Fig. 3.6.1? Certainly, there is no force density in materidl regions of uniform electric
field, because then the -spatial derivatives called for with Eq. 5 vanish. However, in the fringing
field at the lower edges of the plates, the electric field intensitv does vary rapidly. In that region,

the permittivity is a comstant, and for a linear dielectric, where B = i, Eq. 5 becomes [in dealing
with vectors and tensors, a term in which a subscript appears twice is to be summed 1 to 3 (unless
otherwise indicated)]

oE oE
- (¢ - - e (e - (e - 2 &
Fy = (e - &,)E, =, (e - &,)E, 7%, (e -~ &) o, (G E4E) (6)
where the irrotational mature of E is exploited, SEilaxj = JE /Bxi. In vector notation, Eq. 6 becomes

h |
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Remember, this relation pertains only to regions of a linear dielectric in which the permittivity is
constant, and is simply a means of visualizing the distribution of the Kelvin force density. In such
regions, the force density has the direction of maximum rate of increase of the electric energy storage.
Typlcal force vectors, sketched in Fig. 3.6.1, tend to push the dielectric upward between the plates.
It is important not to overgeneralize from Eq. 7. In any configuration in which there is a component
of E perpendicular to an interface, there is a singular component of the Kelvin force density acting at

the interface -~ a surface force density. Such a component would be incorrectly inferred from Eq. 7,
which is not valid through the interfacial region.

Consider now the force density acting on a continuum of dilute magnetic dipoles that, like the
analogous electric dipoles just considered, pass along a force of electric origin to a macroscopic
medium via collisions or lattice constraints. It is not possible to use the Lorentz force law as a
starting point unless magnetic monopoles and an analogous force law on these magnetic ''charges" is

postulated. Without introducing such notioms, the Kelvin magnetization force density can be deduced
as follows.

Electroquasistatic and magnetoquasistatic systems are pigtured abstractly in Fig. 3.6.3. A volume
enclosing the region occupied by a dipole having the position § has a surface S and includes neither
free charge in the EQS system nor free current in the MQS system. Hence the fields are governed by

Fig. 3.6.3a. EQS system Fig. 3.6.3b. MQS system
VxE= 0; E=- VxH= 0; H=-W (8)
Ve E+%) =0; F=mp Ve B +u i =0 H=mm (9

Statements that the input of electric energy either goes into increasing the total energy stored or in-

to doing work on the dipoles are (see Eqs. 3.5.1 and 2.13.4 or Eq. 3.5.10 and Eq. 2.14.9 iIntegrated by
parts):

§ ®6D.nda = 6w + £+68 5; Y§B-nda = 6w + £.6F (10)
S S

To find the force on the dipole, the energy would be determined as a function of the electrigal excita-
igns and g. Then, with the understanding that the derivative is taken with the quantities D.n and
%-n, respectively, held fixed onr the surface S, the respective forces follow as

ow
£ 0= - dv_ f

1 3%, 17 "%, (11)

Now, what would be obtained if this procedure were carried through for the electric case is already
known to be given by Eq. 4. Moreover, there is a complete analogy between every aspect of the electric
and magnetic systems. The calculation in the magnetic case need not be repeated once the elgctric ome
is carried out. Rather, an identification of variables suffices to give the answer, E > H, P + qu.
Hence, it follows that Eq. 5 is replaced by the Kelvin magnetization force density

F= uoﬁ-vﬁ (12)

The Kelvin force densities, Eqs. 5 .and 12, suffer the weakness that they do not take into account
the interaction between dipoles. Moreaver, is the average over the spectrum of dipole moments ; or ;
leading to the polarization and magnetization densities consistent with the usage of these densities in
Chap. 2? These difficulties are overcome by a derivation based on thermodynamic principles. Because

force densities are then based on electrically measured constitutive laws, consistency with definitions
already introduced is insured.
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3.7 Electric Korteweg-Helmholz Force Density

The thermodynamic technique used in this section for deducing the electric force density with
combined effects of free charge and polarizarion is a generalization of that used in determining dis-
crete forces in Sec. 3.5. This principle of virtual work is exploited because it is not practical to
predict the relationship between microscopic and macroscopic fields.

In any derivation of a force density, it is important to be clear about (a) what empirically
determined information is required, and (b) what postulates or assumptions are incorporated into the
derivation or are implicit to an application of the force density. Generally, empirically determined
information can be used to replace assumptions. As derived here, the only empirical information re-~
quired ig an electrical congtitutive law relating the macroscopic electric field to the polarization
density P (or displacement D). This relationship is typically determined by making electrical measure-
ments on homogeneous samples of the material. These amount to measurements of the terminal character-
istics of capacitor-like configurations incorporating samples of the material. (In the lumped-parameter
systems of Sec. 3.5, the analogous empirical information was the electrical terminal relation.) With
so little empirical information, the force density can only be identified if the system considered is
a conservative thermodynamic subsystem. Thus, the force density is derived picturing the system as
having no dissipation mechanisms. (The same conservative system is considered in Sec. 3.5 to find
discrete forces.) The assumption is then made that the force density remains valid even in modeling
systems with dissipation. If dissipation mechanisms were to be incorporated into the system considered,
then a virtual power principle could be exploited to find the force density, but additional empirical
information would be required.

Experiments show that, for a wide range of materials, electrical constitutive laws take the form
of state functions

E = £, 0 ,B) or B = B(al---am,is‘) (1)

The a's are properties of the material. Thus, if measurements are made on a homogeneous sample of the
material, the o's are varied by changing the composition of the sample. For example, 0, might be the
concentration of dipoles of a given species, or the concentration of one liquid in another. The number
of a's usgd depends on the specific application. Most important for now is the distinction begween
changing E in Eq. 1.by changing the material and hence changing 0's, and doing so by changing D. Some
special cases of Eq. 1 are given in Table 3.7.1.

Table 3.7.1. Constitutive laws having the general form of Eq. la.

Law Description
> -1 >
E=¢ (al---am)D Electrically linear and (fields) collinear
Ei = sij(al---am)ﬁj Electrically linear and anisotropic
> -1 2.2
E =¢ (al---am, D°)D Electrically nonlinear and (fields) collinear
Ei = sij(a1-~-am, Dl’ D2, D3)Dj Electrically nonlinear and anisotropic

The third case of the table might represent a material in which dipoles are in Brownian equi-
librium with a nonpolar liquid. An applied field tendg to line up the dipoles and hence give rise to
a polarization density and hence to a contribution to D. In terms of two properties (0j,0.2), 2 model
including the saturation effect, resulting as all dipoles become aligned with the field, might be

a
€=___1_—_+€ (2)

e o
1+ az ﬁ-f

2

Built into this example, and the general relation, Eq. 1, is the assumption that the comstitutive law
is a state function. It does not depend on rates of change, and it is a single~valued function of the
variables and hence not dependent on the path followed to arrive at the given state.

The continuum now considered is not homogeneous, in that at any given instant the a's can vary
from one position to another. Moreover, for the electromechanical subsystem considered, the properties
are tied to the material. As the material moves, properties change. For material within a volume of
fixed identity,
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I uidV = constant 3)

v

By definition, the volume V is always composed of the same material. By definition, the a's must satisfy
Eq. 3 when the subsystem is considered to be isolated from other subsystems.

The finite number of mechanical degrees of freedom for the discrete coupling of Sec. 3.5 is now
replaced by an infinite number of degrees of freedom. The mechanical continuum, perhaps a fluid, perhaps
a solid, 1s capable of undergoing the vector deformations &f. These incremental displacements are

- viewed as small departures from an equilibrium mechanical configuration which is precisely that for which
the force density is required.

Since the time derivative of Eq. 3 vanishes, the generalized Leibnitz rule, Eq. 2.6.5, gives

aa >
d_ = [ L & 2d4a =
T3 j o,dv J‘ s dv + 59 o 5= +nda = 0 (%)
v v 5

where by definition the velocity of the surface S is equal to that of the material (;s - 32). Gauss'
theorem converts the second integral to a volume integral. Although of fixed identity, QE; volume is
arbitrary, and so it follows from Eq. 4 that changes in the property o; are linked to the material de-
formations by an expression that is equivalent to Eq. 3:

Sa, = -V (@,68) (5)

The framework has now been established for stating and exploiting conservation of energy for the
electromechanical subsystem. The procedure is familiar from Sec. 3.5. With electrical excitations
absent, a system, such as shown in Fig. 2,13.1, is assembled mechanically. Because the force density
of electrical origin is by definition zero during the process, no work is required. The system now
consists of rigid electrodes for producing part or all of the electrical excitations and a mechanical
continuum in the intervening space. This material is described bty Eq. 1. With the mechanical deforma-
tions fixed (8£ = 0), the electrical excitations are next raised by placing bulk charges at the positions
of interest in the material and by raising the potentials on the electrodes. The result is a stored
electrical energy given by Eq. 2.13.6: :

>
D -> > >
w = f Wav; w = [ E(ay++a ,D") 8D (6)
0
v
Here, V is the volume occupied by the material and the fields, and hence excluding the electrodes.

Now, with the net charge on each electrode constrained to be constant, consider variations in the
energy caused by incremental displacements of the material. A statement of energy conservation
accounting for work dome on the external mechanical world by the force density of electrical origin is

I[dw + Fe68]dV = 0 @)
v

There are two consequences of the incremental displacement. First, the mechanical deformation carries
the properties with it, as already stated by Eq. 5. Second, there is a redistribution of the free
charge. Because the system is conservative, the free charge is constrained to move with the material.
The charge within a volume always composed of the same material particles is constant. Thus, Eq. 3
also holds with oy * pg, and it follows that an expression similar to Eq. 5 can be written for the
change in charge density at a given location caused by the material displacement 62:

Spg = —V-(prE) (8)

It is extremely important to recognize the difference between ¢W in Eq. 7, and W in Sec. 2.13.
In Eq. 7, the change in energy is caused by material displacements 8t, whereas in Sec. 2.13 it is due
to changes in the electrical excitations. The energy W is assumed to be a state function of the same
variables as used to express the constitutive law, Eq. 1. Hence,

m 9
owe 1 g + M. ®
i=]1 i )]
where
W o2 2 oW
— D= I 3—D— GDi
D 1=1 %P3
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With the understanding that the partial derivative is taken with the o's held fixed, it follows from
Eq. 6 that

%‘g—j— = £ 10

Hence, the last term in Eq. 9 is written using Eq. 10 with E in turn replaced by -Vé. Then, integration
by parts* gives

J’a—f . 8BdV = - § #6D-nda + I (V+ 6D)dv an
5 3 ! .

The part of the surface coincident with the electrode surfaces gives a contribution from each electrode
equal to the electrode potential multiplied by the change in electrode charge. Because the electrode
charges are held fixed while the material is deformed, this integration gives no contribution. The
remaining part of the surface integration 1s sufficiently well removed from the region of interest that
the fields have fallen off sufficiently to make a negligible contribution. Thus, the first term on the
right vanishes and, because of Gauss' law, Eq. 11 becomes

W
» 8DAV = f 8p dV (12)
[ D £

It is now possible to write Eq. 7 with effects of SE represented explicitly. Substitution of Eq. 8 into
12 and then Eqs. 12 and 5 into 9, and finally of Eq. 9 into 7, gives

m
fi- z g% V- (0, 68) - 97+ (p,68) + Foetlav = 0 (13)
v i=] i

With the objective of writing the integrand in the form ( )-SE, the first two terms are integrated by
parts. Because the surface integrations are either on the rigid electrode surfaces where SE-ﬁ = 0, or
at infinity where the fields have decayed to zero, and E = -V®, Eq. 13 becomes

m
[ ov@) - o F + Fl.68av = 0 (14)
i’ ‘oo £
1=1 i

v

It is tempting, and in fact correct, to set the integrand of this expression to zero. But the
justification is not that the volume V is arbitrary. To the contrary, the volume V is a special one
enclosing all of the region occupied by the deformable medium and fields. (The volume integration
plays the role of a summation over the mechanical variables for the lumped-parameter systems of
Sec. 3.5.) The integrand is zero because 6% (like the lumped-parameter displacements) is an independent
variable. The equation must hold for any deformation, including one confined to any region where F is
to be evaluated:

m J

Fapd- I o7& (15)
i=1 I

It is most often convenient to write the second term so that it is clear that it consists of a force

density concentrated where there are property gradients and the "gradient of a pressure':

m m
?-pf'ﬁ+ T %—;’—Vai—v[z aigg—] (16)
i=1 "1 i=1 i
The implications of Eq. 16 and the method of its derivation are appreciated by considering three com-
monly encountered limiting cases and then writing Eq. 16 in such a way that its relation to the Kelvin

force density is clear.

Incompressible Media: Deformations are then such that

VeSE =0 a7)

Because GE-E = 0 on the rigid electrode surfaces that comprise part of the surface S enclosing V in
Eq. 7, any pressure function 7 that approaches zero with sufficient rapidity at infinity to make the
surface integration there negligible will satisfy the relation

*

Integration by parts in three dimensions amounts to
f yv.Kav = f v. (#R)av - f X.vyav = § ¥A.nda - !K-de
v v \ S v
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§ n6€.nda = I V. (m6E)dV = 0 (18)
S v

Thus, Eq. 14 remains valid even if the volume integral of Eq. 18 is added to it. But, for incompressible
deformations as defined with Eq. 17, V-(HGE) = V1.6, Thus, the term added to Eq. 14, like those already
appearing in its integrand, can be written with 6f as a factor. It follows that for incompressible de-
formations, the gradient of any scalar pressure, T, can be added to the force demsity of Eq. 16. For
example, T might be P+E, since this function decays with distance from the system sufficiently rapidly

to make the contribution of the surface integration at infinity vanish. On the basis of this apparent
arbitrariness in the force density, the following observation is now made for the first time, and will

be emphasized again in Chap. 8. Two force densities differing by the gradient of a scalar pressure

will give rise to the same incompressible deformations. Physically this is so because in modeling a
continuum as incompressible, the pressure becomes a "left-over" variable. It becomes whatever it must

be to make Eq. 17 valid. Whatever the Vrm added to the force density of electrical origin, T can be
absorbed into the 'mechanical" pressure of the continuum-force equation.

For incompressible deformations, where the force density 1s arbitrary to within the gradient of a
pressure, the gradient term can be omitted from Eq. 16, which then takes the convenient form

m
F= pf-ﬁ + I -gg— Vmi (19)
i=1 i

This expression concentrates the force density where there are property gradients. In a charge-free
system composed of regions having uniform properties, the force density is thus confined to inter-
faces between regions.

Incompressible and Electrically Linear: For an incompressible material having the constitutive

law
D= e (1 + xe)'ﬁ = €k (20)

the susceptibility Xe is conserved by a volume of fixed identity. That is, 0) can be taken as X in

Eq. 3 and m = 1. Then, from Eq. 6,

12 %
2 eo(l + Xe)’ axe 2

€
oW o E2 (21)

W
and because Vxe =V[(1 + xe)], it follows that the force density of Eq. 19 specializes to

> 1 .2
'f=pr--2-EVe (22)

Electrically Linear with Polarization Dependent on Mass Density Alone: Certainly a possible
parameter 03 is the mass density p, since then Eq. 3 is satisfied. For a compressible medium it is
possible that the susceptibility Xe in Eq. 20 is only a function of p. Then,

2

€ ox
= = = !'- D . g-w— "’ _o 2 _e
al = Dy Xe = Xe(p): W 2 so 1 + xe(p) s ap 2 E ap (23)
and, because (3e/9p)Vp = Ve, the force density given by Eq. 16 becomes
¥ = pf'ﬁ - %— E2Ve + V[-:,zl- 0 -g-% 2] (24)

Because the last term is associated with volumetric changes in the material, it is called the electro-
striction force density.

->
Relation to the Kelvin Force Density: Because W = W(al,az---am,D), the kth component of the
gradient of W is

m o0, oD
oW i oW
(VW) S s T~ (25)
k 4=1 aai axk SDj Bxk
In view of Eq. 10, it follows that
m 30, JE
W i oW 9 = 3
. = - (E-D) + D (26)
1=1 aai axk axk 5xk 3 axk
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This expression can be substituted for the second term in Eq. 16, which with some manipulation then
becomes

f = pr + F-VE + V[%'EOE'E + W - E-ﬁ - Z o
i=1

In this form, the force density is the sum of a free charge force density, the Kelvin force density
(Eq. 3.6.5) and the gradient of a pressure. This last term can consistently be ignored in predicting
the deformations of an incompressible continuum. For such situations, the Kelvin force density or the
Korteweg-Helmholtz force density in the form of Eq. 19 will give rise to the same deformations. Note
that they have very different distributions.

i aa ] (27)

Apparently the last term in Eq. 27 represents the interaction between dipoles omitted from the
derivation of the Kelvin force density. 1In fact, this term vanishes when the constitutive law takes
a form consistent with the polarization being due to noninteracting dipoles. In that case, the
susceptibility should be linear in the mass density so that Xe = cp, where c is a constant. In Eq. 23,
dXe/%p = ¢, and evaluation shows that, indeed, the last term in Eq. 27 does vanish.

3.8 Magnetic Korteweg-Helmholtz Force Density

Thermodynamic techniques for determining the magnetization force density are analogous to those
outlined for the polarization force density in Sec. 3.7. 1In fact, if there were no free current density,
the magnetic field intensity, like the electric field intensity, would be irrotational. It would then
be possible to make a derivation that would be the complete analog of that for the polarization fgrce
density., However, in the following the force density due to free currents is included and hence H is
not irrotational.

The constitutive law takes the form

-ﬁ = -ﬁ(ctl,azn-ﬂ B ) or i E(O. G «o e ,H) (1)

with specific possibilities given in Table 3.7.1 with € =+ y, E > ﬁ and 3 -+ 3. A conservative electro-
mechanical subsystem is assembled mechanically, with no electrical excitations, so that it assumes a
configuration identical to the one for which the force density is required. By the definition of the
subsystem, this process requires no energy. Then, with the mechanical system fixed (the o's fixed),
electrical excitations are applied so as to establish the free currents in excitation coils and in the
medium itself, with the distribution that for which the force demnsity is required. This procedure is
formalized in Sec. 2.12 and a system schematic is shown in Fig. 2.14.2, As was shown in Sec. 2.14,
currents in excitation coils are conveniently regarded as part of the total distribution of free
current demsity. Hence, the volume of interest now includes all of the region permeated by the mag-
netic field.

Now, with the electrical excitations established, a statement of conservation of energy, with
the electrical excitations held fixed but the material undergoing an incremental displacement, is
Eq. 3.7.7, where now W is the magnetic energy density given from Eq. 2.14.10 by

>

> > >
W= L H(0y 0y +#0 , B )+ 6B (2)

The following steps, leading to a dedugtion of the force density, are analogous to those taken
in Sec. 3.7. The link between the o's and 6§ 1s given by Eq. 3.7.5. What is the connection between
Jf and 887

Actually, it is a link between the flux linkage and E that 1s appropriate. If the medium is to
both support a free current density and be conservative, the material must be idealized as having an
infinite conductivity. This means that any open material surface S (surface of fixed identity) must
link a constant flux:

5[ B.nda = 3)
One way to make this deduction is to use the integral form of Faraday's law for a contour C enclosing
g surface S of fixed identity, Eq. 2,7.3b, with v = vs. Because the medium is perfectly conducting,

E' = 0 and what remains of Fa;gday 8 law is Eq. 3. From the generalized Leibnitz rule,Eq. 2.6.4, Eq. 3
and the solenoidal nature of B require that

I sB-nda + §(‘ﬁ x 68)-dg = 0 4)
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Stokes's theorem, Eq. 2.6.3, converts the contour integral to a surface integral. Becauge this sgrface
is arbitrary, the sum of the integrands must vanish. If it is further recognized that 6B = V x 0A, then
it follows that

&k = SE x B (5)

Thus, there is established the link between material deformations and the alterations of the.field that
are required if the deformations are to be flux-conserving.

