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Preface

The three stages in which this text came into being give some insight as to how the material
has matured. As "notes" written in the early 1960's, it was intended to serve as an introduction
to the subject of electrohydrodynamics. Thus, it reflected the author's early research interests.
During this period, the author had the privilege of collaborating with Herbert H. Woodson (now
University of Texas) on the development of an undergraduate subject, "Fields, Forces and Motion".
That effort resulted in the text Electromechanical Dynamics (Wiley, 1968). There has also been
a strong influence from Hermann A. Haus, with whom the author has collaborated for a number of
years in the development and teaching of an undergraduate electromagnetic field theory subject.
Both Woodson, with his interests in rotating machinery and magnetohydrodynamics, and Haus, who
then worked in areas ranging from electron beam engineering and plasmas to the electrodynamics
of continuous media, stimulated the notion that there was a set of fundamental ideas that perme-
ated many different "specialty areas". To be taught were widely applicable basic laws, approaches
to modeling and mathematical techniques for disclosing what the models had to say.

The text took its second form in 1972-1973, when the objective was to achieve this broader
and more enduring aspect of the material. Much of the writing was done while the author was on a
Guggenheim Fellowship and a Fellow of Churchill College, Cambridge University, England. During
that year, as a guest of George Batchelor's Department of Applied Mathematics and Theoretical
Physics, and with the privilege of working with Sir Geoffrey Taylor, there was the opportunity
to further broaden the perspective. Here, the influences were toward the disciplines of contin-
uum mechanics.

Unfortunately, the manuscript resulting from this second writing was more in the nature of
two books than one. More integration and culling of material was required if the self-imposed
objective was to be achieved of helping to define a discipline rather than simply covering a
number of interrelated topics.

The third version, this text, would probably not have come into being had it not been for
the active encouragement of Aina Sils. Her editorial help and typewriter artistry provided teach-
ing material that was immediately sufficiently attractive to serve as an incentive to commit nights
and weekends to yet another rewrite.

As a close colleague who has been instrumental in establishing as an area the continuum
electromechanics of biological systems, Alan J. Grodzinsky has been both a source of technical
insight and an inspiration to complete the publication of material that for so many years had
been referenced in theses as "notes."

Research carried out by still other colleagues at MIT will be seen to have influenced the
scope and content. The Electric Power Systems Engineering Laboratory, directed by Gerald L.
Wilson,is an example with its activities in superconducting machinery (James L. Kirtley, Jr.)
and its model power system (Steven D. Umans). Others are the High Voltage Laboratory (John G.
Trump and Chathan M. Cooke), the National Magnet Laboratory (Ronald R. Parker and Richard D.
Thornton), the Research Laboratory of Electronics (Paul Penfield, Jr. and David H. Staelin),
the Materials Processing Center (Merton C. Flemings), the Energy Laboratory (Janos M. Beer and
Jean F. Louis), the Polymer Processing Program (Nam P. Suh), and the Laboratory for Insulation
Research,(Arthur R. Von Hippel and William B. Westphal).

A great satisfaction and motivation has come from seeing the ideas promolgated here serve
the needs of industry. The author's consulting activities, for more than 30 different companies,
provided many useful examples. In the face of an increasing awareness of the importance of energy
to our societal institutions and our way of life, it has been satisfying to see the concepts pre-
sented here applied not only to the development of new energy systems, but to the conflicting
problem of environmental control as well.

Where possible, examples have intentionally been chosen that can be illustrated with gen-
erally available films. Referenced in Appendix C, these are in two series. The series from the
National Committee on Fluid Mechanics Films was being developed at the Education Development
Center while the author was active in making three films in the series from the National Commit-
tee on Electrical Engineering Films. Interaction with such individuals as Ascher H. Shapiro and
J. A. Shercliff fostered an interest in using films to enliven and undergird classroom education.



While graduate students involved with the subject or carrying out their PhD theses, a number
of people have made substantial contributions. Some of these are James F. Hoburg (Secs. 8.17 and
8.18), Jose Ignacio Perez Arriaga (Secs. 4.5 and 4.8), Peter W. Dietz (Sec. 5.17), Richard S.
Withers (Secs. 5.8 and 5.9), Kent R. Davey (Sec. 8.5), and Richard M. Ehrlich (Sec. 5.9).

Problems at the ends of chapters were typed by Eleanor J. Nicholson. Figures were drawn
by the author.

Solutions to the problems have been prepared in the form of a manual. Intended as an aid to
those either presenting this material in the classroom or using it for self-study, this manual is
available for the cost of reproduction from the author. Requests should be over the signature of
either a member of a university faculty or the industrial equivalent.

James R. Melcher

Cambridge, Massachusetts
January, 1981
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1.1 Background

There are two branches to the area of electromagnetics. One is primarily concerned with electro-
magnetic waves. Typically of interest are guided and propagating waves ranging from radio to optical
frequencies. These may propagate through free space, in plasmas or through optical fibers. Although
the interaction of electromagnetic waves with media of great variety is of essential interest, and in-
deed the media modify these waves, it is the electromagnetic wave that is at center stage in this
branch. Dynamical phenomena of interest to this branch are typified by times, T, shorter than the
transit time of an electromagnetic wave propagating over a characteristic length of the "system" being
considered. For a characteristic length Z and wave velocity c (in free space, the velocity of light),
this transit time is k/c.

In the chapters that follow, it is the second branch of electromagnetics that plays the major
role. In the sense that electromagnetic wave transit times are short compared to times of interest,
the electric and magnetic fields are quasistatic: T >> R/c. The important dynamical processes relate

to conduction phenomena, to the mechanics of ponderable media, and to the two-way interaction created
by electromagnetic forces as they elicit a mechanical response that in turn alters the fields.

Because the mechanics can easily upstage the electromagnetics in this second branch, it is likely
to be perceived in terms of a few of its many parts. For example, from the electromagnetic point of
view there is much in common between issues that arise in the design of a synchronous alternator and
of a fusion experiment. But, on the mechanical side, the rotating machine, with its problems of vibra-
tion and fatigue, seems to have little in common with the fluid-like plasma continuum. So, the two
areas are not generally regarded as being related.

In this text, the same fundamentals bear on a spectrum of applications. Some of these are re-
viewed in Sec. 1.2. The unity of these widely ranging topics hinges on concepts, principles and
techniques that can be traced through the chapters that follow. By way of a preview, Secs. 1.3-1.7
are outlines of these chapters, based on themes designated by the section headings.

Chapters 2 and 3 are concerned with fundamentals. First the laws and approximations are intro-
duced that account for the effect of moving media on electromagnetic fields. Then, the-force den-
sities and associated stress tensors needed to account for the return influence of the fields on the
motion are formulated.

Chapter 4 takes up the class of devices and phenomena that can be described by models in which
the distributions (or the relative distributions) of both the material motion and of the field sources
are constrained. This subject of electromechanical kinematics embraces lumped parameter electro-
mechanics. The emphasis here is on using the field point of view to determine the relationship between
the lumped parameters and the physical attributes of devices, and to determine the distribution of

stress and force density.

Chapters 5 and 6 retain the mechanical kinematics, but delve into the self-consistent evolution
of fields and sources. Motions of charged microscopic and macroscopic particles entrained in moving
media are of interest .in their own right, but also underlie the limitations of commonly used conduc-
tion constitutive laws. These chapters both introduce basic concepts, such as the Method of Charac-
teristics and temporal and spatial modes, and model practical devices ranging from the electrostatic
precipitator to the linear induction machine.

Chapters 7-11 treat interactions of fields and media where not only the field sources are free
to evolve in a way that is consistent with the effect of deforming media, but the mechanical systems
respond on a continuum basis to the electric and magnetic forces.

Chapter 7 introduces the basic laws and approximations of fluid mechanics. The formulation of
laws, deduction of boundary conditions and use of transfer relations is a natural extension of the
viewpoint introduced in the context of electromagnetics in Chap. 2.

Chapter 8 is concerned with electromechanical static equilibria and the dynamics resulting from
perturbing these equilibria. Illustrated are a range of electromechanical models motivated by Chaps.
5 and 6. It is here that temporal instability first comes to the fore.

Chapter 9 is largely devoted to electromechanical flows. Included is a discussion of flow
development, understood in terms of the same physical processes represented by characteristic times



in the previous four chapters. Flows that display super- and sub-critical behavior presage causal
effects of wave propagation taken up in Chap. 11. The last half of this chapter is an introduction
to "direct" thermal-to-electric energy conversion.

Chapter 10 is divided into parts that are each concerned with diffusion processes. Thermal diffu-

sion, together with convective heat transfer, is considered first. Electrical dissipation accompanies

almost all electromechanical processes, so that heat transfer often poses an essential limitation on in-

vention and design. Because fields are often used for dielectric or induction heating, this is a subject
in its own right. This part begins with examples where the coupling is "one-way" and ends by considering
some of the mechanisms for two-way coupling between the thermal and electromechanical subsystems. The

second part of this chapter serves as an introduction to electromechanical processes that occur on a spa-
tial scale small enough that molecular diffusion processes come into play. Here introduced is the inter-

play between electric and mechanical stresses that makes it possible for particles to undergo electro-

phoresis rather than migrate in an electric field. The concepts introduced in this second part are ap-

plicable to physicochemical systems and point to the electromechanics of biological systems.

Chapter 11 brings together models and concepts from Chaps. 5-10, emphasizing streaming interac-

tions, in which ordered kinetic energy is available for participation in the energy conversion process.
Included are fluid-like continua such as electron beams and plasmas.

1.2 Applications

Transducers and rotating machines that are described by the lumped parameter models of Chap. 4
are so pervasive a part of modern day technology that their development might be regarded as complete.

But, with new technologies outside the domain of electromechanics, there come new needs for electro-

mechanical devices. The transducers used to drive high-speed computer print-outs are an example. New

devices in other areas also result in electromechanical innovations. For example, high power solid-

state electronics is revolutionizing the design and utilization of rotating machines.

As energy needs press the capabilities of electric power systems, rotating machines continue to be

the mainstay of energy conversion to electrical form. Synchronous generators are subject to in-

creasingly stringent demands. To improve capabilities, superconducting windings are being incorpo-
rated into a new class of generators. In these synchronous alternators, magnetic materials no longer

play the essential role that they do in conventional machines, and new design solutions are required.

The Van de Graaff machine also considered in Chap. 4 should not be regarded as a serious approach

to bulk power generation, but nevertheless represents an important approach to the generation of ex-

tremely high potentials. It is also the grandfather of proposed energy conversion approaches. An

example is the electrogasdynamic "thermal-to-electric" energy converter of Chap. 9, Sec. 9.

Chapters 5 and 6 begin to hint at the diversity of applications outside the domain of lumped

parameter electromechanics. The behavior of charged particles in moving fluids is important for under-

standing liquid insulation in transformers and cables. Again, in the area of power generation and dis-

tribution, ions and charged macroscopic particles contribute to the contamination of high-voltage in-

sulators. Also related to the overhead line transmission of electric power is the generation of audible

noise. In this case, the charged particles considered in Chap. 5 contribute to the transduction of

electrical energy into acoustic form, the result being a sufficient nuisance that it figures in the de-

termination of rights of way.

Some examples in Chap. 5 are intended to give basic background relevant to the control of particu-

late air pollution. The electrostatic precipitator is widely used for air pollution control. Gases
cleaned range from the recirculating air within a single room to the exhaust of a utility. With

industries of all sorts committed to the use of increasingly dirtier fuels, new devices that also ex-

ploit electrical forces are under development. These include not only air pollution control equipment,

but devices for painting, agricultural spraying, powder deposition and the like.

Image processing is an application of charged particle dynamics, as are other matters taken up in

later chapters. Charged droplet printing is under development as a means of marrying the computer

to the printed page. Xerographic and aerosol printing of considerable variety exploit electrical forces

on particles.

A visit to a printing plant, to a paper mill or to a textile factory makes the importance of

charges and associated electrical forces on moving materials obvious. The charge relaxation processes

considered in Chap. 5 are fundamental to understanding such phenomena.

The induction machines considered in Chap. 6 are the most common type of rotating motor. But

related interactions between moving conductors and magnetic fields also figure in a host of other

applications. The development of high-speed ground transportation has brought into play the linear

induction machine as a means of propulsion, and induced magnetic forces as a means of producing mag-

Secs. 1.1 & 1.2



netic lift. Even if these developments do not reach maturity, the induction type of interaction would

remain important because of its application to material transport in manufacturing processes, and to

melting, levitation and pumping in metallurgical operations. The application of induced magnetic

forces to the sorting of refuse is an example of how such processes can figure in seemingly unrelated

areas.

Chapter 7 plays a role relative to fluid mechanics that Chap. 2 does with respect to electromag-

netics. Without a discourse on the applications of this material in its own right, consider the rele-

vance of topics that are taken up in the subsequent chapters.

Fields can be used to position, levitate and shape fluids. In many cases, a static equilibrium
is desired. Examples treated in Chap. 8 include the levitation of liquid metals for metallurgical
purposes, shaping of interfaces in the processing of plastics and glass, and orientation of ferrofluid

--- C i4---- i idi...4 i
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The electromechanics of systems having a static equilibrium is often dominated by instabilities.
The insights gained in Chap. 8 are a starting point in understanding atomization processes induced by
means of electric fields. Here, droplets formed by means of electric fields figure in electrostatic
paint spraying and corona generation from conductors under foul weather conditions. Internal in-
stabilities also taken up in Chap. 8 are basic to mixing of liquids by electrical means and for elec-
trical control of liquid crystal displays. Both two-phase (boiling and condensation) and convective
heat transfer can be augmented by electromechanical coupling, usually through the mechanism of in-
stability. Perhaps not strictly in the engineering domain is thunderstorm electrification. The
stability of charged drops and the electrohydrodynamics of air entrained collections of charged drops

are topics touched upon in Chap. 8 that have this meteorological application.

The statics and dynamics of hydromagnetic equilibria is now a subject in its own right. Largely
because of its relevance to fusion machines, the discussion of hydromagnetic waves and surface insta-
bilities serves as an introduction to an area of active research that, like other applications, has
important implications for the energy posture. Internal modes taken up in Chap. 8 also have counter-
parts in hydromagnetics.

Magnetic pumping of liquid metals, taken up in Chap. 9, has found application in nuclear reac-
tors and in metallurgical operations. Electrically induced pumping of semi-insulating and insulating

liquids, also discussed in Chap. 9, has seen application, but in a range of modes. A far wider range

of fluids have properties consistent with electric approaches to pumping and hgnce there is the promise

of innovation in manufacturing and processing.

Magnetohydrodynamic power generation is being actively developed as an approach to converting
thermal energy (from burning coal) to electrical form. The discussion of this approach in Chap. 9 is

not only intended as an introduction to MHD energy conversion, but to the general issues confronted in

any approach to thermal-to-electrical energy conversion, including turbine-generator systems. The elec-

trohydrodynamic converter also discussed there is an alternative to the MHD approach that sees periodic

interest. For that reason, its applicability is a matter that needs to be understood.

Inductive and dielectric heating, even of materials at rest and with no electromechanical con-
siderations, are the basis for important technologies. These topics, as well as the generation and
transport of heat in electromechanical systems where thermal effects often pose primary design limi-
tations, are part of the point of the first half of Chap. 10. But, thermal effects can also be
central to the electromechanical coupling itself. Examples where thermally induced property inhomo-
geneities result in such coupling include electrothermally induced convection of liquid insulation.

Electromechanical coupling seated in double layers, also taken up in Chap. 10, relates to proc-

esses (such as electrophoretic particle motions) that see applications ranging from the painting of
automobiles to the chemical analysis of large molecules. One of the reasons for including electro-

kinetic and electrocapillary interactions is the suggestion it gives of mechanisms that can come into

play in biological systems, a subject that draws heavily on physicochemical considerations. The

purely electromechanical models considered here serve to identify this developing area.

The electromechanics of streaming fluids and fluid-like systems, taken up in Chap. 11, has per-
haps its best known applications in the domain of electron beam engineering. Klystrons, traveling-wave

tubes, resistive-wall amplifiers and the like are examples of interactions between streams of charged
particles (electrons) and various types of structures. The space-time issues of Chap. 11 have general
application to problems ranging from the stimulation of liquid jets used to form drops, to electro-
mechanical processes for making synthetic fibers, to understanding liquid flow through "wall-less"
pipes (in which electric or magnetic fields play the role of a duct wall), to beam-plasma interactions
that result in instabilities that are used as a mechanism for heating plasmas.

Sec. 1.2



1.3 Energy Conversion Processes

A theme of the chapters to follow is conversion of energy between electrical and mechanical forms.

The relation between electromechanical power flow and the product of electric or magnetic stress and

material velocity is first emphasized in Chap. 4. Rotating machines deserve to be highlighted in this

basic sense, because for bulk power generation they are a standard for comparison. But, even where kine-
matic systems are superseded by those involving self-consistent interactions, there is value in con-
sidering the kinematic examples. They make clear the basic objectives governing the engineering of
materials and fields even when the objectives are achieved by more devious methods. For example, the
synchronous interactions with constrained charged particles are not directly applicable to practical
devices, but highlight the basically electroquasistatic electric shear stress interaction that under-
lies electron beam interactions in Chap. 11.

The classification of energy conversion processes made in Chap. 4 provides a frame of reference
for many of the self-consistent interactions described in later chapters. Thus, d-c rotating machines
from Chap. 4 have counterparts with fluid conductors in Chap. 9, and the Van de Graaff generator is a

prototype for the gasdynamic models developed in Chaps. 5 and 9. Electric and magnetic induction ma-
chines, respectively taken up in Chaps. 5 and 6, are a prototype for induction interactions with fluids

in Chap. 9, And, the synchronous interactions of Chap. 4 motivate the self-consistent electron beam
interactions of Chap. 11.

1.4 Dynamical Processes and Characteristic Times

Rate processes familiar from electrical circuits are the discharge of a capacitor (C) or an in-
ductor (L) through a resistor (R), or the oscillation of energy between a ca citor and an inductor.
One way to characterize the dynamics is in terms of the times RC, L/R and C, respectively.

Characteristic times describing rate processes on a continuum basis are a recurring theme. The

electromagnetic times summarized in Table 1.4.1 are the field analogues of those familiar from circuit

theory. Rather than defining the variables, reference is made to the section where the characteristic

times are introduced. Some of the mechanical and thermal ones also have lumped parameter counter-

parts. For example, the viscous diffusion time, which represents the mechanical damping of ponder-

able material, is the continuum version of the damping rate for a dash-pot connected to a mass.

The electromechanical characteristic times represent the competition between electric or magnetic

forces and viscous or inertial forces. In specialized areas, they may appear in a different guise.

For example, with the electric field intensity ý that due to the bunching of electrons in a plasma,

the electro-inertial time is the reciprocal plasma frequency. In a highly conducting fluid stressed

by a magnetic field intensity H, the magneto-inertial time is the transit time for an Alfvyn wave.

Especially in fluid mechanics, these characteristic times are often brought into play as dimension-
less ratios of times. Table 1.4.2 gives some of these ratios, again with references to the sections
where they are introduced.

1.5 Models and Approximations

There are three classes of approximation, used repeatedly in the following chapters, that should
be recognized as a recurring theme. Formally, these are based on time-rate, space-rate and amplitude-

parameter expansions of the relevant laws.

The time-rate approximation gives rise to a quasistatic model, and exploits the fact that

temporal rates of change of interest are slow compared to one or more times characterizing certain

dynamical processes. Some possible times are given in Table 1.4.1. Both for electroquasistatics
and magnetoquasistatics, the critical time is the electromagnetic wave transit time, Tem (Sec. 2.3).

Space-rate approximations lead to quasi-one-dimensional (or two-dimensional) models. These are

also known as long-wave models. Here, fields or deformations in a "transverse" direction can be approxi-

mated as being slowly varying with respect to a "longitidunal" direction. The magnetic field in a

narrow but spatially varying air gap and the flow of a gas through a duct of slowly varying cross

section are examples.

Amplitude parameter expansions carried to first order result in linearized models. Often they
are used to describe dynamics departing from a static or steady equilibrium. Long-wave and linearized

models are discussed and exemplified in Sec. 4.12, and are otherwise used repeatedly without formality.

Secs. 1.3, 1.4 & 1.5



Table 1.4.1. Characteristic times for systems having a typical length k.

Time Nomenclature Section reference

Electromagnetic

T em = l/c em Electromagnetic wave transit time 2.3

T = 1/a Charge relaxation time 2.3, 5.10

T = ax2 
m

Magnetic diffusion time 2.3, 6.2

T .mig= /bE Particle migration time 5.9

Mechanical and thermal

T = R/a Acoustic wave transit time 7.11

T = pt2/n Viscous diffusion time 7.18, 7.24

S= f/pa2  Viscous relaxation time 7.24

S= £ 2/K D Molecular diffusion time 10.2

T= £2pCv/kT Thermal diffusion time 10.2

Electromechanical

TV = n/cE2  Electro-viscous time 8.7
2  TMV = r/pHH Magneto-viscous time 8.6

p /E 2  T = Electro-inertial time 8.7

TMI= £V/H 2 Magneto-inertial time 8.6

Table. 1.4.2. Dimensionless numbers as ratios of characteristic times. The material transit
or residence time is T = R/U, where U is a typical material velocity.

Secs. 1.4 & 1.5

Number Symbol Nomenclature Sec. ref.

Electromagnetic

Te/T = EU/ka Re  Electric Reynolds number 5.11

Tm/T = UckU Rm Magnetic Reynolds number 6.2

Mechanical and thermal

Ta/T = U/a M Mach number 9.19

Tv/T = pkU/n Ry Reynolds number 7.18

TD/T = ZU/K R Molecular Peclet number 10.2

TT/T = pcp U/kT RT Thermal Peclet number 10.2

TD/Tv = -/kD PD Molecular-viscous Prandtl number 10.2

TT/Tv = cp /kT PT Thermal-viscous Prandtl number 10.2

Electromechanical

` -HEfy = Hm  Magnetic Hartmann number 8.6

EV e TE EV He  Electric Hartmann number 9.12

Tm /T = n•o/p Pm Magnetic-viscous Prandtl number 8.6



1.6 Transfer Relations and Continuum Dynamics of Linear Systems

Fields, flows and deformations in systems that are uniform in one or more "longitudinal" direc-

tions can have the dependence on the associated coordinate represented by complex amplitudes, Fourier

series, Fourier transforms, or the apDronriate extension of these in various coordinate systems.
Typically, configurations are nonuniform in the remaining "transverse" coordinate. The dependence of
variables on this direction is represented by "transfer relations." They are first introduced in
Chap. 2 as flux-potential relations that encapsulate Laplacian fields in coordinate systems for which
Laplace's equation is variable separable.

At the risk of having a forbidding appearance, most chapters include summaries of transfer rela-
tions in the three common coordinate systems. This is done so that they can be a resource, helping to
obviate tedious manipulations that tend to obscure what is essential in the derivation of a model. The
transfer relations help in organizing a development. Once the way in which they represent the space-
time dynamics of a given medium is appreciated, they are also a way of quickly communicating the
physical nature of a continuum.

Applications in Chap. 4 begin to exemplify how the transfer relations can help to organize the
representation of configurations involving piece-wise uniform media. The systems considered there are
spatially periodic in the "longitudinal" direction.

With each of the subsequent chapters, the application of the transfer relations is broadened. In
Chap. 5, the temporal transient response is described in terms of the temporal modes. Then, spatial
transients for systems in the temporal sinusoidal steady state are considered. In Chap. 6, magnetic
diffusion processes are represented in terms of transfer relations, which take a form equally applicable
to thermal and particle diffusion.

Much of the summary of fluid mechanics given in Chap. 7 is couched in terms of transfer relations.
There, the variables are velocities and stresses. In a wealth of electromechanical examples, coupling
between fields and media can be represented as occurring at boundaries and interfaces, where there are
discontinuities in properties. Thus, in Chap. 8, the purely mechanical relations of Chap. 7 are com-

bined with the electrical relations from Chap. 2 to represent electromechanical systems. More spe-
cialized are electromechanical transfer relations representing charged fluids, electron beams, hydro-
magnetic systems and the like, derived in Chaps. 8-11.

A feature of many of the examples in Chap. 8 is instability, so that again the temporal modes

come to the fore. But with effects of streaming brought into play in Chap. 11, there is a question

of whether the instability is absolute in the sense that the response becomes unbounded with time at

a given point in space, or convective (amplifying) in that a sinusoidal steady state can be

established but with a response that becomes unbounded in space. These issues are taken up in Chap. 11.

Sec. 1.6
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2.1 Definitions

Continuum electromechanics brings together several disciplines, and so it is useful to summarize
the definitions of electrodynamic variables and their units. Rationalized MKS units are used not only
in connection with electrodynamics, but also in dealing with subjects such as fluid mechanics and heat
transfer, which are often treated in English units. Unless otherwise given, basic units of meters (m),
kilograms (kg), seconds (sec), and Coulombs (C) can be assumed.

Table 2.1.1. Summary of electrodynamic nomenclature.

Name Symbol Units

Discrete Variables

Voltage or potential difference v [V] = volts = m2 kg/C sec2
Charge q [C] = Coulombs = C
Current i [A] = Amperes = C/sec
Magnetic flux X [Wb] = Weber = m2 kg/C sec
Capacitance C [F] = Farad C2 sec2 /m2 kg
Inductance L [H] = Henry = m2 kg/C2

Force f [N] = Newtons = kg m/sec2

Field Sources

Free charge density Pf C/m3
2Free surface charge density •f C/m

Free current density 4f A/m2

Free surface current density Kf A/m

Fields (name in quotes is often used for convenience)

"Electric field" intensity V/m
"Magnetic field" intensity A/m
Electric displacement C/m2

Magnetic flux density Wb/m 2 (tesla)
Polarization density C/m2
Magnetization density M A/m
Force density F N/m3

Physical Constants

Permittivity of free space 6o = 8.854 x 1012 F/m
Permeability of free space 1o = 4r x 10- 7  H/m

Although terms involving moving magnetized and polarized media may not be familiar, Maxwell's
equations are summarized without prelude in the next section. The physical significance of the un-
familiar terms can best be discussed in Secs. 2.8 and 2.9 after the general laws are reduced to their
quasistatic forms, and this is the objective of Sec. 2.3. Except for introducing concepts concerned
with the description of continua, including integral theorems, in Secs. 2.4 and 2.6, and the dis-
cussion of Fourier amplitudes in Sec. 2.15, the remainder of the chapter is a parallel development of
the consequences of these quasistatic laws. That the field transformations (Sec. 2.5), integral laws
(Sec. 2.7), splicing conditions (Sec. 2.10), and energy storages are derived from the fundamental quasi-
static laws, illustrates the important dictum that internal consistency be maintained within the frame-
work of the quasistatic approximation.

The results of the sections on energy storage are used in Chap. 3 for deducing the electric and
magnetic force densities on macroscopic media. The transfer relations of the last sections are an
important resource throughout all of the following chapters, and give the opportunity to explore the
physical significance of the quasistatic limits.

2.2 Differential Laws of Electrodynamics

In the Chu formulation,l with material effects on the fields accounted for by the magnetization
density M and the polarization density P and with the material velocity denoted by v, the laws of
electrodynamics are:

Faraday's law

4+ 3H at P-• o M (+ 
o o St Bt

1. P. Penfield, Jr., and H. A. Haus, Electrodynamics of Moving Media, The M.I.T. Press, Cambridge,
Massachusetts, 1967, pp. 35-40.



Ampere's law

V x H = E + + V x (P x v) + J (2)
ot t f

Gauss' law

V*E = -V*P + Pf (3)

divergence law for magnetic fields

oV.H = -ioV *M (4)

and conservation of free charge

V'Jf + •t = 0 (5)

This last expression is imbedded in Ampere's and Gauss' laws, as can be seen by taking the diver-
gence of÷-Eq. 2 and exploiting Eq. 3. In this formulation the electric displacement and magnetic flux
density B are defined fields:

D = E + P (6)
o

4- -
B = o(H + M) (7)

2.3 Quasistatic Laws and the Time-Rate Expansion

With a quasistatic model, it is recognized that relevant time rates of change are sufficiently
low that contributions due to a particular dynamical process are ignorable. The objective in this
section is to give some formal structure to the reasoning used to deduce the quasistatic field equa-
tions from the more general Maxwell's equations. Here, quasistatics specifically means that times
of interest are long compared to the time, Tem, for an electromagnetic wave to propagate through the
system.

Generally, given a dynamical process characterized by some time determined by the parameters of
the system, a quasistatic model can be used to exploit the comparatively long time scale for proc-
esses of interest. In this broad sense, quasistatic models abound and will be encountered in many
other contexts in the chapters that follow. Specific examples are:

(a) processes slow compared to wave transit times in general; acoustic waves and the model is
one of incompressible flow, Alfvyn and other electromechanical waves and the model is less standard;

(b) processes slow compared to diffusion (instantaneous diffusion models). What diffuses can
be magnetic field, viscous stresses, heat, molecules or hybrid electromechanical effects;

(c) processes slow compared to relaxation of continua (instantaneous relaxation or constant-
potential models). Charge relaxation is an important example.

The point of making a quasistatic approximation is often to focus attention on significant
dynamical processes. A quasistatic model is by no means static. Because more than one rate process
is often imbedded in a given physical system, it is important to agree upon the one with respect to
which the dynamics are quasistatic.

Rate processes other than those due to the transit time of electromagnetic waves enter through
the dependence of the field sources on the fields and material motion. To have in view the additional
characteristic times typically brought in by the field sources, in this section the free current
density is postulated to have the dependence

Jf = G(r)E + J v(v,pf,H) (i)

In the absence of motion, Jv is zero. Thus, for media at rest the conduction model is ohmic, with the

el-ctrical conductivity a in general a funqtion Qf position. Examples of Jv are a convection current
pfv, or an ohmic motion-induced current a(v x 0oH). With an underbar used to denote a normalized
quantity, the conductivity is normalized to a typical (constant) conductivity a :

a = (r,t) (2)
o-

To identify the hierarchy of critical time-rate parameters, the general laws are normalized.
Coordinates are normalized to one typical length X, while T represents a characteristic dynamical time:

(x,y,z) = (Zx,kY,kz); t = Tt (3)

Secs. 2.2 & 2.3



In a system sinusoidally excited at the angular frequency , T= W-1l
In a system sinusoidally excited at the angular frequency w, T=w

The most convenient normalization of the fields depends on the specific system. Where electro-
mechanical coupling is significant, these can usually be categorized as "electric-field dominated" and
"magnetic-field dominated." Anticipating this fact, two normalizations are now developed "in parallel,"
the first taking e as a characteristic electric field and the second taking _ as.a characteristic mag-
netic field:

H = H, M v = (/), = J
o v T -v

= Lf -v

pf =- p E 9 f , H=- H 0 8 - H,M M 0 T- +
E= P Pf .p-, P=f , - P

It might be appropriate with this step to recognize that the material motion introduces a characteristic
(transport) time other than T. For simplicity, Eq. 4 takes the material velocity as being of the order
of R/T.