The change in W associated with the material deformation, called for in the conservation of energy
equation, Eq. 3.7.7, is in general

n
w=z M5 + W .3 (6)

4=1 %04 1 33
where, in view of Eq. 2,

%gj‘ = Hy _ )

It is the integral over the total volume V of 6W that is of interest. The integral of the last term
in Eq. 6 is

Ii;ﬂ . Bav = j 3. sdav = j -7 x ékav ®)
Vv v \'}

Because the fields decay to zero sufficiently rap1d1y+at infinity that the surface integral vanishes
and because Ampere's law, Eq. 2.3.23b, gives Vx H = Jf, integration of the last term in Eq. 8 by
parts gives

Ja—z - 6Rav = ] v (K x Fav + ] §k-v x Hav = f &k x H-7da + j 3. okav = J 6k-Jav 9)
v v s v v

v 9B

Substitution for‘GK from Eq. 5 finally gives an expression explicitly showing the E dependence:
[¥ . gav- [ @xdSav--[3 xbddv (10)
v ? v v

Finally, the energy conservation statement, Eq. 3.7.7, is written with W given by Eq. 6 and in turn,
804 given by Eq. 3.7.5 and the last term given by Eq. 10:

n
j[- 5 %‘é’— V- (88a,) - 3, x Beo€ + F-s€lav = 0 (11)
v i=] i

With the objective of writing the first term as a dot product with SE, the first term is inte-
grated by parts (exactly as in going from Eq. 3.7.13 to Eq. 3.7.14) to obtain

n .
j[ Zaiv-g%-——ff x B + F]-68av = 0 (12)
1=1 1

The integrand must be zero, not because the volume is arbitrary (it includes all of the system in-
volved in the electromechanics) but rather because the virtual displacements 6% are arbitrary in
their distribution. Hence, the force density is
n
F=3 x'ﬁ-ZavraW (13)
£ =1 1 %%

The special cases considered in Sec. 3.7 have analogs that similarly follow from Eq. 13. Because,
what 1s involved in deriving these forms involves the magnetization term in Eq. 13, and not the free
current force density, these expressions can be written down by direct analogy.
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Incompressible Media: The convenient form emphasizing the importance of regions where there are
property gradients is

> <> > n oW
F=J xB+ZI —— Vo (14)
£ 1=1 %

Incompressible and Electrically Linear: With a constitutive law

3 - s)
B = uo(l + xm)H uH

the force density of Eq. 13 reduces to
S A L a8

Electrically Linear with Magnetization Dependent on Mass Density Alone: With the constitutive law
in the form of Eq. 15, but Xy = Xp(P), where p 1s the mass density, the force density is the sum of
Eq. 14 and a magnetostrictive force density taking the form of the gradient of a pressure:

> _ > 1.2 i M .2

Relation to Kelvin Force Density: With the stipulation that W = W(0,,0 ---am,i) is a state
function, Eq. 13 becomes the sum of a Lorentz force density due to the free current density, the
Kelvin force density and the gradient of a pressure:

m
Pt xpde b+ vy Ao w-HB -1 o N (18)
£f7 0 o 2 "o 4=1 1 3ai

The discussion of Sec. 3.7 is as appropriate for understanding these various forms of the mag-
netic force density as it is for the electric force density.

3.9 Stress Tensors

Most of the force densities of concern in this text can be written as the divergence of a stress
tensor. The representation of forces in terms of stresses will be used over and over again in the
chapters which follow. This section is intended to give a brief summary of the differential and integral
properties of the stress tensor.

Suppose that the ith component of a force density can be written in the form

0Ty, e

F, = —=l; (F = V.T) @)

i ax

]

Here, the Einstein summation convection is applicable, so that because the j's appear twice in the
same term, they are to be summed from one to three. An alternative notation, in parentheses, re-
presents the same operation in vector notation. Much of the convenience of recognizing the stress
tensor representation of a force density comes from then being able to convert an integration of the
force density over a volume to an integration of the stress tensor over a surface enclosing the volume.
This generalization of Gauss' theorem is easily shown by fixing attention on the ith component (think
of i as given) and defining a vector such that

-> > > ->
Gi = Tilil + Tiziz + T1313 (2)

Then the right-hand side of Eq. 1 is simply the divergence of 3&. GCauss' theorem then shows that

i i
v \'f S

or, in index notation and using the definition of 31 from Eq. 2,

.IF av = [V-Eidv = § ¢, nda (3)

‘J;FidV = 2T1jnjda (4)

This tensor form of Gauss' theorem is the integral counterpart of Eq. 1. Physically, Eq. 4 states that
an alternative to integrating the force density in some Cartesian direction over the volume V is an
integration of the integrand on the right over a surface completely enclosing that volume V. The
integrand of the surface integral can therefore be interpreted as a force/unit area acting on the
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enclosing surface in the ith direction. To distinguish it
from a surface force density, it will be referred to as
the "traction." It does not act on a physical surface
and has physical significance only when integrated over

a closed surface. It is simply the force/unit area that
must be Integrated over the entire surface to find the
net force due to the volume force density

L= Ty Tedd ®

In vector notation and in terms of the traction T, Eq. 4
is written as

ﬁdv = § F.nda (6)
v S

T

Figure 3.9.1 shows the general relationship of the traction Fig. 3.9.1
and normal vector. The traction can act in an arbitrary R
direction relative to the surface.

Schematic view of volume V
enclosed by surface S, showing trac-
tion acting on elements of surface.

To develop a physical interpretation of the stress
tensor components, it is helpful to consider a particular volume V and surface S with surfaces having
normals in the Cartesian coordinate directions. The cube shown in Fig. 3.9.2 is such a volume. Suppose
that interest is in determining the net force on the cube
in the x direction, from Eq. 4. The required surface
integration can then be broken into separate integrations y
over each of the cube's surfaces. For the integration on
the right face, the normal vector has only an x component,
so the only contribution to that surface integration is
from Ty,. Similarly, on the left surface, the normal
vector is in the -x direction, and the integral over that
surface 1s of -Tyyx. The minus sign is represented by
directing the stress arrow in the minus x direction in
Fig. 3.9.2. On the top and bottom surfaces, the normal
vector is in the y direction, and the integration is of’
plus and minus Txy+ Similarly, on the front and back
surfaces, the only terms contributing to the traction
are Ty,. The stress tensor components represent normal
stregsses if the indices are equal, and shear stresses if
they are unequal. In either case, the stress component
acting in the ith direction on a surface having its
normal in the jth direction is Tij.

Orthogonal compopents are a familiar way of
representing a vector F. In the coordinate system
(x1,x2,x3) the components are denoted by Fy. What is Fig. 3.9.2
meant by a vector is implicit to how these components U
decompose into the components of the vector expressed
in a second orthogonal coordinate system (x',xé.xé)
pictured in Fig. 3.9.3. The two coordinate systeins are related by the transformation

Stress components acting on
cube in the x direction.

a 1 ]
, *x
b " NS L E:; = a8 @)

where aye is the cosine of the angle between the xﬂ axis and the Xy axis.

A component of the vector in the primed frame in the ith direction is then given by

Fi = aiij ’ (8)

N <>
For example, suppose that 1 = 1. Then, Eq. 8 gives the x! component of F' as the projections of the
components in the x1, x7, X3 directions onto the x; direction. Equation 8 summarizes how a vector
transforms from one coordinate system onto another, and could be used to define what is meant by a
"vector."

Similarly, the components of a tensor transform from the unprimed to the primed coordinate system
in a way that can be used to define what is meant by a "temsor." To deduce the transformation, begin
with Eq. 8 using the divergence of a stress tensor to represent each of the force densities (Eq. 1:
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oT} oT
ik y 4 (9)

—— 2 8
axi ij sz

Now, 1if use is ma&e of the chain rule for dif-
ferentiation, and Eq. 7, it follows that

8Ty, . 3Tyy Oy . 3T, o o)
Toxp T *43 Toxy Ox, 13%k4 oxy

Thus, the tensor transformation follows as

Tl

1k = 213%keT30 an

Useful conditions on the direction
cosines ajs are obtained by recognizing that
the transformation from the primed frame to
the unprimed frame, given generally by

Fj = bjiFi (12)

involves the same direction cosines, because

bﬁi’ defined as the c?sine of the angle between X3 Fig. 3.9.3. Unprimed and primed coordinate
t

e x4 axis and the x% axis, is equal to ajjq. systems. The geometric significance

Thus, Eqs. 12 and 8 tOgether show that of the direction cosine a3 is shown.
- - 1
Fi = 2% = anctudy a3

and it follows that the direction cosines satisfy the condition that

a8k = i a4
where the Kronecker delta function 61k by definition takes the values
1 1=k
§.. = (15)
ik o 14xk

Finally, suppose that a total torque rather than a total force is to be computed. By way of
analogy to Eq. 6, is there a way in which the integration of the torque density can be converted to
an integration over the enclosing surface? With respect to the origin, the total torque on material
within the volume V is

?=I?xﬁv (16)

v

> >
where r is the vector distance from the origin. With F given as the divergence of a stress tensor,
Eq. 1, and provided that T is symmetric (Tij = Tji), the tensor form of Gauss' theorem can be used
to show that

+,
T = § T x (f.n)da (17)
S

The net torque is the integral over the enclosing surface of a surface torque density : x T (see
Problem 3.9.1).

3.10 Electromechanical Stress Tensors

The objectives in this section are to illustrate how the stress tensor associated with any one
of the force densities in Secs. 3.7 and 3.8 is determined, and to summarize the stress tensors for

future reference.

The ith component of the Korteweg-Helmholtz force density, Eq. 3.7.16, written using Gauss' law
to eliminate pg, is
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oD m o0
3 W__k_ 3
1= E BxJ + 2: aak axy Bxi [ k aa ] (1)

The goal in the following manipulations is to express this equation in the form of a tensor ,divergence
(in the form of Eq. 3.9.1). The second term can be replaced by Eq. 3.7.26. Also, because E is irrota-
tional, 3E; /BXj anlaxi and hence Eq. 1 becomes

3E
9D, _ 3 oW
Fy = Eg 55+ 5— 3 (W - ED,) +D L Z T

(2)
5 9%y 39y T B K :

With the first and third terms combined and the Kronecker delta function 61j introduced (see
Eq. 3.9.15),

9 oW
F =5 j[EDj+6j(W ED—Zakak)] (3)

It follows from a comparison of Eqs. 2 and 3.9.1 that the required stress tensor is

' oW
Tij = EiDj - 6 (W +k21ak 3& =) (4)

where the coenergy density, W', is defined by Eq. 2.13.11.

Table 3.10.1 gives a summary of this and other stress tensors together with the associated force
densities. It is essential that a consistent pailr be used.

Table 3.10.1. Summary of force densities and associated stress tensors.

Equation Force density _ Stress tensors
S~ m W _ ' W
3.7.16 F=pcE+ %, ——auk Vo, - v[k 2,0 aa ] Tij = EiDj - 5ij w +kzl k o =)
3.8.13 F=73 x"+I>I:l awv v[ W T,, =HB, - 8§ (1'+): =)
o f k=1 do k&1% Ba ij 173 1j k&1% aa
Incompressible media
T = L '
3.7.19 F =pE+ k§l auk Vak le = EiDj - Gijw
> _ > o 3w '
3.8.14 F=J xB+ k;l auk Voak Tij = H]._Bj - 5ijw
Incompressibie and electrically linear: D= ef,f = uﬁ
> _ > 1 .2 - _E
3.7.22 F = PeE - 5 E“Ve Tij e:EiEj 3 6ijEkEk
> + > 1.2 = -4
3.8.14 F=J x3-38W Tyy = VBiHy =3 g0t
Electrically linear, € and |y dependent on mass density p only
F oo Llg2 1 %€ g2 - _€ 8 3e
3.7.24 F=pckE- 7 E“Ve + V(2 P B0 E<) Tij = eEiEj S, jE Ek(l € Bp)
2 _ 2 > 1.2 _
3.8.17 F= Jf X B - 3 EVu + V( o} ap H ) Tij = uHi 2 inka(l
Kelvin force density and stress tensor
-> > > 1
3.6.5 F = p:E + P-VE Tij =EDy -3 (SijE:oEkEk
- > - -1
3.5.12 F=Jpxul+uflvi Tyy = ByBy - 5 Oy uoB Ry
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The stress tensor makes it possible to compute the total force -on an object by integrating over
an enclosing surface S in accordance with Eq. 3.9.6. For an isolated object in free space, this force
is the same regardless of the particular force density used. If the force is considered as the integral
of the force density over the volume of the object, this fact is by no means obvious. But, note that in
free space the stress tensors of Table 3.10.1 all agree, Because the enclosing surface S is in this
free space region, the same total force will result from integrating Eq. 3.9.6 regardless of the force
density associated with the stress tensor.

3.11 Surface Force Density

In many systems, the electric or magnetic force density is concentrated in a thin layer, usually
comprising the interface between two regions. If the thickness of this layer is small compared to the
dimensions of the adjacent regions and other lengths of interest, then the force per unit area on the
interface may be used to describe the layer. An interfacial section is enclosed by the incremental
volume of thickness A and area A = §x8y, shown in Fig. 3.11.1. The surface force density is defined
as a force per unit area of the interface in a limit in which first A and then A approach zero. The
integration of the electric force density throughout the control volume is conveniently carried out
using the appropriate stress tenmsor Tij integrated over the enclosing surface. With n defined as the
unit normal to the interface and in the unit normal to the control surface, the surface force density is

+
> - 0 -»>
s _lm1l [ 3 03 >, lml >
T = A0 A § T 1ﬁda = ﬂ T H n + A0 A § [ _ T-I;dvdl (L)
A0 c’o

Integration 1is divided+into tyo parts. The first is the contribution from the surfaces external to the
layer, having normals n and ~-n, respectively. The second accounts for the "edges" of the volume where
the surface cuts through the double layer. If fields within the layer are of the same order as those
outside, contributions of the second integral vanish as A - 0. In electroquasistatic systems, the
double layer presents a case where the internal fields are sufficiently intense that the second term
not only makes a.contribution but one that can dominate the first term. The remainder of this section
is devoted to converting this contribution to a more useful form.

The distance normal to the interface is y, with (y,£) orthogonal coordinates in the local inter~
- facial plane, as shown in Fig. 3.11.1. In the absence of a double layer, the electric field is of the
same order of magnitude throughout, and hence in the limit A - 0, the second term in Eq. 1 becomes
negligible compared to the first. With the double layer, the stress contributions from the edges of
the control volume are of the same order as those from the exterior surfaces.

As discussed in Sec. 2.10, the tangential electric field suffers a discontinuity through the
double layer. However, the tangential field within the layer is of the same order as the external
field. Because the thickness A over which the interior stresses act is much smaller than the linear
dimensions 6& and Su, the internal stress contributions to the integrations around the periphery of
the control volume are ignorable unless the double-layer charges are themselves responsible for a sub-
stantially larger internal field than external field. This double-layer-generated field is directed
normal to the interface and dominates in determining the interior stresses. The stress taken now as
represented by Eq. 3.7.19b of Table 3.10.1 is

T 5, W' (2)

13 = EiPy 7 Oy
where, in the case of a linearly polarized dielectric, the coenergy density W' is simply €E2/2. Stress
components assoclated with the dominant field in the double layer interior are essentially

T,, > T > =W

EE np (3)
Tij+0; 143
The traction acting on the periphery of the control volume is therefore approximately
" o e wad =o1

. B - \J -
I _ T ndv J ) W'dv a = Y 4)

The normal vector Iﬁ can be written as hgkﬁk, so that Eq. 1 becomes

->
F4 2> _lim1l >
T= ﬂ T ﬂ n - A0 A }CyEnxﬁz

In the limit A*0, the contour integral in Eq. 5 need only be evaluated to first order in 6&-8u.
Expansion about the origin, denoted by the subscript o, gives an approximate expression for the integral
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Fig. 3.11.1

(a) Volume enclosing section of
interface. Thickness A is suf-
ficient to include double layer
but small compared to linear
dimensions of A. (b) Cross-
sectional view of interface
showing relation of radius of
curvature R to n and dX.

that becomes exact in the limit. The contour C is taken as rectangular with edges parallel to the

(E,u) axes. The segment of length Sy at £ = 6£/2 has -nxde = su(@,. + % 6£/R.) and gives a contribu-
S £ o 1

tion to the contour integral

frg, s, 44, o

The three additional sides of the rectangular contour give similar contributions, so that alto-
gether,

->
9y n
-1lim 1 >+ lim _1 “TE, 8Elfr . o 8t
20 A ?cYE“El ssemo 5E5 [{Veo * Toelo PR * R, 2 } ou
oY n 3y n
—E1 SELY -0 8¢ _'E; Su o Su
+{[YE]O [BE o 2 }{ IE, + Rl 2 }611 * {[YE]O + [au ]o 2 }{Iu +-R-2_ 2 }BE

o, - G, 2, + 2 e
)

Here, R. and R2 are radii of curvature for the interface, reckoned in the orthogonal planes defined
respect}vely by the normal and £ and the normal and u. Note that the sign of each curvature term is
taken as positive if the center of curvature is on the side of the interface toward which @ is
directed. The surface force density associated with surface tension takes this same form. However,
the convention used in Chap. 7 is with the radii of curvature the negatives of R; and Ry. With the
understanding that R; and Ry are radii of curvature taken as positive if the center of curvature is on
the side of the interface out of which @ 1s directed, Eqs. 1, 4, and 7 give the surface force density,
with the double-layer contribution represented by the function vy,

-> > 1 1
T=0%] -K-nYE[§+§-2—] + Vovgp (8)
where
i
Y, E w'dv
E 0~

It is shown in Sec. 7.6 that the second term in Eq. 8 can also be expressed as —YE(V-;);.

The double layer surface force density is exemplified in Chap. 10.
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3.12 Observations

The force densities and associated stress tensors of Table 3.10.1 are of two origins. The Kelvin
force densities, the last two in the table, come from a microscopic picture of particles and dipoles
subject to electric or magnetic forces which, through the agent of a kinetic equilibrium, are passed
along to the ponderable continuum. The Korteweg-Helmholz force densities, all of the others in the
table, are based on an energy conservation principle. The connection between micro and macro fields,
needed to apply this principle, is made using electrical measurements of constitutive laws to inter-
relate the macroscopic fields % and E or B and H.

The arguments *underlying each type of force density envoke certain assumptions which point to
possible inadequacies. The Kelvin force densities picture the force acting on each dipole and each
point charge in isolation and this force as being that transmitted to the ponderable media. This does
not allow for the possibility that the micro fields of one dipole contribute to the force on a neigh-
boring dipole.

This shortcoming is obviated by the energy method, which is based on a statement of energy con-
servation for an electromechanical subsystem. The resulting Korteweg-Helmholtz force densities are
of course also restricted. On the one hand, they are more broadly applicable than might be concluded
from the derivations. For example, the MQS continuum is viewed as "perfectly conducting," but the
free current force demsity is certainly applicable in cases where the conductivity is finite. This is
evident from its agreement with the Lorentz force density of Sec. 3.1, because the later model in-
cludes a finite mobility and hence electrical dissipation.

One way to derive a force density without ambiguity as to the validity of the result in noncon-
servative systems is to replace statements of energy conservation with those of power flow. 2 However,
the principle of virtual power requires information beyond that required by the principle of virtual
work used here. In addition to the constitutive laws relating the macroscopic field variables is the
requirement for the power flux density, which must either be assumed or measured.

Underlying all of the discussions in this chapter has been the presumption that a clear distinc-
tion can be made between electric or magnetic force densities and those of other origins. This is
tantamount to being able to isolate electromagnetic energy storage from other forms of energy storage.
Piezoelectric coupling is an example where it is not fruitful to make this distinction. In that area,
the stress and force density generally represent combined electric and mechanical electromechanical
effects.

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. Inc., New York, 1941, pp. 137-159.

2. P. Penfield, Jr., and H. H. Haus, Electrodynamics of Moving Media, The M.I.T. Press, Cambridge,
Massachusetts, 1967, pp. 35-40.
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Problems for Chapter 3

For Section 3.3:

Prob. 3.3.1 In writing Eq. 3.2.3, the inertia of the charge carriers is ignored. Add inertial terms
to the equations, assume that the magnetic field is zero and consider an imposed electric field E =

Re £ exp(jwt). Show that the effects of inertia are negligible if w << V,. For copper, the electron
mobility is about 3 x 10~3 m2/volt sec, while q_/m_ = 1.76 x 1011 mzlsec2 volt. What must the frequency
be to make the electron inertia significant? -

For Section 3.5:

Prob. 3.5.1 For the system of Probs. 2.11.1 and 2.13.1,

(2) Show that the reciprocity condition requires that Cpj = Cj,.

(b) Find the electrical forces (flsfz) in terms of(vl,vz,El,Ez) that tend to displace the movable
plate in the directions (&;,&;,) respectively.

Prob. 3.5.2 1In Fig. 3.6.1, a dielectric slab is pictured as being pulled upward between plane parallel

electrodes from a dielectric fluid having the same permittivity as the slab.

(a) What is the total coenergy, w'(v,£)? (Ignore fringing fields.)

(b) Use the force-energy relation, Eq. 3.5.9,to find the polarization force tending to make the slab
rise.

Prob. 3.5.3 Determine the electrical force tending to increase the displacement & of the saturable
dielectric material of Prob. 2.13.2.

Prob. 3.5.4 For the MQS configuration described in Probs. 2.12.1 and 2.14.1,

(a) Find the radial surface force density '1‘r by using the coenergy function to obtain Tr(il,iz,g).

(b) Compare the operations necessary to obtain Tr(ll,lz,g) using the energy function w to those
using w'. Even though the coenergy formulation is more convenient for this problem, the energy
function is more convenient if one or more flux linkages are constrained.

(c) If the inner coil is shorted at a time when its flux linkage is 12 = 0, what is Tr(ll,E)?

For Section 3.6:

Prob. 3.6.1 1In a fluid at rest, external force densities are held in equilibrium by the gradient
of the fluid pressuge p. Hence, force equilibrium for each incremental volume of the fluid subject
to a force density F is represented by

Vp = ¥

Suppose that the bottom of the dielectric slab pictured in Fig._3.6.1 is well above the lower edges

of the electrodes, so that the fringing field, and hence the VE“, is confined to the liquid dielectric.
Then there is no Kelvin force density acting on the slab, and the force density of Eq. 3.6.7 prevails in
the liquid. Use Eq. 3.6.7 in Eq. 3.6.1 and integrate from the exterior free surface to the bottom of the
slab to find the fluid pressure acting on the bottom of the slab. Show that this pressure, acting over
the bottom of the slab, gives a net upward force that is consistent with the result of Prob. 3.5.2.

Prob. 3.6.2 Use arguments similar to those leading to Eq. 3.6.4 to show that the torque on an electric
dipole is

-> b d ->

T=PxE

Based on arguments similar to those used in deducing Eq. 3.6.12 from Eq. 3.6.5, argue that the torque
on a magnetic dipole is

- >
T = uom x H

For Section 3.7:

Prob. 3.7.1 Show that the last paragraph in Sec. 3.7 is correct.
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For Section 3.9:

-)
Prob. 3.9.1 One way to show that Eq. 3.9.17 can be used to compute T is to write Eq., 3.9.16 in
Cartesian coordinates and use the symmetry of the stress tensor to bring the components of T inside

the spatial derivatives. Carry out these steps and then use the temnsor form of Gauss' theorem to
obtain Eq. 3.9.17.

For Section 3.10:

Prob. 3.10.1 For certain purposes, the electric force density in an incompressible liquid with no
free charge density might be represented as

F = %EV(E-E)

where € is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the grad-
ient of a pressure and that the accompanying stress components are

T,. = €E.E,
ij i3

Prob. 3.10.2 A fluid has the electrical constitutive law

> > > > >
D= O,E + 0,(E*E)E

1 2
It is inhomogeneous, so that 0 and 09 are functions of the spatial coordinates. There is no free
charge density and the fluid can be assumed incompressible. Integrate the conservation of coenergy
equations to show that the coenergy density is

o
W' = %afﬁ-ﬁ + TZ (E-E}z

> >

Find the force demsity F in terms of E, 0; and 03. Find the stress tensor Ti.agssociated with this
force density. Prove that F can be written in the form F= *VE + V7, where "P is the polarization
density.

Prob. 3.10.1 For certain purposes, the electrical force density in an incompressible liquid with no

" free charge density might be represented as

i~’=%sv (E-E)

where € is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the
gradient of a pressure, and that the accompanying stress components are

Tij = EEiEj

Prob. 3.10.2 A fluid has the electrical constitutive law
- > > > >
D= (€°+a1)E + uz(E-E)E
It is inhomogeneous, so that o, and o, are functions of the spatial coordinates. There is no free
charge density and the fluid c3n be aSsumed incompressible. Integrate the conservation of coenergy
equations to show that the coenergy density is
o
1 > > 2,2 > 2
T - = . —_ .
W F(E;FOPEE + - (E*E)
>
Find the force density F in terms of E, G, and 0y, Find the stress tensor Tij associated with
this force density. Prove that F can be written in the form
_f =_1;-V_ﬁ + Vm

>
where P is the polarization demsity.
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Prob. 3.10.3 Fig. P3.10.3 shows a circular cylindrical tube of inmer -
radius a into which a second tube of outer radius b projects half way.
On top of this inner tube is a "blob" of liquid metal (shown inside the
broken-line box) having an arbitrary shape, but having a base radius
equal to that of the inner tube. The outer and inner tubes, as well as %
the blob, are all essentially perfectly conducting on the time scale of
interest. When t=0 , there are no magnetic fields. When t=0*, the outer
tube is used to produce a magnetic flux which has density BoIz a distance
£ >> a above the end of the inner tube. What is the magnetic flux dens- 1-
ity over the cross section of the annulus between tubes a distance £
(2 >> a) below the end of the inner tube? Sketch the distribution of
surface current-on the perfect conductors (outer and inner tubes and
blob), indicating the relative densities. Use qualitative arguments L
to state whether the vertical magnetic force on the blob acts upward
or downward. Use the stress tensor to find the magnetic force acting
on the blob in the z direction. This expression should be exact if

£ >> a, and be written in terms of a, b, By and the permeability of
free space y,. )

Fig. P3.10.3

Prob. 3.10.4 The mechanical configuration is as in Prob. 3.10.3. But, instead of the magnetic field,
an electric field is produced by making the outer cylinder have the potential V, relative to the inner
one. Sketch the distribution of the electric field, and give qualitative arguments as to whether the
electrical force on the blob is upward or downward. What is the electric field in the annulus at
points well removed from the tip of the inner cylinder? Use the electric stress tensor to determine
the z-directed electric force on the blob.

>
Prob. 3.10.5 1In an EQS system with polarization, the force density is EQE.F =p E + P¢E, where P
is the polarization charge. Nevertheless, this force density can be used to correctly determine the
total force on an object isolated in free space. The proof follows from the argument given in the
paragraph following Eq. 3.10.4. Show that the stress tensor associated with this force density is

1
Tij = eoEiEj - ZaionEkEk
Show that the predicted total force will agree with that found by any of the force densities in
Table 3.10.1.

Prob. 3.10.6 Given the force density of Eq. 3.8.13, show that the stress tensor given for this
force density in Table 3.10.1 is correct. It proves helpful to first show that

oH oH

2y o« Bl = (—i 3
[(VxH) x B]i = Gy ax.) Bj

j i

Prob. 3.10.7 Given the Kelvin force density, Eq. 3.5.12, derive the consistent stress tensor of
Table 3.10.1. Note the vector identity given in Prob. 3.10.6.

Prob. 3.10.8 Total forces on objects can sometimes be found by the energy method "ignoring" fringing
fields and yet obtaining results that are "exact." This is because the change in total energy caused
by a virtual displacement leaves the fringing field unaltered. There is a "theorem" than any config-
uration that can be described in this way by an energy method can also be-described by integrating
the stress tensor over an appropriately defined surface. Use Eqs. 3.7.22 of Table 3.10.1 to find
the force derived in Prob. 2.13.2. “gfﬁ .

t

For Section 3.11:

Prob. 3.11.1 An alternative to the derivation represented by Eq. 3.11.7 comes from exploiting an
integral theorem that is analogous to Stokes's theorem.

1. C. E. Weatherburn, Advanced Vector Analysis, G. Bell and Sons, Ltd., London, 1966, p. 126.
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Prob. 3.11.1 (continued)

{ Vxdl = [ [27-V - 7 (V) Jda )
c 5

>
Here VV is a dyadic operator defined in Cartesian coordinates such that, "premultiplied" by'ﬁ, it has
the components

[ov_ av, v |
[nx ny nz:I ox dy 2z
vy o
ox Jy 9z
v v v
2z —_z -z
ox oy oz
Hence,
[ oV v_ ]
> & e X A -2
nevv ix N, 9% +ny 9% + 0y 9%
ov v v ]
->
i |n, X, n _Z_ ,n __2 3
lyxay+>’ay+zay_ (3)
v -
I n Ezz +n E_X +n EXE
z | X 3z Y 3z Z 3z
-> >
Show that if V = YEn, it follows that
- > > > >
- & Ygn X a = J [—nYE(V-n) - n(n-VyE) + VYE]da (4)

c S

Thus if it is recognized that

1

> > -> 1
nYE Ven = m(E(Rl + R)

(see Sec. 7.6) and that
- > >
VsYg = Vyg - n(aVyp)

then Eq. 3.11.7 follows.

Prob. 3.11.2 A force density 1s concentrated in interfacial regions where it can be represented by
a surface force density T. The total force on any material supporting this surface force density is
then found by integrating the surface force density over the surface upon which it acts:

_f=.j-'fda (D)

s
Suppose that the surface S is closed and that the external stress contributions to the surface force
density are negligible, so that it is given by the second and third terms in Eq. 3.11.8. Use the
integral theorem given in Prob. 3.11.1 to show that the resulting net force is zero.
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Electromechanical Kinematics:
Energy-Conversion Models and
Processes




4.1 Objectives

Beginning with this chapter, progressively more electromechanical "degrees of freedom" are consid-
ered. The subject of electromechanical kinematics is first because then the relative mechanical motions
as well as the paths and trajectories of charges and currents are known from the outset. - The mechanics
involves rigid-body translations or rotations, while charges and currents might be constrained by elec-
trodes and wires. Processes in this category can be represented by lumped-parameter models, The field
approach of this chapter provides the basis for conceptualizing and interrelating such interactions,
for appreciating energy conversion limitations, and for deriving the parameters used in lumped-param-
eter models.

The representation of total forces and torques in terms of Maxwell stresses is developed in Sec. 4.2,
followed in Sec. 4.3 by a classification of common types of energy converters, based on the fundamental
field interactions. An extension of the transfer relations found in Secs. 2.16 and 2.19 to describe
regions occupied by specified distributions of charge and current is made in Secs. 4.5 and 4.8.. Although
this chapter is concerned with modeling specific interactions, it is the technique for representing
these systems that is the message. Section 4.4 exemplifies the notation and strategy underlying the
methodical formulation of complex systems in not only this chapter, but those to follow. Of the remain-
ing sections, only one does not pertain to a specific class of devices. Section 4.12 lends some for-
mality to the philosophy underlying quasi-one-dimensional models. Such approximations retain nonlinear
interactions and are illustrated in Secs. 4,13 and 4.14. By contrast, Secs. 4.4, 4.6 - 4.9 and 4.11
are concerned with field models that are naturally linear, or are linearized. Formally, the linearized
model, in which products of amplitudes are ignored compared to terms that are linear in the amplitudes,
is the zero-order approximation in an amplitude-parameter expansion for the exact solution. Similarly,
the quasi-one-dimensional model is a zero-order approximation to an expansion in a space-rate parameter.

The analogies that exist between electric and magnetic field interactions is a theme throughout
the chapter. This is clear in Sec. 4.3. But a thoughtful comparison of the characteristics of the
d-c magnetic machine, considered in more detail in Sec. 4.10, with those of the Van de Graaff machine in
Sec. 4.14 is worth while.

An overview of the chapter is given in Sec. 4.15.

4,2 Stress, Force and Torque in Periodic Systems

The configurations shown in Fig. 4.2.1 typify devices exploiting force or torque producing inter-
actions between spatially periodic excitations on a "stator" structure and spatially periodic con-
strained or induced sources on a "rotor." In each of these, the interaction is across an air gap, a
region having the electromagnetic characteristics of free space. The planar configuration of
Fig. 4.2.1a might represent a linear motor or generator with the relevant force between "stator" (above)
and "rotor" (below) z-directed, or it might be a developed model for the cylindrical geometry of
Fig. 4.2.1c! (appropriate in the limit where the air-gap spacing is small compared to the radius of the
rotor). Figure 4.2.1b shows the cross section of either a planar "slab" with the interaction across
two air gaps, or a cylindrical structure having an annular air gap. In either case the relevant net
force is z-directed.

. lzz“. o

A ——

Fig. 4.2.1. Typical "air-gap" configurations in which a force or torque on a rigid "rotor" results
from spatially periodic sources interacting with spatially periodic excitations on a rigid

"gstator." Because of the periodicity, the force or torque can be represented in terms of the

electric or magnetic stress acting at the air-gap surfaces Sy: (a) planar geometry or devel-
oped model; (b) planar or cylindrical beam; (c) cylindrical rotor.
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The total force acting in the z-direction on the "rotor" of Fig. 4.2.1la is conveniently determined
by integrating the Maxwell stress, in accordance with Eq. 3.9.4, over the surface S enclosing a portion
of the rotor having one fundamental length of periodicity. The portion S} of this surface is at an
arbitrary plane x = constant in the air gap. Because the fields and hence the stress components Tz
are periodic in z, the contributions to the integration of the stress over surfaces S and S; cancel
regardless of where S is located in the air gap. The contribution to the integration over S3 can
vanish for several reasons. The rofor may be perfectly permeable, of infinite permittivity or in-
finitely conducting, in which case H or E is zero on S3. In Cartesian coordinates, the fields associ-
ated with excitations that are periodic in the z-direction decay in the x direction and if S3 is well
removed from the air gap, the contribution on S3 asymptotically vanishes. Yet another possibility is
that the planar model really is a.developed model for the cylindrical configuration of Fig. 4.2.1c,
in which case the surface S is "pie" shaped and the section S3 does not exist. In any of these cases,
the 2-~directed force acting on the rotor of Fig. 4.2.1la is simply

; =A<r>
z ZX
zS]_

where A is the y-z area of the air gap and Tzx is the magnetic or electric stress tensor, as the case
may be. The brackets indicate a spatial average is taken, as discussed in Sec. 2.15.

1)

There is no question as to which of the stress tensors in Table 3.10.1 should be used. As dis~
cussed in Sec. 3.10, in the free-space region of the air gap, all of the magnetic and all of the elec-
tric stress tensors agree.

If Fig. 4.2.1b represents a planar layer, then there are stress contributions from surfaces §;
and S3, and the net force acting on a section of the layer having area A in the y-z plane is

z zX zX /
z Z

51
On the other hand, if the "rotor" in that figure is a cylinder, then the net force takes the form of
Eq. 1, with A the area of an enclosing cylindrical surface and appropriate shear stress Tzx * T,
evaluated on that surface.

(2)

1
S3

In computing the net torque on the rotor of Fig. 4.2.1c, it is tempting to multiply the space-
average shear stress <?9€>6 by the lever arm R and the area A of a cylindrical enclosing surface
having radius R:

T=RA<[I>
z or, 0
51

Because the stress is symmetric, this notion is rigorous, as can be seen by applying Eq. 3.9.16 to the
surface S; of Fig. 4.2.lc.

3)

4.3 Classification of Devices and Interactions

Based on the developed or linear air-gap configuration of Fig. 4.2.l1a, this section begins with
illustrative simplified examples of "synchronous" and "d-c' magnetic and electric interactions. Then,
a general discussion is given of the various classes of machines, some having lumped-parameter models
developed in later sections of this chapter and in the problems.

In parallel, consider first the electric and magnetic configurations of Part 1 of Table 4.3.1.
Even though the devices might in fact be developed or "linear," the terms stator and rotor will be
used to refer to the elements on respective sides of the air gap. The magnetic field is produced by
spatially sinusoidal distributions of current modeled as current sheets on the surfaces of the stator
and rotor. Because the stator and rotor are modeled as infinitely permeable, H = 0 outside the air
gap and the surface currents "terminate" the tangential fields (Eq. 2.10.21). The electric field is
produced by electrodes constrained to have spatially periodic potentials. Thus, boundary conditions
at the air-gap boundaries (s) and (r) are '

Hi = Re[K® exp(~-jkz)] 9® = Re[V® exp(-jkz)]
H; = Re[-ir exp(~jkz)] of = R.e[;lr exp(-jkz)] @

where (is,i?) and (ﬁs’gr) are given complex functions of time. (Complex notation 1s introduced in
Sec. 2.15.) '

With the surface S; taken as the rotor surface, (r), it follows from Eq. 4.2.1 and the average
theorem, Eq. 2.15.14, that the force on a section of the rotor having area A is
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Table 4.3.1. Basic configurations illustrating classes of electromechanical
interactions and devices. MQS and EQS systems respectively in
left and right columns.

4, stable

sources imposed on
moving member

T 3T
y U ks

«— generatorsle— motor —f
f———— 27k ———| fp——— 2 /k ————|

l. currents (potentials) con-
strained on both windings
(electrodes)

2.current (potential) con-
strained on "stator" and
permanent magnetization
(polarization) on “rotor"

3.current {potential) con-
strained on "stator" and

fluxl(chorge) constrained
on "rotor"

sources instantaneously
induced on nonuniform
moving member

4. current (potential) con-
strained on "stator" and
magnetization (polariza-
tion) induced on "rotor"
having saliency

5.current (potential) con-
strained on "stator" and
currents (charges) induced
on "rotor” having saliency
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£,=3 ReuOHx(Hz) =3 Rep H (-K") £, =3 Ree E (E) = 5 Ree E (FkV ) (2)

The gap transfer relations, Eq. (a) of Table 2.16.1, give the normal fluxes at (s) and (r) in terms of the
potentials there. In the magnetic case, H, = jk¥ and because of the boundary conditions, Eq. 1, these

relations become
r ] r 7 r ‘\‘s.W r b r - F -y
~g 1 K ~g 1 ~g
B H, -coth(kd) sInh (kD) || % €,E, ~coth(kd) st ||V
= ]Jok ~r = Eok 3)
~r —l _K ‘ ~r _l ~r
Yol sTan Gy oD ||| |55 STy cothld) ||¥

Subétitution of the normal flux densities at (r) expressed by Egs. 3 into Eqs. 2 gives the desired forces

Ap Ae

o Re[§R° (&)™) £, = 2s1nh(zkd)

z =~ Zsinh(kd) Re[3 (7°) () *] (4)

f

Note that the terms involving products of the individual rotor excitations do not contribute. (They are
imaginary and hence dropped in taking the real part.) Physically, this is expected because such terms
represent the rotor self-field interactioms.

Synchronous Interactions: Consider now systems
with the rotor excitations produced by windings or
electrodes that are fixed to the rotor. The coordinate
z' measures distance from a frame of reference moving
with the velocity U of the rotor, as sketched in
Fig. 4.3.1. Fixed and moving frame coordinates are
related in the figure. Perhaps through slip rings, the
rotor is excited by a current of angular frequency
Wy, in such a way that as viewed from the rotor there
is a current or potential distribution taking the
form of a traveling wave: Fig. 4.3.1. Rotor and stator reference

frames z' and z.

K = K:'; sinfw t - k(z' - 8)] Vi = -vz cos[w t - k(z' - 8)] (5)

On the stator, a similar arrangement of windings or electrodes, with excitations at the angular fre~-
quency Wg, .give the traveling waves:

s _ .8 _ s _ yS _

K = Ko sin [mst kz] A V° cos [wst kz] (6)
Because z' = z - Ut, Eqs. 5 and 6 can be written in terms of complex amplitudes:

~ J(w +kU)t - J (w_+kU) t

K = —sz e r ejks Vo= —V° e r ejkd

(7
~ jw_t ~ jw_t
%5 = -jK: o 8 Ve = V§ e 8

Substitution of these amplitudes into the respective force relations of Eq. 4 gives forces with
sinusoidal time dependences. The frequencies are in each case Wwg - W, - kU. Only if this frequency
is zero will these forces have time-average values. Division of the resulting frequency condition by
k shows that these time-average forces exist because, as viewed from the stator frame of reference, the
velocities of the traveling waves of field induced by stator and rotor sources are equal:

W Wy

ety ®

Usually, the rotor is d-c excited so that w, = 0 and the phase velocity of the stator traveling wave,
wg/k, is equal to the rotor velocity U. Under the synchronous condition, the substitution of Eqs. 7
into Eqs. 4 gives the forces as functions of the relative spatial phase k8 between traveling waves:
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Au K°kF A ve r
f =-h—sin kS £ =—Msin ké (9)
z 2sinh kd z 2sinh kd

The sketches of the stator and rotor excitations in Part 1 of Table 4.3.1 (at the instant t = 0)
show the relative distributions with 6 = A/4, and hence k§ = 2w(§/A) = m/2. According to Eqs. 9, it
is at this spatial phase that the greatest retarding force acts on the rotor. The observation is con-
sistent with what would be expected intuitively for the sketched distributions. Under the synchronous
conditions the relative distribution of stator and rotor field sources is invariant. The stator cur-
rent distribution gives rise to a normal flux density that peaks at the current null. This is the sta-
tor magnetic axis, indicated by the vertical arrow on the stator. This field interacts with the rotor
current to produce the time-average force in the -z direction. Stator and rotor magnetic axes tend to
line up. Similarly, in regions of positive and negative electrode potential there are positive and
negative surface charges (although not exactly in phase with the potential). Thus, the retarding elec-
tric force results from the attraction of neighboring opposite charges. The rotor and stator axes,
denoted by the vertical arrows, also tend to line up.

The classic forc ggt’torque) phase-angle diagram, the graphical representation of Eqs. 9,
is shown at the top of 4.,3.1. Angles of positive and negative force can respectively give motor )(
and generator operation. But, operation is generally restricted to the shaded regions because then
a change in relative phase, kS, results in a force that tends to return the rotor to its original angle.

Parts 2 and 3 of Table 4.3.1 illustrate other types of excitations that result in synchronous
interactions. In each of these, the rotor sources are "attached" to the rotor and hence the synchronous
condition of Eq. 8 reduces to wg/k = U. Each has a force with the same dependence on relative phase ké
illustrated by Eqs. 9.

Small machines having permanent magnet rotors are common, but electric analogues having permanent
polarization (Sec. 4.4) are not. By contrast, electric synchronous interactions between traveling waves
of charge and potential are common, whereas, devices making use of a trapped rotor flux are not. The
former, a kinematic model for electron beam devices, will be considered further in Sec. 4.6.