The normalization used is arbitrary. The same quasistatic laws will be deduced regardless of the
starting point, but the normalization will determine whether these laws are "zero-order" or higher order
in a sense to now be defined.

The normalizations of Eq. 4 introduced into Eqs. 2.2.1-5 result in

V.1 = -V.ý + pf V.E = -V.p +

V.H = -V-M V.H = -V.M

Tm
+ T +. + E 9P ( x)

VxH = - aE + J + + -- +Vx (P xv) VxH = -- E + J + Vx(P x v (7)
T v + +t ~t T O + BtA

e

H + 3 V x S H
VxE = at V x (Mx v) (8)

VxE = -s t t + Vx ~-V](x

e S F ~fV. E + - V*J t+ V. E 
-ý 

+ 
T 
V + 

D 
0

e v 't J
] p

T T t =
m m

where underbars on equation numbers are used to indicate that the equations are normalized and

0 a £ 2 ,Tm Te 0 °0o/

£
= -em Vo o = Z/c (10)

In Chap. 6, T will be identified as the magnetic diffusion time, while in Chap. 5 the role of the

charge-relaxation time Te is developed. The time required for an electromagnetic plane wave to propa-

gate the distance k at the velocity c is Tem. Given that there is just one characteristic length,
there are actually only two characteristic times, because as can be seen from Eq. 10

(11)
T me em

Unless Te and Tm, and hence Tem, are all of the same order, there are only two possibilities for the

relative magnitudes of these times, as summarized in Fig. 2.3.1.

18W(I
I ( 4((1 _~

I Ir TCe emm
Tm •

electroquasistati cs magnetoquasistatics

Fig. 2.3.1. Possible relations between physical time constants on a time

scale T which typifies the dynamics of interest.
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By electroquasistatic (EQS) approximation it is meant that the ordering of times is as to the left and
that the parameter 08 (Tem/T)Z is much less than unity. Note that T is still arbitrary relative to Te.
In the magnetoquasistatic (MQS) approximation, 0 is still small, but the ordering of characteristic times
is as to the right. In this case, T is arbitrary relative to Tm.

To make a formal statement of the procedure used to find the quasistatic approximation, the normal-
ized fields and charge density are expanded in powers of the time-rate parameter 0.

E = E + E1 + E +
2

0 + +0o 8 H01 +2 (12)

iv - ( v)o + 0v) +0 ( )2 +

Pf = (Pf)o + (Pf) 1 + ()2 +

In the following, it is assumed that constitutive laws relate P and M to E and H, so that these
densities are similarly expanded. The velocity 4 is taken as given. Then, the series are sub-
stituted into Eqs. 5-9 and the resulting expressions arranged by factors multiplying ascending
powers of 0. The "zero order" equations are obtained by requiring that the coefficients of 8
vanish. These are simply Eqs. 5-9 with B = 0:

V.- o = -V.-P + (pf) V.E = -V.o o + (P)o (13)

v-H -V-M (14)

VxHo = - o0 T
÷ (15)at VxH -- a E + (J )

(Jv)o + --
e

apo
+ --- + Vx (o x V)

aH aM
4.

VxE 0 VxE o Vx(M x V)
o o at at (16)0

V.oE + +T- e • (v o = 0+ at V.o E +_V.) =0Eo T V)o (17)
m

The zero-order solutions are found by solving these equations, augmented by appropriate

boundary conditions. If the boundary conditions are themselves time dependent, normalization

will turn up additional characteristic times that must be fitted into the hierarchy of Fig. 2.3.1.

Higher order contributions to the series of Eq. 12 follow from a sequential solution of the

equations found by making coefficients of like powers of ý vanish. The expressions resulting

from setting the coefficients of an to zero are:

V En + (18)V., V.* - + ~*- = (nf)n 0 f = 
)n 0

V*Fn + VM -- 0 v.* + V 0-
n n (19)

n - n Vn Vx. - mE m (J

e

Vx (ýn x) = 0) (20)at

V. E -nE # Tn tvnat n

-A
aM 1

Vx n 
0

ai Vx(Mi (21)at 1 x v) VAE ++x (m NO = 

V* n+ T I , n + )a =o0
n C V I T- ( a(Pf+ + ¶ )n at 0nl (22)

n T m n atm
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with To find the first order contributions, these equations with n=l are solved the zero order

solutions making up the right-hand sides of the equations playing the role of known driving functions.

are satisfied by the lowest order fields. Thus higher order fields satisfy homo-Boundary conditions 
geneous boundary conditions.

Once the first order solutions are known, the process can be repeated with these forming the
"drives" for the n=2 equations.

In the absence of loss effects, there are no characteristic times to distinguish MQS and EQS
systems. In that limit, which set of normalizations is used is a matter of convenience. If a situa-
tion represented by the left-hand set actually has an EQS limit, the zero order laws become the quasi-
static laws. But, if these expressions are applied to a situation that is actually MQS, then first-
order terms must be calculated to find the quasistatic fields. If more than the one characteristic
time Tern is involved, as is the case with finite Te and Tm, then the ordering of rate parameters can
contribute to the convergence of the expansion.

In practice, a formal derivation of the quasistatic laws is seldom used. Rather, intuition and
experience along with comparison of critical time constants to relevant dynamical times is used to
identify one of the two sets of zero order expressions as appropriate. But, the use of normalizations
to identify critical parameters, and the notion that characteristic times can be used to unscramble
dynamical processes, will be used extensively in the chapters to follow.

Within the framework of quasistatic electrodynamics, the unnormalized forms of Eqs. 13-17
conmrise the "exact" field laws These enuations are reordered to reflect their relative imnortance:

Electroquasistatic (EQS) Magnetoquasistatic (MQS)

V.-E E= Vx (23)-V'P = f + Pf

Vx = 0 V.1oH = -V.o M (24)

S apf a4,. H all 1
V.Jf + -ý-= 0 VxE at at -oV x (M x v) (25)

VxH = + +2 -- + Vx (P x v) V•J = o (26)f t at

M Ve oE 0 = -VP + Pf (27)
V iiH = -V Po

The conduction current Jf has been reintroduced to reflect the wider range of validity of these

equations than might be inferred from Eq. 1. With different conduction models will come different

characteristic times,exemplified in the discussions of this section by Te and Tm. Matters are more

complicated if fields and media interact electromechanically. Then, v is determined to some extent

at least by the fields themselves and must be treated on a par with the field variables. The result

can be still more characteristic times.

The ordering of the quasistatic equations emphasizes the instantaneous relation between the

respective dominant sources and fields. Given the charge and polarization densities in the EQS system,

or given the current and magnetization densities in the MQS system, the dominant fields are known and

are functions only of the sources at the given instant in time.

The dynamics enter in the EQS system with conservation of charge, and in the MQS system with

Faraday'l law of induction. Equations 26a and 27a are only needed 4f an after-the-fact determina-
tion of H is to be made. An example where such a rare interest in H exists is in the small mag-
netic field induced by electric fields and currents within the human body. The distribution of in-

ternal fields and hence currents is determined by the first three EQS equations. Given 1, •, and

Jf, the remaining two expressions determine H. In the MQS system, Eq. 27b can be regarded as an

expression for the after-the-fact evaluation of pf, which is not usually of interest in such systems.

What makes the subject of quasistatics difficult to treat in a general way,even for a system

of fixed ohmic conductivity, is the dependence of the appropriate model on considerations not con-

veniently represented in the differential laws. For example, a pair of perfectly conducting plates,

shorted on one pair of edges and driven by a sinusoidal source at the opposite pair, will be MQS

at low frequencies. The same pair of plates, open-circuited rather than shorted, will be electroquasi-

static at low frequencies. The difference is in the boundary conditions.

Geometry and the inhomogeneity of the medium (insulators, perfect conductors and semiconductors)

are also essential to determining the appropriate approximation. Most systems require more than one
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characteristic dimension and perhaps conductivity for their description, with the result that more than
two time constants are often involved. Thus, the two possibilities identified in Fig. 2.3.1 can in
principle become many possibilities. Even so, for a wide range of practical problems, the appropriate
field laws are either clearly electroquasistatic or magnetoquasistatic.

Problems accompanying this section help to make the significance of the quasistatic limits more
substantive by considering cases that can also be solved exactly.

2.4 Continuum Coordinates and the Convective Derivative

There are two commonly used representations of continuum variables. One of these is familiar
from classical mechanics, while the other is universally used in electrodynamics. Because electro-
mechanics involves both of these subjects, attention is now drawn to the salient features of the two
representations.

Consider first the "Lagrangian representation." The position of a material particle is a natural
example and is depicted by Fig. 2.4.1a. When the time t is zero, a particle is found at the position
ro . The position of the particle at some subsequent time is t. To let t represent the displacement of
a continuum of particles, the position variable ro is used to distinguish particles. In this sense, the
displacement ý then also becomes a continuum variable capable of representing the relative displace-
ments of an infinitude of particles.

)

~

u) k U)
Fig. 2.4.1. Particle motions represented in terms of (a) Lagrangian coordinates,

where the initial particle coordinate ro designates the particle of
interest, and (b) Eulerian coordinates, where (x,y,z) designates the
spatial position of interest.

In a Lagrangian representation, the velocity of the particle is simply

at

If concern is with only one particle, there is no point in writing the derivative as a partial deriv-
ative. However, it is understood that, when the derivgtive is taken, it is a particular particle
which is being considered. So, it is understood that ro is fixed. Using the same line of reasoning,
the acceleration of a particle is given by

a at

The idea of representing continuum variables in terms of the coordinates (x,y,z) connected with
the space itself is familiar from electromagnetic theory. But what does it mean if the variable is
mechanical rather than electrical? We could represent the velocit- of the continuum of particles
filling the space of interest by a vector function v(x,y,z,t) = v(r,t). The velocity of particles

having the position (x,y,z,) at a given time t is determined by evaluating the function v(r,t). The
velocity appearing in Sec. 2.2 is an example. As suggested by Fig. 2.4.1b, if the function is the

velocity evaluated at a given position in space, it describes whichever particle is at that point at

the time of interest. Generally, there is a continuous stream of particles through the point (x,y,z).
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Computation of the particle acceleration makes evident the contrast between Eulerian and Lagrangian
representations. By definition, the acceleration is the rate of change of the velocity computed for a
given particle of matter. A particle having the position (x,y,z) at time t will be found an instant
At later at the position (x + vxAt,y + vyAt,z + vzAt). Hence the acceleration is

v(x + v At,y + v At,z + v At,t + At) - v(x,y,z,t)
a=lim x y z (3)

At÷OAt

Expansion of tje first term in Eq. 3 about the initial coordinates of the particle gives the convective
derivative of v:

+ v av av av _ v + +
a + v + v + v 

t x ax y z  + v*Vv (4)
y  (4)at

The difference between Eq. 2 and Eq. 4 is resolved by recognizing the difference in the signi-
ficance of the partial derivatives. In Eq. 2, it is understood that the coordinates being held fixed
are the initial coordinates of the particle of interest. In Eq. 4, the partial derivative is taken,
holding fixed the particular point of interest in space.

The same steps .show that the rate of change of any vector variable A, as viewed from a particle
having the velocity v, is

DAaA 31 + (
S- + (V); A = A(x,y,z,t) (5)

The time rate of change of any scalar variable for an observer moving with the velocity v is obtained
from Eq. 5 by considering the particular case in which t has only one component, say 1 = f(x,y,z,t)Ax.
Then Eq. 5 becomes

Df f- E - -+ f +fv.Vf (6)

Reference 3 of Appendix C is a film useful in understanding this section.

2.5 Transformations between Inertial Frames

In extending empirically determined conduction, polarization and magnetization laws to include
material motion, it is often necessary to relate field variables evaluated in different reference
frames. A given point in space can be designated either in terms of the coordinate 1 or of the co-
ordinate V' of Fig. 2.5.1. By "inertial reference frames," it is meant that the relative velocity
between these two frames is constant, designated by '. The positions in the two coordinate systems
are related by the Galilean transformation:

r' = r - ut; t' = t (1)

Fig. 2.5.1

Reference frames have constant
relative velocity t. The co-
ordinates t = (x,y,z) and 1' =
(x',y',z') designate the same
position.

It is a familiar fact that variables describing a given physical situation in one reference frame
will not be the same as those in the other. An example is material velocity, which, if measured in one
frame, will differ from that in the other frame by the relative velocity ~.

There are two objectives in this section: one is to show that the quasistatic laws are invariant
when subject to a Galilean transformation between inertial reference frames. But, of more use is the

relationship between electromagnetic variables in the two frames of reference that follows from this
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quasistatic equations take the
that postulate made the 

The approach is as follows. First, the is 
proof. 

same form in the primed and unprimed inertial reference frames. But, in writing the laws in the primed

frame, the spatial and temporal derivatives must be taken with respect to the coordinates of that ref-

erence frame, and the dependent field variables are then fields defined in that reference frame. In

framein the unprimed 
relation to the variables since their 

must be designated by primes, 
general, these 

is not known.

For un rimed co-of electrodynamics in terms of the primed equations For the the purpose nurnose of o writing writina the the nrimd enuations of elctrod-ax cs in tems of the u- rime
ordinates, recognize that

V' + V

A a )+ - = al"
a-)+ (- + u*V)A - + uV*A - Vx (ux A)

( (+ uV9 t + +Vu+ E at

The left relations follow by using the chain rule of differentiation and the transformation of Eq. 1.
That the spatial derivatives taken with respect to one frame must be the same as those with respect
to the other frame physically means that a single "snapshot" of the physical process would be all
required to evaluate the spatial derivatives in either frame. There would be no way of telling which
frame was the one from which the snapshot was taken. By contrast, the time rate of change for an
observer in the primed frame is, by definition, taken with the primed spatial coordinates held fixed.
In terms of the fixed frame coordinates, this is the convective derivative defined with Eqs. 2.4.5
and 2.4.6. However, v in these equations is in general a function of space and time. In the context
of this section it is saecialized to the constant u. Thus, in rewriting the convective derivatives of
Eq. 2 the constancy of u and a vector identity (Eq. 16, Appendix B) have been used.

So far, what has been said in this section is a matter of coordinates. Now, a physically motivated
postulate is made concerning the electromagnetic laws. Imagine one electromagnetic experiment that is
to be described from the two different reference frames. The postulate is that provided each of these
frames is inertial, the governing laws must take the same form. Thus, Eqs. 23-27 apply with [V - V',
c( )/at - a( )/at'] and all dependent variables primed. By way of comparing these laws to those ex-

pressed in the fixed-frame, Eqs. 2 are used to rewrite these expressions in terms of the unprimed in-
dependent variables. Also, the moving-frame material velocity is rewritten in terms of the unprimed
frame velocity using the relation

v' v- u

Thus, the laws originally expressed in the primed frame of reference become

V.e E' E -V.P' + p V x i' =
0 f

V x E' = 0 V*o H' -V.o0 M'

al H0' ay M'
V. (ij + up!) + - 0 Vx(' - u x ~ i') at -at (6)

- V x (' x V)

V x (' + ux C ') - ( + up )

aE$' + ' x,
+ at + at + V x (P x - f

V~eo' = V.P'+ !
V~o oM0

In writing Eq. 7a, Eq. 4a is used. Similarly, Eq. 5b is used to write Eq. 6b. For the one experi-
ment under consideration, these equations will.predict the same behavior as the fixed frame laws,
Eqs. 2.3.23-27, if the identification is made:
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E- , MQS

'- A (9)
4. +

PE' = P M' = M (10)

J = Jf (11)

4. 4 +

S= J E'= E + ux - (12)Upf poH 

H' .'A-i x eE (13)
o

and hence, from Eq. 2.2.6 and hence, from Eq. 2.2.7

D' =D B' = B (14)

The primary fields are the same whether viewed from one frame or the other. Thus, the EQS elec-
tric field polarization density and charge density are the same in both frames, as are the MQS mag-
netic field, magnetization density and current density. The respective dynamic laws can be associated
with those field transformations that involve the relative velocity. That the free current density
is altered by the relative motion of the net free charge in the EQS system is not surprising. But, it
is the contribution of this same convection current to Ampere's law that generates the velocity depend-
ent contribution to the EQS magnetic field measured in the moving frame of reference. Similarly, the
velocity dependent contribution to the MQS electric field transformation is a direct consequence of
Faraday's law.

The transformations, like the quasistatic laws from which they originate, are approximate. It
would require Lorentz transformations to carry out a similar procedure for the exact electrodynamic
laws of Sec. 2.2. The general laws are not invariant in form to a Galilean transformation, and there-
in is the origin of special relativity. Built in from the start in the quasistatic field laws is a
self-consistency with other Galilean invariant laws describing mechanical continua that will be brought
in in later chapters.

2.6 Integral Theorems

Several integral theorems prove useful, not only in the description of electromagnetic fields but
also in dealing with continuum mechanics and electromechanics. These theorems will be stated here with-
out proof.

If it is recognized that the gradient operator is defined such that its line integral between two
endpoints (a) and (b) is simply the scalar function evaluated at the endpoints, thenl

I w4= -M) (1)
a

Two more familiar theorems1 are useful in dealing with vector functions. For a closed surface S, en-
closing the volume V, Gauss' theorem states that

V*AdV = '-nda (2)
V S

while Stokes's theorem pertains to an open surface S with the contour C as its periphery:

SV x A•1da = A ' (3)
S C

In stating these theorems, the normal vector is defined as being outward from the enclosed voluge for
Gauss' theorem, and the contour is taken as positive in a direction such that It is related to n by the
right-hand rule. Contours, surfaces, and volumes are sketched in Fig. 2.6.1.

A possibly less familiar theorem is the generalized Leibnitz rule.2  In those cases where the
surface is itself a function of time, it tells how to take the derivative with respect to time of the
integral over an open surface of a vector function:

1. Markus Zahn, Electromagnetic Field Theory, a problem solving approach, John Wiley & Sons, New York,
1979, pp. 18-36.

2. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Vol. 1. John Wiley & Sons, New York,
1968, pp. B32-B36.(See Prob. 2.6.2 for the derivation of this theorem.)
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(a) (b) (c)
Fig. 2.6.1. Arbitrary contours, volumes and surfaces: (a) open contour C;

(b) closed surface S, enclosing volume V; (c) open surface S
with boundary contour C.

- A~nda = [ + (V.A)v ]-nda + (IAx ).dx (4)
dt at sS S C

Again, C is the contour which is the periphery of the open surface S. The velocity vs is the velocity
of the surface and the contour. Unless given a physical significance, its meaning is purely geometrical.

A limiting form of the generalized Leibnitz rule will be handy in dealing with closed surfaces.
Let the contour C of Eq. 4 shrink to zero, so that the surface S becomes a closed one. This process can
be readily visualized in terms of the surface and contour sketch in Fig. 2.6.1c if the contour C is
pictured as the draw-string on a bag. Then, if C V-1, and use is made of Gauss' theorem (Eq. 2),
Eq. 4 becomes a statement of how to take the time derivative of a volume integral when the volume is a
function of time:

dV = f dV + s. nda (5)
tV Vt S

Again, vs is the velocity of the surface enclosing the volume V.

2.7 quasistatic Integral Laws

There are at least three reasons for desiring Maxwell's equations in integral form. First, the
integral equations are convenient for establishing jump conditions implied by the differential
equations. Second, they are the basis for defining lumped parameter variables such as the voltage,
charge, current, and flux. Third, they are useful in understanding (as opposed to predicting) physical
processes. Since Maxwell's equations have already been divided into the two quasistatic systems, it
is now possible to proceed in a straightforward way to write the integral laws for contours, surfaces,
and volumes which are distorting, i.e., that are functions of time. The velocity of a surface S is v .

To obtain the integral laws implied by the laws of Eqs. 2.3.23-27, each equation is either
(i) integrated over an open surface S with Stokes's theorem used where the integrand is a curl operator
to convert to a line integration on C and Eq. 2.6.4 used to bring the time derivative outside the
integral, or (ii) integrated over a closed volume V with Gauss' theorem used to convert integrations
of a divergence operator to integrals over closed surfaces S and Eq. 2.6.5 used to bring the time
derivative outside the integration:

(E (E + P).-da = fdV H. = IJ f da (1)
S V C S

110 (H + M).nda - 0 (2)
S

Jnda I fdV = 0
. -o(H + M)*nda (3)

S V C S

- OPM x (:v- ).h%
C
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H 1.£ = J i.nda + (e E + P).n'da Sf.-nda = 0
C S S S

+ F P x (v - ')*
C

SJo(H + M)-nda = 0 + P).nda = PfdV
S V

where where
x4' -E+ .s

J• J E' -E+v xIIH- VsPf 0

+ 4 .
-

4. 
H' =H v x sE

s o

The primed variables are simply summaries of the variables found in deducing these equations. However,
these definitions are consistent with the transform relationships found in Sec. 2.5, and the velocity
of these surfaces and contours, vs, can be identified with the velocity of an inertial frame instan-
taneously attached to the surface or contour at the point in question. Approximations implicit to the
original differential quasistatic laws are now implicit to these integral laws.

2.8 Polarization of Moving Media

Effects of polarization and magnetization are included in the formulation of electrodynamics
postulated in Sec. 2.2. In this and the next section a review is made of the underlying models.

Consider the electroquasistatic systems, where the dominant field source is the charge density.
Not all of this charge is externally accessible, in the sense that it cannot all be brought to some
position through a conduction process. If an initially neutral dielectric medium is stressed by an
electric field, the constituent molecules and domains become polarized. Even though the material
retains its charge neutrality, there can be a local accrual or loss of charge because of the polariza-
tion. The first order of business is to deduce the relation of such polarization charge to the polari-
zation density.

For conceptual purposes, the polarization of a material is pictured as shown in Fig. 2.8.1.

Fig. 2.8.1. Model for dipoles fixed to deformable material. The model pictures
the negative charges as fixed to the material, and then the positive
halves of the dipoles fixed to the negative charges through internal
constraints.
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Fig. 2.8.2

Polarization results in net
charges passing through a
surface.

The molecules or domains are represented by dipoles composed of positive and negative charges +q,
separated by the vector distance 1. The dipole moment is then $ = qp , and if the particles have a
number density n, the polarization density is defined as

P = nqa (1)

In the most common dielectrics, the polarization results because of the application of an external
electric field. In that case, the internal constraints (represented by the springs in Fig. 2.8.1)
make the charges essentially coincident in the absence of an electric field, so that, on the average,
the material is (macroscopically) neutral. Then,.with the application of the electric field, there
is a separation of the charges in some direction which might be coincident with the applied electric
field intensity. The effect of the dipoles on the average electric field distribution is equivalent
to that of the medium they model.

To see how the polarization charge density is related to the polarization density, consider the
motion of charges through the arbitrary surface S shown in Fig. 2.8.2. For the moment, consider the
surface as being closed, so that the contour enclosing the surface shown is shrunk to zero. Because
polarization results in motion of the positive charge, leaving behind the negative image charge, the net
polarization charge within the volume V enclosed by the surface S is equal to the negative of the net
charge having left the volume across the surface S. Thus,

f pdV = - nq.i~da = - *"-da (2)
P J J

S S

Gauss' theorem, Eq. 2.6.2, converts the surface integral to one over the arbitrary volume V. It
follows that the integrand must vanish so that

4.

p = - V.P (3)

This polarization charge density is now added to the free charge density as a source of the electric
field intensity in Gauss' law:

V.E = Pf + Pp (4)

and Eqs. 3 and 4 comprise the postulated form of Gauss' law, Eq. 2.3.23a.

By definition, polarization charge is conserved, independent of the free charge. Hence, the
polarization current I is defined such that it satisfies the conservation equation

p

ap p
V*J + at-= 0 p (5)at

To establish the way in which J transforms between inertial reference frames, observe that in a primed
frame of reference, by dint of Eq. 2.5.2c, the conservation of polarization charge equation becomes

Bap'
V. [, + up'] + L= 0 (6)

It has been shown that P, and hence pp, are the same in both frames (Eq. 2.5.10a). It follows that the
required transformation law is

SJ - up (7)p p p

If the dipoles are attached to a moving medium, so that the negative charges move with the same
velocity l as the moving material, the motion gives rise to a current which should be included in
Ampere's law as a source of magnetic field. Even if the material is fixed, but the applied field is
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time-varying so as to induce a time-varying polarization density, a given surface is crossed by a net
charge and there is a current caused by a time-varying polarization density. The following steps
determine the current density 1p in terms of the polarization density and the material velocity.

The starting point is the statement

S-nda = P.nda (8)
P ddt f

S S

The surface S, depicted by Fig. 2.8.2, is attached to the material itself. It moves with the
negative charges of the dipoles. Integrated over this deforming surface of fixed identity, the polari-
zation current density evaluated in the frame of reference of the material is equal to the rate of
change with respect to time of the net charge penetrating that surface.

With the surface velocity identified with the material velocity, Eq. 2.6.4 and Eq. 3 convert
Eq. 8 to

a f t P ap+ 4 + f ' x v. (9)S S 4
On the left, J' is replaced by Eq. 7 evaluated with u = v, while on the right Stokes's theorem,
Eq. 2.6.3, is Rsed to convert the line integral to a surface integral. The result is an equation in
surface integrals alone. Although fixed to the deforming material, the surface S is otherwise arbitrary
and so it follows that the required relation between 3p and I for the moving material is

+ +101P 
J = + p V x (P ) (10)at

It is this current density that has been added to the right-hand side of Ampere's law, Eq. 2.3.26a,
to complete the formulation of polarization effects in the electroquasistatic system.

2.9 Magnetization of Moving Media

It is natural to use polarization charge to represent the effect of macroscopic media on the
macroscopic electric field. Actually, this is one of two alternatives for representing polarization.
That such a choice has been made becomes clear when the analogous question is asked for magnetization.
In the absence of magnetization, the free current density is the source of the magnetic field, and it
is therefore natural to represent the macroscopic effects of magnetizable media on ý through an equi-
valent magnetization current density. Indeed, this viewpoint is often used and supported by the con-
tention that what is modeled at the atomic level is really a system of currents (the electrons in their
orbits). It is important to understand that the use of equivalent currents, or of equivalent magnetic
charge as used here, if carried out self-consistently, results in the same predictions of physical
processes. The choice of models in no way hinges on the microscopic processes accounting for the mag-
netization. Moreover, the magnetization is often dominated by dynamical processes that have more to do
with the behavior of domains than with individual atoms, and these are most realistically pictured as
small magnets (dipoles). With the Chu formulation postulated in Sec. 2.2, the dipole model for
representing magnetization has been adopted.

An advantage of the Chu formulation is that magnetization is developed in analogy to polarization.
But rather than starting with a magnetic charge density, and deducing its relation to the polarization
density, think of the magnetic material as influencing the macroscopic fields through an intrinsic flux
density poi that might be given, or might be itself induced by the macroscopic A. For lack of evidence
to support the existence of "free" magnetic monopoles, the total flux density due to all macroscopic
fields must be solenoidal. Hence, the intrinsic flux density 'o40 , added to the flux density in free
space Plo, must have no divergence:

V.*o(, + M) = 0 (1)

This is Eq. 2.3.24b. It is profitable to think of -V.poM as a source of H. That is, Eq. 1 can
be written to make it look like Gauss' law for the electric field:

V = H4H = pm; Pm -V'Vo0  (2)

The magnetic charge density pm is in this sense the source of the magnetic field intensity.

Faraday's law of induction must be revised if magnetization is present. If o-M is a magnetic flux

density, then, through magnetic induction, its rate of change is capable of producing an induced electric

field intensity. Also, if Faraday's law of induction were to remain valid without alteration, then its

divergence must be consistent with Eq. 1; obviously, it is not.
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To generalize the law of induction to include magnetization, it is stated in integral form for a
contour C enclosing a surface S fixed to the material in which the magnetized entities are imbedded.
Then, because 1o(A + M) is the total flux density,

=E'*£ = - d O(H + M)*nda

The electric field E' is evaluated in the frame of reference of the moving contour. With the time
derivative taken inside the temporally varying surface integrals (Eq. 2.6.4) and because of Eq. 1,

(t ( + M)]*nda + V x x (x + M)]*nda
C S

44.
The transformation law for E (Eq. 2.5.12b with u = v) is now used to evaluate E', and Stokes's theorem,
Eq. 2.6.3, used to convert the line integral to a surface integral. Because S is arbitrary, it then
follows that the integrand must vanish:

V-xE ((H+ M)) ] + V x (vx oPM)

This generalization of Faraday's law is the postulated equation, Eq. 2.3.25b.

2.10 Jump Conditions

Systems having nonuniform properties are often modeled by regions of uniform properties, separated
by boundaries across which these properties change abruptly. Fields are similarly often given a piece-
wise representation with jump conditions used to "splice" them together at the discontinuities. These
conditions, derived here for reference, are implied by the integral laws. They guarantee that the
associated differential laws are satisfied through the singular region of the discontinuity.

A 71

Fig. 2.10.1. Volume element enclosing a boundary. Dimen-
sions of area A are much greater than A.

Electroquasistatic Jump Conditions: A section of the boundary can be enclosed by a volume element
having the thickness A and cross-sectional area A, as depicted by Fig. 2.10.1. The linear dimensions of
the cross-sectional area A are, by definition, much greater than the thickness A. Implicit to this
statement is the assumption that, although the surface can be curvilinear, its radius of curvature must
be much greater than a characteristic thickness over which variations in the properties and fields take
place.

The normal vector n used in this section is a unit vector perpendicular to the boundary and directi
from region b to region a, as.shown in Fig. 2.10.1. Since this same symbol is used in connection with
integral theorems and laws to denote a normal vector to surfaces of integration, these latter vectors
are denoted by 1 .

n

First, consider the boundary conditions implied by Gauss' law, Eq. 2.3.23a, with Eq. 2.8.3 used to

introduce pp. This law is first multiplied by vm and then integrated over the volume V:
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vm V oEdV mpfdV + f VmpdV

V V V

Here, v is a coordinate (like x,y, or z) perpendicular to the boundary and hence in the direction of n,
as shown in Fig. 2.10.1.

First, consider the particular case of Eq. 1 with m = 0. Then, the integration gives

n* EE J = af + ap

where 1 AII- b and L P - a - b and the free surface charge density Of and polarization surface
charge density ap have been defined as

f = lim f pfdV, S= lim A-p 1 T f0PpdV
A+o

The relationship between the surface charge and the electric field intensity normal to the boundary
can be pictured as shown in Fig. 2.10.2b.

V V V

-A/2 A/2 -A/2 A/2 -A/2 A/2

tV1'
1
_______,V

(a) (b) (c)

Fig. 2.10.2. Sketches of the charge distribution represented by the solid lines, and the
electric field intensity normal to the boundary represented by broken lines.
Sketches at the top represent actual distributions, while those below re-
present idealizations appropriate if the thickness A of the region over which
the electric field intensity makes its transition is small compared to other
dimensions of interest: (a) volume charge density to either side of inter-
face but no surface charge; (b) surface charge; (c) double layer.

In view of Eq. 2, the normal electric field intensity is continuous at the interface unless there
is a singularity in charge. Thus, with volume charges to either side of the interface, there is an
abrupt change in the rate of change of the electric field intensity normal to the boundary, but the
field is itself continuous. On the other hand, as illustrated by the sketches of Fig. 2.10.2b, if

there is an appreciable charge per unit area within the boundary, the electric field intensity is

discontinuous, and undergoes a step discontinuity.
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A somewhat less familiar situation is that of Fig. 2.10.2c. Within the boundary there are
regions of large positive and negative charge concentrations with an associated intense electric field
between. In the limit where the boundary becomes very thin, a component of the surface charge density
becomes a doublet, and the electric field becomes an impulse.

The double layer can be pictured as being positive surface charges disposed on one side of the
boundary, and negative surface charges distributed on the other, with an internal component of the
electric field originating on the positive charges and terminating on the negative ones. The mag-
nitude of the double layer is equal to the product of the positive surface charge density and the dis-
tance between these layers, A. In the limit where the layer thickness becomes infinitely thin while the
double-layer magnitude remains constant, the electric field within the double layer must approach
infinity. Thus, associated with the doublet of charge density, there is an impulse in the electric field
intensity, as sketched in Fig. 2.10.2c.

The boundary condition to be used in connection with a double layer is found from Eq. 1 by letting
m = 1. The left-hand side of Eq. 1 can be integrated by parts, so that it becomes

f V.(EoV )dV - f E.*VvdV = V(pf + p )dV (4)

V V V

For the incremental volume, the surface double layer density is defined as

p lim 1 f v(pf + pp)dV = v(p + p )dv (5)

and so the right-hand side of Eq. 4 is ApE. The origin of the A axis remains to be defined but A v -v
To glean a jump condition from the equation, the second EQS law is incorporated. That I is irrotational,
Eq. 2.3.24a, is represented by defining the electric potential

E = -VO (6)

Thus, the second term on the left in Eq. 4 becomes

Je E*VvdV = - VO*VvdV 2= - f V*(OVv)dV + fE V vdV (7)

V V V V

Evaluation of V2v gives nothing because v is defined as a local Cartesian coordinate. The last inte-
gral vanishes, and with the application of Gauss' theorem, Eq. 2.6.2, it follows that Eq. 4 becomes

r V-.t da + f e IVv.i da - Ap (8)
So n o n A
S S

Provided that within the layer, E parallel to the interface and Q are finite (not impulses in the limit
A÷0), Eq. 8 only has contributions to the surface integrals from the regions to either side of the inter-
face. Thus,

AEo(vEa - v Eb). + Ae 0 = A pE  (9)

The origin of the v axis is adjusted to make the first term vanish. The required boundary condition
to be associated with Eqs. 2.3.23a and 2.3.23b is

o II D = EP (10)

The gradient of Eq. 10 within the plane of the interface converts the jump condition to one in

terms of the electric field:

Eo a ID - VEZE (11)

Here VE is the surface gradient and t denotes components tangential to the interfacial plane.

In the absence of a double-layer surface density, these last two boundary conditions are the
familiar statement that the tangential electric field intensity at a boundary must be continous. The
statement given in Eq. 10 that the potential must be continuous at a boundary is another way of stating
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this requirement on the tangential electric field intensity. With a double layer, the tangential elec-
tric field intensity is discontinuous, as is also the potential.

Equations 10 and 11 could also be derived using the condition that the line integral of the electric
field intensity around a closed loop intersecting the boundary vanish. Usually, the tangential electric
field is continuous because there is no contribution to this line integral from those segments of the
contour passing through the boundary. However, with the double layer, the electric field intensity with-
in the boundary is infinite; so, even though the segments of the line integral across the boundary vanish
as A - 0, there is a net contribution from these segments of the integration.

It is clear that higher order singularities could also be handled by considering values of m in
Eq. 1 greater than unity. However, the doublet is as singular a charge distribution as of interest
physically.

There are two reasons for wishing to include the doublet charge distribution, one mathematical and
one physical. Just as the surface charge density is a singularity in the volume charge density which
can be used to terminate a normal electric field intensity at a boundary, the double layer is a termination
of a tangential electric field. On the physical side, there are many situations in which a double layer
actually exists within a very thin region of material. Double layers abound at interfaces between liquids
and metals and between metals. The double-layer concept is useful for modeling electromechanical coupling
involving these interfacial regions.

So far, those EQS laws have been considered that do not explicitly involve time rates of change.
Conservation of charge does involve a dynamic term. Its associated boundary conditions can therefore
be derived only by making further stipulations as to the nature of the boundary. It is now admitted that
the boundary can, in general, be one which is deforming. Because time did not appear explicitly in the
previous derivations of this section, the conditions derived are automatically appropriate, even if the
boundary is moving.

The integral form of charge conservation, Eq. 2.7.3a, is written for a volume V and surface S
tied to the material itself. Thus, with _ + -,

( J - pf•V)ida = - p dV (12)

S V

As seen in Fig. 2.10.1, the volume of integration always encloses material of fixed identity and inter-
sects the boundary. Implicit to this statement is the assumption that the boundary is one of demarca-
tion between material regions. The material velocity is presumed to at most have a step singularity
across the boundary. (It is important to recognize that there are other types of boundaries. For
example, the boundary could be a shock front, with a gas moving through from one side of the interface
to the other. In that case, the boundary conditions thus far derived would remain correct, because no
mention has yet been made of the physical nature of the boundary.)

The left-hand side of Eq. 12 can be handled in a manner similar to that already illustrated, since
it does not involve time rates of change. The integration is divided into two parts: one over the upper
and lower surfaces of the volume, the other over the parts of the surface which intersect the boundary.
The contributions to a current flow through these side surfaces comes from a surface current. It follows
by using a two-dimensional form of Gauss' theorem, Eq. 2.6.2, that the left-hand side of Eq. 12 is

f (J - PfV)T. nda + J i  - Pfy). da = A{n. - vpf0 + V f - vt)} (13)
S'+S" S"'

Here, A is the area of intersection between the volume element and the boundary. The right-hand side of
Eq. 12 is, by the definition of Eq. 3,

SjpfdV =~ afda (14)
V A

Note that, if the volume of integration V, and hence the area of integration A, is one always fixed to
the material, then the area A is time-varying. The surface charge density is a function only of the

two dimensions within the plane of the interface. Thus, the term on the right in Eq. 14 is a time

derivative of a two-dimensional integral. This is a two-dimensional special case of the situation

described by the generalized Leibnitz rule, Eq. 2.6.5, which stated how the time derivative of a volume

integral could be represented, even if the volume of integration were time-varying. Thus, Eq. 14 becomes

= dt PfdV A [- + V(vt f) (15)
2.1 
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Finally, with the use of Eqs. 13 and 15, Eq. 12 becomes the required jump condition representing charge
conservation:

SJfPfV - p + VK f = t (16)

By contrast with Eqs. 10 and 11, the expression is specialized to interfaces that do not support charge
distributions so singular as a double layer. In using Eq. 16, note that a partial derivative with
respect to time is usually defined as one taken holding the spatial coordinates constant. A review of
the derivation of Eq. 16 will make it clear that such is not the significance of the partial derivative
on the right in Eq. 16. The surface charge density is not defined throughout the three-dimensional
space. Thus, this derivative means the partial derivative with respect to time, holding the coordinates
within the plane of the interface constant.

The component of current normal to the boundary represented by the first term in Eq. 16 will be
recognized as the free current density in a frame of reference moving with the boundary. A good questior
would be, "why is it that the normal current density appears in Eq. 16 evaluated in the primed frame of
reference, while the surface free current density is not?" The answer points to the physical situation
for which Eq. 16 is appropriate. As the material boundary moves in the normal direction, the material
ahead and behind carries a charge distribution along, but one that never reaches the boundary. By con-
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a surface charge density of a convective nature. Thus, the surface divergence appearing in the second
term of Eq. 16 can include both a conduction surface current and a convection surface current.

Magnetoquasistatic Jump Conditions: The integral forms of Ampere's law and Gauss' law for magnetic
fields incorporate no time rates of change. Hence, the jump conditions implied by these laws are
familiar from elementary electrodynamics. Ampere's law, Eq. 2.7.1b, is integrated over the surface S
and around the contour C enclosing the boundary, as sketched in Fig, 2.10.3, to obtain

S = K (17)

where Kf is the surface current density. Although it is entirely possible to consider a doublet of
current density as a model, this impulsive singularity in the distribution of free current density is
of as high an order as necessary to model MQS electromechanical situations of general interest.

From Gauss' law for magnetic fields, Eq. 2.7.2b,
applied to the incremental volume enclosing the interface,
Fig. 2.10.1, the jump condition is

*1 o(H W + WIf = 0 (18)

Faraday's law of induction brings into play the time
rate of change, and it is expected that motion of the
boundary leads to an addition to the jump condition not
found for stationary media. According to Eq. 2.7.3b, the
integral form of Faraday's law, for a contour fixed to the
material (of fixed identity) so that V', -+ , is

S(E'lm y H) -It - d= n (H+M)nda (19)
S•o dt 0o Fig. 2.10.3. Contour of integration C

C S enclosing a surface S that inter-
sects the boundary between regions

With Eq. 19, it has already been assumed that the boundary (a) and (b).
is a material one. Consistent with Eq. 17 is the assumption
that it can be carrying a surface current with it as it deforms. If the surface S were not one of fixed
identity, this would mean that the surface integral on the right could be a step function of time as the
boundary passed through the surface of integration. The result would be a temporal impulse on the right
which would make a contribution to the boundary condition even in the limit where the surface S becomes
vanishingly small. By contrast, because the surface S is one of fixed identity, in the limit where the
surface area vanishes, the right-hand side of Eq. 19 makes no contribution.

With the assumption that fields and velocity are at most step functions across the boundary, the

integral on the left in Eq. 19 gives

nix l+ v+ x p0DH = 0 (20)

This expression is what would be expected, in view of the transformation law for the electric field in
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the MQS system. It states that Et is continuous across the interface.

Summary of ElectroquasistaticI and Magnetoquasistatic Conditions: Table 2.10.1 summarizes the
jump conditions.

Table 2.10.1. Quasistatic jump conditions; A• - a -b

EQS MQS

n ' EE + |] = af
n x I = Kf (21)

n. P[ = - a
÷n-l lE=-n H

o d PO o H + M = 0

(22)

0 Co ~ Et = -VZad n o P = -am

+" + f ÷ tf + ÷ +
*R- pv+ E.K = t nx E vxo H = + 0 (23)

nx - v E K f - Of vt n* Jf = 0 (24)

Included in the summary are several that are either rarely used, are matters of definition or are

obvious. That the surface polarization charge and surface magnetic charge are related to f and A
respectively follows from Eqs. 2.8.3 and 2.9.2 used in conjunction with Gauss' theorem and the elemental

volume of Fig. 2.10.1. Similarly, Eq. 24b follows from the solenoidal nature of the MQS current density.

Finally, Eq. 24a follows from the EQS form of Ampere's law, integrated over the surface S of Fig. 2.10.3,

following the line of reasoning used in connection with Eq. 20.

2.11 Lumped Parameter Electroquasistatic Elements

Lumped parameter electromechanical models are sufficiently practical that they warrant detailed
examination.1 Even though the electromechanical coupling may be of a definitely continuum and dis-
tributed nature, it is most often the case that interest is in inputs and outputs at discrete terminal
pairs. This section reviews the definition of energy storage elements in EQS systems.

An abstract representation of a system of perfectly conducting electrodes, each having a potential
vi relative to a reference electrode, is shown in Fig. 2.11.1. Not only are the electrodes and their
connecting leads perfectly conducting, but the environment surrounding them is perfectly insulating.

Fig. 2.11.1

Schematic view of an electrode
system consisting of n elec-
trodes composed of perfect con-
ductors and immersed in a per-
fectly insulating medium.

Vi

I m Vn
reference j

1. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Vol. I, John Wiley & Sons, New York,
1968.
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The charge on each of the n electrodes is the free charge density integrated over a volume enclosing
the electrode:

q PfdV = .Dnda (1)

Vi Si

The total charge on an electrode is indicated by an arrow pointing toward the electrode from the terminal
pair attached to that electrode. The associated voltage is defined in terms of the electric field and
nn*ni-4nl bk

vi =- (i)f i ID ref i (2)

ref

This relation is justified because the electric field is irrotational and hence the negative gradient of
of 0.

Given the geometry of the electrodes at a certain instant in time, displacements l·l"-ji .".m are
known, and the condition that the field be irrotational and satisfy Gauss' law leads to equations that
can in principle be used to determine the charges on the individual electrodes at a given instant:

qi= qi(v1..' n '  1" ''m )  (3)

If the dielectrics are electrically linear in the sense that D = LE, where cis a function of posi-
tion but not of time or the field, then it is useful to define a capacitance

SEE·nda

CjVO qi Si 
-fl1 

(4)

(4)
ref

The capacitance of the ith electrode relative to the jth electrode is the charge on the ith electrode
per unit voltage on the jth electrode, with all other electrodes held at zero voltage. The capacitance
is useful as a parameter because the charge on an electrode in a linear dielectric is proportional to
the voltage itself; hence, the capacitance is purely a function of the electrical properties of the sys-
tem and the geometry:

n

qi j Cijvj' C i j = CiJ (E1 .. ' m )  (5)
J=1

To define the capacitance as with Eqs. 4 and 5, no reference is required to the time rate of
change. In these relations qi, vi, and Ei can all be functions of time. The dynamics enter by virtue
of conservation of charge, which can be written for a volume including the ith electrode as (Eq. 2.7.3a):

J ~nda -~ pfdV (6)

Si  Vi

The quantity on the right in this expression is the negative of the time rate of change of the total free
charge on the ith electrode. The only free current density normal to a surface enclosing the electrode
is that through the wire itself. Note that the normal vector is defined as outward from this surface,
while a positive current through the wire flows inward. Hence, the left-hand side of Eq. 6 becomes the
negative of the total current at the ith electrical terminal pair:

dqi
i  = (7)
i dt

With the charge given as a function of the voltages and the geometry by Eq. 3, or in particular by Eq. 5,
Eq. 7 can be used to compute the current flowing into a given terminal of the electrode system.

2.12 Lumped Parameter Magnetoquasistatic Elements

An extremely practical idealization of lumped parameter magnetoquasistatic systems is sketched

schematically in Fig. 2.12.1. Perfectly conducting coils are excited at their terminals by currents ii

and, in general, coupled together by the induced magnetic flux. The surrounding medium is magnetizable
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Fig. 2.12.1

Schematic representation
() of a system of perfectly

conducting coils. The
ith coil is shown with the

(b) wire assuming the contour

Ci enclosing a surface Si.
There is a total of n coils
in the system.

but free of electrical losses. The total flux Ai linked by the ith coil is a terminal variable, defined
such that

= (1)Bnda 
Si

A positive A is determined by first assigning the direction of a positive current ii. Then, the direc-
tion of the normal vector (and hence the positive flux) to the surface Sienclosed by the contour Ci
followed by the current ii,has a direction consistent with the right-hand rule, as Fig. 2.12.1 illus-
trates.

Because the MQS current density is solenoidal, the same current flows through the cross section
of the wire at any point. Thus, the terminal current is defined by

= f J in da (2)

si

where the surface si intersects all of the cross section of the wire at any point, as illustrated in the
figure.

The first two MQS equations are sufficient to determine the flux linkages as a function of the cur-
rent excitations and the geometry of the coil. Thus, Ampere's law and the condition that the magnetic
flux density be solenoidal are solved to obtain relations having the form

Ai (3)i(il" **in, 1' ' m) 

If the materials involved are magnetically linear, so that B = pH, where p is a function of position but
not of time or the fields, then it is convenient to define inductance parameters which depend only on
the geometry:

fI

The inductance Lij is the flux linked by the ith coil per unit current in the jth coil, with all other
currents zero. For the particular cases in which an inductance can be defined, Eq. 3 becomes

n
i j=l Li j = Li j Lijij, (•l" m) (5)

The dynamics of a lumped parameter system arise through Faraday's integral Law of induction,
Eq. 2.7.3b, which can be written for the ith coil as
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E'*-d I= Bj BIda (6)
dt f

Ci  Si

Here the contour is one attached to the wire and so v = v in Eq. 2.7.3b. The line integration can be
broken into two parts, one of which follows the wire from the positive terminal at (a) to (b), while the
other follows a path from (b) to (a) in the insulating region outside the wire

b a

(7)
? E It d - f E '*dk + E'*dE 
Ci  a b

Even though the wire is in general deforming and moving, because it is perfectly conducting, the electric
field intensity T' must vanish in the conductor, and so the first integral called for on the right in
Eq. 7 must vanish. By contrast with the EQS fields, the electric field here is not irrotational. This
means that the remaining integration of the electric field intensity between the terminals must be care-
fully defined. Usually, the terminals are located in a region in which the magnetic field is sufficiently
small to take the electric field intensity as being irrotational, and therefore definable in terms of the
gradient of the potential. With the assumption that such is the case, the remaining integral of Eq. 7
is written as

a a

t 4 '£ = - . = -(,a - Db)  -vi (8)

b b

Thus it follows from Eq. 6, combined with Eqs. 1 and 8, that the voltage at the coil terminals is the
time rate of change of the associated flux linked:

di 
(9)

vi dt

With Xi given by Eq. 3 or Eq. 5, the terminal voltage follows from Eq. 9.

2.13 Conservation of Electroquasistatic Energy

This and the next section develop a field picture of electromagnetic energy storage from fundamental
definitions and principles. Results are a first step in the derivation of macroscopic force densities
in Chap. 3. Energy storage in a conservative EQS system is considered first, followed by a statement
of power flow. In this and the next section the macroscopic medium is at rest.

Thermodynamics: Whether in electric or magnetic form, energy storage follows from the definition
of the electric field as a force per unit charge. The work required to transport an element of charge,

6q, from a reference position to a position p in the presence of the electric field intensity is

6w= -P 6qE.di (1)

ref

The integral is the work done by the external force on the electric subsystem in placing the charge at p.
If this process can be reversed, it can be said that the work done results in a stored energy equal to
Eq. 1. In an electroquasistatic system, the electric'field is irrotational. Hence, -Vt. Then, if

Oref is defined as zero, it follows that Eq. 1 becomes

6w = fP6qVa .P = 6qO (2)

ref

where use has been made of the gradient integral theorem, Eq. 2.6.1. Consider now energy storage in

the system abstractly represented by Fig. 2.13.1. The system is perfectly insulating, except for the

perfectly conducting electrodes introduced into the volume of interest, as in Sec. 2.11. It will be
termed an "electroquasistatic thermodynamic subsystem."

The electrodes have terminal variables as defined in Sec. 2.11; voltages vi and total charges qi.

But, in addition, the volume between the electrodes supports a free charge density pf. By definition,
the energy stored in assembling these charges is equal to the work required to carry the charges from a
reference position to the positions of interest. Thus, the incremental energy storage associated with
incremental changes in the electrode charges, 6qi, or in the charge density, 6Pf, in a given neighbor-
hood on the insulator, is
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Fig. 2.13.1

Schematic representation
of electroquasistatic
system composed of per-
fectly conducting elec-
trodes imbedded in a per-
fectly insulating dielec-
tric medium.

n
6w = E vi 6qi + J @6pfdV

i=l V'
V1

The volume V' is the volume excluded by the electrodes. Note that the reference electrode is not in-
cluded in the summation, because the electric potential on that electrode is, by definition, zero. The
work required to place a free charge at its final position correctly accounts for the polarization,

because the polarization charges induced in carrying the free charges to their final position are re-

flected in the potential.

Consider now the field representation of the electroquasistatic stored energy. From Gauss' law
(Eq. 2.3.23a), the contribution of the summation in Eq. 3 can be represented in terms of an integral
over the surfaces Si of the electrodes:

n

6w = E .i6D.nda + f6pfdV
i=l 1 i DJ

Here, Di is the potential on the surface Si . The surfaces enclosing the electrodes can be joined to-

gether at infinity, as shown in Fig. 2.13.1. The resulting simply connected surface encloses all of the

electrodes, the wires as they extend to infinity, with the surface completed by a closure at infinity.

Thus, the surface integration called for with the first term on the right in Eq. 4 can be represented

by an integration over a closed surface. Gauss' theorem is then used to convert this surface integral

to a volume integration. However, note that the normal vector used in Eq. 4 points into the volume V'

excluded by the electrodes and included by the surface at infinity. Thus, in using Gauss' theorem,
a minus sign is introduced and Eq. 4 becomes

6w = - J V* (6'D)dV + J c6pfdV = f [-WV.6D - 6D-VO + 06pf]dV

V' VI V'

In rewriting the integral, the identity V*.C = C.VQ + ýV-V has been used.

From Gauss' law, 6pf = 6V.D = V*6D. It follows that the first and last terms in Eq. 5 cancel.

Also, the electric field is irrotational ( = -VW). So Eq. 5 becomes

6w = E.6DdV

V

There is no E inside the electrodes, so the integration is now over all of the volume V.

The integrand in Eq. 6 is an energy density, and it is therefore appropriate to define the in-

cremental change in electric energy density as

6W = E*D
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The field representation of the energy, as given by Eqs. 6 and 7, should be compared to that for
lumped parameters. Suppose all of the charge resided on electrodes. Then, the second term in Eq. 3
would be zero, and the incremental change in energy would be given by the first term:

n
6w = E vijqi

Comparison of Eqs. 6 and 8 suggests that the electric field plays a role analogous to the terminal voltage,
while the displacement vector is the analog of the charge on the electrodes. If the relationship between
the variables P and t, or v and q, is single-valued, then the energy density and the total energy in the
continuum and lumped parameter systems can be viewed, respectively, as integrals or areas under curves
as sketched in Fig. 2.13.2.

If it is more convenient to have all of the voltages,

rather than the charges, as independent variables, then

Legendre's dual transformation can be used. That is, with v or E
the observation that

vi6q 6
i  6vi= - qi vi

I Or VI

8oV sv tL
Eq. 8 becomes or -----------------------

n n 8E
6w' = Z qi6vi; w' i (viqi - w) (10)

i=l i=l W or worW W I

with w' defined as the coenergy function. -I

In an analogous manner, a coenergy density, W',
is defined by writing -6-6 = 6(.$) - •.6 and thus -4 o

S1W

defining q or D
8q or 8D

6W' = D.6E; W' - E*D - W (11)

Fig. 2.13.2. Geometric representation
The coenergy and coenergy density functions have

of energy w, coenergy w', energy
the geometric relationship to the energy and energy den-

density W, and coenergy density W'
sity functions, respectively, sketched in Fig. 2.13.2.

for electric field systems.
In those systems in which there is no distribution of

charge other than on perfectly conducting electrodes,
Eqs. 6 and 8 can be regarded as equivalent ways of computing the same incremental change in electro-
quasistatic energy. If the charge is distributed throughout the volume, Eq. 6 remains valid.

With the notion of electrical energy storage goes the concept of a conservative subsystem. In
the process of building up free charges on perfectly conducting electrodes or slowly conducting charge
to the bulk positions (one mechanism for carrying out the process pictured abstractly by Eq. 3), the
work is stored much as it would be in cocking a spring. The electrical energy, like that of the spring,
can later be released (discharged). Included in the subsystem is storage in the polarization. For
work done on polarizable entities to be stored, this polarization process must also be reversible. Here,
it is profitable to think of the dipoles as internally constrained by spring-like nondissipative
elements, capable of releasing energy when the polarizing field is turned off. Mathematically, this
restriction on the nature of the polarization is brought in by requiring that ý and hence ý be a single-
valued function of the instantaneous g, or that e = 2($). In lumped parameter systems, this is tanta-
mount to q = q(v) or v = v(q).

Power Flow: The electric and polarization energy storage subsystem is the field theory generaliza-
tion of a capacitor. Just as practical circuits involve a capacitor interconnected with resistors
and other types of elements, in any actual physical system the ideal energy storage subsystem is im-
bedded with and coupled to other subsystems. The field equations, like Kirchhoff's laws in circuit
theory, encompass all of these subsystems. The following discussion is based on forming quadratic
expressions from the field laws, and hence relate to the energy balance between subsystems.

For a geometrical part of the ith subsystem, having the volume V enclosed by the surface S, a
statement of power flow takes the integral form

at
iin)da + i- dV =V idV (12)

S V
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Here, Si is the power flux density, Wi is the energy density, and *i is the dissipation density.

Different subsystems can occupy the same volume V. In Eq. 12, V is arbitrary, while i distinguishes
the particular physical processes considered. The differential form of Eq. 12 follows by applying Gauss'
theorem to the first term and (because V is arbitrary) setting the integrand to zero:

aw

Si +at i (13)

This is a canonical form which will be used to describe various subsystems. In a given region, Wi can
increase with time either because of the volumetric source #i or because of a power flux -§:'i into the
region across its bordering surfaces.

For an electrical lumped parameter terminal pair, power is the product of voltage and current. This
serves as a clue for finding a statement of power flow from the basic laws. The generalization of the
voltage is the potential, while conservation of charge as expressed by Eq. 2.3.25a brings in the free
current density. So, the sum of Eqs. 2.3.25a and the conservation of polarization charge equation,
Eq. 2.8. 5, is multiplied by 0 to obtain

[V. (f+J + (p + pp)] = 0 (14)

With the objective an expression having the form of Eq. 13, a vector identity (Eq. 15, Appendix B)
and Gauss' law, Eq. 2.3.23a, convert Eq. 14 to

V. [ (J + J )] + E. ( + J) ++ 4 - VCoE - 0 (15)

In the last term the time derivative and divergence are interchanged and the vector identity used again
to obtain the expression

aw
V + ae w e e (16)

+ at
where, with Eq. 2.8.10 used for Jp,

B. E + D
te t o = at

e \ (if +J p + t at t

-1 +÷÷
W - E*E
e 2 o

) -E*[J + -- + V x (P x v)]-E -(J + J 

Which terms appear where in this expression is a matter of what part of a physical system (which subsystem)
is being described. Note that We does not include energy stored by polarizing the medium. Also, it can
be shown that V.Se = V.(1 x f), so that 1e is the poynting vector familiar from conventional classical
electrodynamics. In the dissipation density, I-.f can represent work done on an external mechanical
system due to polarization forces or, if the polarization process involves dissipation, heat energy
given up to a thermal subsystem.

The polarization terms in Oe can also represent energy storage in the polarization. This is illus-
trated by specializing Eq. 16 to describe a subsystem in which • is a single-valued function of the
instantaneous -, the free current density is purely ohmic, f = at, and the medium is at rest. Then, the
polarization term from 4e can be lumped with the energy density term to describe power flow in a subsystem
that includes energy storage in the polarization:

awE
V.E + at E (17)

where 4

S Q + aD WE EE EE
o
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Note that the integral defining the energy density WE, which is consistent with Eq. 7, involves an inte-

grand t which is time dependent only through the time dependence of 8: 1 = '[f(t)]. Thus, aWE/at =
E.(-/at).

With the power flux density placed on the right, Eq. 17 states that the energy density decreases
because of electrical losses (note that *E < 0) and because of the divergence of the power density.

2.14 Conservation of Magnetoquasistatic Energy

Fundamentally, the energy stored in a magnetic field involves the same work done by moving a test
charge from a reference position to the position of interest as was the starting point in Sec. 2.13.
But, the same starting point leads to an entirely different form of energy storage. In a magnetoquasi-
static system, the net free charge is a quantity evaluated after the fact. A self-consistent representa-
tion of the fields is built upon a statement of current continuity, Eq. 2.3.26b, in which the free
charge density is ignored altogether. Yet, the energy stored in a magnetic field is energy stored in
charges transported against an electric field intensity. The apparent discrepancy in these statements is
resolved by recognizing that the charges of interest in a magnetoquasistatic system are at least of
two species, with the charge density of one species alone far outweighing the net charge density.

Thermodynamics: Because the free current density is solenoidal, a current "tube" can be defined as

shown in Fig. 2.14.1. This tube is defined with a cross section having a normal ýn in the direction of

the local current density, and a surrounding surface having a normal perpendicular to the local current
density. An example of a current tube is a wire surrounded by insulation and hence carrying a total cur-

rent i which is the same at one cross section as at another.

Fig. 2.14.1

Current tube defined as having
cross-sectional area ds per-

t

the to 
pendicular 

density, and an outside surface
with a normal vector perpendicular
to the current density.

i

For bipolar conduction, and a stationary medium, the current density within the tube is related
to the charge density by the expression

4.
Jf = pv+ - pv_ (1)

Here the conduction process is visualized as involving two types of carriers, one positive, with a charge

density p+, and the other negative, with a magnitude p-. The carriers then have velocities which are,

respectively, v+ and _.. Even though there is a current density, in the magnetoquasistatic system there

is essentially no net charge: pf = p+ - p- = 0. In an increment of time 6t, the product of the respective

charge densities and net displacements is p+v+6t and - p.0.6t. The work done on the charges as they

undergo these displacements is the energy stored in magnetic form. This work is computed by recognizing

that the force on each of the charged species is the product of the charge density and the electric

field intensity. Hence, the energy stored in the field by a length of the current tube d£ is to first

order in differentials dt and ds,

-(pv -p_v ).E6tdsdi = -Jf *E6tdsdk (2)

The expression for the free current density, Eg. i, is used on the right to restate the energy stored
in the increment of time 6t. The unit vector In is defined to be the direction of if. Thus, If =

Cf('n)tn. Because the current density is solenoidal, it follows closed paths. The product If.tnds
is, by definition, constant along one of these paths, and if Indi is defined as an increment of the

line integral, it then follows from Eq. 2 that the energy stored in a single current tube is

1 (3)d( 
C
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Fig. 2.14.2

Schematic representation of
a magnetoquasistatic energy
storage system. Currents
are either distributed in
current loops throughout the
volume of interest, or con-
fined to one of n possible
contours connected to the
discrete terminal pairs.