D-C Interactions: The family of magnetic devices called d-c machines has as an electric field
analogue devices of the Van de Graaff type. The configurations shown in Table 4.3.1, Part 1, can also
be used to illustrate this class of devices, provided the sketched current and potential distributions
are understood to be time-varying in amplitude but stationary in space. Currents are supplied to the
rotor windings through brushes and commutator segments in such a way that even though the rotor moves,
the rotor's relative current distribution is stationary. The stator current distribution is similarly
stationary in space and shifted by the distance §. The stationary distribution of rotor potential in
the electric analogue is an approximation to the potential associated with charge placed on a moving
belt at one fixed location and removed at another. Excitations therefore take the form

r

]

jkG]e—jkz = —Vz(t) cos k(z-6)

(10)

KF = Re[—:in> (t)e K8y dkz o ~K§(t)sin k(z-8) |V Re[—V:';(t)e

-jkz

K® = Re[-1K (t)]e s

-jkz

= -Kz(t) sin kz \s Re Vi(t)e = Vi(t) cos kz

Note that the complex amplitudes multiplying exp(-jkz), now arbitrary functions of time, are as required
to evaluate Eqs. 4. The resulting forces are in fact the same as given by Eqs. 9, provided it is under-
stood that (KS,'Kg) and (V§, VL) are now arbitrary real functions of time.

The magnetic version of the d-c machine is modeled in Sec. 4.10, while the Van de Graaff machine
is taken up in Sec. 4.14.

Synchronous Interactions with Instantaneously Induced Sources: Common examples of devices that
exploit instantaneously induced magnetization forces on a moving member are variable-reluctance or
salient-pole machines. Electric field members of this family of devices include variable-capacitance
machines. (By contrast with magnetic and electric "induction" interactions, naturally taken up in the
next two chapters, the rotor sources induced by the stator excitations move synchronously with the
material. Geometry rather than a rate process, such as magnetic diffusion or charge relaxation, is
involved.)

Linear or developed salient-~pole models are shown in Part 4 of Table 4.3.1., The rotor, which in
the magnetic case is perhaps highly magnetizable magnetically soft iromn, has surface saliencies. In
a two~pole rotating machine, the rotor represented by this model (with 2m/k the circumference of the
stator) could be a squashed cylinder protruding toward the stator at two positions and away from it at
two others. The conventional method for finding the magnetic force on the moving member is to use the
energy method of Sec. 3.5 and knowledge of the inductance or capacitance of the stator windings or
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electrodes. Because of the rotor saliency, the stator current or potential distribution
terminal relations clearly depend on the rotor posi- X

tion, and hence so also does the magnetic or electric
energy storage.

With the objective of fitting this type of in-
teraction into the field point of view, the develop-
ment is in terms of the magnetic interaction. Simili- 1 \
tude then makes it possible to apply the results to = T /g tamedg -~ -— 7 mnnnn NG -2
the polarization case. In the limit where the mate-
rial is highly magnetizable, H is excluded from the
rotor so that on the rotor surface the tangential
field vanishes. As a result, the magnetic traction
acts normal to the surface of the rotor. That is, in
a local Cartesian coordinate system on the rotor sur-—
face, having the axis n in the normal direction, any
of the stress tensors (Table 3.10.1) evaluated in Fig. 4.3.2.
free space next to the rotor surface give a traction

27/k

Traction %-H =T ; acts
nn

normal to rotor surface.

->

> > ->

T=fam=1_1 (11)

Although not convenient for mathematical derivations, the surface enclosing one periodicity length 2mw/k

of the rotor, shown in Fig. 4.3.2, helps in understandirg how the magnetic traction gives rise to a net

force on the rotor. The traction acting normal to the surface has a value Tnn = M HE/2 and hence is

positive. No matter what the excitation from the stator winding, it is clear that at positions (1), where

the slope of the stator surface is positive, the magnetic field tends to pull the rotor to the left while

at point (ii) the pull is to the right. It is the spatial phase relationship between the stator current

distribution and the rotor saliencies that makes one or the other of these forces dominant. It is clear,

for example, that if the rotor surface wavelength matched that of the stator current there could be no net

force. The z-directed traction acting at any given point would then be cancelled by that acting at a
point on the rotor surface a half-wavelength away.

In deriving the relation of the excitation and rotor geometry to the net force, the rotor surface
is taken as being at

x = -d + §(z,t) = -d + Re 2 e_j(Zk)(z_Ut) (12)

The rotor travels with the linear velocity U = w/k and hence its surface, with wavelength 7/k half that
of the stator excitation, moves in synchronism with the traveling wave of stator surface current:

j(wt-kz)-{y (13)

A surface, represented by F(x,y,z,t) = x +d - £ = 0, has a normal vector

-> A
K = Rek®e

e
1
Q
&
e

> VF X oz "z

BTV T T (14)

As a reminder that this is a familiar relation, the surface might be one of zero potential (F + &), with
7 the negative of the electric field intensity normalized so that it has unit magnitude. The condition
that there be no tangential field on the rotor surface is then

@ x ﬁ]y =0=H =-H %% at x = -d + & (15)

To match this boundary condition is in general difficult. In this section, it is assumed that £ is small,

so that Eq. 15 is evaluated approximately (to first order in &) at the "equilibrium" position of the

rotor surface, x = -d. With Hx evaluated at x = -d rather than at x = -d + £, the right-hand side of
Eq. 15 is already written to first order in &:

oH
z
Hy(x = -d +£) = Hy(x = -d) + 5= (x = ~d)¢ (16)
If it is further recognized that because H is irrotational, 9H,/3x = 9Hy/dz, then to first order in £,
Eq. 15 becomes a boundary condition to be evaluated at x = -d, defined as the position (r):
r _ 9 ,.r :
e an
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What must be used in evaluating Hx 1s the zero-order field. This is the field that would be found with
£ = 0, with the rotor presenting a planar surface to a gap excited on the stator side by the current
sheet given by Eq. 13. Thus, Eq. 17 takes the form

W= _ag_ [Reﬁ oJ (Wt-k2)p 2 —ZJk(z—Ut)]
Z

(18)
o :_z %[ﬁ;ej (wt-kaz) (ﬁ;)* o3 (mt—kz):l%[g o2Ak(z-UE) | g* erk(z—Ut)]

Because of the synchronism condition, w = kU, multiplying out this expression gives a term having the
same spatial frequency as the stator current and a term at three times that frequency:

i = aa [Rewkej(wt kz) | Re;’,;3ke3j (u)t—kz)]; ;’;k . %_ @5y, ;‘;Sk - %_ @@E (19)

Note that this expression takes the form H = -V¥, With the surface S; of Fig. 4.2.la taken as contiguous
with the stator, the desired space-average rotor force is

= A<‘i.‘z>.z = A<@0H:Reﬁsej(wt_kziz (20)

Note that the terms in Eq., 19 are written in the standard complex form, with the quantity in brackets
the magnetic potential ¥. The amplitudes at the stator and rotor surfaces (at s and r) are therefore
related by the transfer relation (Eqs. (a) of Table 2.16.1):

r r A
Y] 1 K
HoHy -coth(kd) =y || 3%
= 21
Mk (2D
AT ~1 o
ron finh(kd) coth (kd) ka

for components with dependence exp[j(wt - kz)] and

- - - ar -
1
uoH: -coth(3kd) 51oh (3kd) 0
= 1 3k (22)
u HE 1 coth(3ka) | |¥
i o's L sinh(3kd) 3k
J JL

for components with dependence exp 3j(wt - kz). The infinitely permeable material backing the stator
current sheet requires that the third harmonic tangential field at the stator in Eq. 22a vanish.

The normal flux density u Hx in Eq. 20 is a superposition of the components found using Eqs. 2la
and 22a, Because it multiplies E H§ on the right in these expressions need only be evaluated to zero
order in §. Thus, Hx is given by Eq. 21b with £ = 0, and hence @k' 0. The second term in Eq. 19 also
excites a field at the stator surface given by Eq. 22a. But, inserted into Eq. 20, this higher harmonic
gives no space-average contribution and hence can be dropped. Thys, Eq. 20 becomes

~ u k - 28, %2 - A -
- A<<e fu coth (k)R® + J%ﬁ— oJ (w-k2) Re[l(sej (wt kz)_|> (23)
einh” (kd) ~'z

The averaging theorem, Eq. 2.15.14, can now be applied to Eq. 23 to obtain the first of these relations:

uokA ~s 2,“;- _EokA s
£, = ——5—— Re| (K") 3¢ £, = Re| (k9°) jE (24)
2 4sinh®(kd) 4sinh® (kd)

The second expression pertains to the electric configuration of Part 4, Table 4.3.1, and has been obtained
by recognizing that, in terms of the magnetic and electric potentials, the airpgap fields are analogous.
The only difference is that in the magnetic case, the stator magnetic potential is KS/jk while in the
electric case, the stator electric potential is VS Hence, the electric time average force is found
(using the complete analogy discussed at the beginning of Sec. 2.16) by replacing Uy > €, and &S + jsz
in Eq. 24a to obtain Eq. 24b.
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As specific examples having the stator excitations and rotor position when t = 0 shown in Part 4
of Table 4.3.1, let

£ = Eo cos 2k[Ut - (z - §)] = ReEerjk6 exp[2ik(Ut - z)] (25)

and

K = Kz sin(wt-kz) = Re(-jKi) explj(wt-kz)] ve = Vi cos (wt-kz) = ReVi exp[j(wt-kz)] (26)

where Eo’ Ki and Vi are taken as real. Then, Eqs. 24 take the specific forms

—uok(Ki)zgoA —eok(kvi)ZEOA
£ o= -2 00 70 in(2kS) £ o=—9 9" O in(2kS) (27)

2 4sinh? (kd) Z  4einh?(kd)

The dependence of these forces on the spatial phase of stator excitations and rotor position,
sketched in Table 4.3.1, is typical of salient-pole synchronous-devices. That <Tz has twice the
periodicity in kS, obtained with the rotor excited directly by sources having the same periodicity as
the stator excitations, is a direct consequence of the induced nature of the magnetization or polariza-
tion. Because the surface traction is proportional to the square of the local field, the same force
is obtained if the rotor is shifted in relative position by 8§ = m/k. The [sinh(kd)]™ “ dependence of the
force on the gap dimension d results because the only excitation 'is on the stator. By contrast with
the synchronous interactions between excited stators and rotors [with (d) dependence sinh(kd)-1], here
there is a round-trip attenuation of the excitation field, first in reaching the rotor surface and then
in being reflected back to the stator.

0f the many configurations in the general family of "salient-pole' devices, two more are shown in
Part 5 of Table 4.3.1. The magnetic case is considered in the problems, while the electric one is
formally the same as if the rotor were perfectly polarizable. Hence it is also described by Egs. 24b
and 27b.

Practical devices make use of large amplitude saliency. One approach to obtaining an appropriate
model is developed in Secs. 4.12 and 4.13, where the variable capacitance machine is considered in more
detail.

4,4 Surface-Coupled Systems: A Permanent Polarization Synchronous Machine

With field sources modeled by surface charges or surface currents, it is natural to generalize the
approach taken in Sec. 4.3 to the description of a wide class of complex electromechanically kinematic
systems. The technique involves breaking the region of interest into source-free subregions that have
uniform properties and hence can be described by the transfer relations of Sec. 2.16. Sources are then
relegated to bouhdaries between subregions and are taken into account in the boundary conditions used to
splice fields together. It is the objective in this section to illustrate the systematic approach that
can be taken with such models by developing the lumped-parameter mechanical and electrical terminal
relations for the rotating machine shown in Fig. 4.4.1.

The rotor consists of a material having polarization density that is uniform and permanent:

-> _j (9-9 )
B=r (I cos(6-0) -1 sin(e - 0] = Rep (I, - 5Ipe t )

Field coordinates are (r,8) while 8_(t) is the rotor axis. Thus, the polarization density is
uniform and directed collinear with the rotor axis at the angle 6,.(t). The region between the rotor
(with radius R) and the stator (radius Ry) is an air gap. Stator electrodes shown in the figure have
respective potentials +v(t) and are imbedded in a dielectric having permittivity €g. - The length of
the device in the z direction,®, is considered large compared to the radial dimensions.

Within the rotor, there is no free charge density. Moreover, because the permanent polarization
is uniform and hence has no divergence, Gauss' law (Eq. 2.3.27) reduces to

Ve £ =0 (2)
(o]}

Within the rotor, as well as in the air gap and in the surrounding dielectric of the stator, the fields
are Laplacian. The transfer relations of Sec. 2.16 are directly applicable to describing the bulk fields

Boundary Conditions: The potential at r = R, is constrained to be +v(t) on the respective portions
of the stator surface covered by the electrodes. The potential between the electrodes on the dielec-
tric surface at r = Rp is approximated by the continuous linear distribution shown in Fig. 4.4.2.

s

&
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Fig. 4.4.1

Cross—-sectional view of
permanent polarization
rotating machine.

-7 -(n/2)-6,/ | V.o i\,

4= 3 l } ] =
| AT (w/2)-N\ ! , ¢

Fig. 4.4.2. Distribution of stator potential used to model
the device shown in Fig. 4.4.1.

In Fig. 4.4.1, the notation (a)...(d) is used to denote positions adjacent to interfaces between
regions., (This convention is introduced in Sec. 2.20.) Thus, the potential distribution of Fig. 4.4.2
is both ¢2 and ¢, 1In anticipation of the Laplacian solutions used to describe the bulk fields in
cylindrical geometry, the potential of Fig. 4.4.2 is now expanded in a Fouriler series (see Sec. 2,15
for a discussion of Fourier series):

o0 - sin(mb )
a_ b _ ~a ~jmb, 7a _ 2v(t) o mm
" =9 = mZ;_m <I>m(t) e 3 <I>m == eom sin (2) (1)
(odd)

In the following it is assumed that the dielectric surrounding the rotor is of sufficient radius compared
to Ryp, that fields decay to zero.before reaching the outer surface of the dielectric.

At the rotor air-gap interface the tangential E and hence the potential must be continuous. Thus
the Fourier amplitudes are related by

m m ' 2
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In addition, Gauss' law (Eq. 2.10.21a) and Eq. 1 require that

i, _
nee JE[=-n [2] > ot - e ES = Re(P e e 30 (3)

This latter expression relates the Fourier amplitudes by
_jer

~c ~d 0 Jer
EoErm - € E =5 Glme + G—Ime %)

where 8pp, Kronecker's delta function, is unity for n = m and is otherwise zero.
Bulk Relations: The transfer relations, Eqs. (a) of Table 2.16.2 with k = 0, are now used to

represent the fields at the boundaries. In the stator dielectric surrounding the electrodes (r > R,),
0 > o and B = Ro’ while € ~ €yt

~a P
€ = Egfp(®HR O (5)

In the air gap (Ro >r >R), o> R B+ R and € ~+ €, so that

~b ~b
EoErm fm(R,Ro) gm(Ro,R) @m
=€, (6)
~c
EoErnj gm(R’Ro) fm(Ro’R) ®m
- b P - -

Finally, within the rotor (r < R) the relations are used witha =R, B+ 0 and € + € :
o
e =e £ (0,03 (7
o rm om " 'm

The boundary conditions given by Eqs. 2 and 4 and the bulk relations of Egqs. 5, 6 and 7 comprise six
expressions that can be used_ to determine the Fourier amplitudes (5C %, E%m, Egm, E2 m® Ep ) with

the driving amplitudes (@; gb ) given by Eq. 1. The solution for any one of the amplltudes is usually
much easier than this statement makes it seem, but nevertheless it is worthwhile to have the objective
of the model in view before proceeding further.

Torque as a Function of Voltage and Rotor Angle (v,6..): The rotor is enclosed by a surface at the
radial position (c¢) in the air gap. The method using the Maxwell stress to compute the torque is as
outlined in connection with Eq. 4.2.3. With the fields represented by Fourier series, Eq. 2.15.17
reduces the average of the shear stress over the enclosing surface to a summation on the products of the
Fourier amplitudes:

c.c 2 +ee Te (¥ gm e
T, = R(2WR£)<DrEe - 2 23 (e B ) (R 5% (8)

m== m

Substitution for € E from Eq. 6b introduces the stator field, which is given by Eq. 1, and the same
field @; as already appears in Eq. 8. On physical grounds it is expected that this 1atter "self-field"
term should not make a contribution. This is indeed the case, because f; is an even function of m so
that terms in ]@Cl cancel out of the sum. The mth term is cancelled by the -mth term. Thus, Eq. 8
reduces to

< T, = mR%Y, T 6.8 (R,R )(c1>) (J—I;) (9

= . OO

and all that is required to determine the torque is an evaluation of @c.
With this objective, substitution of Eqs, 6b and 7 into Eq. 4 with Eq. 2 used to replace @ with
@C gives an expression that can be solved for @C'
P jb -j0
) r r, _ b
3 2 [Glme + S—lme ] E:ogm(R’Ro)(pm
m Eo[fm(Ro,R) - fm(O,R)] (10)

This expression and Eq. 1 in turn can be used to evaluate the torque, Eq. 9. (Again, because & and fm
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are even in m, the self-field terms sum to zero):

—4R£31(R,Ro) sin O
fl(Ro’R) - fl(O,R) 8

Tz(v,er)= v(t)Po sin er (11)

o]

In a lumped parameter model for the device, with v(t) and er(t) functions of time determined by the
external electrical and mechanical constraints, this relation represents the electrical-to-mechanical
coupling. The reciprocal mechanical-to-electrical coupling completes the model.

Electrical Terminal Relations: To describe the electrical terminals, the total charge q on the
respective electrodes is required, again as a function of the terminal variables (v,er). The charge
on the upper electrode is -

b

0 m
: ° a b 2" 90 e a ~b | ~jm@
q=2 J (t—:sEr - soEr)Rode = £ J m;Em (esErm - EoErm)e R°d9
m L
-2+60 ——2'+9°
e ~a ~b T
= 4R I —(8sErm - soErm)sin m(i - eo) (12)
m=—&!)

The electric flux normal to the outer and inner surfaces of the electrode are computed from Egs. 5
and 6a, respectively:

~a ~b ~a b 3C
esErm - eoErm = esfm(w,Ro)Q - eofm(R,Ro)Qm - eogm(Ro,R)Qm (13)

The amplitudes (5:,5:) are given in terms of v(t) by Eq. 2, while 5; is given by Eq. 10. Thus Eq. 13
is evaluated in terms of (v,er):

q = Csv(t) - ArPo cos Gr(t) (14)

where Cs’ the stator self-capacitance, is independent of Gr and is

4R 4°  sgin m(ﬁ ~ 0 ) sin mb
o] 5 2 o 0

= . (O _
Ce =7 2 0 Sln(z )[Esfm(“.Ro) Eofm(R,Ro)
MmM=--00 m o
odd
€o8, (R, sR) 8y (R,R ) s
fm(Ro,R) - fm(O,R)
and Ar is a constant having the units of area
249R g, (R ,R)
0°1 ‘"o’
A TR, - o0 % 16)

The required electrical terminal relation is Eq. 1l4.

For reasons that stem from the approximations made in the field description, the model represented
by Egs. 11 and 14 is not selfscongistent. At the dielectric air-gap interface between electrodes, the
potential is continuous, but n-ﬂ Dﬂ is not. In physical terms, this means that the fields are as though
segmented electrodes existed at r = R, in these transition regions having the linear potential distribu-
tion of Fig. 4.4.2 and supporting a surface charge that can be computed from Eq. 13. This charge is
not included in Eq. 14 and might for some purposes be ignored. But, i1f the mechanical and electrical
terminal relations are used as stated, the electromechanical system, which after all does not include
energy dissipating elements, is given a model that does not conserve energy. In fact, once the torque
is known, energy conservation formalisms introduced in Sec. 3.5 not only provide an alternative to com-
puting the electrical terminal relations, but lead to a self-consistent model and a recognition that
Eq. 15 can be considerably simplified.

In terms of lumped parameters, the system can be pictured as having the terminal pairs of
Fig. 4.4.3. The electrical terminal pairs are interconnected so that vi = =v2 = v and by symmetry,
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Fig. 4.4.3. Three-terminal pair lumped Fig. 4.4.4. State space integra-
parameter system representing tion contour.
system of Fig. 4.4.1.

q; = -4, = Q. Thus, the incremental energy conservation equation is
w = 2vlq - Tzder an

Not accessible through the external electrical terminals is the electric energy storage due to the
permanent polarization. 1In Eq. 17 it is understood that P, is held fixed. Transformation to a hybrid
energy function w"(v,P,,6,) is made by replacing vs(2q) - 5(2qv) - 2qév and defining w" = 2qv-w, so that

k | -
Sw'" = 2qbv + Tzder (18)

This expression is integrated on the state-space contour shown in Fig. 4.4.4. First, with the rotor at
0, = m/2, the polarization is brought up to its final state. Then the voltage is*raised. Finally, with
P, and v held fixed, the rotor is turned to the angle Oy of interest. With the rotor at 6y = m/2, the
net charge induced on the upper electrode because of the polarization is zero. Hence, the net charge on
the upper stator electrode is computed from Eq. 13, but with eoEb determined as if the rotor were not
present. From Eq. 6,

~b _ ~b
€EE = eofm(o,Ro)cbm (19)

Hence, Eq. 12 gives

™
4£R° «© gin m(2 - 60) sin mﬁo

1= CSV; cs =TT z 2 mo
m=-~00 m (o}

odd
In view of Egs. 20 and 11, the integration of Eq. 18 on v and then on Gr leads to

sin@P) e £ (=R ) - € £ (O,R )] (20)

thgl(R,Ro) sin 6
£,(R ,R) - £,(0,R) ©

w' = ZP% CSVZ] + vPocos er (21)

o

Finally, because w" = w"(v,Po,er),the required terminal charge follows as

"
q =% -g:— =Cv - AP cos Br (22)
where
- 2R2.gl(R R.) sin 0
A = £, R ,B) - £,(0,R) ~ 6 (23)

and Cg is given by Eq. 20. Simplification of Eq. 15 leads to Eq. 20, but for the reasons discussed,
Egs. 16 and 23 differ by the factor [sin 8,/0,]/cos 65. The use of Eqs. 22 and 23 for the electrical
terminal relation has the advantage that the model is then self-consistent in its representation of
energy flow. The same advantage would exist if the energy relations were used to compute the electrical

Sec. 4.4 4.12



torque from the electrical terminal relations. This more conventional technique would make use of Eq. 14
and an integration of Eq. 18 in the sequence, P,, Oy and v. To carry out the second leg of this integra-
tion without making a contribution requires that symmetry be used to argue that there is no electrical
torque even though the rotor is polarized.