By contrast with the electroquasistatic system, in which the electric field intensity is induced
by the charge density (Gauss' law), the electric field intensity in Eq. 3 is clearly rotational. This
emphasizes the essential role played by Faraday's law of magnetic induction.

It is helpful to have in mind at least the abstraction of a physical system. Figure 2.14.2 shows
a volume of interest in which the currents are either distributed throughout the volume or confined to
particular contours (coils), the latter case having been discussed in Sec. 2.12.

First, consider the energy stored in the current paths defined by coils having cross-sectional
area ds. From Eq. 3, this contribution to the total energy is conveniently written as

-* .nds( E.ndG)6t = Xi  (4)

C.

Faraday's law and the definition of flux linkage, Eqs. 2.12.1 and 2.12.6, are the basis for representing
the line integral as a change in the flux linkage.

Because the free current density is solenoidal, the distribution of free currents within the
volume V excluded by the discrete coils can be represented as the superposition of current tubes. From
Eq. 4 and the integral form of Faraday's law, Eq. 2.7.3b with vs = v = 0 (the medium is fixed), it
follows that the energy stored in a current tube is

Swcurrent tube = Jf" ndS ( A.•da) (5)

Stube

The magnetic flux density is also solenoidal4 and fog this reason it is convenient to introduce the mag-
netic vector potential A, defined such that B = V x A, so that the magnetic flux density is automatically
solenoidal. With this representation of the flux density in terms of the vector potential, Stokes's
theorem, Eq. 2.6.3, converts Eq. 5 to

Jf.*ds r r 6~A.ld= ( .6A)dsdk = J f.dAdV (6)

Ctube Ctube Vtube

Here, f is by definition in the direction of tn, so that Jf.61 takes the component of 61 in the tn direc-
tion. The second equality is based upon recognition that the product as-It is a volume element of the
current tube, and the line integration constitutes an integration over the volume, Vtube , of the tube.

To include all of the energy stored in the distributed current loops, it is necessary only that
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the integral on the right in Eq. 6 be extended over all of the volume occupied by the tubes. The combina-
tion of the incremental energy stored in the discrete loops, Eq. 4, and that from the distributed current
loops, Eq. 6, is the incremental total energy of the system

n
6w = E ii i + .6AdV (7)

i=l i

In this expression, V is the volume excluded by the discrete current paths. This incremental magnetic
energy storage is analogous to that for the electric field storage represented by Eq, 2.13.3.

In retrospect, it is apparent from the derivation that the division into discrete and distributed
current paths, represented by the two terms in Eq. 7, is a matter of convenience. In representing the
incremental energy in terms of the magnetic fields alone, it is handy to extend the volume V over all
of the currents within the volume of interest, including those that might be represented by discrete
terminal pairs. With this understanding, the incremental change in energy, Eq. 7, is the last term
only, with V extended over the total volume. Moreover, Ampere's law represents the current density in
terms of the magnetic field intensity, and, in turn, the integrand can be rewritten by use of a vector
identity (Eq. 8, Appendix B):

6w = V x H.6~dV = [H.V x A + V.(H x 6iA)]dV (8)

V V

The last term in Eq. 8 can be converted to a surface integral by using Gauss' theorem. With the
understanding that the system is closed in the sense that the fields fall off rapidly enough at infinity
so that the surface integration can be ignored, the remaining volume integration on the right in Eq. 8
can be used to obtain a field representation of the incremental energy change. With the curl of the
vector potential converted back to a flux density, Eq. 8 becomes

w = HHf Bdv (9)

V

The integrand of Eq. 9 is defined as an incremental magnetic energy density

6W = H.6B (10)

It is helpful to note the clear analogy between this energy density and the incremental total energy
represented by lumped parameters. In the absence of volume free current densities that cannot be
represented by discrete terminal pairs, Eq. 7 reduces to the lumped parameter form

n
6w = E i.6X. (11)

i=l

The magnetic field intensity plays the continuum role of the discrete terminal currents, and the magnetic

flux density is the continuum analog of the lumped parameter flux linkages. The situation in this mag-
netic case is, of course, analogous to the electrical incremental energy storages in continuum and in
lumped parameter cases, as discussed with Eqs. 7 and 8 of Sec. 2.13.

Just as it is often convenient in dealing with electrical lumped parameters to use the voltage
as an independent variable, so also in magnetic field systems it is helpful to use the terminal currents
as independent variables. In that case, the coenergy function w' is conveniently introduced as an
energy function

n
6w' = Z X.6i. (12)

1 1
i=l

In an analogous way, the co-energy density, w', is defined such that

6W' = B.6H; W' = H.B - W (13)

Power Flow: Thus far, the storage of energy in magnetic form has been examined. The postulate
has been that all work done in moving the charges against an electric field is stored. In any system
as a whole this is not likely to be the case. The general magnetoquasistatic laws enable a deduction
of an equation representing the flow of power, and the rate of change of the stored energy. This places
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the energy storage in the context of a more general system.

A clue as to how an energy conservation statement might be constructed from the differential mag-
netoquasistatic laws is obtained from Eq. 2, which makes it clear that the product of the free current
density and the electric field intensity are closely connected with the statement of conservation of
energy. The dot product of the electric field and Ampere's law, Eq. 2.3.23b, is

E.[V x H - Jf] - 0 (14)

Use of a vector identity 6Eq. 8, Appendix B) makes it possible to rewrite this expression as

+ 
H.V 

4. 4. 4. 4. 4.
x E - V.(E x H) = E.Jf (15)

With the additional use of Faraday's law to represent V x E, Eq. 15 takes the form of Eq. 2.13.16, with

S EExHe

1 4.
We - H (16)

4+ .+ 4. o +
-E.J - H. - . x ( Mx )

These quantities have much the same physical significances discussed in connection with Eq. 2.13.16.

To place the magnetic energy storage identified with the thermodynamic arguments in the context of
an actual system, consider a material which is ohmic and fixed so that 4 = 0 and If = C1. Then the
second term on the right in Eq. 16c is in the form of a time rate of change of magnetization energy
density. Hence, the power flow equation assumes the form of Eq. 2.13.17, with

WE= H*6B (17)
o

= 
SE -QE*E

Implicit is the assumption that H is a single-valued function of the instantaneous B. The resulting
energy density includes magnetization energy and is consistent with Eq. 2.14.10.

2.15 Complex Amplitudes; Fourier. Amplitudes and Fourier Transforms

The notion of a continuum network fs introduced for the first time in the next section. The associ-
ated transfer relations illustrated there are a theme throughout the chapters which follow. Among several
reasons for their use is the organization they lend to the representation of complicated, largely linear,
systems. In this chapter, the continuum networks represent electromagnetic fields. Later, they re-
present fluid and (to some degree) solid mechanics, heat and mass transfer, and electromechanical continua
in general. These networks make it possible to set aside one part of a given problem, derive the associ-
ated relations once and for all and accumulate these for later use. Such relations will be picked up over
and over in solving different problems and, properly understood, are a useful reference.

Complex Amplitudes: In many practical situations, excitations are periodic in one or two spatial
directions, in time or in space and time. The complex amplitude representation of fields, useful in
dealing with these situations, is illustrated by considering the function O(z,t) which has dependence
on z given explicitly by

O(z,t) = Re ý ( t ) e - j k z  (1)

With the wavenumber k real, the spatial distribution is periodic with wavelength X = 2wr/k and spatial
phase determined by the complex amplitude 1. For example, if = ý o(t) is real and k is real, then
O(z,t) = o00 (t) cos kz.

The spatial derivative of 0 follows from Eq. 1 as

S Re (t)e-jkz (2)7z Re.[-JkZ(t)e (2
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The following identifications can therefore be made:

as

with it being understood that even though complex amplitudes are being used, the temporal dependence is
arbitrary. There will be occasions where the time dependence is specified, but the space dependence is
not. For example, complex amplitudes will take the form

Q(z,t) = Re4(z)e j wt  (4)

where D(z) is itself perhaps expressed as a Fourier series or transform (see Sec. 5.16).

Most.often, complex amplitudes will be used to represent both temporal gnd spatial dependences:

D(z,t) = Recej(Wt-kz) (5)

The (angular) frequency w can in general be complex. If 0 is periodic in time with period T, then T =
2n/w. For complex amplitudes 0, the identifications are:

[4(z,t), (z,t), (z,t)]<>[$,-jk(,jj] (6)

If w and k are real, Eq. 5 represents a traveling wave. At any instant, its wavelength is 2w/k,
at any position its frequency is w and points of constant phase propagate in the +z direction with the
phase velocity w/k.

Fourier Amplitudes and Transforms: The relations between complex amplitudes are identical to those
between Fourier amplitudes or between Fourier transforms provided that these are suitably defined. For
a wide range of physical situations it is the spatially periodic response or the temporal sinusoidal
steady state that is of interest. Simple combinations of solutions represented by the complex amplitudes
then suffice, and there is no need to introduce Fourier concepts. Even so, it is important to recognize
at the outset that the spatial information required for analysis of excitations with arbitrary spatial
distributions is inherent to the transfer relations based on single-complex-amplitude solutions.

The Fourier series represents an arbitrary function periodic in z with fundameqtal periodicity
length k by a superposition of complex exponentials. In terms of complex Fourier coefficients $n(t),
such a series is

n z
-jk

Q(z,t) = E (t)e k 2nI/R; Q* n  = (7)n n n -n

4where the condition on n insures that 0 is real. Thus, with the identification + 4n n and k + kn, each
complex exponential solution of the form of Eq. 1 can be taken as one term in the Fourier series. The
mth Fourier amplitude Om follows by multiplying Eq. 7 by the complex conjugate function exp(jkmz) and.
integrating over the length k to obtain only one term on the right. This expression can then be solved

for ým to obtain the inverse relation

1 z+ Jkmz
im O Q (z,t)e dz (8)

z

If the temporal dependence is also periodic, with fundamental period T, the Fourier series can also

be used to represent the time dependence in Eq. 7:

+i +o J wmt-knz)

O(z,t)= E E 5 e ; * = 8 (9)mn mn -m-n
m=-- n=-•

where the condition on the amplitudes insures that O(z,t) is real. One component out of this double sum-
mation is the traveling-wave solution represented by the complex amplitude form, Eq. 5. The rules given
by Eqs. 3 and 6 pertain either to the complex amplitudes or the Fourier coefficients.

The Fourier transform is convenient if the dependence is not periodic. With the Fourier transform

0(k,t) given by

0(k,t) = + S(z,t)ejkZ dz

Sec. 215 
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the functional dependence on z is a superposition of the complex exponentials

+oo
O(zt) f i(k,t)e- 0 kz dk

-00

The relation between the transform and the transform of the derivative can be found by taking the trans-
form of 30/3z using Eq. 11 and integrating by parts. Recall that fvdu = uv - fudv and identify
du -+ O/azdz and v - exp jkz, and it follows that

S- kz dz = ejk-C -jk + ejkz dz (12)

For properly bounded functions the first term on the right vanishes and the second is -jki(k,t). The
transform of Ha/Dz is simply -jkl and thus the Fourier transform also follows the rules given with
Eq. 3.

Extension of the Fourier transform to a second dimension results in the transform pair

j(ot-ks) dk dw
0(z,t) = 0 $(k, w)e J(t-kz) 2dk d2w

(13)

A = +| J(k,w) f (z,t)e -j - j (,t-kz) (tkz)dt dt dzdz

which illustrates how the traveling-wave solution of Eq. 5 can be viewed as a component of a complicated
function. Again, relations between complex amplitudes are governed by the same rules, Eq. 6, as are the
Fourier amplitudes $(k,w).

If relationships are found among quantities $(t), then the same relations hold with c + $ and
D( )/Bt -÷ jw, because the time dependence exp(jwt)is a particular case of the more general form $(t).

Averages of Periodic Functions: An identity often used to evaluate temporal or spatial averages of
complex-amplitude expressions is

Re ekz Re Bej = 1 Re A B* (14)
/z 2

where ( )z signifies an average over the length 2w/k and it is assumed that k is real. This relation
follows by letting

Re A ejkz Re e-jkz = ejkz + A*ejk] 2 e-jkz + e ejk] (15)

and multiplying out the right-hand side to obtain

'I B e-2jkz + X*i*e2jk + B*+ A* (16)

The first term is a linear combination of cos 2kz and sin 2kz and hen e averages to zero. The second
term is constant and identical to the right-hand side of Eq. 14.

A similar theorem simplifies evaluation of the average of two pe odic functions expressed in the
form of Eq. 7:

-jknz +- -jkmZA /_1 r
= -

(17)
= AB = AB*
0 n -n n nSn=-- mo
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Of course, either the complex amplitude theorem of Eq. 14 or the Fourier amplitude theorem of Eq. 17
applies to time averages with kz - -wt.

2.16 Flux-Potential Transfer Relations for Laplacian Fields

It is often convenient in the modeling of a physical system to divide the volume of interest into
regions having uniform properties. Surfaces enclosing these regions are often planar, cylindrical or
spherical, with the volume then taking the form of a planar layer, a cylindrical annulus or a spherical
shell. Such volumes and bounding surfaces are illustrated in Tables 2.16.1-3. The question answered
in this section is: given the potential on the bounding surfaces, what are the associated normal flux

densities? Of immediate interest is the relation of the electric potentials to the normal displace-
ment vectors. But also treated in this section is the relation of the magnetic potential to the normal
magnetic flux densities. First the electroquasistatic fields are considered, and then the magnetoquasi-
static relations follow by analogy.

Electric Fields: If any one of the regions shown in Tables 2.16.1-3 is filled with insulating
charge-free (pf O) material of uniform permittivity e,

S(- )E, D = E (1)

the governing field equations are Gauss' law, Eq. 2.3.23a,

V*D = 0 (2)

and the condition that E be irrotational, Eq. 2.3.24a. The latter is equivalent to

E = -V0 (3)

Thus, the potential distribution within a volume is described by Laplace's equation

V20 = 0 (4)

In terms of 4,

D = -eVO (5)

Magnetic Fields: For magnetoquasistatic fields in an insulating region (Jf = 0) of uniform per-
meability

M= (I-- 1)Hi;.B =pH (6)
110

Thus, from Ampere's law, Eq. 2.3.23b, H is irrotational and it is appropriate to define a magnetic

potential Y:

H = -V_ (7)

In addition. there is Eq. 2.3.24b:

V.B = 0 (8)

Thus, the potential again satisfies Laplace's equation

v2y = 0 (9)

and in terms of ', the magnetic flux density is

B = -1VW (10)

Comparison of the last two relations to Eqs. 4 and 5 shows that relations now derived for the
electric fields can be carried over to describe the magnetic fields by making the identification

Planar Layer: Bounding surfaces at x = A and x = 0, respectively denoted by a and 0, are shown

in Table 2.16.1. So far as developments in this section are concerned, these are not physical boundaries

They are simply surfaces at which the potentials are respectively

4(A,y,z,t) = Re g (t)exp[-j(k y+k z)]; D(0,y,z,t) = Re I 0(t)exp[-j(k y+kzz)] (11)
t y( zy y 
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Table 2.16.1. Flux-potential -transfer relations for planar layer in terms of electric
potential and normal displacement (0,Dx). To obtain magnetic relations,
substitute (Q,Dx,) +e ('Y,.B,).

These will be recognized as generalizations of the complex amplitudes introduced with Eq. 2.15.1. That
the potentials at the a and $ surfaces can be quite general follows from the discussion of Sec. 2.15,
which shows that the following arguments apply when I is a spatial Fourier amplitude or a Fourier trans-
form.

In view of the surface potential distributions, solutions to Eq. 4 are assumed to take the form

S=- Re O(x,t) exp[-j(kyy + kzz)] (12)

Substitution shows that

d2 2 = 0; y =Vk2 + k2  (13)
2  y zdx

+yx
Solutions of this equation are linear combinations of e or alternatively of sinh yx and cosh yx.
With ~i and 12 arbitrary functions of time, the solution teakes the form

$1 0 sinh yx + 02 cosh yx (14)

The two coefficients are determined by requiring that the conditions of Eq. 11 be satisfied. For the sim-
ple situation at hand, an instructive alternative to performing the algebra necessary to evaluate (01,02)
consists in recognizing that a linear combination of the two solutions in Eq. 14 is sinh y(x - A). Thus,
the solution can be written as the sum of solutions that are individually zero on one or the other of the
bounding surfaces. By inspection, it follows that

a- sinh.yx _ .; sinh y(x - A) (15)
sinh yA sinh yA

From Eqs. 5 and 15, 1 can be determined:

-e ax Re Ry a cosh -B cosh y(x-A) -

x sinh yx yA sinh yA (ky + kz) (16)

Evaluation of this equation at x - A gives the displacement vector normal to the a surface, with complex
amplitude ED. Similarly, evaluated at x = 0, Eq. 16 ives D5. The components of the "flux" (Nij ) are

now determined, given the respective potentials (ci ,B). The transfer relations, Eq. (a) of Table 2.16.1,

summarize what is found. These relations can be solved for any pair of variables as a function of the
remaining pair. The inverse transfer relations are also summarized for reference in Table 2.16.1, Eq. (b)
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Fig. 2.16.1. (a) Transfer coefficients as a function of Ay EA k2 + k2
(b) Distribution of 0 across layer.

That the layer is essentially a distributed capacitance (inductance) is emphasized by drawing
attention to the analogy between the transfer relations and constitutive laws for a system of linear
capacitors (inductors). For a two-terminal-pair system, Eq. 2.11.5 comprises two terminal char es

(ql,q2) expressed as linear functions of the terminal voltages (vl,V2). Analogously, the (D,,Dx)
(which have units of charge per unit area and an arbitrary time dependence) are given as linear func-
tions of the potentials by Eq. (a) of Table 2.16.1. A similar analogy exists between Eq. 2.12.5,
expressing (X1 ,X2 ) as functions of (il,i 2), and the transfer relations between (B ,BO) (units of flux
per unit area) and the magnetic potentials (TYa,P).

According to Eq. (a) of Table 2.16.1, Dx is induced by a "self term" (proportional to the potential
at the same surface) and a "mutual term." The coefficients which express this self- and mutual-coupling
have a dependence on ay (2r/y the wavelength in the y-z plane) shown in Fig. 2.16.1a. Written in the
form of Eq. 15, the potential has components, excited at each surface, that decay to zero, as shown in
Fig. 2.16.1b, at a rate that is proportional to how rapidly the fields vary in the y-z plane. For long
waves the decay is relatively slow, as depicted by the case Ay = 0.5, and the mutual-field is almost as
great as the self field. But as the wavelength is shortened relative to A (Ay increased), the surfaces
couple less and less.

In this discussion it is assumed that y is real, which it is if ky and kz are real. In fact, the
transfer relations are valid and useful for complex values of (ky,kz). If these numbers are purely
imaginary, the field distributions over the layer cross section are periodic. Such solutions are needed
to satisfy boundary conditions imposed in an x-y plane.

Cylindrical Annulus: With the bounding surfaces coaxial cylinders having radii a and B, it is
natural to use cylindrical coordinates (r, 0, z). A cross section of this prototype region and the
coordinates are shown in Table 2.16.2. On the outer and inner surfaces, the potential has the respec
tive forms

o(a,e,z,t) = Re P (t) e- ej(m +kz); 0(B,0,z,t) = Re ~ (t)e-j(me+kz) (17)

Hence, it is appropriate to assume a bulk potential

( = Re ý(r,t)e -j(me+kz) (18)

Substitution in Laplace's equation (see Appendix A for operations in cylindrical coordinates), Eq. 4,
then shows that

d 1 d@ 2 m (19)
+ - •) - (k + 0 (19)

dr2  r dr 2
dr r

By contrast with Eq. 13, this one has space-varying coefficients. It is convenient to categorize the
solutions according to the values of (m,k). With m = 0 and k = 0, the remaining terms are a perfect
differential which can be integrated twice to give the solutions familiar from the problem of the field
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Table 2.16.2. Flux-potential relations for cylindrical annulus in terms of electric potential and
normal displacement (0,Dr). To obtain magnetic relations, substitute (0,Dr,E)+(T,Br,).

0 = Re 0(r,t)e- j (mO + kz)

fm(B~a)

CI~B ll fm (a, 8) 8 ,

k = 0 = 0

fo(x,y) = n) g (x,y) = n(?)

k = 0, mi 1,2,...

f (x,)

x 1
gm(x,y) = 2 m

x E(- - ()

k 0 , m = 0i1,2n..*

jk[H (jkx)J'(jky) - Jm(jkx)Hm(jky)]

fm(x,y) - EJm(jkx)Hm(jky) - Jm(jky)Hm(jkx)]

gm.(x,y) = rx[Jm(jkx)H (jky) - Jm(jky) Im(Jkx)]

fm(X,y) =

gm(x,y) =

k[Km(kx)Im(ky) - Im(kx)K'(ky) ]

[Im(kx)Km(ky) - Im(ky)Km(kx)]

1) - I
X[Im(kx)Km(kY) - Im(ky)Km(kx)]

G (a,) Bam r

F (at,) BOI~L r
JL JI6

k = 0, m = 0

No inverse

k = 0, m = 1,2,***
x m

n in[( )im (Z ]

G (x,y) = 1
m (x)m a

y x

k 0 0 m = 0,1,2,.in*

1 [J(jkx)Hm(jky) - Hm(jkx)Jm(jky)]

F(x,y) =T- [Jm(jky)H'(jkx) - Jm(jkx)Hm (jky)]

-2
Gm(xy) = jk(kx) [J(jky)H'(Jkx)-Jm(Jkx)Hm(ky)

Fm(x,y) =

G3 (x,y) =

1 [.(kx)Km (ky) - Km(kx)Im(ky)]
k [Im(ky)Km(kx) - Im(kx)Km(ky) ]

k(kx) [I'(kv)K'(kx) - I'(kx)K'(kv)]
- nmm-- - mi m

kI' (ka)0 0 r = f (,O) 4 ; fC(0 ) =(- in(k) (c)

S r m m Im(k)

See Prob. 2.17.2 for proof that Hm(jkx)Jl(jkx) - Jm(jkx)H'm(jkx) = -2/(rkx) and Km(kx)I(kx)
- Im(kx)K(kx) = 1/kx incorporated into gm and GM.

r
__
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Fig. 2.16.2. (a) Modified Bessel functions. (b) Self-field coefficients of cylindrical

transfer relations in limits where surfaces do not interact.

etween coaxial circular conductors. In view of the boundary conditions at r = a and r = 8,

In (-) In (-)
+ (B - i ) (m,k) = (0,0) (20)

8 In •) a ain (a) In (&)a

or situations that depend on 6, but not on z (polar coordinates) so that k = 0, substitution shows the
olutions to .Eq.19 are r- . By inspection or algebraic manipulation, the linear combination of these
hat satisfies the conditions of Eq. 17 is

I[(m -( (i)r]
i, c r, -[)m_ (21))] (m,k) -= (,O)

a a8 a -

or k finite, the solutions to Eq. 19 are the modified Bessel functions Im(kr) and Km(kr). These play
 role in the circular geometry analogous to exp(+yx)in Cartesian geometry. The radial dependences of
he functions of order m = 0 and m = 1 are shown in Fig. 2.16.2a. Note that Im and Km are respectively
ingular at infinity and the origin.

Just as the exponential solutions could be determined from Eq. 13 by assuming a power series in x,
he Bessel functions are determined from an infinite series solution to Eq. 19. Like y, k can in genera
e complex. If it is, it is customary to define two new functions which, in the special case where k
s real, have imaginary arguments:

Jm(Jkr) m
m j I (22)m (kr), H m (jkr) 7r j-(m Kl) m (kr)

hese are respectively the Bessel and Hankel functions of first kind. For real arguments, Im and Km are
eal, and hence Jm and Hm can be either purely real or imaginary, depending on the order.

Large real-argument limits of the functions Im and Km reinforce the analogy to the Cartesian
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exponential solutions:

lim Im(u) = exp (u) ;lim Km(u) = exp(-u) (23)
U-n-o V2S U-wo

Useful relations in the opposite extreme of small arguments are

lim jH (ju) = 2 In (; lim Jm(ju) =
u 0 T 1.781072u m mm2

(24)

lim H (ju) =(m - 1 ) 2m ; m 0
u+0 m jr(ju) m

By inspection or algebraic manipulation, the linear combination of J and H satisfying the boundary
conditions of Eq. 17 is m m

[H (jkB)Jm(jkr) - Jm(JkB)H (jkr)] [Jm(jka)H kr)r) - H (jka)Jm(jkr)]
=v m m + m m - m m m (25)

[Hm(jkB)Jm(jka) - Jm(jk)H (jka)] [J m(jka)Hm (jk) - Hm(jka) m(Jk)] (25)

The evaluation of the surface displacements (Da,Dr) using Eqs. 20, 21, or 25 is now accomplished
using the same steps as for the planar layer. The resulting transfer relations are summarized by
Eq. (a) in Table 2.16.2. Inversion of these relations, to give the surface potentials as functions of
the surface displacements, results in the relations summarized by Eq. (b) of that table. Primes denote
derivatives with respect to the entire specified argument of the function. Useful identities are:

uI'(u) = m (u) + uIm+l(u); UI'(u) = -mI (uy + uI (u)

uK'(u) = mK (u) - uK (u)
m m m+l

R'(u) = -R1 (U) (26)

uR'(u) = -mR (u) + uR m_(u); uR'(u) = mR (u) - uR (u)
m m m-1 m m m+1

where Rm can be Jm , H , or the function N to be defined with Eq. 29.

Two useful limits of the transfer relations are given by Eqs. (c) and (d) of Table 2.16.2. In
the first, the inner surface is absent, while in the second the outer surface is removed many wave-
lengths 2w/k. The self-field coefficients fm(O,a) and fm(o,8) are sketched for m=0O and m=l in
Fig. 2.16.2b. Again, it is useful to note the analogy to the planar layer case where the appropriate
limit is kA - m-. In fact, for ka or kB reasonably large, the k dependence and the signs are the
same as for the planar geometry:

lim fm(0O,a) -+ -ka; lim Bf(oO,B) U ký (27)
ka-m kB+

For small arguments, these functions become

lim af (0,a) _ -_(k) 2 ; lim Bf 0( ,0) - 1
kao0 o 2 kB+0 ln [1.781072kB

(28)

lim afm(O,a) - -m for m 0 0; lim 8fm(CO8) + m for m # 0
ka-0O kB+0

In general, k can be complex. In fact the most familiar form for Bessel functions is with k purely
imaginary. In that case, Jm is real but Hm is complex. By convention

H (u) E Jm(U) + JNm(u) (29)

where, if u is real, Jm and Nm are real and Bessel functions of first and second kind. As might be

expected from the planar analogue, the radial dependence becomes periodic if k is imaginary. Plots

of the functions in this case are given in Fig. 2.16.3.
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Fig. 2.16.3. Bessel functions of first and second kind and real arguments. References
for the Bessel and related functions should be consulted for more details
concerning their properties and numerical values. 1-4

Spherical Shell: A region between spherical surfaces having outer and inner radii a and 8, respec
tively, is shown in the figure of Table 2.16.3. In the volume, the potential conveniently takes the
variable separable form

4 = Re i(r,t) e(e)e - jmO (30)

where (r,68,) are spherical coordinates as defined in the figure. Substitution of Eq. 30 into Laplace's
equation, Eq. 4, shows that the 0 dependence is correctly assumed and that the (r,8) dependence is
determined from the equations

1 d [sin d m _K2

sin 80 d d sin 2sin e
(31)

1 d ,_2 d _ 2
-dr dr

where the separation coefficient K2 is independent of (r,e). With the substitutions

u = cosO, V-u = sin 6 (32)

Eq. 31a is converted to

2 2
(1 - u2 )  2u + (K2 _ -- 2) 0 = 0 (33)duu -u 2

du 1-u

For K2 = n(n+l) and n an integer, solutions to Eq. 33 are

0 = Pm(u) (34)n

1. F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J., 1962,
pp. 142-165.

2. S. Ramo, J. R. Whinnery and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley
and Sons, New York, 1965, pp. 207-218.

3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathe,
matical Tables, National Bureau of Standards, Applied Mathematics Series 55, U.S. Government Printii
Office, Washington D. C. 20402, 1964, pp. 355-494.

4. E. Jahnke and F. Emde, Table of Functions with Formulae and Curves, Dover Publications, New York.
1945, pp. 128-210.
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Table 2.16.3. Flux-potential transfer relations for spherical shell in terms of electric

potential and normal displacement (0,Dr). To obtain magnetic relations,

substitute (0,Dr,E) + (',Br,1).
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where Pm are the associated Legendre functions of the first kind, order n and degree m. In terms of the
Legendre polynomials Pn, these functions are summarized in Table 2.16.3. Note that these solutions are
closed. They do not require infinite series for their representation.

To the second order differential equation, Eq. 33, there must be a second set of solutions Q.
Because these are singular in the interval 0 4 e < 7 , and situations of interest here include the
entire spherical surface at any given radius, these solutions are not included. The functions Pm play
the role of exp(jkz)(say) in cylindrical geometry, while exp(jmo) is analogous to exp(jmO). The radial
dependence, which is much of the bother in cylindrical coordinates, is actually quite simple in spherical
coordinates. From Eq. 31b it is seen that solutions are a linear combination of rn and r-(n+l). With
the assumption that surface potentials respectively have the form

t(a,e,0,t) = Re $ (t)P m (cose) exp(jmo) (35)

it follows that the appropriate linear combination is

[(r)n _ n+l rn n+l
; r '+ r (36)

[()n _ n+l n a n+(36)

The complex amplitudes (P,PB) determine the combination of cos mo and sin mý, constituting the dis-
tribution of Q with longitudinal distance. For a real amplitude, the distribution is proportional to
cos mý. In the summary of Table 2.16.3, the lowest orders of Pg (cos 0) are tabulated, together with
diagrams showing the zones that are positive and negative relative to each other. In the rectangular
plots, the ordinate is 0( 0 4 7, while the abscissa is 0 < 0 < 27. Thus, the top and bottom lines are
the north and south poles while the lines within are nodes. The horizontal register of each diagram is
determined by the complex amplitude, which determines the phase of exp(jmo).

Evaluation of the transfer relations given in Table 2.16.3 by Eqs. (a) and (b) is now carried out
following the same procedure as for the planar layer. From these relations follow the limiting situ-
ations of a solid spherical region or one where the outer surface is well removed from the region of
interest summarized for reference by Eqs. (c) and (d) of Table 2.16.3.

Further useful aspects of solutions to Laplace's equation in spherical coordinates, including
orthogonality relations that permit Fourier-like expansions and evaluation of averages, are given in
standard references.5

2.17 Energy Conservation and quasistatic Transfer Relations

Applied to one of the three regions considered in Sec. 2.16, the incremental total electric energy
given by Eq. 2.13.6, can be written as

w = - V6DdV = - fV.(6)dV + fV*6DdV (1)

V V V

Because pf = 0, the last integral is zero. The remaining integral is converted to a surface integral by
Gauss' theorem, and the equation reduces to

dw = - 066.nda (2)

S

Similar arguments apply in the magnetic cases. Because there is no volume free current density,
H = -VT and Eq. 2.14.9 becomes

6w = - d'B'nda (3)

S
Consider now the implications of these last two expressions for the transfer relations derived in

Sec. 2.16. Discussion is in terms of the electrical relations, but the analogy made in Sec. 2.16 clearl1
pertains as well to Eqs. 2 and 3, so that the arguments also apply to the magnetic transfer relations.

Suppose that the increment of energy 6w is introduced through S to a volume bounded by sections of

the a and B surfaces extending one "wavelength" in the surface dimensions. In Cartesian coordinates,

5. F. B. Hildebrand, loc. cit., pp. 159-165.
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this volume is bounded by (y,z) surfaces extending one wavelength in the y and z directions. In cylin-
drical coordinates, the volume is a pie-shaped cylinder subtended by outside and inside surfaces having
length 2w/k in the z direction and 2wa/m and 2rB/m respectively in the azimuthal direction. In spherical
coordinates, the volume is a sector from a sphere with 0 = 2w/m radians along the equator, 6 extending
from 0 + w and the surfaces at r = a and r = 8. In any of these cases, conservation of energy, as
expressed by Eq. 2, requires that

6w = -aa KKa6D + a 0B6D8 (4)

The ( )> indicate averages over the respective surfaces of excitation. The areas (a ,a ) are in
particular

ar (2 22/kyk Cartesian

as  [(27) 2 /mk](') cylindrical (5)

(4w/m) a2  spherical

In writing Eq. 2 as Eq. 4, contributions of surfaces other than the a and $ surfaces cancel because
of the spatial periodicity. It is assumed that (ky,kz), (m,k) and m are real numbers.

The transfer relations developed in Sec. 2.16 take the general form

a -All A2 D
= (6)

The coefficients Ai- are real. Hence, for the purpose of deducing properties of Aij, there is no loss

in generality in ttiing (Dni,D) and hence (~a• ) as being real. Then, Eq. 4 takes the form

6w = C[-a a &o + a•n nD)- (7) 
n n

/

where C is 1/2 in the Cartesian and cylindrical cases and is a positive constant in the spherical

case.

With the assumption that w = w(Da,D ), the incremental energy can also be written as

6w = 6w a a +w B (8)
aDa n S n
n n

where (Mn,aB) constitute independent electrical "terminal" variables. Thus, from Eqs. 7 and 8,
n n

_alra = aS = aw w_ (9)

n n

A reciprocity condition is obtained by taking derivatives of these expressions with respect to B0 and
&, respectively, and eliminating the energy function. In view of the transfer relations, Eq. 6,n

aaAl2 = a0A21 (10)

Thus, in the planar layer where the areas a" and a are equal, the mutual coupling terms A12 = A21.
That the relations are related by Eq. 10 in the spherical case is easily checked, but the complicated
expressions for the cylindrical case simplify the mutual terms (footnote to Table 2.16.2).

The energy can be evaluated by in egrating Eq. 7 using the "constitutive" laws of Eq. 6. The
integration is first carried out with D f 0, raising ia to its final value. Then, with Da - ba, OB is
raised to its final value

w = C a a All () 2 - a A21n•ab + 1 a A22 (0) (11)
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With either excitation alone, w must be positive and so from this relation it follows that

A11 > 0, A22 > 0 (12)

These conditions are also met by the relations found in Sec. 2.16.

2.18 Solenoidal Fields, Vector Potential and Stream Function

Irrotational fields, such as the quasistatic electric field, are naturally represented by a scalar
potential. Not only does this reduce the vector field to a scalar field, but the potential function
evaluated on such surfaces as those of "perfectly" conducting electrodes becomes a lumped parameter
terminal variable, e.g., the voltage.

Solenoidal fields, such as the magnetic flux density B, are for similar reasons sometimes re-
presented in terms of a vector potential A:

+ +
Thus, B automatically has no divergence. Unfortunately, the vector field B is represented in terms of
another vectox field A. However, for important two-dimensional or symmetric configurations, a single
component of A is all required to again reduce the description to one involving a scalar function.
Four commonly encountered cases are summarized in-Table 2.18.1.

The first two are two-dimensional in the usual sense. The field B lies in the x-y (or r-8) plane
and depends only on these coordinates. The associated vector potential has only a z component. The
third configuration, l1ke the second, is in cylindrical geometry, but with B independent of e and hence
with A having only an i0 component. The fourth configuration is in spherical geometry with symmetry
about the z axis and the vector potential directed along 0..

Like the scalar potential used to represent irrotational fields, the vector potential is closely
related to lumped parameter variables. If B is the magnetic flux density, i4 is convenient for evalua-
tion of tje flux linkage X (Eq. 2.12.1). For an incompressible flow, where B is replaced by the fluid
velocity v, the vector potential is conveniently used to evaluate the volume rate of flow. In that
application, A and A become "stream functions."

The connection between the flux linked and the vector potential follows from Stokes's theorem,
Eq. 2.6.3. The flux 1X through a surface S enclosed by a contour C is

0= f 1da a = V x -tnda = 1d- (2)

S S C

In each of the configurations of Table 2.18.1, Eq. 2 amounts to an evaluation of the surface integral.
For example, in the Cartesian two-dimensional configuration, contributions to the integration around a
contour C enclosing a surface having length 2 in the z direction, only come from the legs running in
the a direction. Along these portions of the contour, denoted by (a) and (b), the coordinates (x,y) are

constant. Hence, the flux through the surface is simply 2 times the difference A(a) - A(b), as sum-
marized in Table 2.18.1.

In the axisymmetric cylindrical and spherical configurations, r and r sin 6 dependences are
respectively introduced, so that evaluation of A essentially gives the flux linked. For example, in
the spherical configuration, the flux linked by a surface having inner and outer radii r cos 0 evaluated
at (a) and (b) is simply

SA(,r sin e .d= r sin e 2(r sin e)b = 2rI[A(a) - A(b)] (3)

C

Used in fluid mechanics to represent incompressible fluid flow, A is the Stokel's stream function. Note
that the flux is positive if directed through the surface in the direction of n, which is specified in
terms of the contour C by the right-hand rule.

2.19 Vector Potential Transfer Relations for Certain Laplacian Fields

Even in dealing with magnetic fields in regions where Jf = 0, if the flux linkages are of interest,
it is often more convenient to develop a model in terms of transfer relations specified in terms of a
vector rather than scalar potential. The objective in this section is to summarize these relations for
the first three configurations identified in Table 2.18.1.
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4 +
With B represented in terms of A by Eq. 2.18.1, Ampere's law (Eq. 2.3.23) requires that in a region

of uniform permeability p,

V x V x A = 1Jf (1)

S+ +
For a given magnetic flux density B, cull A is specified. But to make A unique, its divergence _ust also
be specified. Here, the divergence of A is defined as zero. Thus, the vector identity V x V x A =
V(V.A) - V21 reduces Eq. 1 to the vector Poisson's equation:

V = -1Jf; VAi =0 (2)

The vector Laplacian is summarized in Appendix A for the three coordinate systems of Table 2.18.1. Even
though the region described in the following developments is one where Jf = 0, the source term on the
right has been carried along for later reference.

Cartesian Coordinates: In the Cartesian coordinate system of Table 2.18.1 it is the z component
of Eq. 2 that is of interest. The z component of the vector Laplacian is the same operator as for the
scalar Laplacian. Thus, the situation is analogous to that outlined by Eqs. 2.16.11 to 2.16.16 with
0 - A. With solutions of the form A = Re A(x,t) exp(-jky) so that y + k E k, the appropriate linear
combination of solutions is Y

~o sinh kx - sinh k(x - 4)
sinh kA sinh kA (3)

Because H = B/p, the associated tangential field intensity is given by Eq. (b), Table 2.18.1,

1 aAHy I @(4)
y 1I ax

Expressed in terms of Eq. 3 and evaluated at the surfaces x = a and x = 8, respectively, Eq. 4 gives
the first transfer relations, Eq. (a), of Table 2.19.1. Inversion of these relations gives Eqs. (b).

Polar Coordinates: In cylindrical coordinates with no z dependence, it is again the z component
of Eq. 2 that is pertinent. The configuration is summarized in Table 2.18.1. Solutions take the
form A = Re A(r,t) exp(-jme) and are analogous to Eq. 2.16.21 with 0 replaced by A:

4m rm r r m a m

r 0 + a (5)
[( m am m ()m

The tangential field is then evaluated from Eq. (e), Table 2.18.1:

1 aAHe 9ar (6)

Evaluation at the respective surfaces r = a and r = 8 gives the transfer relations, Eqs. (c) of
Table 2.19.1. Inversion of these relations gives Eqs. (d).

Axisymmetric Cylindrical Coordinates: By contrast with the two-dimensional configurations so far
considered, where the vector Laplacian of Az is the same as the scalar Laplacian, the vector nature of
Eq. 2 becomes apparent in the axisymmetric cylindrical configuration. The 0 component of Eq. 2 is the
scalar Laplacian of A0 plus (-AI/r2 ) (see Appendix A). With A0 E A,

2a 1 LA A a2A
2 r ar r 2  2 (7)

Even though solutions do not have a 6 dependence, so that

A = Re A(r,t)e-jkz (8)

equation 7 reduces to a form of Bessel's equation to which solutions are Bessel's and Hankel's func-
tions of order unity:

2i82A 1 aA 2 + 1
2 + r ar (k 2)A = -PJ (9)

ar r
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(Compare Eq. 9 to Eq. 2.16.19.) It follows that solutions are of the form of Eq. 2.16.25 with ' - A
and m = 1:

(jkr)]A rA V H Hl(jkB)[rJ1 (jkr)] - J1 (jkB)[rH1

H1 (jkB)J 1 (jka) - J 1 (jkB)H1 (jka)

+ J 1 (j k a)[rHl(Jkr)] - H1 (jk0a)[rJl(jkr)]
J 1 (jka)H1 (jkB) - H1 (jka)J1(jkB) (10)

The tangential field intensity follows from Eq. 10 and Eq. (h) of Table 2.18.1:

1 SAH 1 AD A (11)

In performing the differentiation, observe from Eq. 2.16.26d that whether Rm is Jm or Hm

d
dj [rRl(Jkr) ] = jkrR (jkr) (12)

Evaluation of H at the respective surfaces r = a and r = 0 gives the transfer relations, Eqs. (e) of
Table 2.19.1. fnversion of these relations gives Eqs. (f).

2.20 Methodology

As descriptions of subregions composing a heterogeneous system, transfer relations (illustrated
for quasistatic fields in Sec. 2.16) are building blocks for describing complicated interactions. By
appropriate identification of variables, the same relations can be used to describe different regions.

As an example, three planar regions are shown in
Fig. 2.20.1. The symbols in parentheses denote positions
adjacent to the surfaces demarking subregions. At the
surfaces, variables can be discontinuous. Hence it is
necessary to distinguish variables evaluated on adjacent
sides of a boundary. The transfer relations describe
the fields within the subregions and not across the
boundaries.

The transfer relations of Table 2.16.1 can be
applied to the upper region by identifying (a) + (d),
(0) + (e), A + a and s or P - Ea or Pa. Similarly,

for Lne middae region, ja) - ti), (k) -) kg), n - D,
and e or I -+ Eb or Ub. Boundary conditions and jump rela- Fig. 2.20.1. Convention used to denote
tions across the surfaces then provide coupling conditions surface variables.
on the surface variables. Once the surface variables have
been self-consistently determined, the field distributions within the region can be evaluated using the
bulk distributions evaluated in terms of the surface coefficients. With appropriate surface amplitudes
and x + x', where the latter is defined for each region in Fig. 2.20.1, Eq. 2.16.15 describes the
potential distribution.

This approach will be used not only in other geometries but in representing mechanical and
electromechanical processes.
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Problems for Chapter 2

For Section 2.3:

Prob. 2.3.1 Perfectly conducting plane parallel plates are shorted at z = 0 and driven by a distributed
current source at z = -Z, as shown in Fig. P2.3.1.

i(t)

Fig. P2.3.1

(a) Apply the normalization of Eq. 4b to Maxwell's equations used to represent the fields between the
plates. There is no material between the plates, so magnetization, polarization and conduction
between the plates are ignorable.

(b) Simplify these equations by assuming that " = E (Z,t)l and = H (z,t)i y

(c) The driving current is i(t) = Re I1 exp jut. Find E , H , the surface current and surface charge
on the lower plate to second order.

(d) Convert the results of (c) to dimensional expressions.

(e) Solve for the exact fields and expand in a to check the results of (d).

Prob. 2.3.2 The parallel plates of Prob. 2.3.1 are now driven along their left edges by a voltage
source v(t). They are open along their right edges. Carry out the steps analogous to those of
Prob. 2.3.1. A normalization that makes the EQS limit the zero order approximation is appropriate.

Prob. 2.3.3 Perfectly conducting plane parallel electrodes in the planes x = a and x = 0 "sandwich"
and make electrical contact with a layer of material having conductivity a and thickness a. These
plates are driven along their edges so that the surface current is Re K exp(jwt)_ in the lower plate
at z = -k and the negative of this in the upper plate. The edges of the plates at z = 0 are "open-
circuit." In the conductor, fields take the form Ex(z,t), H y(z,t).

(a) Show that all of Maxwell's equations are satisfied if

2
dfi dH

+k2H = 0; k/2o-o -1 dH
2 k 0 y -e JoW1 ; Ex (a + JWEo) dzdz

(b) Show that

S e-jkz ejkz jWt -jkz jkz Wt
H = tRe K e e e Re Kjk(e + e )eJE 
Y jk2 -jkP. x (+ jW+ e)(e - e )y e - e

o

(q) In Fig. 2.3.1, T -+ l/W and provided Te: Tm, there are two possibilities:

(i) WT << 1 and WT << 1. Show that in this case kk << 1 andem m

K ejt
E x KRe

Re ( + jo)

so that the system is equivalent to a capacitor shorted by a resistor (what values?).

(ii) WTem << 1, WTe << 1. Show that in this case k + (-1 + j)/6m, where the skin depth
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6 E/ 2/Wo, and that Hy is the superposition of "skin-effect" waves decaying in the direction of
phase propagation.

(d) Now, consider the EQS model from the outset. Under what conditions are the laws (Eqs. 23a - 27a)
valid? Show that the solution for Ex is consistent with part (c).

(e) Consider the magnetoquasistatic laws (Eqs. 23b - 27b) from the outset and show that the result is

consistent with part (c). For what conditions are these laws valid?

Prob. 2.3.4 Given the EQS laws, Eqs. 23a - 25a, together with conduction and polarization constitutive

laws and the material motions, E, and pf can be determined. This is generally possible because the
constitutive laws do not typically involve H. Then, if ý is required, Eqs. 26a and 26b, together with
a magnetization constitutive law- can be used. It is clear that these relations uniquely define it,
because they stipulate both V x H and V * I. Consider now the analogous question of uniquely deter-
mining i in an MQS system. In such a system the conduction and magnetization constitutive laws
respectively take the form

Jf = (r,t)(E + vx1 H) ; M=(H,)

and Eqs. 23b - 25b together with a knowledge of the material motion can be used to find H and M.
Show that 1 is then uniquely specified and that recourse to Gauss' Law is made only to make an
"after the fact" evaluation of the charge density.

For Section 2.4:

Prob. 2.4.1 A material suffers a rigid-body rotation about the z axis with constant angular velocity
0. The particle at the position (ro, 0) when t = 0 is found at

(ro,6o,t) = r cos(t O+ 6)i + r sin(Gt + o)iy

at a subsequent time t. This Lagrangian description is pictured in Fig. P2.4.1. Use Eqs. 2.4.1
and2.4.2 to show that the velocity and acceleration are respectively

÷t -t
v r= ~ [-sin(t + eo)i x + cos(Qt + eo) y]

- _ 22
a = -_ Q

Y Y
Fig. P2.4.1. Specific example

in which rigid-
body steady
rotation is
represented in
(a) Lagrangian
coordinates and
I- LE 1 i X

k ) u er an
coordinates. (a)

Prob. 2.4.2 One incentive for using an Eulerian representation is that motions which are time

dependent in Lagrangian coordinates can become independent of time. To illustrate, consider the

alternative representation of the rigid body rotation of Prob. 2.4.1.

The material velocity at a given point (r,6) or (x,y) is

v = ir =  (-r sin ei + r cos 6iy) Q(-yi + xi y
0 x y x y

i.e., the velocity is independent of time. Clearly the acceleration is not obtained by taking the

partial derivative with respect to time, as might be suggested by the misuse of Eq. 2.4.2. Use

Eq. 2.4.4 to find a and compare to the result of Prob. 2.4.1.
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For Section 2.5:

Prob. 2.5.1 A scalar function takes the traveling-wave form 1 = ReO(x,y) expj(At-kz) in the frame
of reference (T,t). The primed frame moves in the z direction relative to the unprimed frame with
the velocity U. Use the convective derivative to find the rate of change of 0 for an observer moving
with the velocity Ui . Compute this same time rate of change by expressing ( = O(x',y',z',t') and
finding 3/Dt'. Usezthese results to deduce the transformation W' = W - kU. If W' = 0, W = kU.
Explain in physical terms.

Prob. 2.5.2 A vector function A(x,y,z,t) can also be evaluated as A(x',y',z',t') where the prime
coordinates are related to the unprimed ones by Eq. 2.5.1. Show that Eq. 2.5.2b holds.

For Section 2.6:

Prob. 2.6.1 The one-dimensional form of Leibnitz' rule pertains to taking an integral between end-
points (b) and (a) which are themselves a function of time, as sketched in Fig. P2.6.1.

Fig. P2.6.1. One-dimensional form of db do
Leibnitz' rule specifies how derivative dt
can be taken of the integral between I X
time-varying endpoints. b(t) a(t)

Define A = f(x,t)i and use Eq. 2.6.4 with a suitable surface to show that, for the one-
dimensional case, Leibnitz' rule becomes

a(t) a

-d ) f(x,t)dx a dx + f(a,t)ý - f(b,t)ddt fat dt dt
b(t) b

Prob. 2.6.2 The following steps lead to a derivation of the generalized Leibnitz rule, Eq. 2.6,4
where S is pictured as $2, and S, at the times t + At and t, respectively. The vector function A
depends on both space and time. However, for convenience, the spatial dependence is not explicitly
indicated in the following. By definition:

d 4.+ +
A-n da = lim ( A(t+At)nda - A(t)'nda (1)

S Lt+0- S2 S

so the first integral in brackets on the right must be evaluated to first order in At. To that end,

(a) Apply Gauss theorem to the volume V swept out by S during the time At. Note that n is the normal
to the open surface S and show that to first order in At,

SV.AdV = JA(t)_nda - A(t)*nda - At 4A v x dt (2)

V S2 SiI C1

(b) Argue that also "to first order in At, Fig. P2.6.2

4-
4+ (DA A ... (3)+(3A(t+At).nda A(t)nda + + t)tda ** 

S2 S2 S1

(c) Finally, show that the volume element dV, called for in evaluating the left side of Eq. 2, is
dV = Atv'nda.

(d) Combine these results to evaluate the right-hand side of Eq. 1 and deduce Eq. 2.6.4.
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Prob. 2.6.3 It is sometimes necessary to evaluate the time rate of change of a line integral of a
vector variable having time-varying end points. The problem is to evaluate the derivative

b(t) A(t + At) b(t)
-d Ad = Atlim 0 A(t + At).d - A(t).

a(t) a(t + At) a(t)

At

Here a and b denote time-dependent vector positions in space. What is meant by the line integration
is indicated by Fig. P2.6.3.

nt,(-A÷+1 b(tt-At)
Fig. P2.6.3. Time-varying
contour of line integration.

ni

The contour of integration at the time t is instantaneously sketched. At that instant each point on
the contour has a velocity vs so that in a time At the contour has moved by an amount vAt. By defin-
ition, the velocity of the end point is vs evaluated at the end point.

The theorem to be derived shows how the integration can be carried out after the time derivative
has been taken. Thus it is analogous to the generalized Leibnitz rule for differentiation of a surface

integral having time-varying geometry. The desired theorem states that

b(t) b(t) b
d ý A 4* 4 . 4. 

s(a,t) d d + A(b,t)'vs(b,t) -Adt A(a,t)'v + (VxA)xv dt

a(t) a(t)
a

Show that this rule can be derived following steps motivated by those used in the derivation of the
generalized Leibnitz rule for a time-varying surface integration.

For Section 2.8:

Prob. 2.8.1 To illustrate how the steady-state motion of dipoles results in a J and hence an induced
magnetic field, consider a slab of material extending to infinity in the y and z directions between
infinitely permeable surfaces at x = ±a. The slaj has a thickness 2a, moves in the y direction with
uniform velocity U and supports the polarization P = -(Poa/i)sin(7rx/a)ix, where po is a given con-
stant. Fields are in the steady state and there is no free current density.

(a) Observe that Ampere's law, Eq. 2.2.2, and the boundary conditions are satisfied by making =
x v. What is A?

(b) Compute Jp and then use Ampere's law to find H in much the same way as if Jp were a free current
density.

4.

(c) Find pp and show that in this case Jp is simply the result of polarization charge in motion

For Section 2.9:

Prob. 2.9.1 To someone not appreciating the importance of keeping field transformations consistent
with the fundamental laws, it might appear that Faraday's law written in the Chu formulation
(Eq. 2.2.1) would imply that a magnetized and conducting material set into motion would automatically
support an electric field that would drive a free current density. In fact, there is an E, but no Jf.
Consider as a specific case a magnetized slab, having M =-(poa/Trpo)sin (rrx/a)ix, extending to infinity
in the y and z directions, having boundaries at x = ±a in the x direction and suffering a uniform y-
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Prob. 2.9.1 (continued)

directed translation with velocity U. Perfectly conducting walls bound the slab at x = ±a. Steady
state conditions prevail.

(a) Find the H induced by the given magnetization.

(b) Use Faraday's law to deduce E.

(c) Now, if the material also has a conductivity a, so that an observer at r st in the conductor can
jpply Om's law in the form = E', 4ecause f = 

:f but ' = E + vj 0  (Eqs. 2.5.11 and 2.5.12),
Jf = a(E + vx1oH). Show that in fact Jf = 0.

For Section 2.11:

Prob. 2.11.1 A plane parallel capacitor with a
electrodes at potentials v1 and v2 is used to VI1
impose a field on a third electrode that is
grounded and free to move either longitudinally

4+
or transversely with displacements (51' E2)*
The electrodes, shown in Fig. P2.11.1, have .- -1 IV2
depth d into paper. Ignore fringing fields
and find the capacitance matrix relating the
charges (ql,q2) to the voltages (vl,v2).

Fig. P2.11.1

For Section 2.12:

Prob. 2.12.1 A pair of perfectly conducting coaxial
one-turn coils have the shape of circular cylinders
of radius a and 5, each with a length d >> a.
Currents il and 12 are fed to the coils through
parallel electrodes having a spacing that is
negligible compared to other dimensions of
interest. Determine the inductance matrix,
Eq. 2.12.5, relating (il, X2) to (ili 2).

Fig. P2.12.1

For Section 2.13:

Prob. 2.13.1 For the system of Prob. 2.11.1, find the total coenergy storage w'(vl,v2,1 t, 2) by
integrating Eq. 2.13.10.

Prob. 2.13.2 The dielectric slab shown in Fig. P2.13.2 a
is composed of material having the constitutive law D =
o0 + ~/al V-T + E2 . The slab has depth d into the S··: .*.··· . . ..*. . . . . . . . Vr

paper. Under the assumption that Pf=O in the dielectric
and that its edges remain well removed from the fringing
fields, find the dependence of the coenergy on (v,E).

Fig. P2.13.2

For Section 2.14:

Prob. 2.14.1 For the system described in Prob. 2.12.1,

(a) Find the energy, w = w(XA1l', ), (b) the coenergy w' = w'(il^i2Z).

For Section 2.15:

Prob. 2.15.1 Show that the Fourier coefficients given by Eq. 2.15.8 follow from the procedure
outlined in the paragraph following Eq. 2.15.7.
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Prob. 2.15.2 A function O(z,t) is a square-wave function of z with magnitude Vo(t). That is,
D = Vo(t), -V/4 < z < £/4 and D = -Vo(t), £/4 < z < 3p/4. Show that the Fourier coefficients are

ki
Dm = 0, m even and Dm = (  4Vo(t)sin )/(km ), m odd

Prob. 2.15.3 A function O(z,t) is zero except in the interval -k/2 < z < k/2, where it is Vo(t).
Show that its Fourier transform is ý(k,t) = kVo(t) sin(-)/(kk/2).

2

Prob. 2.15.4 Carry out the spatial average of the product of two Fourier series, as called for in
completing Eq. 2.15.17.

For Section 2.16:

Prob. 2.16.1 Start with Eq. 2.16.14 and the relation between potential and flux, Eq. 2.16.5 and

deduce the transfer relations of Table 2.16.1 for a planar layer.

Prob. 2.16.2 Start with Eqs. 2.16.20, 2.16.21 and 2.16.25 and deduce the transfer relations of

Table 2.16.2. Use the properties of the Bessel functions as r-* 0 and r-*- to deduce the limiting cases

of Eqs. c and d.

Prob. 2.16.3 Start with Eq. 2.16.36 and deduce the transfer relations of Table 2.16.3. Evaluate the

appropriate limits to arrive at Eqs. c and d.

Prob. 2.16.4 A region of free space is bounded by fictitious parallel planes at x = A and x = 0, as
shown in Fig. P2.16.4.

- a z Fields take the formX
B - za - E = Re E(x) ej(wt-kz);

'" '// ///4 +/t -,', H = Re &(x) ej(wt-kz)

---.Z
so that there is no dependence on y and the time

dependence is explicitly taken as exp (jwt). The

objective is to obtain transfer relations between

tangential and perpendicular field components at
z, 

~
z the a and 8 surfaces without the quasistatic

/I/~ 
approximation.

Fig. P2.16.4

(a) With fields taking the given form, show that all components of ý and ý can be written in terms

of the axial components of E Ampere's and Faraday's laws). Also show
z and Hz. (This follows from 

that E and Hz satisfy the wave equation.

quantities evaluated(b) Write E, and Hz in terms of the amplitudes Ez, z and H z , H defined as these 

on the respective surfaces.

(c) Show that the transfer relation for the layer is

"a -Ek 1
CE j- coth(yA) 0
x Jy sinh(yA) zY

•.k 1 .Ek
cE E-3- coth(yA) 0
x Sy sinh(yA) zY

"a _k 1
0 jk pHIx coth(yA)

zY
-j- coth(yA)

jpk 1
0

x y sinh(yA) Y L H z
4.

where the other components of E and H are found from

we I -WP -
= , E = , and Y /k/2k 2

k x y k x
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Prob. 2.16.4 (continued)

(d) Show that in the quasistatic limit the relation reduces to the electroquasistatic and magnetoquasi-
static transfer relations of Table 2.16.1 with appropriate identification of variables for the
electric and magnetic relations.

(e) To make a connection with TE and TM modes in a plane parallel plate waveguide, let the % and 6
surfaces be perfectly conducting electrodes. Thus, the boundary conditions are

a = E = 0 TM modes
z z

B = B = 0 TE modes
x x

where the transverse magnetic and transverse electric modes can be separated because of the
form taken by the transfer relations. Use these relations to argue that fields within that
satisfy these homogeneous boundary conditions must also satisfy the dispersion equations

2  2 n. 2
2 pe = k + ( ; n = 1, 2, 3...

Prob. 2.16.5 A planar region, shown in Table 2.16.1, is filled by an inhomogeneous dielectric, with
a permittivity that depends on x:

E(x) = E6 exp2nx, -E q n(s /E6 )/2A

The free charge density is zero.

(a) Show that the potential distribution is

~ e-n(x-A) sinh x -"x sinhX(x-A)
sinhAA sinhXA

where

22 

(b) Show that the transfer relations are

Dx cothA)e2

xX sinhXA

D -eA + cothXA
x sinhXA X

Prob. 2.16.6 A planar region, shown in Table 2.16.1, is filled by an anisotropic material having the
constitutive law Di = cijEj. The permittivity coefficients are uniform throughout. Determine the
transfer relations in the form of Eqs. (a) of Table 2.16.1.

For Section 2.17:

Prob. 2.17.1 In developing conditions on coefficients in the transfer relations with the potentials
expressed as functions of the "flux" variables, it is natural to use the energy function as exemplified
in this section. The coenergy function is more convenient in dealing with the potentials as the inde-
pendent variables. For the transfer relations of Sec. 2.16 written in the form

D
n

D
n

derive conditions analogous to those of Eqs. 2.17.10 and 2.17.12.
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Prob. 2.17.2 Use the reciprocity condition, Eq. 2.17.10 to show

kx[H (jkx) J'(jkx) - J (jkx) H'(jkx)] = constantm m m m

Use Eqs. 2.16.22 and 2.16.23 to establish that the constant is 2/fr. Thus, the numerators of the

functions gm and Gm in the cases k 4 0 of Table 2.16.2 are considerably simplified from what is obtaine

by direct evaluation.

Prob. 2.17.3 With Eq. 2.17.7, it is assumed that the excitations on the a and B surfaces are in
spatial phase, and that the Aij are real. By allowing the excitations to have arbitrary phase, it is
possible to learn more about these coefficients. In general, the expression replacing Eq. 2.17.7 in
Cartesian or cylindrical geometry is

6w= C Re[-at 6  + a)6(D ) ]
2n n

Because Re u 6V = u 6V + u 6V., this expression becomesr r i 1

6w = C[-aa a - a~ 6 + a 6b +a2 r nr i ni r nr i ni

That is, the real and imaginary.parts of the excitations on each surface gre independent variables.

Use the fact that the energy is a state variable: w = w(D , ., D , D .) and show thatnr ni nr ni

3w _w a •B w aO5• O wa -a -a a a. = , a = , =-

r 1 r 1

From these relations, derive reciprocity relations between the derivatives of (0 , 4., , .,) with
-a a r 1 r 1

respect to (D , D D , D .). Assume that the Aij can have real and imaginary parts, and show from

these reciprocity relations iat All and A22 must be real and that aAl1 2 = aOA*21.