4.5 Constrained-Charge Transfer Relations

For field sources constrained in their relative distribution, the transfer relation approach can
not only be used for sources confined to boundaries, but can also be used to describe interactions with
squrces distributed through the bulk of a subregion. The objective in this section is to develop the
principles underlying this generalization of the transfer relations for electroquasistatic fields and to
summarize useful relations. The method is extended to certain magnetoquasistatic systems in Sec. 4.7.

In a region having a given ne{ charge density p and uniform permittivity €, Gauss' law.and the
requirement of irrotationality for E (Eqs..2.3.23a and 2.3.23b) show that the electric potential & must
satisfy Poisson's equation:

2
vq>=--é°- @)

In solving this linear equation, consider the solution to be a superposition of a homogeneous part &
satisfying Laplace's equation and a particular solution @p which, at each point in the volume of
interest, has a Laplacian ~p/e:

<I>=(I>H+<I>P (2)

It is this latter component that balances the "drive" provided by the charge density when the total
solution ¢ is inserted into Eq. 1. By definition

2 - _b
V<I>P = 3)

25 o
Ve, =0 %)

In the three standard coordinate systems, the particular solution can be written as a superposi-
tion of the same variable-separable solutions used in Sec. 2.16 for the homogeneous solution. Thus,

Re 5P(x,t) exp[-j(kyy + kzz)] (Cartesian)

QP ={ Re EP(r,t) exp[-j(m6 + kz)] (cylindrical) (5)

Re 5P(r,t) Pz (cos 0) exp[-jm¢$] (spherical)

With n used to denote the normal component at the respective bounding surfaces of the region described
by the transfer relations, the homogeneous transfer relations of Tables 2.16.1, 2,16.2 and 2.16.3
relate the components of the homogeneous part of the solutions evaluated at the respective surfaces.
Thus, in these relations, the substitution is made

R N R

H
H P P (6)
~0, 0 _~0 o, B, 8 _~xf B
Dy > Dy =Dy~ Dpps Dy > D =D, -D

The transfer relations, which take the general form of Eq. 2.17.6, therefore relate the new surface
variables and the particular solution evaluated at the surfaces:

[0 aa M., .
o - 3 - o _ ~o
P A1 A || - Dpp )

38 - P xB _ =B
=% A Ay ||Bh - D,

L J
Multiplied out, the transfer relations for regions with a bulk distribution of charge are

[ ~ry ] ~
3@ -A,. A, ||D* 1
- 11 12 n . (8)
~ B e ~ B ~B
(] —A21 A22 DnJ h
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where

~0 0 ~0. ~B
h % A11Pp - A19Dp
~B 3B 3o 38
h % Ay1Dnp ~ A220pp

Associated with the surface variables related by these transfer relations are the bulk distributions of
potential., These are obtained from the distributions of potential for no charge density by again using
the substitutions summarized by Eq. 6 to 8r example, in Cartesian coordinates, the potential distribu-

tion is the sum of Eq. 2.16.15 with @ »9") replaced by (¢a - ¢a 38 - ¢§) and the particular solution.

3 = (3% _ sinh yx _ ~R _ =By sinh y(x - A) ~
@7 - %) STanya - @ - %) sinh ya T %p®) (10)

The same substitution generalizes the cylindrical coordinate potentials, Eqs. 2.16.20, 2.16.21 and
2.16.25 as well as those in spherical coordinates, Eq. 2.16.36.

Particular Solutions (Cartesian Coordinates): Any @P having the form of Eq. 5 can be used in
Egs. 8 and 9. "Inspection" yields solutions in many cases. However, it is often true that the most

useful solutions belong to a class that can be generated by the procedure now illustrated in Cartesian
coordinates.

Within the planar region (shown in Table 2.16.1) there is a charge distribution that has an arbi-~
trary dependence on the transverse coordinate x but the y-z dependence of Eq. 5a for complex amplitude,
Fourier series or Fourler transform representations:

o =j(k y + kzz)
p=ReI f () (x)e 7 (11)
1=0

Here, the distribution has been represented as a superposition of modes Il (x) having individual complex
amplitudes Bi(t). These as yet to be determined modes are defined such that the particular solution
can be written as a superposition of the same modes:

-jk y + k z)

¢, = Re z [ (O ®e y (12)
i._

The same functions are used for both p and &, because then substitution into Poisson's equation, Eq. 3,

shows that a particular solution has been found, provided that the modes satisfy the Helmholtz
equation:

2 ~
a%n. 5

o=+ VI, = 0; v§=—~1-k2-k§ (13)
dx e@i y

It follows from Eq. 13 that Iy is a linear combination of sin(vix) and cos(vix). Boundary con-
ditions, selected as a matter of convenience and to give orthogonal modes that can be used to expand
an arbitrary charge distribution in a quickly convergent series, complete the specification of the
modes. For example, the transfer relations, Eqs. 8 and 9, are simplified if

ad dd
s - Pl _.%B - __ Pl _
Do = -€3x . 0; D b= € 3% . 0 (14)

so these will be used as boundary conditions in solving Eq. 13. It follows that for a layer with o and
B surfaces at x = A and x = 0, respectively,

I, = cos Vx5 Vv, = %g 3 1=0,1,2,e40 (15)

From the definition of vy, Eq. 13, the potential and charge-density amplitudes called for in Eqs. 11
and 12 are related by '

. o
3, = 1

1 7 2 .2 (16)
s(vi + ky + kz)
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The charge-density amplitudes are determined from a given distribution Re p(x,t) exp[-j(kyy + kyz)] by
a Fourier analysis. That is, Eq. 11 is multiplied by I, integrated from O -+ A, solved for p, and
k> i:

~

2 A . s _1(*
py = z‘jo Bx, )L (vyx)dx; 1 4 0: B = E-Io f (x,t)ax @a7)

The associated transfer relations, Eqs. 8 and 9 evaluated using Eqs. 12, 15 and 16, with Aij's from
Table 2.16.1, become

0. 1 ~0 i
[ -coth YA m Dx o B -1)
1 .
= = + z _2—-L-2— (18)
8 -1 -8 1=0 e(vy +Y°)
¢ Sinh YA coth YA Dx 1

The potential distribution is given in terms of these amplitudes and the particular solution (Eqs. 12,
15 and 16) by Eq. 10. Note that to make use of Eq. 10 the origin of the x axis need not be coincident
with the B surface. The equation applies to a region with the B surface at x = a if the substitution
is made X + x + a.

Cylindrical Annulus: In cylindrical coordinates, the given charge distribution and particular
solution take the form

oo

p=Re I 5i(c)ni(r)e‘3(m9+kz); ¢, =Re I 5i(t)ni(r)e'j(me+kz) (19)
1=0 =0

Thus, Poisson's equation, Eq. 1, requires that

a°n dI 2 0
Pel 0By =002 2oy? (20)
2 r dr i 2 i i ~

dr r e@i

and the potential amplitudes are related to the charge density amplitudes by

. p

b s (1)
rs(vi + k%)

Boundary conditions used in selecting solutions to Eq. 20 might be selected analogous to those of Eq. 14,
This would simplify the transfer relations, but require solution of a relatively complicated tran-
scendental equation for the v;'s. Instead, the particular solution is required to vanish on the outer
surface only and solutions that are singular at the origin are excluded. 1In cylindrical coordinates
this is sufficient to result in a complete set of orthogonal modes:

~0 daP
D = — =0 (22)

rP dr a

Comparison of Eq. 20 to Eq. 2.16.19 shows that the solutions that are not singular at the origin
are Bessel's functions of first kind and order m:

I, = Jm(vir) (23)

1

To satisfy the boundary condition, Eq. 22, the V4's must be roots of
A} -
V3 (via) =0 | (24)

In now evaluating the transfer relations, Eqs. 8 and 9, the normal flux density is zero at the a
surface, but otherwise all of the particular solution entries make a contribution:
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[ o) i 1
=0, ~0 '
¢ F (B,0) G (a,B) || D, . . T (Vo) + V.6 (@,B)I ) (vB)
- % + = 5 1 5 (25)
_,,B ~B i=0 E(Vi + k. )
o LGm(B.oz) Fm(onﬁi)J DrJ I, vB) + v F (a,B)37 (v,B)

An important limiting case is B + 0 so that the region is a "solid" cylinder. This limit is most con-

veniently taken by first using the limiting form of the transfer relation, Eq. (b) of Table 2.16.2,
which becomes

(+)

-8 =2 (0,05 - 5] 26)
Put in the form of Eq. 25, the transfer relation for a solid cylinder is
=17 (0,0)B% + T —k 3 v (27)
€en r i=0£(\)§+k2) mtd

The charge-density amplitudes 51 are evaluated in terms of the given charge distribution by exploiting
the orthogonality of the II;'s.

Orthogonality of I;'s and Evaluation of Source Distributions: The given transverse distribution
of p is used to evaluate the mode amplitudes, IIj(x) or IIj(r) and hence pij. Because the particular
golutions are in each case a superposition of solutions to the Helmholtz equation, with appropriate

boundary conditions, the eigenmodes Il; are orthogonal. In the Cartesian coordinate cases, this means
that

Xdx = % 84 (28)

A

I Ili (vix)I[J. v

o}
This relation is the basis for evaluating the Fourier coefficients, for example Eq. 17. Proof of
orthogonality and determination of the coefficients is possible in this case by direct integration.
But, in the circular geometry, a more powerful method is needed, one based on the properties of
Hi(vir) that can be deduced from the differential equation and boundary conditions. The proof of
orthogonality and determination of the normalizing factor is as follows.

Multiply Eq. 20 by rll; and integrate from the origin to the outer radius. The first term can
then be integrated by parts to obtain

dil(v,r)
rll (vjr) —E:'_— i -

3

o
) Ja . dHi(vir) de(er)
o o

dr dr 15

0 2
dr + I r(v EEDH I.dr = 0 (29)
o T

This expression also holds with i and j reversed. The latter equation, subtracted from Eq. 29, gives

0. o
0l dIl dll,
2 2 - i - —
(\)i - vj) jo rHiHj dr rIIi IT rﬁj ar . (30)

Thus, it is clear that either for I = 0 or dll,/dr = 0 at r = a, the functions Hi and Hj are orthogonal
in the sense that the integral appearing in Eq. 30 vanishes provided i # j.

The value of the integral for i = j is required in evaluating the coefficients in the charge
density expansion, and is deduced by taking the limit where vj > Vg, oOr Av + 0 in (\)j =V + Av)

Hj(vjr) =1 [vir + (Av)r] = 11 (vir) + [Hg(vir)]rAv (31)

3 3

Again, the prime indicates a derivative with respect to the argument (vjr). Expansion of Eq. 31
to first order in Av shows that in the limit Av > 0,

2
° e Ll + 1L - —EAr w0 (32)
jorl'[iIder =8,y 5 (I ]" + [ (vy0) e R

)

In obtaining this result, the fact that Hi satisfies Bessel's equation, Eq. 20, has again been used to
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substitute for H; in terms of II; and Hi.

An example exploiting the cylindrical constrained-charge transfer relations and orthogonality
relations is developed in Sec. 4.6.

4.6 Kinematics of Traveling-Wave Charged-Particle Devices

Synchronous interactions between a '"stator' potential wave and a traveling wave of charge are
abstracted in Part 3 of Table 4.3.1. In the most common practical devices exploiting such electric
interactions, the space-charge wave is itself created by the electromechanical interaction between a
structure potential and a uniformly charged beam. These examples are not "kinematic'" in the sense that
the relative distribution of space charge cannot be prescribed. Nevertheless, by representing the inter-
action as though independent control can be obtained over the beam and structure traveling waves, the
energy conversion principles are highlighted. 1In addition, this section illustrates how the constrained-
charge transfer relations of Sec. 4.5 are put to work. Self-consistent interactions through electrical
stresses will be developed in Chaps. 5 and 8.

In the model shown in Fig. 4.6.1, the space-charge wave has the shape of a circular cylinder of
radius R and charge density

p=-py cos(wt - kz + k6) = Re D exp(-jkz); P = [—pB exp(jk6)] exp(jwt) ¢D)

where Py is a constant.

Fig. 4.6.1. Regions of positive and negative charge represent concentrations and rarefactions in
the local charge density of an initially uniformly charged beam moving in the z direc~-
tion with the velocity U.

In an electron beam device,1 the stream is initially of uniform charge density. But, perhaps ini-
tiated by means of a modulating field introduced upstream, the particles become bunched. The resulting
space charge can be viewed as the superposition of uniform and periodic space-charge components. The
upiform component gives rise to an essentially radial field which tends to spread the beam. (Through the
qv X B force attending any radial motion of the particle, a longitudinal magnetic field is often used to
confine the beam and prevent its spreading. In any case, here the effect of this radial field is con-
sidered negligible.)

In traveling-wave beam devices, the interaction is with a traveling wave of potential on a slow-
wave (perhaps helical) structure, such as that shown schematically in Fig. 4.6.2a. The structure is
designed to propagate an electromagnetic wave with velocity less than that of light, so that it can be in
synchronism with the space-charge wave. For the present purposes, this potential is imposed on a wall
at r = C:

c

. - - ‘0
o = Vo cos(wt - kz) = ReVoe Jkz e’ t

;3 V.=V
o o

(2)

In the kinematic model of Fig. 4.6.1, the coupling can either retard or accelerate the beam, depend-
ing on whether operation is akin to a generator or motor (Table 4.3.1). Traveling-wave electron beam
amplifiers and oscillators are generators, in that they convert the steady kinetic energy of the beam to
an a-c electrical output. The result of the interaction is a time-average retarding force that tends

1. Basic electron beam electromechanics are discussed in the text Field and Wave Electrodynamics, by
Curtis C. Johmson, McGraw-Hill Book Company, New York, 1965, p. 275.
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Fig. 4.6.2, (a) Schematic representation of traveling-wave electron beam device with slow-wave struc-
ture modeled by distributed circuit coupled to beam through the electric field. Below struc-
ture is distribution of space charge in the beam (A), and the equivalent distribution of a uni-
form charge density (B) and a periodic distribution (C). (b) Combination cutaway and phantom
view of low-noise low-power traveling-wave tube that operates in part of the frequency range
2 to 40 GHz. (c) Schematic of linear accelerator designed so that oscillating gap
voltages "kick" particles as they pass. Shown below are "bunches" of particles and hence
space charge (A) and the equivalent superposition of periodic and uniform parts (B) and (C).
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to slow the beam.

The "motor" of particle beam devices 1s the particle accelerator typified by Fig. 4.6.2c. Here,
the object is to accelerate bunches of particles to extremely high velocities by subjecting them to
alternating electric fields phased in such a way that when a bunch arrives at an accelerating gap, the
fields tend to give it an additional "kick" in the axial direction.?2 The complex fields associated with
the traveling particle bunches and accelerating fields are typically represented as traveling waves, as

suggested by Fig. 4.6.2c. The principal periodic component of the space-charge wave is represented in
the model of Fig. 4.6.1.

In this section it is presumed that the particle velocities are unaffected by the interaction; U is
a constant. In fact, the object of the generator is to slow the beam, and of the accelerator is to in-
crease the velocity; a more refined analysis is likely to be required for particular, design purposes.

In yet another physical situation, the constraints on mechanical motion and wall potentials assumed
in this section are imposed. At low frequencies and velocities, it is possible to deposit charge on a
moving insulating material. Then, the relative charge velocity is known. Moreover, at low frequencies

it is possible to use segmented electrodes and voltage sources to impose the postulated potential dis-
tribution.

As will be seen, at low velocities it is difficult to achieve competitive energy conversion den-
sities using macroscopic electric forées. So, at low frequencies, the class of devices discussed in
this section might be used as high-voltage generators rather than as generators of bulk power.

The net force on a section of the beam having length £ is found by integrating the stress over a
surface adjacent to the outer wall (see Fig. 4.2.1b for detailed discussion of this step):

£, - 2"””4’:'5;2 = name[(ﬁi)*jk?/o] (3)

To compute 5c, and hence f_, the potential is related to the normal electric flux and charge density by
the transfer relation for a "solid" cylinder of charge, Eq. 4.5.27 with m = O:

N . ©  P.J (v,0)
§* = -El- F (0,)D} + I —17"—%- (4) X
o i=0 eo(\)i + k)

Table 2.16.2 summarizes Fo(O,a).

Single-Region Model: It is instructive to consider two alternative ways of representing the fields.
First, consider that the beam and the surrounding annular region comprise a single region with a charge
density distribution as sketched in Fig. 4.6.3. Then, in Eq. 4, the radius o = a and the position
(@) > (¢). Multiplication of Eq. 4.5.19a by rHj(vjr) and integration 0 -+ a then gives

R ©
" ~ fa
f BrJ, (v,r)dr = I pif £J, (vy1)J, (v r)dr (5)
o i=0 o
Fig. 4.6.3
—— Ps —* Radial distribution of charge
density.

Ny

l 3

—

The right-ha&d side is integrated using Eq. 4.5.32, while the left-hand side is an integral that can be
evaluated from tables or by using the fact that J,(vir) satisfies Eq. 4.5.20 with m = 0 and Eq. 2.16.26c
holds for Jo:

— = — a = .
TR R B R S O U 6) X

2. A discussion of synchronous-type particle accelerators is given in Handbook of Physics, E. U. Condon
and H. Odishaw, eds., McGraw-Hill Book Company, New York, 1958, pp. 9-156.
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Tge root v4 = 0 to Eq. 4.5.24 is handled separately in integrating Eq. 5. In that case J =1 and p_ =
R%D/aZ.

Because ¢ =V Eq. 4 can now be solved for ﬁi:

0’
2 o 2RJ. (V.R)

2+ 2 ) 2l = ™
€ (ak) i=1 evia v, + k )Jo(via)

Bc R
r

S Voo
= aFo (0,a) VO -9
i
It follows from Eq. (3) that, for the distribution of charge and structure potential given by Egqs. 1 and
2, the required force on a length £ of the beam is

.

- 2 .
fz = T(FR 2)(kVopB sin ch)Ll (8)
where
o 23,[ (v,a) 3]
- _2}l R 1 1'*Y7i% a -1
Ll = -3 (a) + Z aFo (0,a)

(ak)? i=1 (via)[(via)z + (ak)z]Jo(via)

Hence, the force has the characteristic dependence on the spatial phase shift between structure potential
and beam space-charge waves identified for synchronous interactions in Sec. 4.3.

Two-Region Model: Consider next the alternative description. The region is divided into a part
having radius R and described by Eq. 4 (with the position o + e and radius a * R) and an annulus of
free space. Because the charge density is uniform over the inner region, only the i = 0 term (having
the eigenvalue v, = 0) in the series of Eq. 4.5.1 1is required to exactly describe the charge and
potential distributions. With variables labeled in accordance with Fig. 4.6.1, Eq. 4 becomes

e
DrFo(O’R)
€

3e - b
o] + 5 9)

ek
The annular region of free space is described by Eqs. (a) of Table 2.16.2:

~c e
r £ R,2) g, (aR)| [©®
=€ (10)
~d ~d
Dr Lgo(R,a) fo(a,R) 9]

Boundary conditions splice the regions together:

3¢ =V, 8% =9% 0% =0 (11)
In view of these conditions, Eqs. 9 and 10b combine to show that

R -1, -2
] g,(R,a)V_ + 0 F "(0,R)e "k

34 — (12)
FTL(0,R) - £ (a,R)

From Eq. 10a B can be found and the force, Eq. 3, evaluated. The result is the same as Eq. 8 except
that Ly is repiaced by

[ag, (a,R)] [aF_ " (0,R)] | TLGR)
kR Io(ka)

L =

2 (13)

2 _
) > &) [aF]  (0,R) - af (a,R)]

To obtain the second expression, note that the reciprocity condition, Eq. 2.17.10, requires that
ago(a,R) = -RgO(R,a).

Numerically, Eqs. 8 and 13 are the same. They are identical in form in the limit where the charge
completely fills the region r<a, as can be seen by taking the limit R * a in each expression

-1
aF ~(0,a)
L > L - _0._(_-.— (14)
(ak)?
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In the example considered here the second repre-
sentation gives the simpler result. But, if

the splicing approach exemplified by Eq. 13 were
used to represent a more complicated radial dis~
tribution of charge, the clear advantage would
be with the single region representation illus- T T ! T
trated by Eq. 8.