Prob. 2.17.4 Use the results of Prob. 2.17.1 to show that the transfer relations of Prob. 2.16.5

satisfy the reciprocity relations.

For Section 2.18:

Prob. 2.18.1 For the axisymmetric cylindrical case of Table 2.18.1, show that Eq. (h) follows from

Eq. (g) and that Eq. 2.18.2 can be used to deduce the expression for the total flux, Eq. (i).

Prob. 2.18.2 Show that Eq. (k) of Table 2.18.1 follows from Eq. (j).

For Section 2.19;

Prob. 2.19.1 Derive Eqs. (e) and (f) of Table 2.19.1.

d
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Electromagnetic Forces, Force
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3.1 Macroscopic versus Microscopic Forces

Most important in this chapter is the distinction between forces on fundamental particles and
forces on macroscopic media. It is common to speak of the "force on a charge" or the "force on a current"
even though what is meant is the force on ponderable material. Interest might actually be in electric
and magnetic forces acting on collections of fundamental charge carriers. (Motions of electron beams in
vacuum are an example. The charged particles in that case constitute the continuum, in the sense that
it is the electron inertia that enters into the equation of motion.) But, more commonly, the charged
particles are imbedded in media, and it is the resulting force on the material that is of interest.
Examples are as obvious as the electrical force of attraction between the capacitor plates of an electro-
static voltmeter or the magnetic torque exerted on current-carrying conductors in a meter movement.

Section 3.2 develops a specific model to illustrate how momentum imparted to charged particles by
the fields is transferred to the neutral media that support those particles. That macroscopic forces
are more than simply an average over the forces on fundamental charges is further emphasized by consider-
ing the practical cases of polarization and magnetization forces. Force densities of engineering signifi-
cance exist even in regions where the free charge and free current (and for that matter polarization
charge or magnetization charge) are absent. Such forces can be associated with a microscopic picture,
discussed in Sec. 3.6, in which electrical forces on dipoles are transferred to the media.

Although the dipole model is useful for forming a microscopic picture of electric polarization
forces, it is restricted to cases where the dipoles do not significantly interact. In the pursuit of
a less restricted force density, developments in Secs. 3.7-3.8 are based on such measured macroscopic
parameters as the permittivity and permeability. It is the business of thermodynamics to convert that
information into the desired force densities. In its own way, the line of reasoning presented in
Secs. 3.5, 3.7 and 3.8 exemplifies a more basic point of view than one geared to a particular microscopic
model. Thermodynamic concepts provide a means for replacing detailed and specialized derivations by
carefully defined physical measurements.

The stress-tensor representation of electromagnetic forces which concludes this chapter will see
continual application in the following chapters. The tensor concept itself, introduced in Sec. 3.9,
will also be applied to the formulation of continuum mechanical and electromechanical equations.

3.2 The Lorentz Force Density

Although macroscopic forces were the first measured in the development of electricity and mag-
netism, it is now normally accepted that the fundamental force is that on a "test" charge. This charge
might be a jingle electron in free space. If the charged particle has a total charge q and moves with
a velocity vp, then the Lorentz force acting on the particle supporting the charge is

= qE + qvp x o H (1)

This statement, like the electrodynamic laws summarized in Chap. 2, is an empirical one. In most of the
areas of continuum electromechanics, it is forces due to many charges that are of interest, and it is
therefore appropriate to sum the individual forces of Eq. 1 over the charges within a given unit of
volume to arrive at the Lorentz force density

F = pfE + Jf x oH (2)

Incremental volumes of interest have dimensions much greater than the characteristic distances between

particles. But also, for the average electrical field to have meaning, it must be primarily due
to sources external to the differential volume of interest. This ensures that, over an incremental
volume, each particle experiences essentially the same electric field. The contribution to the field
of the charges within the differential volume is negligible. Similar arguments apply to the magnetic
field intensity, which must be produced over a given differential volume largely by currents outside
the volume.

Equation 2 represents the force density acting on a ponderable medium if means are available for
the force on the particles to be transmitted to the medium. The mechanisms by which this happens are
diverse, and implicit to the conduction process. Whether the fundamental carriers are electrons in a
metal, holes and electrons in a semiconductor or ions in a liquid or gas, the average motions of
fundamental charge carriers are superimposed on random motions. The flights of fundamental carriers
are interrupted by collisions with lattice molecules (in a solid) or molecules that are themselves in
a Brownian equilibrium (in a liquid or gas) with a frequency that is usually extremely high compared
to reciprocal times of interest. These collisions transfer momentum from the fundamental charge
carriers to the ponderable medium.
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To more fully appreciate the transition from the force acting on fundamental carriers, Eq. 1, to
that on a material, Eq. 2, it is helpful to make a formal derivation. Although the discussion leads
to rather general conclusions, only two families of carriers are now considered, one positive with
charge per particle q~and number density n+ and the other negative with a magnitude of charge q_ and
number density n_. The average Lorentz force, Eq. 1, is in equilibrium with an average force repre-
senting the effect of collisions on the net migration of the particles:

qE + q_(v_ + v) x U°H . m__

q - q(v + v) x mVv

The retarding forces on the right are much as would be conceived for a swarm of macroscopic particles
moving through a viscous liquid. The average carrier velocities -+ are measured relative to the medium,
which itself has the velocity V. Hence, on the right it is relative velocities of particles and medium
that appear, while in the Lorentz force it is total particle velocities that are appropriate. The co-
efficients for the collisional forces are written as the product of the particle masses m± and collision
frequencies v+ as a matter of convention. Note that the inertial force on the carriers is ignored com-
pared to that due to collisions. This approximation would be invalidated in a plasma if the frequency
of an applied electric field intensity were extremely high. But, in many conductors and certainly in the
most usual electromechanical situations, the inertial effects of the charge carriers can be ignored (see
(Problem 3.3.1.).

The charge density and current density are written in terms of the microscopic variables as

Pf = nq - n_q_ (4)

J f - n+q+(v+ + v) - n q_(v_ + v)
(5)

+ + 4. +
= n+q+v+ - n_q_v_ + fv

The average force density acting on the ponderable medium is the sum of the right-hand sides of Eq. 3,
respectively, multiplied by the particle densities n+:

F = n+m+v+ + n m Vv (6)

The point in writing this equation is to formalize the statement that, through some collisional process,
the force on the fundamental carriers becomes the force on the medium. It is evident from the next
step that, at least in so far as the Lorentz force density is concerned, the details of the collisional
equilibrium are not important. The left-hand sides of Eq. 3 (regardless, for example, of whether m+v+
are functions of v+ or are constant) are substituted for the respective terms in Eq. 6 to obtain

F - (nq - nq)E + [(n q v - n_q_v_) + (nq - n_q_)v] x PoH (7)

In view of the definitions given by Eqs. 4 and 5, this expression is the Lorentz force density of Eq. 2.
Its validity hinges on there being an instantaneous equilibrium between the forces on the fundamental
carriers and the "collisions" with the ponderable medium, but not on the details of that interaction.

3.3 Conduction

There are three objectives in this section. The first is to have a microscopic picture of the
carrier motions to associate with ohmic or unipolar conduction models. The second is to illustrate
how constitutive laws for media in motion can be derived from models based on particular microscopic
models, or (on the basis of the field transformations) found by generalizing empirically determined
laws established in the laboratory for materials at rest. Finally, a byproduct of the discussion
is an introduction to Hall effect.

Consider the carrier motions represented by Eqs. 3.2.3, with the magnetic field H - H i ex-
ternally imposed. The components of these equations then respectively become

1 0 0 vx+ +b+ Ex

0 1 4t b+H v M +b E o + b+ v zoHo (1)

0 +b+ 1oH 1 vZ+ +b+Ez + b+V yoH
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where particle mobilities are defined as b+ = q+/m+y+.

These three equations can be inverted to find the relative carrier velocities in terms of (EH,_):

~1 +b+
Vx+ -0 +0 E

+

-r1
v ± 0 +b b+ oHo Ey + Vz H (2)
Vy+ +

2
0 -b+o H +b EVz+ + o o -+ z z 

- y v Hyoo

where A = 1 +.(o H b ) 2

These velocity components can now be introduced into Eq. 3.2.5 to express the free current density
as

4- q 4 bs+ nq b
J f + + ( - - x - IU Jn nA + (EAi + Ei5)

\ + f (3)
b2

n_q 
qb2 A(n 

where E' E + v x POH is the electric field in a frame of reference moving with the material (for a
magnetoquasistatic system).

From Eq. 3, it is clear that there are two components to the current density, one in the direc-
tion of the imposed electric field and the second perpendicular to it. The latter term is called the
Hall current and is due to the tendency of the particles to move perpendicular to their own velocity
and to the imposed magnetic field intensity. This last term is ignorable if

ioHob+ << 1 (4)

A typical magnetic flux density is poH = 1 (10,000 gauss, which is in the range where magnetic mate-
rials saturate). Electrons in copper Rave a mobility on the order of 3 x 10-3 m2/volt sec, so that
the parameter on the left is then much less than 1. Ions in liquids have mobilities that are typically
5 x 10-8 m2/volt sec and the approximation is even better. But in silicon or germanium, where the
electron mobility is in the range of 10-1 m2/volt sec, the Hall effect is coming into play by the time
poHo is of the order of unity. With the inequality of Eq. 4 satisfied, Eq. 3 reduces to the familiar
form

~ = (nq+b+ + n qb)' + pf (5)

If the number density of charge carriers n+ and/or n_ remains essentially the same in spite of the
application of E, then the factor multiplying I in Eq. 5 is usefully regarded as a parameter character-
izing the material, the electrical conductivity a. This case of ohmic conduction is displayed by mate-
rials ranging from metallic conductors, where the carriers are electrons and essentially immobile ions,
to electrolytes, where ions of at least two species participate in the conduction. In any of these
cases, for the ohmic model to be valid, the conduction must involve at least two species with both
n+q+ and n.q. greatly exceeding the net charge pf. By introducing the conductivity as a parameter,
the detailed analysis necessary to determine the self-consistent distributions of the individual
carriers is avoided. But to examine the conditions under which the conductivity model is valid, it
is necessary to formulate the laws that govern the self-consistent carrier motions. This is best done
in the context of molecular diffusion (Chap. 10) so that other important limitations on the model can
also be identified.

Even though in accounting for conduction it is useful to have in mind microscopic mechanisms, it
is also important to recognize the far-reaching implications of empirical relations. Given any con-
duction law based on laboratory measurements made with a fixed sample, effects of material motion can
be brought in by using the transformation laws. For example, if it is known that the conductor obeys
Ohm's law when stationary, then in a primed inertial frame moving with the velocity _ of the conductor,
the experiment shows that

Jf4 •E' (6)

In an electroquasistatic system, including polarization, Jf = Jf - pfv (Eq. 2.5.12a) and E' - E
(Eq. 2.5.9a). Hence, Eq. 6 becomes Eq. 5. In a magnetoquasistatic system, including magnetization,
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4.+ + + 4
J; J (Eq. 2.5.11b) and E E + v x H (Eq. 2.5.12b). Substitution in Eq. 6 now gives Eq. 5, except
for the charge convection term pf0. In a magnetoquasistatic system, this term is second-order, as will
be argued in the next section.

Fundamental to the use of an empirical law determined for the stationary material is the assump-
tion that material acceleration and deformation do not influence the conduction. In any case, if
acceleration did effect the conduction, the close tie between conduction and the Lorentz force density,
illustrated in this and the previous section, calls into question the notion that the electromechanics
can be modeled by a single continuum subject to the Lorentz force density.

3.4 quasistatic Force Density

The Lorentz force density, Eq. 3.2.2, is composed of what will be termed, respectively, an elec-
tric force density and a magnetic force density

4 + 4. +
F = PfE + Jf x oH (1)

It is found in a wide range of applications that the force density is predominantly one or the other
of these contributions. Polarization and magnetization force densities, not included in Eq. 1, are
similarly identified with the respective quasistatic systems. In this section, dimensional arguments
are given that demonstrate that the electric force density generally dominates in electroquasistatic
systems, while the magnetic force density dominates in magnetoquasistatic systems.

The line of reasoning is an extension of that introduced in Sec. 2.2. The force density is
normalized in accordance with Eq. 2.3.4 and the free current density is represented as having the
form of Eq. 2.3.1. Thus,

2-+- E HE
2. (2)

S [p E + -M a - tJx J) i EQS (2)

+ o 2em F )2 f E + ( T+ E + J) 4+1 x H ]+ MQS QS (2)

The relative values of the time constants are summarized by Fig. 2.3.1. In the electroquasi-
static system, T /T<< 1 and TmT /T2 = (em /) 2 << 1. Hence, the free charge density term is zero-
order in Eq. 1, and the magnetic term is consistently ignoredl In the magnetoquasistatic force

density of Eq. 3, (Tem/T)2 << 1, and the free charge force density is negligible compared to the mag-

netic term. Hence, the second term of Eq. 1 is used to the exclusion of the first in magnetoquasi-

static systems.

3.5 Thermodynamics of Discrete Electromechanical Coupling

In this section, the thermodynamic electric and magnetic energy storage subsystems are expanded

to include the possibility of a finite number of discrete mechanical displacements of macroscopic
material. .Based on the notion of an energy function and a thermodynamic equilibrium, the force of
electrical origin associated with each of these displacements is determined. Typically, the method
exploits a knowledge of the electrical terminal relations to determine the forces. The approach
is generalized in Secs. 3.7 and 3.8, where constitutive laws are the basis for finding the force
density of electric origin. Except for mathematical manipulations, the derivations now reviewed draw
upon all of the demanding issues confronted later in deriving force densities.

Electroquasistatic Coupling: An example of a lumped-parameter electroquasistatic system is given
with Fig. 2.11.1, including a schematic representation of a finite number of mechanical displacements.
Associated with each of the displacements is an electromechanical force tending to displace a lumped
element by an amount 6 1i"

Conservation of energy for the system with the geometry fixed is expressed by Eq. 2.13.8. Now,
6

an incremental increase in the total energy caused by placing an increment of charge qi on an electrode

having the voltage vi can be diminished by an amount equal to the work done on the external environ-
ment by the forces of electrical origin acting through the displacements of the associated mechanical
entities. Thus, energy'conservation requires that

n m
6w =i= E dqi - jZ fj 6 ; w = w(ql.q n'gl...m) 9(1)

i=1 j=1

1. Electrons in vacuum can have a velocity approaching that of light. In that case an imposed mag-
netic field can have a crucial effect on the EQS dynamics (See Sec. 11.2).
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Given the charges ql...qn and the displacement E1"' m as independent variables, the energy function
is uniquely determined. The "displacements" should be recognized as generalized variables in that they
could just as well be angular deflections, in which case the associated "forces" would be torques.

To determine w, constitutive relations vi(ql... * qnnl"'En) must be known so that Eq. 1 can be
integrated. The integration is a line integral in a state-space composed of the independent variables.
Because the fj's are not known, and are defined as equal to zero in the absence of electrical excita-
tions, integration on the mechanical variables (j is carried out first. This gives no contribution
because as the displacements are brought to their final values, fj = 0 (no work is required to assemble
the system with the qj's = 0). Then, the integration on successive electrical variables is carried
out, first on ql with all other qj's = 0, then on q2 with ql at its final value and all others zero,
etc. Formally, the integration of Eq. 1 gives

n q
w = Zf v (ql*1 *,0..0, 92 .m)6 1l' j (2)

oJ=l1 

Because the energy function is a state function specified by the independent variables, an incre-

mental change in the total energy can also be written as

n m
6w = w aw

~ ilw qi 6 q i +  E 6 j  (3)

If the q's and the V's are independent variables in the sense that Eqs. 1 and 3 hold for arbitrary

combinations of incremental changes in these electrical and mechanical variables, then

aw aw
vi = fj =-' r (4)

Note that the q's and C's are not necessarily independent of each other unless the system is isolated
from the total system in which it is imbedded. Given w from Eq. 2, the electrical forces are determined.

A consequence of the conservation of energy expressed by Eq. 1 is the reciprocity condition between
pairs of terminal variables. For example, derivatives of Eq. 4a, first with respect to qj and then of
the same equation but with i replaced by j, and with respect to qi, are related by

av 2 av
i j (5)

Sqj m iq qj aqi

Other reciprocity conditions follow from Eq. 4 by taking cross-derivatives to relate forces and volt-

ages to each other.

In dealing with practical lumped-parameter systems, it is often convenient to use the voltages
rather than the charges as independent variables. If all of the voltages are to be independent
variables, it is appropriate to recognize that

n n
Z vi6qi = Z [6(vi9q) - qi6v1 ] (6)

i=l i=l

so that substitution into Eq. 1 gives

n m

6w' = E qi 6 v i + Z fjgj (7)

i=l j=li

where a coenergy function has been defined in terms of the energy function as

n
w'(v..n, ... )  Z viqi - w (8)

i=l

The coenergy function is a particular case of an arbitrarily large number of functions that can be

defined. Any combination of charges and voltages can be independent variables, and a hybrid energy
function, appropriately defined as a state function of this combination. With the voltages as inde-
pendent variables, an equation similar to Eq. 2 is found with the charges replaced by the voltages,
and the voltages and displacements the independent variables:

aw awl (9)
av i j = ac
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The coenergy function, like the energy function, is found from purely electrical considerations, as
described in Sec. 2.13.

Magnetoquasistatic Coupling: Lumped-parameter electromechanical coupling in a magnetic field system,
described schematically by Fig. 2.12.1, can be given the same thermodynamic representation as that out-
lined for electroquasistatic systems. The statement of conservation of energy for the system of dis-
crete coils and mechanical displacements is the generalization of Eq. 2.14.11, with the addition of the
mechanical work done as an electrical force fj causes an incremental displacement 6j :

n m
6w = E ii6X i (10)

E fj 6i=1 j=1

All of the arguments given for the electric systems follow for the magnetic field systems if variables
are identified:

qi Xi' vi i
(11)

w = W(Xl-X n, 1•' m); w' = w'(il...in, 1 '''.m)

The magnetic force is the negative partial derivative of the magnetic energy with respect to the
appropriate associated displacement, with the other displacements and all of the flux linkages held
constant. Similarly, the force can be found from the coenergy function by taking the derivative with
respect to the associated displacement with the other displacements and the currents held constant.

3.6 Polarization and Magnetization Force Densities on Tenuous Dipoles

Forces due to polarization and magnetization lend further emphasis to the importance of making a
distinction between forces on microscopic charged particles and macroscopic forces on materials sup-
porting those charges. The experiment depicted by Fig. 3.6.1 makes it clear that (1) there is more
to the force density than accounted for by the Lorentz 4orce
density, and (2) the additional force density is not p E (or
in the magnetic analogue, PmH).

A pair of capacitor plates are dipped into a dielectric
liquid. With the application of a potential difference v, it X
is found experimentally that the liquid rises between the
plates.* To make it clear that the issues involved can be
understood in terms of lumped-parameter concepts, the liquid
between the plates is replaced by a solid dielectric material
having the same polarizability as the liquid, so that the -z- 
problem is reduced to one of a solid dielectric slab rising
between the plates as it is pulled from the liquid below.

a
Recall that if the interface is well removed from the w into

edges of the plates, an exact solution satisfying the quasi- paper
static differential equations and boundary conditions in the
neighborhood of the interface is E = (v/d)iz. Of course,
there is a fringing field in the neighborhood of the edges . . . . 7 1."1
of the capacitor plates. However, because the slab and the
liquid have the same dielectric constant and pf = 0, the ................... z~i '." : ' :• 'fringing field has the same distribution as if the dielec-
tric were not present. ' " • ' .'" . ' " . . . . . • .

It might be tempting to take the force as being the : --.
product of the net charge at any given point and the local
electric field, or ppE. However, everywhere in the dielec- :....

tric bulk the polarization density is proportional by the
same constant to the electric field (Eq. 2.16.1). Bcause Fig. 3.6.1. Experiment demonstrating
Pf = 0, it follows from Gauss' law that E and hence P have the existence of polarization
no divergence, and so there is also no polarization charge forces that are not explicable
in the dielectric. Furthermore, because the electric field in terms of forces on single
is uniform and tangential to the interface, there is not even charges.
a polarization surface charge density at the interface
(Eq. 2.10.21). Throughout the dielectric, on the interface and in the bulk, there is no polarization
charge. Clearly, the force which makes the dielectric rise between the plates cannot be accounted for
by a polarization charge density.

In an experiment, a-c voltage is used with a sufficiently high frequency that the material responds
only to the rms field and free charge cannot accumulate in the bulk.
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If the polarized material is composed of individual dipoles, each
subject to an electrical force, and each transmitting this electrical
force to the neutral medium, it is clear that there is really no reason
to expect that the force density should take the same form as that for
free charges. With free charges, it is the individual charges that
transmit their forces to the neutral medium through mechanisms dis-
cussed in Sec. 3.2. Now concern is with the force on individual dipoles
which transmit that force to the neutral medium, either because they are
tied to a lattice structure (Fig. 2.8.1) or through collisional mecha-
nisms similar to those discussed for charge carriers in Sec. 3.2.

In the following. it is assumed that the dipoles are subject to
an electric field that is the average, or macroscopic, electric field. 'Z
The development ignores the distortion of the electric field intensity
at one dipole because of the neighboring dipoles. For this reason, Fig. 3.6.2. Definition of dis-

the result is designated a force density acting on tenuous dipoles. placement and charge loca-
tions for dipole.

A single dipole is shown in Fig. 3.6.2. The dipole can be picqured
as a pair of oppositely signed charges having the vector separation d. The negative charge is located
at r. With the assumption that the force on the dipole is transmitted to the medium, the procedure
is to compute the force on a single dipole, and then to average this force over all the dipoles. The
net force in the ith direction on the pair of charges taken as a unit is

fi im q[E ( + ) - Ei(r)] (2)
d-O

The limit is one in which the spacing of the charges becomes extremely small compared to other distances
o4 interest and, at the same time, the magnitude of the charges becomes very large, so that the product

Sqd remains finite. The dipole moment is defined as ;. The required limit of Eq. 2 becomes

BE E

fi imd q[Ei~() + dJ - Ei)] - j ax (3)

Thus, there is a net force on each dipole given in vector notation by

)VE (4)

ýot$ that implicit to this vector representation is the definition of what is meant by the operator
A.VB

By assumption, the net force on each dipole is transmitted to the macroscopic medium and it is
appropriate then to think of averaging these polarization forces over all dipoles within the medium.
In general, this average would have to be taken with recognition that the microscopic dipoles could
assume a spectrum of polarizations in a given electric field intensity. For present purposes, the
average can simply be represented as the multiplication of Eq. 4 by the number of dipoles, n, per unit
volume. With the definition of the polarization density as P - np, the Kelvin polarization force
density is found:

F = .V (5)

Can the force density given by Eq. 5 be used to explain the rise of the dielectric between the
plates in Fig. 3.6.1? Certainly, there is no force density in material regions of uniform electric
field, because then the -spatial derivatives called for with Eq. 5 vanish. However, in the fringing
field at the lower edges of the plates, the electric field intensity does vary rapidly. In that region,
the permittivity is a constant, and for a linear dielectric, where D = El, Eq. 5 becomes [in dealing
with vectors and tensors, a term in which a subscript appears twice is to be summed 1 to 3 (unless
otherwise indicated)]

BE BE, - Ei E a 1(• (6
Fi  ( - e)E o j (P - S)E xi  (E - Eo) ( E) (6)

where the irrotational nature of E is exploited, aEi/axj - aEj/axi. In vector notation, Eq. 6 becomes

F = V (c - e )E.El (7)
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Remember, this relation pertains only to regions of a linear dielectric in which the permittivity is
constant, and is simply a means of visualizing the distribution of the Kelvin force density. In such
regions, the force density has the direction of maximum rate of increase of the electric energy storage.
Typical force vectors, sketched in Fig. 3.6.1, tend to push the dielectric upward between the plates.
It 4s important not to overgeneralize from Eq. 7. In any configuration in which there is a component
of E perpendicular to an interface, there is a singular component of the Kelvin force density acting at
the interface -- a surface force density. Such a component would be incorrectly inferred from Eq. 7,
which is not valid through the interfacial region.

Consider now the force density acting on a continuum of dilute magnetic dipoles that, like the
analogous electric dipoles just considered, pass along a force of electric origin to a macroscopic
medium via collisions or lattice constraints. It is not possible to use the Lorentz force law as a
starting point unless magnetic monopoles and an analogous force law on these magnetic "charges" is
postulated. Without introducing such notions, the Kelvin magnetization force density can be deduced
as follows.

Electroquasistatic and magnetoquasistatic systems are piStured abstractly in Fig. 3.6.3. A volume
enclosing the region occupied by a dipole having the position 5 has a surface S and includes neither
free charge in the EQS system nor free current in the MQS system. Hence the fields are governed by

Fig. 3.6.3a. EQS system Fig. 3.6.3b. MQS system

Vx E = 0; E = -V Vx H 0; H = -VY (8)
o+ 000

V*(EcoE + P) = 0; P = np V.(0oH + 1oM ) = O; M f nm (9)

Statements that the input of electric energy either goes into increasing the total energy stored or in-

to doing work on the dipoles are (see Eqs. 3.5.1 and 2.13.4 or Eq. 3.5.10 and Eq. 2.14.9 integrated by
parts):

06'.da = 6w + 1'6t A W64 .nda = 6w + t.6t (10)

S S

To find the force on the dipole, the energy would be determined as a function of the electrijal excita-

iins and t. Then, with the understanding that the derivative is taken with the quantities D.n and

B*n, respectively, held fixed on the surface S, the respective forces follow as

i w fi = aw f -i ()
f - -Di aw (11)

ci

Now, what would be obtained if this procedure were carried through for the electric case is already
known to be given by Eq. 4. Moreover, there is a complete analogy between every aspect of the electric
and magnetic systems. The calculation in the magnetic case need not be repeated oncethe eljctric one
is carried out. Rather, an identification of variables suffices to give the answer, E + H, P + joM.
Hence, it follows that Eq. 5 is replaced by the Kelvin magnetization force density

F = •• VH (12)

The Kelvin force densities, Eqs. 5 .and 12, suffer the weakness that they do not take into account
the interaction between dipoles. Moreover, is the average over the spectrum of dipole moments p or m
leading to the polarization and magnetization densities consistent with the usage of these densities in
Chap. 2? These difficulties are overcome by a derivation based on thermodynamic principles. Because
force densities are then based on electrically measured constitutive laws, consistency with definitions
already introduced is insured.
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3.7 Electric Korteweg-Helmholz Force Density

The thermodynamic technique used in this section for deducing the electric force density with
combined effects of free charge and polarizarion is a generalization of that used in determining dis-
crete forces in Sec. 3.5. This principle of virtual work is exploited because it is not practical to
predict the relationship between microscopic and macroscopic fields.

In any derivation of a force density, it is important to be clear about (a) what empirically
determined information is required, and (b) what postulates or assumptions are incorporated into the
derivation or are implicit to an application of the force density. Generally, empirically determined
information can be used to replace assumptions. As derived here, the only empirical information re-
quired il an electrical conititutive law relating the macroscopic electric field to the polarization
density P (or displacement D). This relationship is typically determined by making electrical measure-
ments on homogeneous samples of the material. These amount to measurements of the terminal character-
istics of capacitor-like configurations incorporating samples of the material. (In the lumped-parameter
systems of Sec. 3.5, the analogous empirical information was the electrical terminal relation.) With
so little empirical information, the force density can only be identified if the system considered is
a conservative thermodynamic subsystem. Thus, the force density is derived picturing the system as
having no dissipation mechanisms. (The same conservative system is considered in Sec. 3.5 to find
discrete forces.) The assumption is then made that the force density remains valid even in modeling
systems with dissipation. If dissipation mechanisms were to be incorporated into the system considered,
then a virtual power principle could be exploited to find the force density, but additional empirical
information would be required.

Experiments show that, for a wide range of materials, electrical constitutive laws take the form
of state functions

E E(a *a ,) or = ( 1 .*.a m , (1)

The a's are properties of the material. Thus, if measurements are made on a homogeneous sample of the
material, the a's are varied by changing the composition of the sample. For example, a might be the
concentration of dipoles of a given species, or the concentration of one liquid in another. The number
of a's usSd depends on the specific application. Most important for now is the distinction between
changing E in Eq. l.by changing the material and hence changing a's, and doing so by changing D. Some
special cases of Eq. 1 are given in Table 3.7.1.

Table 3.7.1. Constitutive laws having the general form of Eq. la.

Law Description

E= E- (al.am)D Electrically linear and (fields) collinear

E = sij(a ... m)j Electrically linear and anisotropic

S l(a 1 ...a D2 )D Electrically nonlinear and (fields) collinear

Ei = sij (...**m D, D1 D2, D3)D Electrically nonlinear and anisotropic

The third case of the table might represent a material in which dipoles are in Brownian equi-
librium with.a nonpolar liquid. An applied field tendg to line up the dipoles and hence give rise to
a polarization density and hence to a contribution to D. In terms of two properties (al,a2), a model
including the saturation effect, resulting as all dipoles become aligned with the field, might be

1  , (2)

/ + E o2 

Built into this example, and the general relation, Eq. 1, is the assumption that the constitutive law
is a state function. It does not depend on rates of change, and it is a single-valued function of the
variables and hence not dependent on the path followed to arrive at the given state.

The continuum now considered is not homogeneous, in that at any given instant the a's can vary
from one position to another. Moreover, for the electromechanical subsystem considered, the properties
are tied to the material. As the material moves, properties change. For material within a volume of
fixed identity,
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f aidV = constant (3)
V

By definition, the volume V is always composed of the same material. By definition, the a's must satisfy
Eq. 3 when the subsystem is considered to be isolated from other subsystems.

The finite number of mechanical degrees of freedom for the discrete coupling of Sec. 3.5 is now
replaced by an infinite number of degrees of freedom. The mechanical continuum, perhaps a fluid, perhaps
a solid, is capable of undergoing the vector deformations 6a. These incremental displacements are
viewed as small departures from an equilibrium mechanical configuration which is precisely that for which
the force density is required.

Since the time derivative of Eq. 3 vanishes, the generalized Leibnitz rule, Eq. 2.6.5, gives

- t (4)da = 0 
V V S

where by definition the velocity of the surface S is equal to that of the material (vs -t-) Gauss'
theorem converts the second integral to a volume integral. Although of fixed identity, the volume is
arbitrary, and so it follows from Eq. 4 that changes in the property ai are linked to the material de-
formations by an expression that is equivalent to Eq. 3:

6a = -V.(a i6) (5)

The framework has now been established for stating and exploiting conservation of energy for the
electromechanical subsystem. The procedure is familiar from Sec. 3.5. With electrical excitations
absent, a system, such as shown in Fig. 2.13.1, is assembled mechanically. Because the force density
of electrical origin is by definition zero during the process, no work is required. The system now
consists of rigid electrodes for producing part or all of the electrical excitations and a mechanical
continuum in t e intervening space. This material is described by Eq. 1. With the mechanical deforma-
tions fixed (6( = 0), the electrical excitations are next raised by placing bulk charges at the positions
of interest in the material and by raising the potentials on the electrodes. The result is a stored
electrical energy given by Eq. 2.13.6:

D
w = WdV; W = (al...,am').6' (6)

V

Here, V is the volume occupied by the material and the fields, and hence excluding the electrodes.

Now, with the net charge on each electrode constrained to be constant, consider variations in the
energy caused by incremental displacements of the material. A statement of energy conservation
accounting for work done on the external mechanical world by the force density of electrical origin is

[6W + *6st]dV = 0 (7)

V

There are two consequences of the incremental displacement. First, the mechanical deformation carries
the properties with it, as already stated by Eq. 5. Second, there is a redistribution of the free
charge. Because the system is conservative, the free charge is constrained to move with the material.
The charge within a volume always composed of the same material particles is constant. Thus, Eq. 3
also holds with cai Pf, and it follows that an expression similar to Eq. 5 can be written for the
change in charge density at a given location caused by the material displacement 64:

pf = -V*(Pf6) (8)

It is extremely important to recognize the difference between (W in Eq. 7, and 6W in Sec. 2.13.
In Eq. 7, the change in energy is caused by material displacements 6J, whereas in Sec. 2.13 it is due
to changes in the electrical excitations. The energy W is assumed to be a state function of the same
variables as used to express the constitutive law, Eq. 1. Hence,

m (9)

i=1 i aD
where

BD ii i

Sec. 3.7 3.10



With the understanding that the partial derivative is taken with the a's held fixed, it follows from
Eq. 6 that

aww= E (10)
aDf

Hence, the last term in Eq. 9 is written using Eq. 10 with E in turn replaced by -VW. Then, integration
by parts* gives

: * 6DdV - '6Dinda + f D(V6 )dV (11)

V S V

The part of the surface coincident with the electrode surfaces gives a contribution from each electrode
equal to the electrode potential multiplied by the change in electrode charge. Because the electrode
charges are held fixed while the material is deformed, this integration gives no contribution. The
remaining part of the surface integration is sufficiently well removed from the region of interest that
the fields have fallen off sufficiently to make a negligible contribution. Thus, the first term on the
right vanishes and, because of Gauss' law, Eq. 11 becomes

I W = f p pdV (12)
3D

6-dV 

It is now possible to write Eq. 7 with effects of 6t represented explicitly. Substitution of Eq. 8 into
12 and then Eqs. 12 and 5 into 9, and finally of Eq. 9 into 7, gives

m
CE Zi=l V* (awi, ) - V (pf(p ) + -.6t]dV = 0 (13)

V

With the objective of writing the integrand in the form ( )..6, the first two terms are integrated by
parts. Because the surface integrations are either on 4he rigid electrode surfaces where 6t•i = 0, or
at infinity where the fields have decayed to zero, and E = -V@, Eq. 13 becomes

m
'1 fE + 6 .6dV - 0 (14)
i=l

It is tempting, and in fact correct, to set the integrand of this expression to zero. But the
justification is not that the volume V is arbitrary. To the contrary, the volume V is a special one
enclosing all of the region occupied by the deformable medium and fields. (The volume integration
plays the role of a summation over the mechanical variables for the lumped-parameter systems of
Sec. 3.5.) The integrand is zero because 6t (like the lumped-parameter displacements) is an independent
variable. The equation must hold for any deformation, including one confined to any region where P is
to be evaluated:

m
- m aw -

= pE - a a V(i -) (15)
i=l i

It is most often convenient to write the second term so that it is clear that it consists of a force
density concentrated where there are property gradients and the "gradient of a pressure":

m m
F pfE + Z - Va. - V [ E a• i (16)

i=l i i=l i

The implications of Eq. 16 and the method of its derivation are appreciated by considering three com-
monly encountered limiting cases and then writing Eq. 16 in such a way that its relation to the Kelvin
force density is clear.

Incompressible Media: Deformations are then such that

V.4 = 0 (17)

Because 6t.n = 0 on the rigid electrode surfaces that comprise part of the surface S enclosing V in
Eq. 7, any pressure function fr that approaches zero with sufficient rapidity at infinity to make the
surface integration there negligible will satisfy the relation

Integration by parts in three dimensions amounts to

IYV IdV V*(I)dV - AI VYdV '1TA-da - A *VdV

V V V S V
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-6.nda f V. (r6 )dV = 0 (18)
S V

Thus, Eq. 14 remains valid even if the volume integral of Eq. 18 is added to it. But, for incompressible
deformations as defined with Eq. 17, V.(ur6b) - Vin*. Thus, the term added to Eq. 14, like those already
appearing in its integrand, can be written with 6t as a factor. It follows that for incompressible de-
formations, the gradieat of any scalar pressure, W, can be added to the force density of Eq. 16. For
example, W might be P*E, since this function decays with distance from the system sufficiently rapidly
to make the contribution of the surface integration at infinity vanish. On the basis of this apparent
arbitrariness in the force density, the following observation is now made for the first time, and will
be emphasized again in Chap. 8. Two force densities differing by the gradient of a scalar pressure
will give rise to the same incompressible deformations. Physically this is so because in modeling a
continuum as incompressible, the pressure becomes a "left-over" variable. It becomes whatever it must
be to make Eq. 17 valid. Whatever the Vii added to the force density of electrical origin, w can be
absorbed into the "mechanical" pressure of the continuum-force equation.

For incompressible deformations, where the force density is arbitrary to within the gradient of a
pressure, the gradient term can be omitted from Eq. 16, which then takes the convenient form

F =pfE + aE Vi  (19)
i=l 9T

This ex3ression concentrates the force density where there are proDertv gradients. In a charge-free
system composed of regions having uniform properties, the force density is thus confined to inter-
faces between regions.

Incompressible and Electrically Linear: For an incompressible material having the constitutive
law

D = o (l + Xe)E = E (20)

the susceptibility Xe is conserved by a volume of fixed identity. That is, ac can be taken as Xe in
Eq. 3 and m = 1. Then, from Eq. 6,

1 D2  *W eo 2
2 eo(1 + Xe)' aXe - •  (21)

and because VXe = V[(1 + x )], it follows that the force density of Eq. 19 specializes to

= pf - 2- E VE (22)

Electrically Linear with Polarization Dependent on Mass Density Alone: Certainly a possible
parameter al is the mass density p, since then Eq. 3 is satisfied. For a compressible medium it is
possible that the susceptibility Xe in Eq. 20 is only a function of p. Then,

1 D2  aw Eo 2 aXe
a= p X I p) W = l + XeP)]; Xe(p)I •= - -2- E + (23)

1 p e e 2 2 3p

and, because (ae/9p)Vp = VE, the force density given by Eq. 16 becomes

S= - 2  E + E2  (24)

Because the last term is associated with volumetric changes in the material, it is called the electro-
striction force density.

Relation to the Kelvin Force Density: Because W = W(al,a2...am, ), the kth component of the
gradient of W is

m Bael D

(Vw) = a + a (25)
k i=1 ai xk D xk

In view of Eq. 10, it follows that

m S• aE
(26)i i 1 k I (E` D) + D 

iaaaxk 1 a2k k J k
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This expression can be substituted for the second term in Eq. 16, which with some manipulation then
becomes

m W
F P E+PVE+VL-2 [ EE+ W-E+D- Z aP -- (27)

i=l i

In this form, the force density is the sum of a free charge force density, the Kelvin force density
(Eq. 3.6.5) and the gradient of a pressure. This last term can consistently be ignored in predicting
the deformations of an incompressible continuum. For such situations, the Kelvin force density or the
Korteweg-Helmholtz force density in the form of Eq. 19 will give rise to the same deformations. Note
that they have very different distributions.

Apparently the last term in Eq. 27 represents the interaction between dipoles omitted from the
derivation of the Kelvin force density. In fact, this term vanishes when the constitutive law takes
a form consistent with the polarization being due to noninteracting dipoles. In that case, the

= susceptibility should be linear in the mass density so that Xe cp, where c is a constant. In Eq. 23,
@Xe/aP = c, and evaluation shows that, indeed, the last term in Eq. 27 does vanish.

3.8 Magnetic Korteweg-Helmholtz Force Density

Thermodynamic techniques for determining the magnetization force density are analogous to those
outlined for the polarization force density in Sec. 3.7. In fact, if there were no free current density,
the magnetic field intensity, like the electric field intensity, would be irrotational. It would then
be possible to make a derivation that would be the complete analog of that for the polarization farce
density. However, in the following the force density due to free currents is included and hence H is
not irrotational.

The constitutive law takes the form

H = H(al,a2 .. am,B ) or I = (12*a (1)

with specific possibilities given in Table 3.7.1 with e + i, E + H and D -+ B. A conservative electro-
mechanical subsystem is assembled mechanically, with no electrical excitations, so that it assumes a
configuration identical to the one for which the force density is required. By the 'definition of the
subsystem, this process requires no energy. Then, with the mechanical system fixed (the a's fixed),
electrical excitations are applied so as to establish the free currents in excitation coils and in the
medium itself, with the distribution that for which the force density is required. This procedure is
formalized in Sec. 2.12 and a system schematic is shown in Fig. 2.14.2. As was shown in Sec. 2.14,
currents in excitation coils are conveniently regarded as part of the total distribution of free
current density. Hence, the volume of interest now includes all of the region permeated by the mag-
netic field.

Now, with the electrical excitations established, a statement of conservation of energy, with
the electrical excitations held fixed but the material undergoing an incremental displacement, is
Eq. 3.7.7, where now W is the magnetic energy density given from Eq. 2.14.10 by

B
w = H(a1,a2**amB')*6' (2)

The following steps, leading to a dedugtion of the force density, are analogous to those taken
in Sec. 3.7. The link between the a's and 6ý is given by Eq. 3.7.5. What is the connection between
1.
Jf and 6?

Actually, it is a link between the flux linkage and t that is appropriate. If the medium is to
both support a free current density and be conservative, the material must be idealized as having an
infinite conductivity. This means that any open material surface S (surface of fixed identity) must
link a constant flux:

6 B-nda = 0 (3)

S

One way to make this deduction is to use the integral form of Faraday's law for a contour C enclosing

a surface S of fixed identity, Eq. 2.7.3b, with v - vs. Because the medium is perfectly conducting,
E' = 0 and what remains of Faraday's law is Eq. 3. From the generalized Leibnitz rule,Eq. 2.6.4, Eq. 3
and the solenoidal nature of B require that

f 6*nda + (6 x 6b).1 = 0 (4)

S C

3.13 Secs. 3.7 & 3.8



Stokes's theorem, Eq. 2.6.3, converts the contour integral to a surface integral. Because this sarface
is arbitrary, the sum of the integrands must vanish. If it is further recognized that 6B = V x 6A, then
it follows that

4.
A = x B (5)

Thus, there is established the link between material deformations and the alterations of the field that
are required if the deformations are to be flux-conserving.

The change in W associated with the material deformation, called for in the conservation of energy
equation, Eq. 3.7.7, is in general

n
6w = - + w . 6B (6)

oa i B

where, in view of Eq. 2,

aW-j = H (7)

It is the integral over the total volume V of 6W that is of interest. The integral of the last term
in Eq. 6 is

L-W -dV = f .idV = .V (8)x 6*dV 
V V V

Because the fields decay to zero sufficiently rapfdly- at infinity that the surface integral vanishes
and because Ampere's law, Eq. 2.3.23b, gives V x H = Jf, integration of the last term in Eq. 8 by
parts gives

I W .bdV= V.(61 x ~)dV + J 6V x idV = x x da + IdV = 6I fdV (9)

V B V V S V V

Substitution for 6. from Eq. 5 finally gives an expression explicitly showing the t dependence:

f -LJ 4 6t x i*IfdV- I3 x *6-dV (10)
V V V

Finally, the energy conservation statement, Eq. 3.7.7, is written with 6W given by Eq. 6 and in turn,
6ai given by Eq. 3.7.5 and the last term given by Eq. 10:

[- E - . x '6t + S6t]dV = 0 (11)
i-1D i

V

With the objective of writing the first term as a dot product with 6t, the first term is inte-

by parts (exactly as in going from Eq. 3.7.13 to Eq. 3.7.14) to obtaingrated 

n
[ w -V x I+ ]6dV - 0 (12)

V

The integrand must be zero, not because the volume is arbitrary (it includes all of the system in-
volved in the electromechanics) but rather because the virtual displacements 6t are arbitrary in
their distribution. Hence, the force density is

n W
B- v  (13)

i=1 i

The special cases considered in Sec. 3.7 have analogs that similarly follow from Eq. 13. Because

what is involved in deriving these forms involves the magnetization term in Eq. 13, and not the free

current force density, these expressions can be written down by direct analogy.
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Incompressible Media: The convenient form emphasizing the importance of regions where there are
property gradients is

). 4. n aw
F = Jf x B + E-Vai (14)

it i

Incompressible and Electrically Linear: With a constitutive law

B = P (1 ++ + Xm)H = pH(15) (15)

the force density of Eq. 13 reduces to

4-=4 -+ 1 2 
F J x B - H (16)V(

Electrically Linear with Magnetization Dependent on Mass Density Alone: With the constitutive law
in the form of Eq. 15, but Xm = Xm(p), where p is the mass density, the force density is the sum of
Eq. 14 and a magnetostrictive force density taking the form of the gradient of a pressure:

F x B - H2V1 + V ( p H2 ) (17)

Relation to Kelvin Force Density: With the stipulation that W = W(a ,c12 *...-,B) is a state
function, Eq. 13 becomes the sum of a Lorentz force density due to the free current density, the
Kelvin force density and the gradient of a pressure:

1 - + - m a (18)
x= AxP+ PM.VH + V[ 2 i oHH + W - H.B - a C W 18

i=1i

The discussion of Sec. 3.7 is as appropriate for understanding these various forms of the mag-
netic force density as it is for the electric force density.

3.9 Stress Tensors

Most of the force densities of concern in this text can be written as the divergence of a stress
tensor. The representation of forces in terms of stresses will be used over and over again in the
chapters which follow. This section is intended to give a brief summary of the differential and integral
properties of the stress tensor.

Suppose that the ith component of a force density can be written in the form

aT. +
Fi = ax '; ( = V*T) (1)

Here, the Einstein summation convection is applicable, so that because the j's appear twice in the
same term, they are to be summed from one to three. An alternative notation, in parentheses, re-
presents the same operation in vector notation. Much of the convenience of recognizing the stress
tensor representation of a force density comes from then being able to convert an integration of the
force density over a volume to an integration of the stress tensor over a surface enclosing the volume.
This generalization of Gauss' theorem is easily shown by fixing attention on the ith component (think
of i as given) and defining a vector such that

Gi = Tilil + Ti2i2 + Ti3i3  (2)

Then the right-hand side of Eq. 1 is simply the divergence of i-i Gauss' theorem then shows that

(3)
FidV = V*'GidV = Gi nda 

V V S

or, in index notation and using the definition of Gi from Eq. 2,

(4)
IFidV = Tijnjda 
V S

This tensor form of Gauss' theorem is the integral counterpart of Eq. 1. Physically, Eq. 4 states that
an alternative to integrating the force density in some Cartesian direction over the volume V is an
integration of the integrand on the right over a surface completely enclosing that volume V. The
integrand of the surface integral can therefore be interpreted as a force/unit area acting on the
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r

r · L· · ·
enclosing surrace In tne itn alrecrlon. To alstinguisn it
from a surface force density, it will be referred to as
the "traction." It does not act on a physical surface
and has physical significance only when integrated over
a closed surface. It is simply the force/unit area that
must be integrated over the entire surface to find the
net force due to the volume force density

Ti Tijnj; (5)

In vector notation and in terms of the traction f, Eq. 4
is written as

dV - fnda (6)

V S

Figure 3.9.1 shows the general relationship of the traction Fig. 3.9.1. Schematic view of volume V
and normal vector. The traction can act in an arbitrary enclosed by surface S, showing trac-
direction relative to the surface. tion acting on elements of surface.

To develop a physical interpretation of the stress
tensor components, it is helpful to consider a particular volume V and surface S with surfaces having
normals in the Cartesian coordinate directions. The cube shown in Fig. 3.9.2 is such a volume. Suppose
that interest is in determining the net force on the cube
in the x direction, from Eq. 4. The required surface
integration can then be broken into separate integrations
over each of the cube's surfaces. For the integration on
the right face, the normal vector has 

t • 9 • a • E 
only 

J 
an x component,

J

so nthe only contriDution to thna surface integration is
from Txx. Similarly, on the left surface, the normal
vector is in the -x direction, and the integral over that
surface is of -Txx. The minus sign is represented by
directing the stress arrow in the minus x direction in
Fig. 3.9.2. On the top and bottom surfaces, the normal Tx cx
vector is in the y direction, and the integration is of'
plus and minus Txy. Similarly, on the front and back
surfaces, the only terms contributing to the traction
are Txz. The stress tensor components represent normal
stresses if the indices are equal, and shear stresses if

they are unequal. In eitner case, the stress componenL
acting in the ith direction on a surface having its
normal in the jth direction is Tij.

Orthog.onal compoients are a familiar way of
representing a vector F. In the coordinate system

(xl,x2,x3) the components are denoted by Fj. What is Fig. 3.9.2. Stress components acting on
meant by a vector is implicit to how these components cube in the x direction.
decompose into the components of the vector expressed
in a second orthogonal coordinate system (x1,x2.x3)
pictured in Fig. 3.9.3. The two coordinate systems are related by the transformation

axk
xk= axUN; 5x k.= (7)

where aki is the cosine of the angle between the xk axis and the x1 axis.

A component of the vector in the primed frame in the ith direction is then given by

F' aijF (8)j  

For example, suppose that i = 1. Then, Eq. 8 gives the x' component of F' as the projections of the

components in the xl, x2, x3 directions onto the x' direction. Equation 8 summarizes how a vector
transforms from one coordinate system onto another, and could be used to define what is meant by a

"vector."

Similarly, the components of a tensor transform from the unprimed to the primed coordinate system

in a way that can be used to define what is meant by a "tensor." To deduce the transformation, begin

with Eq. 8 using the divergence of a stress tensor to represent each of the force densities (Eq. 1):
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Jq.

ik a (9)
Txk ij ax

Now, if use is made of the chain rule for dif-
ferentiation, and Eq. 7, it follows that

T' k aT Dx aT
q = a i - - aija j (10)

Thus, the tensor transformation follows as

Tik ij kakT j (11)

Useful conditions on the direction
cosines aij are obtained by recognizing that
the transformation from the primed frame to
the unprimed frame, given generally by

F = bjiF' (12)

involves the same direction cosines, because
bz. defined as the cosine of the anele between

Zg. J...J. unprimea ana primed coordinatE
, a

the x ax j the x SJ axis and , - i: systems. The geometric significancE
Thus, Eqs. 12 and 8 t gether show that of the direction cosine alj is showr1.

F' = aikFk = aika£kF' (13)

and it follows that the direction cosines satisfy the condition that

aika£k = 6  it (14)

where the Kronecker delta function 6ik by definition takes the values

i = k
6ik = (15)

Finally, suppose that a total torque rather than a total force is to be computed. By way of
analogy to Eq. 6, is there a way in which the integration of the torque density can be converted to
an integration over the enclosing surface? With respect to the origin, the total torque on material
within the volume V is

T =  rx FdV (16)

V

where r is the vector distance from the origin. With F given as the divergence of a stress tensor,
Eq. 1, and provided that T is symmetric (Tij = Tji), the tensor form of Gauss' theorem can be used
to show that

S x (T.n)da (17)

S

The net torque is the integral over the enclosing surface of a surface torque density r x T (see
Problem 3.9.1).

3.10 Electromechanical Stress Tensors

The objectives in this section are to illustrate how the stress tensor associated with any one
of the force densities in Secs. 3.7 and 3.8 is determined, and to summarize the stress tensors for
future reference.

The ith component of the Korteweg-Helmholtz force density, Eq. 3.7.16, written using Gauss' law
to eliminate pf, is
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IDj m m 
aw aak a E W-

Fi = Ei ax + E
i i k=l a-k axi axi k-1 k ak

The goal in the following manipulations is to express this equation in the form of a tensor divergence
(in the form of Eq. 3.9.1). The second term can be replaced by Eq. 3.7.26. Also, because E is irrota-
tional, aEi /axj = aEj/ xi and hence Eq. 1 becomes

aw
F. = E( +E S i D Ei

axj x aWx(W-EkDk) +D
ixj
J a ix i k1lk=1 k

With the first and third terms combined and the Kronecker delta function 6ij introduced (see
Eq. 3.9.15),

i [EiDj + 6 (W - EkDk - a

It follows from a comparison of Eqs. 2 and 3.9.1 that the required stress tensor is

m
m aw

Tij = EiD 1 - ij(W' + E k •-iji - i k=l k

where the coenergy density, W', is defined by Eq. 2.13.11.

Table 3.10.1 gives a summary of this and other stress tensors together with the associated force
densities. It is essential that a consistent pair be used.

Table 3.10.1. Summary of force densities and associated stress tensors.

Incompressible media

S + m aw
3.7.19 F = pfE + k1 D k VPak T ij EiDj - 6ijW'

+>- 4. m aw
3.8.14 F = J x B + Vk Tij HiB

aak k j - 6..W'
S k=l ij ij 13

Incompressible and electrically linear: D e ,B I= 

3 F 1 2 EE 63.7.22 F = pE - E Ve Tij -.2 6ijEkEk

3.8.14 F = Jf x B - H2 V T ij iH H Hk
fij i J 2 ij kk

Electrically linear, e and p dependent on mass density p only

= > 1 2 + 1 _ EC )  = 1EE 0 E 
3.7.24 pE - 2V + V p E2 Tij =EE - 6ijE Ek(l )

i2 ' 2 Tij i i j 2 ijkk Cap

3.8.17 F = 3 x B - H2V1 + V T p •( T Hij - 6 i kHk( - p )

Kelvin force density and stress tensor

3.6.5 F = pE + P.VE T = EiD - 6ijoEkEk
f ij i 2 ij oHk

o 0ij 2 S jlJoHk k
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The stress tensor makes it possible to compute the total force on an object by integrating over
an enclosing surface S in accordance with Eq. 3.9.6. For an isolated object in free space, this force
is the same regardless of the particular force density used. If the force is considered as the integral
of the force density over the volume of the object, this fact is by no means obvious. But, note that in
free space the stress tensors of Table 3.10.1 all agree, Because the enclosing surface S is in this
free space region, the same total force will result from integrating Eq. 3.9.6 regardless of the force
density associated with the stress tensor.

3.11 Surface Force Density

In many systems, the electric or magnetic force density is concentrated in a thin layer, usually
comprising the interface between two regions. If the thickness of this layer is small compared to the
dimensions of the adjacent regions and other lengths of interest, then the force per unit area on the
interface may be used to describe the layer. An interfacial section is enclosed by the incremental
volume of thickness A and area A = 6x6y, shown in Fig. 3.11.1. The surface force density is defined
as a force per unit area of the interface in a limit in which first A and then A approach zero. The
integration of the electric force density throughout the control volume is convenient•y carried out
using the appropriate stress tensor Tij integrated over the enclosing surface. With n defined as the
unit normal to the interface and tn the unit normal to the control surface, the surface force density is

0+
flim 1 -'n = n lim 1

T I T da = U n + T.1 dvdt (1)
A+0 A n n AO A 0- n
A+0 S

Integration is divided into two parts. The first is the contribution from the surfaces external to the
layer, having normals n and -n, respectively. The second accounts for the "edges" of the volume where
the surface cuts through the double layer. If fields within the layer are of the same order as those
outside, contributions of the second integral vanish as A + 0. In electroquasistatic systems, the
double layer presents a case where the internal fields are sufficiently intense that the second term
not only makes a.contribution but one that can dominate the first term. The remainder of this section
is devoted to converting this contribution to a more useful form.

The distance normal to the interface is y, with (p,ý) orthogonal coordinates in the local inter-
facial plane, as shown in Fig. 3.11.1. In the absence of a double layer, the electric field is of the
same order of magnitude throughout, and hence in the limit A + 0, the second term in Eq. 1 becomes
negligible compared to the first. With the double layer, the stress contributions from the edges of
the control volume are of the same order as those from the exterior surfaces.

As discussed in Sec. 2.10, the tangential electric field suffers a discontinuity through the
double layer. However, the tangential field within the layer is of the same order as the external
field. Because the thickness A over which the interior stresses act is much smaller than the linear
dimensions 65 and 6d, the internal stress contributions to the integrations around the periphery of
the control volume are ignorable unless the double-layer charges are themselves responsible for a sub-
stantially larger internal field than external field. This double-layer-generated field is directed
normal to the interface and dominates in determining the interior stresses. The stress taken now as
represented by Eq. 3.7.19b of Table 3.10.1 is

Tij = EiDJ - ijW' (2)

where, in the case of a linearly polarized dielectric, the coenergy density W' is simply -E2/2. Stress
components associated with the dominant field in the double layer interior are essentially

T C T + -W1
p (3)

Tij + 0; i # j

The traction acting on the periphery of the control volume is therefore approximately
+ 0+

f T*1 dv = - W'dvtn YEJn (4)

0 0

The normal vector In can be written as -~hni, so that Eq. 1 becomes

+ o+ + lim 1 T +dT -n- A*O A E

In the limit A4O, the contour integral in Eq. 5 need only be evaluated to first order in 6gd,6.
Expansion about the origin, denoted by the subscript o, gives an approximate expression for the integral
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Fig. 3.11.1

(a) Volume enclosing section of
interface. Thickness A is suf-
ficient to include double layer
but small compared to linear
dimensions of A. (b) Cross-
sectional view of interface
showing relation of radius of
curvature R to n and d£.

that becomes exact in the limit. The contour C is taken as rectangular with edges parallel to the
(E,p) axes. The segment of length 6p at E = 6S/2 has -ixni£ 6p(1 + • d/R1) and gives a contribu-
tion to the contour integral

nod+
l [vE EJ] +a

0 9E o 2j ' + n 1

The three additional sides of the rectangular contour give similar contributions, so that alto-
gether,

-lim 1• t lim 1 Y E A]{++ n6no 
A90 A 6{-y tC yE nx& SU6 O O 6(6 E61+0 ' + + [ Eo 0 a - ] T 2+ o 2 ( 1 2

nno+ 
+j([YE]o' Tý-1o

1

+{[YE]o - a E °  6 + no

= 1+ 1+YE+ 

R1 R2

Here, R1 and R2 are radii of curvature for the interface, reckoned in the orthogonal planes defined
respectively by the normal and E and the normal and V. Note that the sign of each curvature term is
taken as positive if the center of curvature is on the side of the interface toward which AI is
directed. The surface force density associated with surface tension takes this same form. However,
the convention used in Chap. 7 is with the radii of curvature the negatives of R1 and R2 . With the
understanding that R1 and R2 are radii of curvature taken as positive if the center of curvature is on
the side of the interface out of which A is directed, Eqs. 1, 4, and 7 give the surface force density,
with the double-layer contribution represented by the function yE,

- = 1 D . - - -ý- 1 ~ +VT+ 0 n n [+ 1 2  1

0
E R R 2 E EE

where

YE O W'dv
0-

It is shown in Sec. 7.6 that the second term in Eq. 8 can also be expressed as -YE(V.n)n.

The double layer surface force density is exemplified in Chap. 10.
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3.12 Observations

The force densities and associated stress tensors of Table 3.10.1 are of two origins. The Kelvin
force densities, the last two in the table, come from a microscopic picture of particles and dipoles
subject to electric or magnetic forces which, through the agent of a kinetic equilibrium, are passed
along to the ponderable continuum. The Korteweg-Helmholz force densities, all of the others in the
table, are based on an energy conservation principle. The connection between micro and macro fields,
needed to apply this principle is made using electrical measurements of constitutive laws to inter-
relate the macroscopic fields A and t or B and A.

The arguments underlying each type of force density envoke certain assumptions which point to
possible inadequacies. The Kelvin force densities picture the force acting on each dipole and each
point chargl in isolation and this force as being that transmitted to the ponderable media. This does
not allow for the possibility that the micro fields of one dipole contribute to the force on a neigh-
boring dipole.

This shortcoming is obviated by the energy method, which is based on a statement of energy con-
servation for an electromechanical subsystem. The resulting Korteweg-Helmholtz force densities 1 are
of course also restricted. On the one hand, they are more broadly applicable than might be concluded
from the derivations. For example, the MQS continuum is viewed as "perfectly conducting," but the
free current force density is certainly applicable in cases where the conductivity is finite. This is
evident from its agreement with the Lorentz force density of Sec. 3.1, because the later model in-
cludes a finite mobility and hence electrical dissipation.

One way to derive a force density without ambiguity as to the validity of the result in noncon-
servative systems is to replace statements of energy conservation with those of power flow. 2 However,
the principle of virtual power requires information beyond that required by the principle of virtual
work used here. In addition to the constitutive laws relating the macroscopic field variables is the
requirement for the power flux density, which must either be assumed or measured.

Underlying all of the discussions in this chapter has been the presumption that a clear distinc-
tion can be made between electric or magnetic force densities and those of other origins. This is
tantamount to being able to isolate electromagnetic energy storage from other forms of energy storage.
Piezoelectric coupling is an example where it is not fruitful to make this distinction. In that area,
the stress and force density generally represent combined electric and mechanical electromechanical
effects.

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. Inc., New York, 1941, pp. 137-159.

2. P. Penfield, Jr., and H. H. Haus, Electrodynamics of Moving Media, The M.I.T. Press, Cambridge,
Massachusetts, 1967, pp. 35-40.
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Problems for Chapter 3

For Section 3.3:

Prob. 3.3.1 In writing Eq. 3.2.3, the inertia of the charge carriers is ignored. Add inertial terms
to the equations, assume that the magnetic field is zero and consider an imposed electric field ý =
Re 2 exp(jwt). Show that the effects of inertia are negligible if W << V+. For copper, the electron
mobility is about 3 x 10- 3 m2/volt sec, while q /m = 1.76 x 1011 m2/sec 2 volt. What must the frequency
be to make the electron inertia significant?