The dependence of Ly on the wavenumber
normalized to the wall radius is shown in
Fig. 4.6.4. As would be expected, the coupling
to the wall becomes weaker with increasing k
(decreasing wavelength). The part of the
coupling represented by Lp also becomes smaller
as the beam becomes more confined to the center.
Note however that there is an R2 factor in
Eq. 8 that makes the effect of decreasing R
much stronger than reflected in Ly (or Lj)
alone.

4.7 Smooth Air-Gap Synchronous Machine Model

A specific result in this section is the
terminal relations that constitute the lumped-
parameter model for a three-phase two-pole
smooth air-gap synchronous machine. The deriva- o) 1 L 1 1
tions are aimed at exemplifying the pattern that 0 2 3 4 5
can be followed in describing a wide class of
magnetic field devices modeled by coupling at
surfaces.

In the cross-sectional view of the smooth Fig. 4.6.4, Function L, defined by Eq. 4.6.8.,
air-gap machine shown in Fig. 4.7.la, the stator
structure consists of a laminated circular cylindrical material having permeability Ug with outside
radius a and inner radius b. Imbedded in slots on this inner surface are three windings, having turns
densities that vary sinusoidally with ©. These slots are typically as shown in Fig. 4.7.2b, where the
laminations used for construction of rotor and stator for the generator of Fig. 4.7.2a are pictured.
Only one of these stator windings is shown in Fig. 4.7.1, the "a" phase with its magnetic axis at 0 =
-90°, The "b" and "c" phases are similarly distributed but rotated so that their magnetic axes are
respectively at the angles 30° and 150°. Thus the peak surface current density for the respective
windings comes at the angles 6 = 0, 6 = 1209, and 6 = 2400, These stator windings have peak turns
densities Ny, Ny, N,, respectively, and carry the terminal currents (i, iy, i.). Because the stator
windings essentially form a current sheet at the radius b, their contribution to the field is modeled
by the surface current density

s _ g ; 2M 4 g am
Kz = 1a(t)Na cos O + 1b(t)Nb cos(O - 3) + 1C(t)Nc cos(f -~ 3 ) W
VALl . AT
w5 -3 s _ . A R Ao )
= Re K'e s K = 1aNa + 1bNbe + lche

There is only one phase on the rotor, consisting of sinusoidally distributed windings of peak turns
density Ny excited through slip rings by the terminal current i.. With the rotor angular position
denoted by 6y, the rotor current is modeled by a surface current density at r = c of

r ~r -j0, 3r jer 2

Kz = lr(t)Nr cos (6 - Gr) = Re K e 3 KW = 1iNe (2)
These excitations have been written in the complex amplitude notation. Fields in each region are
described by the polar coordinate transfer relations of Table 2.19.1 with m = 1.

The objective in the following calculations is to relate the electrical and mechanical terminal
relations so that electromechanical coupling, represented schematically in Fig. 4.7.3, is specified in
the form

xa Laa Lab Lac Lar ta

Ab - Lba Lbb Lbc Lbr b 3)
Ac Lca ch Lcc Lcr 1c

>‘r Lra Lrb ch er 1r
T, = Tz(ia,ib,ic,ir,er) (4)
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a-phase axis

i
_my2 /2 3m/2
(a) (b)

Fig. 4.7.1. (a) Cross-sectional view of smooth air-gap synchronous machine showing only
one of three phases on stator. (b) Distribution of "a'"-phase windings on
stator as seen looking radially inward.

(a) (b)

¥ Fig. 4.7.2. (a) Model synchronous alternaé&gg having rating of about one kVA and modeling 900 MVA
machine. Unit is one of several used in MIT Electric Power Systems Engineering Laboratory as
part of model power system. S1lip rings for supplying field current are on shaft near bearing.
Disk with holes is for measurement of angular position of rotor. (b) Rotor and stator lamina-
tions used for model machine of (a). Rectangular slots carry windings. Conducting rods in-
serted through the circular holes in the rotor are shorted at the ends of the rotor to simulate
transient eddy-current (induction machine) effects in full-scale machine. The scaling requires
that the model have extremely narrow air gap of about 0.23 mm, as compared to the gap of about
7 cm in the full-scale machine.
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Boundary Conditions: The field excitations represented by Eqs. 1

and 2, written in complex-amplitude notation, can be matched by single +|__*
components of the fields represented in each region by the polar co- Aa
ordinate transfer relations of Table 2,19.1. In view of the 6 depend- - | | Tz—>
ence of the current sheets, m = 1. ih——v *
+
Positions adjacent to the boundaries between current-free regions Ao 6
of uniform permeability in Fig. 4.7.la are denoted by (d) - (i). Fields :Ei:::_ _

are assumed to vanish far from the outer surface. At each surface, the
normal flux density is continuous (Eq. 2.10.22). This means that the A
vector potential is continuous, and hence =

d ~ +
X% = &€ (5) A
if = x8 (6)
Xh s D Fig. 4.7.3. Electromechanical

coupling network for

The jump in the tangential field intensity is equal to the surface cur- system of Fig. 4.7.1.

rent density (Eq. 2.10.21), and hence

~d e _

He - He =0 (8)
~f _ %8 _ S

He He = K 9)
~h  ~i _ ~r

He - He = K (10)

Bulk Relations: Each of the uniform regions is described by Eq. (c) of Table 2.19.1. 1In the
exterior region, o >, B = a, and U = My

~d _ 1 ~d
Hy = v £, (=,a)A (11)
o
In the stator, oo = a, B =Db, and u = o
r r 1r -
e e
He 1 fl(b,a) gl(a,b) A a
ﬁf Hs g, (bya) f. (a,b) Kf
0 1 1
B ! JL
In the air gap, o = b, B =c¢c, and U = Mot
—~g~1 - - r—~g-
He 1 fl(c,b) gl(b,c) A 13
~h| ~h
o Yol g e,b)  £,(b,0)[f A
and finally, in the rotor, o = ¢, B > 0, and U = M.t
=i _ 1 %1 :
Hy = i £,(0,0)A (14)

Torque as a Function of Terminal Currents and Rotor Angle: With the surface of integration for
the stress tensor just inside the stator, it follows from Eq. 4.2.3 that the rotor torque is

. e % 3B
= (2mb22) %Re[(Hg)*ﬁﬂ - nbzme[(ug)*'(—jg“—)] (15)

It will be seen shortly that the electrical terminal relations can be computed from A8, It is there-
fore convenient to also express Eq. 15 in terms of A8 and the given surface currents. To this end,
Eqs. 5 and 8 are used to replace (d) -+ (e) in Eq. 11, while Eqs. 6 and 9 are used to replace Hg and A!
in Eq. 12b. Thus, Egs. 12 can be solved for Hg as a function of R° and AS:

. - 28 g, (b,a)g, (a,b)
= k% + A £ (a,b) # et L

8 Mg 177 rus
— f_(w,a) - £.(b,a
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Because the geometric quantity multiplying A8 is real, it is clear that substitution of Eq. 16 into
Eq. 15 gives only

T = ThiRel &S)" 58] (17)

To evaluate A® in terms of K° and K° (and_hence in terms of the terminal currents and 6,), Egs. 7
and 10 are used in Eq. 14, which is solved for HR. This latter quantity is substituted into Eq. 13b.
Simultaneous solution of Eqs. 13 then gives a second expression for He:

Sr
K'g, (b,c) 58 g, (b,c)g, (c,b)
~ l ’ A l 9 l 1]
Hg = o {f1(eD) + g (18)

v
(o]
£, (byc) - - £,(0,¢) ° i £,(0,¢) - £;(b,c)

By equating Eqs. 16 and 18, it is now possible to solve for A8 in terms of the surface currents:

wo U g, (b,c) .
I i Y K" (19)
(o]
D[fl(b,c) - '.LT; fl(osc)]
where »
H g, (b,a)g, (a,b) g, (b,c) g, (c,b)
D = Il—o- fl(a,b) + '_]J L L - fl(cob) + u L L
s %ii fl(W,a) - fl(b’;ﬂ &fﬂ fl(O,c) - fl(b,cﬂ
Lo r 4

A methodical approach to solving the boundary and bulk relations is suited to those comfortable
with the reduction of determinants or inclined to use matrix computations. Following this alternative,
the boundary conditions, Eqs. 5 to 10, are used to eliminate the "d", "f", and "i" variables in the
bulk relations, Eqs. 11 to 14, These latter equations are then written in the form

—- LT -
1 g wa) 0 0 0 0 HS 0
H, 1
1 X g (b,a) 0 =g (ab) O 0 A® 0
M 1 U 1
s s
> ~S
0 L g (b,a) -1 2f(ab) O 0 He &
TR O 0
s s = (20)
1 1 e
0 0 -1 T fl(c,b) 0 T gl(b,c) A 0
o )
1 1 ~h
0 0 0 T gl(c,b) -1 T fl(b,c) Hy 0
o} o
0 0 0 0 1 X e 0,0 A &*
w1
r
Cramer's rule is then used to deduce Rg’ Eq. 19.
Substitution of Eq. 19 into the torque expression, Eq. 17, shows that
Thu o o %
T, = . Re[jK (K%)"] (21)

o
D[fl(b,C) - II; fl(O,C)]
It follows from Eqs. 1 and 2 that the torque, expressed in terms of the terminal currents, is

-mbiu_g, (b,c)
T = o7l irNr[iaNa sin Sr + ibNb sin(er - %;9

“0
D[fl(b,c) - E fl(O,C)]

4T
. . _ 22
+ 1CNC sm(er 7;9] (22)
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Electrical Terminal Relations: The flux linked by one turn of the "a'"-phase coil running in the +z
direction at 6 = 8" and returning in the -z direction at 6 = 6' + 7 is

2, = L[A(b,8') - A(b,0" + m)] = areAb[eI0 - I (OTHM, (23)

Here, use has been made of the relation between the vector potential and the flux, as described in
Sec. 2,18 (Eq. (f) of Table 2.18.1).

The flux linked by the turns in the azimuthal interval bd0' is then @A(bde'N cos 8'), and the
total flux linked by the "a" phase is a
m/2
ent Y- - - _061 ~
A, = -baN Re + [3% 4+ 739 18T - 17717 ao" = N TReA® (24)
'~
-\

Substitution of Zg from Eq. 19 and the surface currents from Eqs., 1 and 2 then gives the terminal relation
for the "a" phase, in the form of Eq. 3a, where
mbu N Tibuy N N. m&bu N_N

2
o a - oab _ oac _ ]
Lia = D ° Lab 2D s Lge =7 2D s Ly = Lo'Q'bNaNr cos er’

T g, (b,c)
L = o®l (25)

uO
D[fl(bsc) - .u_r' fl(O,C)]

By symmetry, the inductances for the "b" and '"c" phases are obtained without carrying out the evaluation
by simply replacing indices in Eq. 25. For the '"b" phase, replace indices a + b, b + ¢, ¢ + a, and 6, ~
8, - 2r/3 and for the "c" phase, a > c, b *>a, ¢ > b, and 6, > O, - 47/3.

The remaining flux linkage, Ay, is computed by first recognizing that the flux linked by one turn
on the rotor winding running in the z direction at 6' and returning at 6' + 7 is

o . _sqt
QX = —R,ReAh[eJTT - 1]e 38 (26)

Hence, the total flux linking the rotor winding is

m
6r+—2- ,.,hjer
— v _ v
Ar = J Nr cos (6 Br)éxcde NrclﬂReA e @2n
. - I
r 2

The vector potential amplitude required to evaluate this expression follows from Eqs. 7, 10, 13b, and 14:
~h gl (c’b)zg - UORr
A" = (28)

Uo )
E: fl(O,c) - fl(b,c)

where A8 is again Eq. 19, and the surface currents are evaluated in terms of the terminal currents using
Eqs. 1 and 2. Thus, with the use of the transfer function reciprocity relatiom, cgl(c,b) = —bgl(b,c),
Eq. 2.17.10,

- 2m. = 4wy,
Lra = LolerNa cos Gr, Lrb = Lo,Q,bNrNb cos(Gr - 3), ch = Lo.Q,bNrNc cos(6r - 2)

gl (b,c) 1 (29)

2
L = L 4bN -
o T - gl(c,b)

rr Hy
D[£; (b,e) - o= £, (0,¢)]
r

Energy Conservation: Because the electromechanical coupling network represented by Fig. 4.7.3 is
conservative, there is considerable redundancy in the terminal relations that have been derived. Con-
servation of energy requires that (Eq. 3.5.7 applied to a magnetic system)
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Sw' = AaSia + AbGib + Acﬁic + Arﬁir + Tzser (30)

From the assumption that w' is a state function, it follows that (see Eq. 3.5.4)

ow' ow'
Ak = 5%;; k = a,b,c,r; Tz = 3%: (1)

Lumped-parameter reciprocity conditions are generated by taking cross-derivatives of these relations:

A Bkl 812 BAE k = a,b,c,r

K
— ; = (32)
o1y A 7 B, 96,7 o abe,r

The four relations among the electrical terminal variables show that
Lo = Lgxe 33)

and these conditions are met by the results summarized by Eqs. 25 and the subsequent substitution of
indices and Eq. 29. The reciprocity conditions between the torque and the flux linkages, Eq. 32, is
also satisfied by Eqs. 22 and Eqs. 25 and 29. Note that to make it clear that the lumped-parameter

reciprocity relations are satisfied, the reciprocity condition for the air-gap transfer relations was
used in writing Eq. 29.

4.8 Constrained-Current Magnetoquasistatic Transfer Relations

By way of exemplifying how transfer relations can be used to represent fields in bulk regions,
including volume distributions of known current density, these relations are derived in this section
for one important class of physical situations. The current density (which is typically the result
of exciting distributions of wire) is z~directed, while the magnetic field is in the (r,8) plane.
Thus, the relations are directly applicable to rotating machines with negligible end effects. Such
an application is taken up in the next section.

In a broad sense, the objective in this section is to magnetic field systems what the objective
in Sec. 4.5 was to electric field systems. But, the solution of the vector Poisson's equation,
Eq. 2.19.2, is more demanding than the scalar Poisson's equation, Eq. 4.5.1, and hence the technique
now illustrated is limited to certain configurations in which only one component of the vector poten-
tial describes the fields. Such cases are discussed in Sec. 2.18 and the associated transfer rela-
tions for a region of free space are derived in Sec. 2.19. The following discussion relates to the
polar-coordinate situations of Tables 2.18.1 and 2.19.1.

In the two-dimensional cylindrical coordinates, the vector Poisson's equation (Eq. 2.19.2) has
only a z component and the Laplacian is the same as the scalar Laplacian:

V2 = -uJ, ' 1)

Following the line of attack used in Sec. 4.5, the solution is divided into homogeneous and particular
parts, :

A= AH + AP (2)
defined such that .
2 2 :
v AP = -uJ; v AH =0 3)
The imposed current is now represented in the complex amplitude form

3, = Re¥(r,t)e 3™ )
0f course, by superposition, such solutions could be the basis for a Fourger representation of an arbi-
trary current distribution. Substitution of Eq. 4 into Eq. 3 shows that A.p must satisfy the equation

2% x
dA, dA, 2 .
1 m =
2 tTEm T2 e ()
r Tr

The particular solution can be any solution to Eq. 5. The magnetic field associated with this particular
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solution is, by the definition of the vector potential (Eq. 2.18.1),

i
_ 1 AP_"' m-
Bop =~ T ar Bep T T by (6)

From Eq. 2 it follows that the homogeneous solution is the total solution with the particular solu-
tion subtracted off. That is,

~ ~ ~

Ay = A= Ay Hoy = Hy - Hyp ™

The homogeneous parts are related by the transfer relations, Eqs. (d) of Table 2.19.1, so that substi-
tution from Eq. 7 shows that

R Fu(8,0) 6,8 || Hy - Hyy
-y 8
- GBs0)  Fp(a,®) | [ B - B,

These relations, multiplied out, are the transfer relations for the cylindrical annulus supporting a
given distribution of z-directed current density:

B 7 [~ 1Tr “ o 1 [~ Tr M
© F (8,0) 6, (,8) || 8| |& F_(B,@) 6,(a,8) ||,
=1 + -u 9
ik ¢ (8,0) F (a,8) ]| %8| |af G (8,0) F. (a,8)]]7
l m'? m>? 0 AP m'"? m'? HBPJ

Following the format used in Sec. 4.5, it would be natural to now proceed to generate particular
solutions that form a complete set of orthogonal functions which are solutions to the Helmholtz equa-
tion. Such an approach to evaluating the particular solutions in Eq. 9 is required if an arbitrary
radial distribution of current density is to be represented. The approach parallels that presented in
Sec. 4.5.

In important physical configurations, to which the remainder of this section is confined, the radial
distribution is uniform:

Jx) =3 (10)

Fortunately, inspection of Eq. 5 in this case yields simple particular solutions:

3 m# 2
KP =nuJ m” -4 (11)
2

- %-r Inr; m=+2

Thus, for the case of a radially uniform current density distribution, substitution of Eq. 11 into Eq. 9
yields the transfer relations

Ru Fm(B,G) Gm(a.B) ﬁg rhm(OhB)
=4 +u (12)
Bl e Ry || h (8,)
where
1 [x2 + 2xF_(y,x) + 2yG_(x,y)]:
7 . s ye, (%,¥)]; m # 2
hm(st) = x :
g lx+ sm(x.y)yzln (%)]; m= +2
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and the functions Fm, Gm’ and g, are defined in Table 2.16.2 with k = 0.
The radial distribution of A within the volume of the annular region describ&d by Eg, 12 is ob-

tained by adding to the homogeneous solution, which is Eq. 2.19.5 with A2 s K- Ap, and AB > 4B AP'
the particular solution A.P

o [&m- (—)'5_] #_1 [&m - (—)]

[(’3) ()] [(B) (e’]

For Eq. 12, the particular solution is given by Eq. 11, so the associated volume distribution is evalu-
ated using Eq. 1ll1.

A= - @13)

The constrained-current transfer relations are applied to a specific problem in the next section.

4.9 Exposed Winding Synchronous Machine Model

The structure shown in cross section in Fig. 4.9.1 consists of a stator supporting three windings
(a,b,c) and a rotor with a single winding (r). It models a three~phase two-pole synchronous alternator,
and is similar to the configuration taken up in Sec. 4.7, The difference is that the windings on both
rotor and stator are not embedded in slots of highly permeable material and take up a radial thickness
that is appreciable compared to the air gap. As a result, the surface current model used in Sec. 4.7
is not appropriate.

The configuration considered here is an example to which the constrained~current transfer rela-
tions of Sec. 4.8 can be applied. It closely resembles models that have been developed for synchronous
alternators making use of superconducting field (rotor) windings.l With superconductors, it is possible
to generate magnetic fields that more than saturate magnetizable materials. As a result, the magnetic
materials in which conductors are embedded in conventional machines can be dispensed with. This makes
it possible to design for greater voltages than would be possible in a conventional machine, where the
slot material in which a conductor is embedded must be grounded. But, because the conductors are
exposed to the full magnetic force, methods of construction must be radically altered. A machine built

Fig. 4.9.1.

Cross section of synchro-
nous machine model typi-
fying structure used in
superconducting field
alternator.

1. J. L. Kirtley, Jr., "Design and Comstruction of an Armature for an Alternator with a Superconducting
Field Winding," Ph.D. Thesis, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1971; J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large
Superconducting Alternators,” IEEE Power Engineering Society, Winter Meeting, New York, Jan. 1975.

Secs. 4.8 & 4.9 4.28



magnetic shie\ld armature v;inding

vacuum
secl\

__%;;;;aaga;;sagﬁzzgagzs=il -
thermal distance _ ]
[ field _win_ding —

g

cryogenic shield damper shield

Fig. 4.9.2. Cross section of superconducting field alternator projected in design
for 1000 and 10,000 MVA machines on basis of M.I.T. experiments on 2-3 MvA. L1
Not included in model of this section is conducting shell between rotor and
stator to help prevent time-varying fields due to transients from reaching
superconductors. Also, magnetic core of rotor used to simplify model in this
section is not present in machine shown. Phenolic materials are used in
projected design to construct stator and rotor.

to test approaches to constructing a rotating '"refrigerator'" required if the field is to be superconduc-
ting is shown in Fig. 4.9.2.

In the configuration considered here, it is assumed that surrounding the stator is a highly per-
meable shield material with inner radius (a) equal to the outer radius of the stator windings. Simi-
larly, the rotor windings are bounded from inside by a 'perfectly" permeable core. The magnetic mate-
rials are introduced into the model to make the example reasonably free of algebraic complications.

In a machine having a superconducting field, a magnetic core would not be used. Development of a
model without the magnetic rotor core follows the same pattern as now described.

W,

~

éé L————J 2; Fig. 4.9.3
2

in

l--a a

AN

Azimuthal current
' density distribu-

tion on stator
O —

and rotor.

@D
@Y

The distribution of stator and rotor current densities with azimuthal position is shown in
Fig. 4.9.3. The turns densities (na,nb,nc,nr) (conductors per unit area) respectively carry the
terminal currents (ia,ib,ic,ir). The conductors are unformly distributed. Hence, these current
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density distributions can be represented by the Fourier series

%S - ~r ~jmb
3= 1 Fe b<r<a; JF =1 JFF ™ d<r<e (1)
z m z m
=00 m==00

jmd
’

For the stator winding, the Fourier amplitudes are (Sec. 2.15)

6 jmm jm2m

2 . Ms . X 3 3

— sin (—)lin + 1 n e +1ine 3 m odd
~s Tm 2 aa b cc (2)
Jm = L

0 3 m even

while on the rotor the amplitudes are
mé jmer

- — sin (——)i_n_e s m odd
Jr - Tm 2 rr 3)
n 0 s m even

The constrained-current distribution is now as assumed in the previous section, Eqs. 4.8.4 and 4.8.10.
The associated transfer relations relate the Fourier amplitudes of the tangential magnetic field in-
tensities and vector potentials at the surfaces of the annular regions comprising the stator, the air
gap and the rotor winding with designations (d) - (j) shown in Fig. 4.9.1.

Boundary Conditions: There are no surface currents in the model, so the tangential magnetic fields
are continuous between regions and vanish on the stator and rotor magnetic materials. The normal flux
density is continuous, and this requires that the vector potential be continuous:

xd _ 4.z _ ~f . =8 ~h R S
Hom = 03 Hon = Hops Hop = Hops Hop = 0
(4)
i - xf; 8 - 3P
m m’ “m 'm

Bulk Relations: The transfer relations, Eq. 4.8.12, are now applied in succession to the stator,
the air gap and the rotor regions. In writing these expressions, the conditions of Eq. 4 are used to
eliminate (e,h) variables in favor of the (f,g) variables:

~d ~f
A =G (a,b)H + qumhm(a b)
-—1 F_(a,b 0 0 1 -Rf ] ‘- 3°n_ ;
. Uo m(a: ) uo om ya
~f
-1 W F (c,b) 0 u Gy (bye) || Hyp i 0 5
0 MGy (e,b) -1 E (b,c) Ai 0
- g oy 3
L 0 0 1 qum(d,c) Hem qumhm(c,d)
i .1 L o
~1

8
=Y, G , c)H + qumhm(d c)
Because the boundary conditions on the magnetic materials uncouple them from the other relations, the
first and last of these relations are written separately.

Torque as a Function of Terminal Variables: The torque is computed by integrating the Maxwell
stress over the surface at (g) on the rotor side of the air gap (sec. 4.2). Because By = (1/r)(3A/38),
the torque becomes (Eqs. 4.2.3 and 2.15.17):

277 cim g8y 8 ¢ 6
T, = 2me” I ¢ — A7) (Hg) (6)

m=-—00

To evaluate thlS expression, the amplitudes Ag and Hgm are found from the matrix equation of Eq. 5,
using Cramer's rule:

Zﬁ = 3301 + 3;02

)
%8 _ s ~T
Hon = InC3 + 9584
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where

3
u
€3 = 5 Bn(b,a)Gy(c,b)Fy(d,c)
3
C, = 5 hy(c,)[F (a,b)F, (b,c) - F_(c,bIF, (b,c) + G (c,b)G,_(b,c)]
L2
¢y = T° b, (b,a)G_(c,b)
2
C, = 5 hy(c,d)[F, (a,b) - F (c,b)]

D = 121G, (c,b)6, (b,e) = [Fy(c,b) - F (a,b)1[F, (b,c) - F (d,c)]}

In using Eqs. 7 to evaluate Eq. 6, observe that 35(3sf and ﬁr(ﬁr)* are even in m, as are also the
functions hy, F,, and Gy. Because of the latter,mthg Cy's are %lso even in m. Thus, the summations
of the self-field terms in IJSI2 and IJr!2 are odd functions of m and result in no contribution. The
mth terms are canceled by the™-mth terms. Only the cross terms appear, as Eq. 6 becomes

+c0
_ ~r ~8 * ~8 ~T %*
T, = 2Mc I (-jm) [Jm(Jm) C,Cy + Jm(Jm) clc4] (8)

m==00

Substitution of Eqs. 2 and 3 therefore gives the torque as

(c,c, - C.,C,) mé md
_ 16ic 23 174 T 8.
T, == irnrmil —_— sin ( 3 ) sin ( 5 )[ianasin mer
(odd) - ..
+ ibnb sin m(er - 3) + icnc sin m(er - Tr)] (9)
where us
(C,Cq - C4C,) = ]—)-‘2’- h (c,d)h_ (b,a)G, (c,b)[F_ (a,b)F, (b,c) - F (c,b)F_(b,c)

+ G, (e,b)G,(b,e) + Fy(d,e)F (c,b) - F (d,c)F (a,b)]

Electrical Terminal Relations: Each of the three phase windings of the stator, as well as the
rotor winding, can be represented by the coil shown cross-sectionally in Fig. 4.9.4. For the "a"
phase of the stator, variables are identified as 6; = 68/2,62 = -05/2,0 = a, B = b. For the rotor,
61 = 6, + 0£/2,62 = 0, - 8¢/2, @ =c, B =d.

Fig. 4.9.4

Prototype coil representing each
of the four in Fig. 4.9.1.

The flux linked by a single turn of the coil carrying current in the z direction at (r',6') and
returning it at (r',0' + 7) 1is conveniently evaluated in terms of the vector potential (Eq. (f) of
Table 2.18.1):

QA = R[A(x',0") - A(x',8' - ] (10)
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With n defined as the turns per unit cross-sectional area, there are nr'dd'dr' turns in a differential
area and hence the total flux linked by the coil is

0,107 +oo - _ ' - _ 1
A =2 ] ] £ IR NI _ K e Im(8'-m) 1 rrde dr (11)
B 92 m==0 n

The integration on 6' can be carried out directly to reduce Eq. 11 to

A=2jnZ

ms—m

odd

4oo (_jmel '3"‘92) o
e - € It Tyt 30t
p- J Am(r Yr'dr (12)

B

To complete the radial integration, Eq. 4.8.13 is used to express Km, while for the case being considered,
AP is given by Eq. 4.8.11:

4o ( -jmb, -jm92
e

A= 2l —= (A2, (@,8) - A u8(8,00 - u Js, (0,8)] (13)
odd
where
1
M (x,y) = Fix° - w’h_(x,y)]
2 2 4 4
1 -
M ) - 0 -3 ETD w # 42
m -4 m -4 m- -4
Sm(xs}') =
- -i— xz In me(x,y) + -3;'- y2 1n me(y,x) + %6' [xl‘(ln X - %_) - yA(ln y - %—)], m= +2

By appropriate identification of variables, Eq. 13 can now be used to compute the flux linked by each
of the four electrical terminal pairs. The procedure is illustrated by considering the field winding.
Then, variables are identified:

0 0
f £ 028 3 %1~ _ xr
A=A,d>c,B>d, 6 =6 --L£,0,=6 +=5 n=n,]A +28, BB 37 aw

The amplitudes (Kg,zl) are respectively evaluated from Eqs. 7a and the combination of Eqs. 5f and 7b.
Thus, identified with the field winding, Eq. 13 becomes

o me --ijr s
)\r = —uoleﬂ,nr E_m o sin (—2—)e Jm[Cle(cx,B) - qum(d,c)C3Mm(B,ot)]
odd
+ TEICM (@,8) = u G (d,e)C M, (B,0) + UM (B,a)hy (dye) = U S, (@,8)] (15)

The current density amplitudes are in turn related to the terminal currents by Eqs. 2 and 3. Thus,
Eq. 15 is expressed in terms of three mutual inductances and a self-inductance, in the form of Eq. 4.7.3d.
In writing these inductances, observe that F_ and G_ are even functions of m. It fo%%oy§ that hm and
hence M and S_ are also even functions of m, and that finally the coefficients of (J ,J ) in Eq. 15 are

. m* m
even in m. Thus, the summation can be converted to one on positive values of m:

pos ﬂ p -
Lra n cosm®6
me me a F
164n r @ sin (T) sin (—2—)
Lyl =-— mil - — [CM,(04B) - u G (d,e)CaM (B,a)] | ny cos n(®, + %) l16)
odd
ch n, cos m(er + %%5
L J - o
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mo mb

82,nf_ © gin (Tf) sin (-Ts)
Ly = =77 mﬁl m m [CZMm(a’B) - “on(d’c)C4Mm(B’a)
odd

+u M (B,a)h (d,c) - u S (a,B)] an”n

Because of the energy-conserving nature of the electromechanical coupling, there is redundancy
of information in the electrical and mechanical terminal relations. Reciprocity, as expressed by
Eq. 4.7.32b, can be made the basis for finding the 0, dependent parts of the mutual inductances from
the torque, Eq. 9. (Here, there are rotor positions at which each of the mutual inductances vanish,
and hence Eq. 9 uniquely specifies the mutual inductances.) The reciprocity condition shows that an
alternative to the coefficient used to express the mutual inductances in Eq. 16 is

[c,M (a,8) - qum(d,c)C3Mm(B,a)] = c[C,Cqy - C,C,] (18)

where the quantity on the right is given with Eq. 9.

With the reciprocity relations in view, one efficient approach to determining the complete
lumped-parameter terminal relations is to first find the torque, Eq. 9, then use the reciprocity condi-
tions to find the mutual inductances apd finally compute the self-inductances from Eq. 13. This last
step only requires evaluation of (Kg,zm) with self-current excitations (with currents in other
windings removed).

A more conventional approach is to compute the full inductance matrix from Eq. 13 and use the
lumped-parameter energy method (Sec. 3.5) -to find the torque.

4.10 D-C Magnetic Machines

The wide use of the d-c rotating machine justifies the model development undertaken in this sec-
tion. But, these devices are also a prototype for a family of "conduction" machines which includes
the homopolar generatorl and magnetohydrodynamic energy convertors, to be taken up in Chap. 9.
Analogous electric field devices are the Van de Graaff generator, considered in Sec. 4.14, and electro-
gas dynamic pumps and generators, described in Chaps. 5 and 9.

The developed model for the d-c machine given in Sec. 4.3 (Table 4.3.1, Part 3) is given a more
complete characterization in Figs. 4.10.1 through 4.10.4. What is by convention termed the "field"
winding is on the stator, which consists of a highly permeable structure wound with a total of 2ng turns
excited through the terminal pair (if,vg). The "armature" is the rotor, with a winding connected
through the commutator to the terminal pair (i,,vy), so that the distribution of current is essentially
stationary in space. The 6 dependence is shown in Fig. 4.10.2. The rotor core, like the stator mag-
netic circuit, is modeled here as being infinitely permeable.

With the assumption that the stator is infinitely permeable, it is clear that the magnetic poten-
tial on the stator surface, Tf, is constant for those points at r = Ry contiguous with the stator. In-
tegration of Ampere's integral law, Eq, 2.7.1lb, over any contour passing between the pole faces through
the field winding and closing through the air gap shows that the pole faces differ in Y by 2ng¢if. The
horizontal mid-plane is defined as the reference ¥ = 0, As an approximation that specifies the fringing
field in the ranges of © between pole faces, the magnetic potential is taken as the linear interpolation
shown in Fig. 4.10.2a. Because the rotor is modeled as infinitely permeable, the tangential magnetic
field at the rotor surface is equal to the surface current demsity K,, as shown in Fig. 4.10.2b (an ap-
plication of Eq. 2.10.21). The number of turns per unit azimuthal length on the rotor is Nj.

The commutator, which consists of conducting segments that are sequentially connected to the ar-
mature terminals through brushes, as shown in Fig, 4,10.3a,2 is attached to one end of the rotor. Thus
it rotates with the same angular velocity @ (defined as positive in the positive 6 direction) as the
rotor. The model now developed does not include "end effects," in that the rotor is assumed to have a
length £ that is much greater than the air gap R,-R.

The boundary conditions, pictured graphically in Fig. 4,10,2, are first represented by Fourier
series (Eqs. 2,15,7 and 2,15,8 with kpz’ng and £*27R). Thus, with (f) denoting the radial position r=R,

Im'lT
of = »  §E Im8. GE 2ngip sin mo, 16 2 | n
m=-° m  m o (0 _m)
(0dd) °

1. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I, John Wiley & Sons, New York,
1968, p. 312.

2, A. E. Fitzgerald, Ch. Kingsley, Jr., and A. Kusko, Electric Machinery, McGraw-Hill Book Company,
New York, 1971, p. 192,
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Fig. 4.10.1. Cross section of d-c machine,

(a) 26/, Ini \E =

Fig. 4.10.2. Circumferential distribution of magnetic potential at r = R
and tangential magnetic field intensity at r = R. Q
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and at the rotor surface where r = R,

eo 2N i um X
a _ va -jm@, ~a _ " aa 12-
'ﬁ/e L Bon® T Bon < g 30 )
(odd)

Fields in the air gap are represented by the transfer relations, Eqs. (a) of Table 2.16.2 with
k = 0. Hence, with positions (a) + (f) and (B) »* (a) and with radii o > R° and B + R,

f

nf ~
B .. £.(R,R) g (R ,R) || T .
'ﬁfm ° ga(R:R)) £ (R ,R) R'ﬁgm/jm

where ﬁgm has been introduced by using Hy = -(VW)G.
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Fig. 4.10.3. (a) Typical winding scheme for armature of d-c machine shown in Fig. 4.10.1.
The r axis is directed out of the paper. Brushes make contact with commutatotr
segments which move to the right with armature conductors.2 (b) Winding distribu-
tion of solid wires.
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Fig. 4.10.4

This venerable d-c¢ machine, of historical
interest because it generated electric

power for Boston at the turn of the century,
has the advantage of putting the commutator
segments and brushes in clear view. The
pole faces surrounding the rotor at the
upper right have a shape similar to that
shown in Fig. 4.10.1, but the associated
magnetic circuit is driven by armature coils
wrapped on a horse-shoe magnetic circuit
closing above the rotor. This is one of the
first machines made after Thomas A. Edison
moved from New York City to Schenectady in
1886.

Mechanical Equations: The rotor torque can be computed by integrating the Maxwell stress over a
surface at r = R, just inside the stator. This is an application of Eq. 4.2.3:

T = (2R IR <B:Hg>e (4)

Because ﬁg = ﬁf(jmlRo), and in view of the averaging theorem (Eq. 2.15.17), substitution of Egqs. 1 and
2 convertsmEq. to

o2, o xf K imgf
T = ZWROR.m:Em(Bm) (Ro)‘#m (5)

With the substitution of Eq. 3a into Eq. 5, the "self-torque" (involving @i(?ﬁ)*) sums to zero.
(Because fj;/m is an odd_function of m, the mth term in the sum cancels the -mth term.) The remaining
expression is a sum on Hgmﬁg. These amplitudes are evaluated using Eqs. 1 and 2. The resulting mag-
netic torque is thus expressed as a function of the terminal currents:

16 40 gm(Ro,R) sin(meo)

T=-G 1ii ;6 ==—RR AW Nn_ I
mfa’m T Tooaf _, n2 mb (6)
(odd)

The speed coefficient, G_, is positive. This is consistent with the (3 Xﬁﬁ} density expected with
if and i positive, as shown in Fig. 4.10.1. But the use of the force density J X B misrepresents the
actual distribution of force density on the rotor. With the conductors embedded in slots of highly
permeable material, the flux lines actually tend to avoid the conductors and pass through the rotor
surface between the slots. This means that the magnetic flux in the region where there is a current
density tends to zero as the permeability becomes infinite. In fact, the magnetic torque is largely
the result of the magnetization force density acting on the rotor magnetic material between the slots.
Fortunately, the stress tensor used to find Eq. 6 includes the magnetization force density, so the
deductions are sound. But, because the stress tensor is evaluated in free space, the same calculations
would be carried out and the same answer obtained even if the essential role of the magnetization force
density were not recognized. That the torque is not transmitted to the rotor through the conductor is

important, because it alleviates problems encountered in maintaining insulation in the face of mechani-
cal stress and vibration.

In terms of the electrical and mechanical terminal variables (if,ia,re), Eq. 6 represents the
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electrical-to-mechanical coupling.

Electrical Equations: To complete the model, it is necessary to express the mechanical-to-
electrical coupling in terms of the terminal variables. This is done by taking advantage of Faraday's
law, written for a contour of integration that is fixed in the laboratory frame of reference and
passes through the appropriate winding:

§ E-Vxu ﬁ) at = I-SE .nda ¢))
C S

For the armature, the circuit C is composed of whatever is externally connected to the terminals (v_,1 )
and the armature windings. The brushes are idealized as making continuous contact with the moving a
conductors. A particular possible winding that would give the uniform distribution of rotor current
density is shown in Fig. 4.10.3.

The fixed frame electric field integrated on the left in Eq._ 7 i§ relq&ed to the conductor current
density J by Ohm's Law, Eqs. 3.3.6, 2,5.11b, and 2.5.12b. Hence, fo -V x R and

E-xufi-d-vx (®)

where ; = QRi i1s the velocity of the moving conductors. At a given instant, the armature winding
amounts to a superimposed parallel pair of windings conmected through the brushes to the armature
terminals. One of the pair is shown in Fig. 4.10.3b. The other coil, represented by the dotted wires
of Fig. 4.10.3a, links the same flux. Each of these windings carries half of the armature current ani
has the turns density Na'

For the "solid" windings, Eq. 7 becomes
3 T .4 d
v, + IE 4% + J’ ORB 1, .df = - o= js B da 9)
wire wire

where S is an integration over the surface enclosed by the contour C composed of the wire. The integra-
tion of E between the terminals external to the machine gives the term =V,.

The current density in the wire is the net current i /2 divided by the cross-sectional area of the
wire, A,. Hence, the second term in Eq. 9 becomes

3 I ia 1 2a
I E'd =TA—.C'J—2'a=Raia; Ra=2ACr 10)
a a a a
wire

where Aa is the cross-sectional area of the wire and 2ﬁ is the total length of the wire joining the
brushes at the given instant (the total length of the "solid" wire in Fig. 4.10.3a). Hence, R, is
the d-c resistance "seen" at the armature terminals.

The third term in Eq. 9 is evaluated by recognizing that those conductors between € and 6 + d6
number (N,R)d®, and therefore give a contribution (RB.(6)N,Rd6. This integrand makes a positive con-
tribution in the interval m/2<6<3w/2, where the contour is in the positive z direction, and a negative
contribution in the interval -w/2<9<ﬂ/2 where the wires are returning in the -z direction:

in/2 m/2
f orB%1 .df = 2 ] 2N 8246 - 2 J or%N B2a6
r z ar ar
wire m/2 -7/2
(11)
I S
- -4QeRN 3 B ge 2
a e W
(odd)

The second equality results from substitution of the Fourier series and carrying out the integration.
It follows from substitution for Ba using Eq. 3b with Eqs. 1 and 2 used to relate W and Ha to the
terminal currents that

a-)-
I musriz.d?[ = -6 1 (12)

wire
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where Gy is the same as defined with Eq. 6. To complete these steps, observe that fm/m3 is an odd func-
tion of m, so that the contribution that is proportional to i, sums to zero. Also, Rgn(R,Rp) =

-Rogp(Ro,R), as can be seen from the definition in Table 2.16.2 or by application of the reciprocity
condition, Eq. 2.17.10. There is no contribution to Eq. 12 of the part of B? induced by the armature

currgnt because this "self-field" contribution to v X B at a winding location 6 is cancelled by that
at -0. :

To evaluate the right~hand side of Eq. 9, first observe that the flux linked by the coils having
their left edges in the range d6' in the neighborhood of ©' is the product of the flux linked by one
turn and the number of turns in that range of 6':

7 ’
7 . -

. Q\-l)je' ‘B:Rde:, N_Rd6' . (13)

As a result, the total flux linked by all of the turns is
3n/2 8'+m
I B da--I I:z I BaRdG:IN RdO’ (14)
g T ] o r a

Again, substitution of the Fourier series for B: and evaluation of the integrals gives

2 i:m _j;??
JBda-M.NRZ — e @15)
T a 2 . .
S m=-P m
(odd)

Further evaluation, using Eqs. 3b, 1 and 2, with the observation that gm/m3 is an odd function of m
so that the contribution proportional to if vanishes, gives

2 .3

: - 164Ny R™ « £ (R ,R)
_ . = ao m' o
I Brda = Laia’ La = T % (16)
s m=1 m
odd

That iy makes no contribution to the net flux linked by the armature winding is evident from Fig. 4.10.1.
The armature and field magnetic axes are perpendicular. Thus, with the substitution of Eqs. 10, 12 and
16, the armature circuit equation, Eq. 9, becomes

-di
a
vo=Ri -QGi +L — @a7)
where Ra’ Gm and La are given by Eqs. 10, 6 and 16.

The circuit equation for the field winding is similarly found by applying Faraday's integral
‘7( law, Eq. 7, to a contour composed of the field winding. The right-hand side of Eq. 7 is approximated:.
by the flux contribution over the surfaces of the respective poles:

l 3m
7~ % p 7% p,
j Brda = nf£ J BrRode - nfl J BrRode (18)
T . T
-E+e° '§'+eo

Substitution of the Fourier series for Bi and integration gives

) .-
¢ f e 2 ~f
=48 _ R X ==
ISBrda ﬁfg o k) raT) B, cos meo 19)
(

This expression can now be evaluated using first Eq. 3a and then Eqs. 1 and 2. Because gm/m3 is an
odd function of m, the term proportional to ia sums to zero with the result

2
16n R 4 © cos mO sin mb
f - £ 0 0 [s] o
B da =L i L S - e—— z
JS r gles Le T w1 a2, R (20
(odd)
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Fig. 4.10.5. Regimes of energy conversion for a d-c magnetic field type interaction. Armature
voltage v, is fixed and field current if is varied. With the identification of
variables ig > vg, v, *> 15, Ry, Rg™y Gy > Ggs the power characteristics also

represent the Van de Graaff type of device developed in Sec. 4.14,

Note from the definition of f; in Table 2.16.2 or the energy relation, Eq. 2,17.12, that £ (R,R o) <0,
so that Ly is positive. The 1eft-hand side of Eq. 7 is evaluated as for the armature except that the
conductor is fixed. Hence, Eq. 7 becomes the required circuit equation for the field:

a1,
Ve = Rede + Le 35 (21)

The total resistance of the field winding is Re = Aflflof, and Le is given by Eq. 20.

The Energy Conversion Process: Simple consideration of Eqs. 6 and 17 relates the discrete elec-
trical and mechanical terminal variables to the energy conversion process. Consider the field excita-
tion current iy and the armature voltage v, as constrained by external sources. The steady-state
dependence of the armature current and the magnetic torque on the comstrained variables implied by
Eqs. 6 and 17 is then

Vo QGm
LTt I 22)
a a , i
va QGm
T = m f + R_f (23)
a
The electrical power input to the device follows from Eq. 22 as
Va
1a% = 7, [Va * W] (24)

while the mechanical power output is given by Eq. 23 multiplied by the angular velocity
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QGm \
a

These last two expressions are sketched in Fig. 4.10.5 to show the power-flow dependence on the field
current if with { assumed positive.

In view of the physical significance of izv, and 9T, it is possible to classify the regimes of
operation as also sketched in Fig. 4.,10.5. It is because the electromechanical coupling has been
defined to include the electrical losses (by contrast with the point of view in Sec. 4.9, for example)
that the brake regime is possible.

The power conversion characteristics exemplified by this d-c machine and summarized in Fig. 4.10.5

are in common to the family of d-c or conduction type interactions. For example, with appropriate re-
definition of variables, the same characteristics pertain to the Van de Graaff machine of Sec. 4.14.

4.11 Green's Function Representations

In dealing with fields that are related to sources (the charge density or current density) through
linear differential equations, it is possible to use yet another approach that is based on the fact
that superposition of sources implies superposition of fields. This approach, which is an alternative
applicable to situations illustrated in Secs. 4.5 - 4.9, is familiar from the use of the superposition
integral to find the potential response from charge specified throughout all space or from the Biot-
Savart law for finding the magnetic field, given the distribution of current density throughout space.

Volume source distributions can often be considered the sum of distributions of surface charge
or surface current. The transfer relations are a convenient vehicle for obtaining the response to
such singular sources. By then integrating over the actual given source distribution, the field is
represented as the sum of field responses to the surface sources,

The determination of the fields and force associated with the charge beam of Sec. 4.6 illustrates
the method. Figure 4,11.1 shows a cross section of the configuration pictured in Fig. 4.6.1, but
with the only volume charge in a shell having radial thickness dr' at the radius r', where the density
is p(r'). The fields due to an arbitrary radial distribution of charge can be constructed once the
response to this surface charge, having density p(r')dr’, is_determined. At the outset, consider the
field to be a superposition of fields due to the potential V, imposed at the surface r = a and to the
distribution of charge in the volume. The latter is determined by using the boundary conditions

xd

3¢ =0, 3% = 3%, B - Bi = p(r')dr’ D)

Implicit is the understanding that there is no O dependence, and that the z dependence is exp(-jkz).

Fig. 4.11.1

Shell having surface-charge
density pg(r')dr' gives rise
to fields that can be summed
to determined field due to
arbitrary charge distribution.

In the region r > r', the.flux-potential relations, Eq. (a) of Table 2.16.2, apply:

=R
0
o
0

f (£',a) g (a,r")
=ecl © ° d (2)
go(r'aa) fo(a,r')

(> ]
"
o

whereas in the inner region, r < r', the limiting form of Eq. (c) is appropriate:

~e ~e
D = €fo(0,r')¢ (3)

Secs. 4.10 & 4.11 4.40



Subtraction of Eq. 3 from Eq. 2b and use of the boundary conditions of Eq. 1 gives

3d _ ze _ p(r")dr’
=0 elf (a,r") - £ (0,r"] i

By the judicious use of these amplitudes and the potential distribution given for a canonical annular
region by Eq. 2.16.25, it is now possible to write the radial distribution of & for an arbitrary dis-
tribution of charge den51ty. There are three terms. The first is simply the potential due to the
voltage V, applied at the outer wall. For this part, Eq. 2.16.25 is evaluated with B =+ 0 and Jo =¥,
The second term comes from evaluatlng Eq. 2.16. 25 for the potential at r due to the charge shell at

r' <r (so that o = a, B =1"', 3 = %c = 0 and 3B = 3d ) and adding up all contributions attributable to
charge inside the radius of observatlon r. Finally, the third term is written by again using

Eq. 2.16.25 to express the potential, but this time due to charge at a greater radius than the r, at

r <r' (so that o = r', 8> 0 and & = 3d) and integrating over the distribution outside the observa—
tion position r:

. g Jolk) [, (ka)H_ (§kr) - B (jka)J (jkr)] 5 ydr!
¢(r) =V, TTjk—a)' Io [3, Gka)E, Gkr)-E_(3ka)J_ Gkr')] €[f_(a,x") - £_(0,r")]
(5)
. Ja Jo(jkr) j')(r')dr'
n Jo(jkr') ELfo(a,r') - fo(O,r')J

To find the axial force acting on the entire beam, it is only the normal flux density at the outer
wall that is required, This can be found from Eq. 5, but is more easily determined directly from Eqs. 2a,
uged first w &th 3¢ = V and (d) +~ 0 to find the flux density due to the wall potential alone and then with

= 0 and 3¢ given by Eq. 4 to find the part due to the volume charge. The latter is summed over the
total distribution of charge.

e . (& g la,x)p"ar’
D = ef (0,a)V_ + J (6)

o [fo(a,r') - fo(O,r')]

The force is thus determined by substituting this expression into Eq. 4.6.3. Equation 6 holds for an
arbitrary charge distribution, but consider the uniform distribution of charge inside the radius R.
Then the integration needs only be carried out from 0 to R. With Vo and p(r') selected consistent
with Eqs. 4.6.1 and 4.6.2, it follows that the force is given by Eq. 4.6.8 with Lj replaced by L3,
where

a_

R g, (a,r")dr’ 1 kR T (kr )
J j (kr'") d(kr') ()

[f (a,r'") - f ,r )] (kR) I (k )

The integral is carried out by recognizing that Io(kr') is a solution to Eq. 2.16.19 with r > r' and
m = O:

dI_(kr')
e (o o) - ®

Hence, Eq. 7 gives the same result, Eq. 4.6.13, as found in Sec. 4.6 using the 'splicing approach."

The same procedure applies if the charge has © dependence exp(-jmf). Thus, by making use of a
Fourier series representation in © and z, the method can be used to describe fields associated with
arbitrary dependence on 6 and z.

The Green's function approach exemplified here is applicable to modeling the synchronous machines
developed in Secs. 4.7 and 4.8.

4,12 Quasi-One-Dimensional Models and the Space-Rate Expansion

The "narrow-air-gap" model for rotating machines and long-wave models for electromagnetic wave
propagation are examples of quasi-one-dimensional models. The following sections illustrate the use
of such models in the kinematic description of electromechanical interactions. Extensive use will be
made in later chapters of models that similarly exploit a relatively slow variation of distributed
quantities in a "longitudinal" direction relative to "transverse" directions.

1. This is the method used by Kirtley in '"Design and Construction of an Armature for an Alternator
with a Superconducting Field Winding,'" Ph.D. Thesis, Department of Electrical Engineering, MIT,
Cambridge, Mass., 1971, for a configuration closely resembling that considered in Sec. 4.8.
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(a)

Fig. 4.12.1. (a) Cross-sectional view of sync¢hronous electric field energy converter with
stator and rotor composed of perfectly conducting materials constrained by a
time-varying voltage source. The stator geometry is static, while the rotor
moves to the right. (b) Interaction represented by time-varying capacitance.
(c) Detail of air gap showing components of Ez to satisfy boundary conditions.

An example is shown in Fig. 4.12.1. Perfectly conducting surfaces having the potential differ-
ence v(t), vary from the planes x = 0 and x = -d by the amounts §£g(z,t) and £.(z,t), respectively,
What are the fields in the gap? This configuration is the basis for the study of the variable~
capacitance machine in Sec. 4.13. Fields in the gap can be approximated by two techniques. If &
and &, are small compared to d, the boundary conditions can be linearized, and the fields found
approximately. This is the approach used in Sec. 4.3 for describing the salient pole interactions
(Eq. 4.3.16). It formally amounts to expanding the fields in an amplitude parameter expansion with
the zero-order fields those with &g and &, equal to zero, the first-order terms those given by keeping
only linear terms in (§g,&,) and so on. Thus, the validity of the model hinges on the amplitudes

(ES,Er) being small.

In quasi-one-dimensional models, amplitudes are not necessarily small. Rather, certain spatial
rates of change are small. In the configuration of Fig, 4,12,1, the distance A typifying variations

in the z direction is long compared to the distance d, Yy = (d/A)2 << 1.

The relationship between linearized and quasi-one-dimensional models is illustrated in Fig. 4.12,2,
Linearized quasi-one-dimensional models must be consistent with the long~wave limit of the linearized
model. In establishing complex models, this fact is often used to motivate the appropriate 'zero-order"
approximation which is the starting point in developing a quasi-one-dimensional model.

amplitude
_ expansion
"exact" model > linearized
(linearization) model
space-rate long-wave
expansion ¥ limit
quasi-one-dimensional linearized long-wave
+—
model model
linearization

Fig. 4.12.2. Schematic characterization of relationships among three-dimensional,
quasi-one-dimensional and linearized models.
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Usually, quasi-one-dimensional models are motivated by physical reasoning, with little need for
formality. This is partly because higher order terms are seldom used. But, at least once, it is
worhwhile to see how higher order terms are found, and that the approximation used is the lowest order
term in an expansion in powers of a space-rate parameter, in the example of Fig. 4.12.1, of y = d/n)2,

The procedure here is analogous to that of Sec. 2.3 on quasistatics. The spatial coordinate z,
in which variables evolve slowly, plays the role of time, The physical idea that this slow variation
ought to make one field component dominate the other is built into the normalization of variables.

If modulations of the electrodes are slowly varying compared to the transverse distance d, each sec-
tion of the electrodes tends to form a parallel-plate capacitor. With E, a typical electric field in
the x direction (the "dominant" field component), d taken as the typical length in the x directionm,
but A as that length in the z direction, the appropriate normalization is

E_=EE x = dx

b o=x =

E, = E (d/NE, z = Az 1)
Er - dgr’ E'-‘s = 4§S v= (Eod)!

In the gap, i is irrotational and solenoidal, In terms of the normalized variables, these con-
ditions are

JE JE
~=__2.0
oz x
2
agx BEZ
trali & ra

where the space-rate parameter y = (d/X)z. To complete the formulation in terms of normalized variables,
boundary conditions at the scalloped perfect conductors are that the potential difference be v(t) and
the tangential fields vanish:

E’S
9E ok
Ez =—-,aT'Ex(x=€s); Ez"—ﬁ—Ex(x=Er- 1); Ig . Exdx=v 3)
-1
T

Only two of these three expressions are independent.
The normalized field components are now expanded in series of the form

’ 2 o s
Ex Exo + 'YExl +v ExZ +
@

2
Ez Ezo + YEzl +y E22 + oo

Note that only one dimensionless parameter is involved, so for the particularly simple case at hand,
there is no ambiguity as to what lengths are most critical.

Substitution of the series of Eq. 4 into Eqs. 2 gives a palr of expressions which are poly-
nomial in y. Coefficients of each order in y must vanish; thus, the zero-order terms involve only the
zero-order fields

aEXO - aEZO = 0

9z 9x

9E €))
X0

= = O
X

but the first order expressions are "driven" by the zero order fields

EEEl - Efil = 0
oz ox 6)

aExl aEzo

ox 0z
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It follows from Eqs. 3c and 5b that Exo is quasi-one-dimensional. It only depends on (z,t):

Exo = Exo(z’t) B

v

— @

Es +1 gr

What has been deduced as the zero-order E, is just the voltage divided by the distance between con-
ductors. If variations with z are sufficiently slow, each section of the system forms a plane-parallel
capacitor. To find the other component of the zero-order field, note that Ey,, is only a function of
(z,t), so Eq. 5a can be integrated to obtain

aExo
E =X
Z0 3z

+ £(z,t) (8)

where f(z,t) is an integration function. This function is determined by substitution of Eq. 8 into
Eq. 3a:

9E,, 3

E =x-——-=— (E £ ) ®

zo 0z 9z  XO0°s

Substitution now shows that the tangential field on the lower surface is zero, Eq. 3b is satisfied. The
zero-order fields are represented in dimensionless form by Eqs. 7 and 9.

The first-order fields are predicted by Eqs. 6, now that the zero-order fields are known. From
Egs. 6b and 9,

L - L %0 = o)
ox 9z xXT + 22 (Exogs) o

The functional dependence on x on the right in this expression is explicit, and therefore integration
gives

x2 3 E 32
Ear-5 —3 — % a_z—f (Exogs) + glz,t) @

Because the zero-order Eg already satisfies the boundary condition, E,o integrates to v across the gap
(Eq.3c), the same integral of Eq. 11 must vanish and that serves to determine the integration function
g(z,t). At this point, two terms in the series of Eq. 4a have been found, and they are sufficient to
show what is meant by the expansion :

2 3 3
0°E 2 ES + (1 - gr)

X0

U SN x4 1
x " @T+E -E) Y| oz 26T FaA-€E)

2 (12)
3 1
+ 3—27 (EyoBg) (x - 5 1€ - (L - EDD)

E

By the definition of % used in normalizing z, BZEXO/BZ2 is on the order of Ey,. Hence, the first
term in Eq. 12 gives an accurate picture of the field, provided y << 1.

The procedure outlined is mainly of conceptual value. Certainly the quasi-one-dimensional
modeling of a complex problem begins with a physically motivated approximation: here, Eq. 7. Because
no more than the zero-order solutions are usually required, the formalism of normalizing the variables
and identifying dimensionless space parameters is not usually required.

In retrospect, the zero-order fields have a dependence on the transverse direction (x) that is
the lowest order polynomial in x consistent with the boundary conditions. Thus, E,, varies as x©
(it is independent of x); while E,, can satisfy the boundary conditions only if it includes a linear
dependence on X.

4,13 Variable-Capacitance Machines

A model for one of the most commonly discussed "electrostatic" synchronous machines (which are
themselves rather uncommon) is shown in Fig. 4.12.la. Both the fixed and moving members have saliency

and consist essentially of perfectly conducting material. The time-varying voltage between stator and
rotor can either be the source of electrical power for producing a synchronous force in the z direction

on the rotor, or it can serve as the voltage of a bus representing an energy sink for the device acting
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Fig. 4.13.1. Physical realization of variable-capacitance machine modeled in Fig. 4.12.1.
(a) Stator and rotor structure consisting of vanes. (b) Sinusoidal voltage
supplied through slip ripgs together with v2(t), showing temporal depend-
ence of instantaneous force.

Image removed due to copyright restrictions.] [
Photograph of a variable-capacitance generator designed for use with vacuum insulation.

Fig. 4.13.1lc. Variable-capacitance generator designed for use with vacuum insulation. Estimated
output at 30,000 rpm is 6 kW at 20 kV (courtesy Goodrich High Voltage Corp.). Development
of variable-capacitance machines was attempted for the generation of high-voltage power
with application to ion propulsion in the space program. In space, vacuum insulation is
easily obtained. See reports for Contract No. AF33(616)-7230 from Goodrich-High Voltage
Astronautics, Inc., Burlington, Mass., to Aeronautical Systems Division, Air Force Systems

Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio. For example, Phase II
report by A. S. Denholm et al., 1961.

4,45 Sec. 4.13



as a generator. In practice, the stator and rotor members might consist of metallic fins, as shown in
Fig. 4.13.1. In the model, regions on the stator and rotor that project into the air gap represent the
fins, while regions that dip into the stator and rotor material represent the gaps between fins.

The device is often referred to as a "variable-capacitance” machine because, when the relative
position of rotor and stator is such that the projections into the gap are just opposite each other,
the capacitance is at a maximum, while it reaches a minimum when the peak in rotor saliency falls just
opposite a "valley" in the stator material.

One way to view the energy conversion process is simply to represent the capacitance seen by the
voltage source as time-varying. Given the motion of the rotor, the capacitance C is a known function
of time, and the electrical problem comes down to determining a suitable temporal variation for C,
relative to a time-varying voltage, v. If power is supplied to the voltage source, it must come from
the mechanical forces responsible for making the capacitance vary with time. Thus, the other side
of the energy conversion process raises the question: How is a time-average force produced on the rotor
by the combination of the salient configuration and the time-varying applied voltage? In this section,
we will take up the second question first. What i1s the electrical force in the direction of motion on
the moving member?

The field point of view taken here results in the relation between geometry and capacitance
needed to model an actual system, even if the circuit point of view 1s taken. But also, it makes
the example useful in conceptualizing electromechanical interactions that cannot be given a lumped-
parameter model. For example, suppose that the undulations on the "rotor" were in fact material de-
formations produced by the field itself. This type of self-consistent electromechanical coupling
is not kinematic and will be taken up in Chap. 9,

Synchronous Condition: With a sinusoidal voltage v(t) having period T, applied between the rotor
and stator by means of a slip-ring, a time-average electrical force can act in the z direction on
the rotor only if there is a synchronism between the applied voltage and the rotor motion. To this
end, consider the physical origins of this force in terms of the model shown in Fig. %4.12.1. Regard-~
less of the field polarity, at any position on the rotor surface there is an electric force per unit
area that is directed perpendicular to the surface and into the air gap. This latter fact makes it
clear that without the surface undulations, there can be no electrical force in the z direction.

To make a synchronous motor, on the time average, fields acting to the right over regions of
the rotor surface with a negative slope must produce a greater force than those acting to the left
on the regions where the slope is positive. What is the relationship between the excitation period
T and the rotor velocity U that could result in there being a time-average electrical force? In
terms of the displacement z, of Fig. 4.12.1, a maximum in the force to the right is obtained with z,
in the neighborhood of A/4. Thus, with the rotor in this position, the applied v2 should be at its
maximum, By the time the rotor is at z_. = 3)A/4, the force produced is in the wrong direction, and
hence v2 should be near a null., By the time z, = 5A/4, v2 should be peaking again. It is concluded
that in the time T/2, the rotor should move one wavelength: UT/2 = A, Thus, the synchronism con-
dition is met if

2\

z, = Ut + §; U= T 1

Here, § is a spatial phase-angle determined by the mechanical load on a motor or the electrical load
on a generator.

The quasi-one-dimensional electric field is given by Eqs. 4.12.7 and 4.12.9 un-normalized:

oF
v X 3
B mTFE c L) =T Bt m5 G @

The force on a section of the rotor one wavelength long and a length £ in the y direction is
found by integrating the Maxwell stress tensor over an enclosing surface as pictured in Fig. 4.2.la.
The only surface giving a contribution is the one of constant x in the air gap:

z+A
£, =% J €,EE, dz (3)
z

This integral can be evaluated using the fields of Eq. 2. That it does not matter what x = constant
plane is used in carrying out the integration (except for physical reasons, to have the assurance

that the surface does not cut through one of the electrode inward peaks) is evident from the fact
that
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z+A aEx
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z+A
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] % (2 Ex)dz = eo(x+d)[Ex(z+A) - Ex(z)] =0 (4)

The final deduction follows from the spatial periodicity of the structure. The remajining contributions

to the integral are expressed using the normalization

Az, £y = dBy, & = a5, 8 =25, 2 =z, (5)

With £ = (g v°/d)f,, Eq. 3 becomes

£ ='r+1 . = e 6
z z 1+ Es - Er oz {1 + Es - Er
Carrying out the differentiation in the integrand gives
z+1L 3€r SES
M U R I T
£(z,) = - : dz @
z L+g -E)

Once the integral is completed, the function f depends on the amplitudes of §_ and £, and on their
relative displacement z,.. The time-average force is then computed by specifying this relative dis-
placement in terms of Eq. 1. In normalized variables, with t = Tt

R i
&, | oo+ va ®

As an example, consider stator and rotor electrodes having sinusoidal shapes of equal amplitude
and a sinusoidal excitation voltage (note that Eqs. 7 and 8 are general in regard to these specifica-
tions):

§, = &, cos 2mz, E =& cos