For Section 3.5:

Prob. 3.5.1 For the system of Probs. 2.11.1 and 2.13.1,

(a) Show that the reciprocity condition requires that C21 = C1 2.
(b) Find the electrical forces (fl,f2) in terms of(vl,v 2,El, 2) that tend to displace the movable

plate in the directions (El'E2,) respectively.

Prob. 3.5.2 In Fig. 3.6.1, a dielectric slab is pictured as being pulled upward between plane parallel
electrodes from a dielectric fluid having the same permittivity as the slab.

(a) What is the total coenergy, w'(v,ý)? (Ignore fringing fields.)

(b) Use the force-energy relation, Eq. 3.5.9,to find the polarization force tending to make the slab
rise.

Prob. 3.5.3 Determine the electrical force tending to increase the displacement E of the saturable
dielectric material of Prob. 2.13.2.

Prob. 3.5.4 For the MQS configuration described in Probs. 2.12.1 and 2.14.1,

(a) Find the radial surface force density Tr by using the coenergy function to obtain Tr(il,i2',).
(b) Compare the operations necessary to obtain Tr(X1 ,Nix ) using the energy function w to those

using w'. Even though the coenergy formulation is more convenient for this problem, the energy
function is more convenient if one or more flux linkages are constrained.

= (c) If the inner coil is shorted at a time when its flux linkage is X2 0, what is Tr(X • )?

For Section 3.6:

Prob. 3.6.1 In a fluid at rest, external force densities are held in equilibrium by the gradient
of the fluid pressuie p. Hence, force equilibrium for each incremental volume of the fluid subject
to a force density F is represented by

4.
Vp = F

Suppose that the bottom of the dielectric slab pictured in Fig. 3.6.1 is well above the lower edges
so that the fringing field, and hence the VE2of the electrodes, , is confined to the liquid dielectric.

Then there is no Kelvin force density acting on the slab, and the force density of Eq. 3.6.7 prevails in
the liquid. Use Eq. 3.6.7 in Eq. 3.6.1 and integrate from the exterior free surface to the bottom of the
slab to find the fluid pressure acting on the bottom of the slab. Show that this pressure, acting over
the bottom of the slab, gives a net upward force that is consistent with the result of Prob. 3.5.2.

Prob. 3.6.2 Use arguments similar to those leading to Eq. 3.6.4 to show that the torque on an electric
dipole is

T=PxE

Based on arguments similar to those used in deducing Eq. 3.6.12 from Eq. 3.6.5, argue that the torque
on a magnetic dipole is

T = o0m x H

For Section 3.7:

Prob. 3.7.1 Show that the last paragraph in Sec. 3.7 is correct.
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For Section 3.9:

Prob. 3.9.1 One way to show that Eq. 3.9.17 can be used to compute T is to write Eq. 3.9.16 in
Cartesian coordinates and use the symmetry of the stress tensor to bring the components of r inside
the spatial derivatives. Carry out these steps and then use the tensor form of Gauss' theorem to
obtain Eq. 3.9.17.

For Section 3.10:

Prob. 3.10.1 For certain purposes, the electric force density in an incompressible liquid with no
free charge density might be represented as

F = 2V(EE)

where E is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the grad-
ient of a pressure and that the accompanying stress components are

T = £E.E.ij EE13

Prob. 3.10.2 A fluid has the electrical constitutive law

+ 4- + +++

D = alE + a2(E'E)E

It is inhomogeneous, so that al and a2 are functions of the spatial coordinates. There is no free
charge density and the fluid can be assumed incompressible. Integrate the conservation of coenergy
equations to show that the coenergy density is

1 ++ ~
' 2 +-+ 2

= 2 2lE'E + - (E.E)

.f Find the force density F in terms of E, al and a2. Find the stress tensor T.ij associated with this
force density. Prove that F can be written in the form = -V~ + VW, where P is the polarization
density.

Prob. 3.10.1 For certain purposes, the electrical force density in an incompressible liquid with no
i4 d

free charge dens.LLy M ghILL Ube represente asiL

F EV (E*E)

7
F2

where s is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the
gradient of a pressure, and that the accompanying stress components are

Tj = SE.E.

Prob. 3.10.2 A fluid has the electrical constitutive law

D 
_ = + 4. 

(So+a1)E + 2(E)E
4_+ + +

It is inhomogeneous, so that al and a2 are functions of the spatial coordinates. There is no free

charge density and the fluid can be assumed incompressible. Integrate the conservation of coenergy

equations to show that the coenergy density is

1 4-+ a 2 2
W' = -(o a1)E2E E + (E*E)

Find the force density F rn terms of E, al and a 2 . Find the stress tensor Tij associated with

this force density. Prove that F can be written in the form

F = P .VE + Vr

where P is the polarization density.
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Prob. 3.10.3 Fig. P3.10.3 shows a circular cylindrical tube of inner
radius a into which a second tube of outer radius b projects half way.
On top of this inner tube is a "blob" of liquid metal (shown inside the
broken-line box) having an arbitrary shape, but having a base radius
equal to that of the inner tube. The outer and inner tubes, as well as tz
the blob, are all essentially perfectly conducting on the time scale of
interest. When t=0 , there are no magnetic fields. When t=O+, the outer

-t.
tube is used to produce a magnetic flux which has density Bo z a distance r----a
2 >> a above the end of the inner tube. What is the magnetic flux dens-
ity over the cross section of the annulus between tubes a distance 2
(2 >> a) below the end of the inner tube? Sketch the distribution of - -

surface current.on the perfect conductors (outer and inner tubes and
blob), indicating the relative densities. Use qualitative arguments
to state whether the vertical magnetic force on the blob acts upward
or downward. Use the stress tensor to find the magnetic force acting
on the blob in the z direction. This expression should be exact if
2 >> a, and be written in terms of a, b, Bo and the permeability of t I I
free space yo. P 1 I-n.t

Fig. P3.10.3

Prob. 3.10.4 The mechanical configuration is as in Prob. 3.10.3. But, instead of the magnetic field,
an electric field is produced by making the outer cylinder have the potential Vo relative to the inner
one. Sketch the distribution of the electric field, and give qualitative arguments as to whether the
electrical force on the blob is upward or downward. What is the electric field in the annulus at
points well removed from the tip of the inner cylinder? Use the electric stress tensor to determine

the z-directed electric force on the blob.

+ 4 .

Prob. 3.10.5 In an EQS system with polarization, the force density is not F = PpE + PfE, where Pp
is the polarization charge. Nevertheless, this force density can be used to correctly determine the

total force on an object isolated in free space. The proof follows from the argument given in the

paragraph following Eq. 3.10.4. Show that the stress tensor associated with this force density is

1
T.. = oEiEj 2- ijo.EEkE

Show that the predicted total force will agree with that found by any of the force densities in

Table 3.10.1.

Prob. 3.10.6 Given the force density of Eq. 3.8.13, show that the stress tensor given for this
force density in Table 3.10.1 is correct. It proves helpful to first show that

S ÷ aH. aH
[(VxH) x B]i = (- - • B.

i ax. JJ 1

Prob. 3.10.7 Given the Kelvin force density, Eq. 3.5.12, derive the consistent stress tensor of
Table 3.10.1. Note the vector identity given in Prob. 3.10.6.

Prob. 3.10.8 Total forces on objects can sometimes be found by the energy method "ignoring" fringing
fields and yet obtaining results that are "exact." This is because the change in total energy caused
by a virtual displacement leaves the fringing field unaltered. There is a "theorem" than any config-
uration that can be described in this way by an energy method can also be-described by integrating
the stress tensor over an appropriately defined surface. Use Eqs. 3.7.22 of Table 3.10.1 to find

the force derived in Prob. 2.13.2.

For Section 3.11:

Prob. 3.11.1 An alternative to the derivation represented by Eq. 3.11.7 comes from exploiting an
integral theorem that is analogous to Stokes's theorem.1

1. C. E. Weatherburn, Advanced Vector Analysis, G. Bell and Sons, Ltd., London, 1966, p. 126.
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Prob. 3.11.1 (continued)

V x d = [n•V• - n*(V)nda (1)
C S

Here VV is a dyadic operator defined in Cartesian coordinates such that, "premultiplied" by -, it has
the components

3V aV av
X X x

[n n n Z]x y z ax ~y •z

aV 8av avy
(2)

ax ay az

av av av
z z z

ax 5y 9z

Hence,

[ avx av av]
SX ax Y x x ax

i n x n 3 z + nz  (3)
y ay Y y -z

[n x + n + n a
z x z Y 9z -8•-

4 -+
Show that if V = YEn, it follows that

(4)- nx d A = [-nYE(V-n) - n(n.VyE) + VYE]da 

C S

Thus if it is recognized that

4 ffi 1 1
nyE V-n = nyE(- + )

1 2

(see Sec. 7.6) and that

VEYE VyE - n(n.VYE)

then Eq. 3.11.7 follows.

Prob. 3.11.2 A force density is concentrated in interfacial regions where it can be represented by
a surface force density 1. The total force on any material supporting this surface force density is
then found by integrating the surface force density over the surface upon which it acts:

f = T da (1)

s

Suppose that the surface S is closed and that the external stress contributions to the surface force
density are negligible, so that it is given by the second and third terms in Eq. 3.11.8. Use the
integral theorem given in Prob. 3.11.1 to show that the resulting net force is zero.
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4

Electromechanical Kinematics:
Energy-Conversion Models and
Processes



4.1 Objectives

Beginning with this chapter, progressively more electromechanical "degrees of freedom" are consid-
ered. The subject of electromechanical kinematics is first because then the relative mechanical motions
as well as the paths and trajectories of charges and currents are known from the outset. The mechanics
involves rigid-body translations or rotations, while charges and currents might be constrained by elec-
trodes and wires. Processes in this category can be represented by lumped-parameter models. The field
approach of this chapter provides the basis for conceptualizing and interrelating such interactions,
for appreciating energy conversion limitations, and for deriving the parameters used in lumped-param-
eter models.

The representation of total forces and torques in terms of Maxwell stresses is developed in Sec. 4.2,
followed in Sec. 4.3 by a classification of common types of energy converters, based on the fundamental
field interactions. An extension of the transfer relations found in Secs. 2.16 and 2.19 to describe
regions occupied by specified distributions of charge and current is made in Secs. 4.5 and 4.8.. Although
this chapter is concerned with modeling specific interactions, it is the technique for representing
these systems that is the message. Section 4.4 exemplifies the notation and strategy underlying the
methodical formulation of complex systems in not only this chapter, but those to follow. Of the remain-
ing sections, only one does not pertain to a specific class of devices. Section 4.12 lends some for-
mality to the philosophy underlying quasi-one-dimensional models. Such approximations retain nonlinear
interactions and are illustrated in Secs. 4.13 and 4.14. By contrast, Secs. 4.4, 4.6 - 4.9 and 4.11
are concerned with field models that are naturally linear, or are linearized. Formally, the linearized
model, in which products of amplitudes are ignored compared to terms that are linear in the amplitudes,
is the zero-order approximation in an amplitude-parameter expansion for the exact solution. Similarly,
the quasi-one-dimensional model is a zero-order approximation to an expansion in a space-rate parameter.

The analogies that exist between electric and magnetic field interactions is a theme throughout
the chapter. This is clear in Sec. 4.3. But a thoughtful comparison of the characteristics of the
d-c magnetic machine, considered in more detail in Sec. 4.10, with those of the Van de Graaff machine in
Sec. 4.14 is worth while.

An overview of the chapter is given in Sec. 4.15.

4.2 Stress, Force and Torque in Periodic Systems

The configurations shown in Fig. 4.2.1 typify devices exploiting force or torque producing inter-
actions between spatially periodic excitations on a "stator" structure and spatially periodic con-
strained or induced sources on a "rotor." In each of these, the interaction is across an air gap, a
region having the electromagnetic characteristics of free space. The planar configuration of
Fig. 4.2.1a might represent a linear motor or generator with the relevant force between "stator" (above)
and "rotor" (below) z-directed, or it might be a developed model for the cylindrical geometry of
Fig. 4.2.1c9(appropriate in the limit where the air-gap spacing is small compared to the radius of the
rotor). Figure 4.2.1b shows the cross section of either a planar "slab" with the interaction across
two air gaps, or a cylindrical structure having an annular air gap. In either case the relevant net
force is z-directed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X or
".-•

z r T or 'Tr

rot --------. 1Z5^L - "... r SI- °7 .... 7 T

4 T.... .S 's,

(a) (b) (c)
Fig. 4.2.1. Typical "air-gap" configurations in which a force or torque on a rigid "rotor" results

from spatially periodic sources interacting with spatially periodic excitations on a rigid
"stator." Because of the periodicity, the force or torque can be represented in terms of the
electric or magnetic stress acting at the air-gap surfaces S1: (a) planar geometry or devel-
oped model; (b) planar or cylindrical beam; (c) cylindrical rotor.

Secs. 4.1 & 4.2



The total force acting in the z-direction on the "rotor" of Fig. 4.2.1a is conveniently dete
by integrating the Maxwell stress, in accordance with Eq. 3.9.4, over the surface S enclosing a po
of the rotor having one fundamental length of periodicity. The portion Sl of this surface is at a
arbitrary plane x = constant in the air gap. Because the fields and hence the stress components Tz
are periodic in z, thq contributions to the integration of the stress over surfaces S2 and S4 canc
regardless of where S1 is located in the air gap. The contribution to the integration over S3 can
vanish for several reasons. The rolor mny be perfectly permeable, of infinite permittivity or in-
finitely conducting, in which case H or E is zero on S3. In Cartesian coordinates, the fields ass
ated with excitations that are periodic in the z-direction decay in the x direction and if S3 is w
removed from the air gap, the contribution on S3 asymptotically vanishes. Yet another possibility
that the planar model really is a.developed model for the cylindrical configuration of Fig. 4.2.1c
in which case the surface S is "pie" shaped and the section S3 does not exist. In any of these ca
the z-directed force acting on the rotor of Fig. 4.2.1a is simply

f = A z S (1)

where A is the y-z area of the air gap and Tzx is the magnetic or electric stress tensor, as the c

may be. The brackets indicate a spatial average is taken, as discussed in Sec. 2.15.

There is no question as to which of the stress tensors in Table 3.10.1 should be used. As d
cussed in Sec. 3.10, in the free-space region of the air gap, all of the magnetic and all of the e
tric stress tensors agree.

If Fig. 4.2.1b represents a planar layer, then there are stress contributions from surfaces 
and S3 , and the net force acting on a section of the layer having area A in the y-z plane is

fz = A[ (Tz l - TZX 3 (2)

On the other hand, if the "rotor" in that figure is a cylinder, then the net force takes the form 
Eq. 1, with A the area of an enclosing cylindrical surface and appropriate shear stress Tzx * Tzr
evaluated on that surface.

In computing the net torque on the rotor of Fig. 4.2.1c, it is tempting to multiply the spac
average shear stress <TO 6• by the lever arm R and the area A of a cylindrical enclosing surface
having radius R:

Tz = RA (3)

Because the stress is symmetric, this notion is rigorous, as can be seen by applying Eq. 3.9.16 to
surface S1 of Fig. 4.2.1c.

4.3 Classification of Devices and Interactions

Based on the developed or linear air-gap configuration of Fig. 4.2.1a, this section begins w
illustrative simplified examples of "synchronous" and "d-c" magnetic and electric interactions. T
a general discussion is given of the various classes of machines, some having lumped-parameter mod
developed in later sections of this chapter and in the problems.

In parallel, consider first the electric and magnetic configurations of Part 1 of Table 4.3.
Even though the devices might in fact be developed or "linear," the terms stator and rotor will be
used to refer to the elements on respective sides of the air gap. The magnetic field is produced 
spatially sinusoidal distributions of current modeled as current sheets on the surfaces of the sta
and rotor. Because the stator and rotor are modeled as infinitely permeable, A = 0 outside the ai
gap and the surface currents "terminate" the tangential fields (Eq. 2.10.21). The electric field
produced by electrodes constrained to have spatially periodic potentials. Thus, boundary conditio
at the air-gap boundaries (s) and (r) are

Hs  Re[i s exp(-jkz)] 0s = Re[iý exp(-jkz)]z

Hr = Re[-Kr exp(-jkz)] 0r = Re[Vr exp(-jkz)] (1)
z I

where (s,Kr) and (Vsr) are given complex functions of time. (Complex notation is introduced in
Sec. 2.15.)

With the surface S1 taken as the rotor surface, (r), it follows from Eq. 4.2.1 and the avera
theorem, Eq. 2.15.14, that the force on a section of the rotor having area A is

Secs. 4.2 & 4.3
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Table 4.3.1. Basic configurations illustrating classes of electromechanical
interactions and devices. MQS and EQS systems respectively in
left and right columns.
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A -r * Ar A * A Ree =r* A Re e  *
f z = 2 ReoH o x (H) z =- 2oRepoH -K) z ox z =2 ox

The gap transfer relations, Eq. (a) of Table 2.16.1, give the normal fluxes at (s) and (r) in terms of the
potentials there. In the magnetic case, Hz = jkT7 and because of the boundary conditions, Eq. 1, these
relations become

1Hss -coth(kd) Eis ox (kd) sinh(kd) jk o x sinh(kd)

0

-1 -cK
oxiir coth(kd) --

sinh(kd) jk
[ 
o 0Ex 1 

-coth(kd) 1n

inh(kd) coth(kd)coth(kd)

Substitution of the normal flux densities at (r) expressed by Eqs. 3 into Eqs. 2 gives the desired forces

AW AEC
fz 2= Al(d) nh 

o
Re[jKs Kr) (4)z 2sinh(kd) fz = 2sinh(kd) Re[j(kVs )(kVr) ]

Note that the terms involving products of the individual rotor excitations do not contribute. (They are

imaginary and hence dropped in taking the real part.) Physically, this is expected because such terms

represent the rotor self-field interactions.

now systemsConsider Interactions: Synchronous 

with the rotor excitations produced by windings or

rotor. The co eto electrodes that are fixed the 

z' measures distance from a frame of reference moving X=I
U of the rotor, as sketched in Z =Zi Ut' Ut -NoTx'

with the velocity 
VFi 1. 3 1 Fixed -An movin frame coriae a=e

g. . . . g

related in the figure. Perhaps through slip rings, the

rotor is excited by a current of angular frequency

rotor theresuch a way that as viewed from the O in 

is a current or potential distribution taking the
form of a traveling wave: Fig. 4.3.1. Rotor and stator reference

frames z' and z.

Kr = Kr sin[wrt - k(z' k(z - )] _ r cos[W t - k(z' - 6)] (5)0 r 
fvr 0 r

On the stator, a similar arrangement of windings or electrodes, with excitations at the angular fre-
quency s, ,give the traveling waves:

Ks = Ks sin [w t - kz] Vs =V Cos [t - kz]

Because z' = z - Ut, Eqs. 5 and 6 can be written in terms of complex amplitudes:

(W+kU) t j J 
r - r e r k6

eW
- _Vr e (tr+kU) t jk6

s = _jK e 
0

-jKs eJ t S= Vs K = s eJs t
0

Substitution of these amplitudes into the respective force relations of Eq. 4 gives forces with
sinusoidal time dependences. The frequencies are in each case ws - Wr - kU. Only if this frequency
is zero will these forces have time-average values. Division of the resulting frequency condition by
k shows that these time-average forces exist because, as viewed from the stator frame of reference, the
velocities of the traveling waves of field induced by stator and rotor sources are equal:

Ws 

= r U

Usually, the rotor is d-c excited so that Wr = 0 and the phase velocity of the stator traveling wave,
ws/k, is equal to the rotor velocity U. Under the synchronous condition, the substitution of Eqs. 7
into Eqs. 4 gives the forces as functions of the relative spatial phase k6 between traveling waves:
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A 0oK0K AEo (kVa) (kV)
f 2sinh kd- sin k6 f - 2sinhkd sin k6 (9)z 2sinh kd I 2sinh kd

The sketches of the stator and rotor excitations in Part 1 of Table 4.3.1 (at the instant t = 0)
show the relative distributions with 6 -= /4, and hence k6 E 2r(6/A) = 7r/2. According to Eqs. 9, it
is at this spatial phase that the greatest retarding force acts on the rotor. The observation is con-
sistent with what would be expected intuitively for the sketched distributions. Under the synchronous
conditions the relative distribution of stator and rotor field sources is invariant. The stator cur-
rent distribution gives rise to a normal flux density that peaks at the current null. This is the sta-
tor magnetic axis, indicated by the vertical arrow on the stator. This field interacts with the rotor
current to produce the time-average force in the -z direction. Stator and rotor magnetic axes tend to
line up. Similarly, in regions of positive and negative electrode potential there are positive and
negative surface charges (although not exactly in phase with the potential). Thus, the retarding elec-
tric force results from the attraction of neighboring opposite charges. The rotor and stator axes,
denoted by the vertical arrows, also tend to line up.

The classic force(qr torque) phase-angle diagram, the graphical representation of Eqs. 9,
is shown at the top of 4 . 4.3.1. Angles of positive and negative force can respectively give motor
and generator operation. But, operation is generally restricted to the shaded regions because then
a change in relative phase, kS, results in a force that tends to return the rotor to its original angle.

Parts 2 and 3 of Table 4.3.1 illustrate other types of excitations that result in synchronous
interactions. In each of these, the rotor sources are "attached" to the rotor and hence the synchronous
condition of Eq. 8 reduces to ws/k = U. Each has a force with the same dependence on relative phase k6
illustrated by Eqs. 9.

Small machines having permanent magnet rotors are common, but electric analogues having permanent
polarization (Sec. 4.4) are not. By contrast, electric synchronous interactions between traveling waves
of charge and potential are common, whereas, devices making use of a trapped rotor flux are not. The
former, a kinematic model for electron beam devices, will be considered further in Sec. 4.6.

D-C Interactions: The family of magnetic devices called d-c machines has as an electric field
analogue devices of the Van de Graaff type. The configurations shown in Table 4.3.1, Part 1, can also
be used to illustrate this class of devices, provided the sketched current and potential distributions
are understood to be time-varying in amplitude but stationary in space. Currents are supplied to the
rotor windings through brushes and commutator segments in such a way that even though the rotor moves,
the rotor'S relative current distribution is stationary. The stator current distribution is similarly
stationary in space and shifted by the distance 6. The stationary distribution of rotor potential in
the electric analogue is an approximation to the potential associated with charge placed ohn a moving
belt at one fixed location and removed at another. Excitations therefore take the form

Kr =el-jK(t)e j ek = -Ko(t)sin k(z-6) Vr = Re[-V (t)eJk6 e-jkz = -V (t) cos k(z-6)

(10)

Ks = Re[-jKs(t)]e - jk = -Ks(t) sin kz Vs = Re V(t)e-jkz V(t) cos kz

Note that the complex amplitudes multiplying exp(-jkz), now arbitrary functions of time, are as required
to evaluate Eqs. 4. The resulting forces are in fact the same as given by Eqs. 9, provided it is under-
stood that (Ks, Ir) and (VS, Vr) are now arbitrary real functions of time.

The magnetic version of the d-c machine is modeled in Sec. 4.10, while the Van de Graaff machine

is taken up in Sec. 4.14.

Synchronous Interactions with Instantaneously Induced Sources: Common examples of devices that
exploit instantaneously induced magnetization forces on a moving member are variable-reluctance or
salient-pole machines. Electric field members of this family of devices include variable-capacitance
machines. (By contrast with magnetic and electric "induction" interactions, naturally taken up in the
next two chapters, the rotor sources induced by the stator excitations move synchronously with the
material. Geometry rather than a rate process, such as magnetic diffusion or charge relaxation, is
involved.)

Linear or developed salient-pole models are shown in Part 4 of Table 4.3.1. The rotor, which in
the magnetic case is perhaps highly magnetizable magnetically soft iron, has surface saliencies. In
a two-pole rotating machine, the rotor represented by this model (with 2T/k the circumference of the
stator) could be a squashed cylinder protruding toward the stator at two positions and away from it at
two others. The conventional method for finding the magnetic force on the moving member is to use the
energy method of Sec. 3.5 and knowledge of the inductance or capacitance of the stator windings or
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electrodes. Because of the rotor saliency, the stator current or potential distribution
terminal relations clearly depend on the rotor posi-
tion, and hence so also does the magnetic or electric SX 7
energy storage.

With the objective of fitting this type of in-
teraction into the field point of view, the develop- i
ment is in terms of the magnetic interaction. Simili-
tude then makes it possible to apply the results to
the polarization case. In the limit-where the mate-
rial is highly magnetizable, H is excluded from the H=O
rotor so that on the rotor surface the tangential
field vanishes. As a result, the magnetic traction
acts normal to the surface of the rotor. That is, in
a local Cartesian coordinate system on the rotor sur-
face, having the axis n in the normal direction, any
of the stress tensors (Table 3.10.1) evaluated in Fig. 4.3.2. Traction T*n = Tnnn acts
free space next to the rotor surface give a traction normal to rotor surface.

T T.n = Tnn (11)

Although not convenient for mathematical derivations, the surface enclosing one periodicity length 2w/k
of the rotor, shown in Fig. 4.3.2, helps in understanding how the magnetic traction gives rise to a net
force on the rotor. The traction acting normal to the surface has a value Tnn = oHn/2 and hence is
positive. No matter what the excitation from the stator winding, it is clear that at positions (i), where
the slope of the stator surface is positive, the magnetic field tends to pull the rotor to the left while
at point (ii) the pull is to the right. It is the spatial phase relationship between the stator current
distribution and the rotor saliencies that makes one or the other of these forces dominant. It is clear,
for example, that if the rotor surface wavelength matched that of the stator current there could be no net
force. The z-directed traction acting at any given point would then be cancelled by that acting at a
point on the rotor surface a half-wavelength away.

In deriving the relation of the excitation and rotor geometry to the net force, the rotor surface
is taken as being at

+ e- j (2k)( z -
x = -d + 4(z,t) = -d Re t Ut)

(12)

The rotor travels with the linear velocity U = w/k and hence its surface, with wavelength w/k half that
of the stator excitation, moves in synchronism with the traveling wave of stator surface current:

=* ReSe j(wt-kz)+
(13)

y

A surface, represented by F(x,y,z,t) = x + d - 4 = 0, has a normal vector

+ = VF Vn x z zF7 = IVFI (14)

As a reminder that this is a familiar relation, the surface might be one of zero potential (F 4 0), with
t the negative of the electric field intensity normalized so that it has unit magnitude. The condition
that there be no tangential field on the rotor surface is then

[Ix ]y = 0 H = -H L at x = -d + (15)y z x az

To match this boundary condition is in general difficult. In this section, it is assumed that 4 is small,
so that Eq. 15 is evaluated approximately (to first order in E) at the "equilibrium" position of the
rotor surface, x = -d. With Hx evaluated at x = -d rather than at x = -d + 5, the right-hand side of
Eq. 15 is already written to first order in C:

(x-d H (x-d)

Hz(x = -d + 5) = Hz(x = -d) + --- (x = -d) (16)

If it is further recognized that because H is irrotational, DHz/ax = Hx/a3z, then to first order in 4,
Eq. 15 becomes a boundary condition to be evaluated at x = -d, defined as the position (r):

Hr = z az xr (17)
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What must be used in evaluating Hý is the zero-order field. This is the field that would be found with
F = 0, with the rotor presenting a planar surface to a gap excited on the stator side by the current
sheet given by Eq. 13. Thus, Eq. 17 takes the form

Hr a [R• t-kz)Reee-2jk(z-Ut)
z 9z x

(18)
a 1 fr j(wt-kz) * -J(Wt-kz) -2jk(z-Ut) * 2jk(-Ut)

Tz 2 x x

Because of the synchronism condition, w = kU, multiplying out this expression gives a term having the
same spatial frequency as the stator current and a term at three times that frequency:

Hrz Re ke t-k) + Re 3 ke 3 j (t )];-kz *k * 3k- A• (19)

Note that this expression takes the form -VT. With the surface S1 of Fig. 4.2.1a taken as contfguous
with the stator, the desired space-average rotor force is

fz = ATz> = A=poH:ReKseej kz) (20)

Note that the terms in Eq. 19 are written in the standard complex form, with the quantity in brackets
the magnetic potential '. The amplitudes at the stator and rotor surfaces (at s and r) are therefore
related by the transfer relation (Eqs. (a) of Table 2.16.1):

fi 1 K-coth(kd) 
ox sinh(kd) jk

(21)= jok 

Ar -1 coth(kd) I
ox sinh(kd) k

for components with dependence exp[j(wt - kz)] and

oHx s-coth(3kd) sinh(3kd) 0

s= po3k (22)
SHr -1 coth(3kd) y

Sos sinh(3kd) coth(3k 3k

for components with dependence exp 3j(wt - kz). The infinitely permeable material backing the stator
current sheet requires that the third harmonic tangential field at the stator in Eq. 22a vanish.

The normal flux density 0#x in Eq. 20 is a superposition of the components found using Eqs. 21a
and 22a. Because it multiplies 5, H on the right in these expressions need only be evaluated to zero
order in C. Thus, 4I is given by Eq. 21b with I = 0, and hence = 0kO. The second term in Eq. 19 also
excites a field at the stator surface given by Eq. 22a. But, inserted into Eq. 20, this higher harmonic
gives no space-average contribution and hence can be dropped. Thus, Eq. 20 becomes

/ r -ok s *At1 k(t-kz
= fz A ie jllpcoth(kd)K + t I-in( Re s (23)

1 0 Losinh (kd) -z

The averaging theorem, Eq. 2.15.14, can now be applied to Eq. 23 to obtain the first of these relations:

9 kA -E = 0 Re (2jCs f CkA o 0 Re Fks2* (24)

4z sinh (kd) L 4sinh2 (kd)

The second expression pertains to the electric configuration of Part 4, Table 4.3.1, and has been obtained

by recognizing that, in terms of the magnetic and electric potentials, the airrgap fields are analogous.
The only difference is that in the magnetic casethe stator magnetic potential is Ks/jk, while in the
electric case, the stator electric potential is VS. Hence, the electric time average force is found
(using the complete analogy discussed at the beginning of Sec. 2.16) by replacing po + E  and is jk^Vs
in Eq. 24a to obtain Eq. 24b.
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As specific examples having the stator excitations and rotor position when t = 0 shown in Part 4
of Table 4.3.1, let

2 6 ý = % cos 2k[Ut - (z - 6)] = Ree jk exp[2jk(Ut - z)] (25)

and

Ks = Ks sin(wt-kz) = Re(-jKs) exp[j(wt-kz)] Vs = Vs cos(wt-kz) = ReV s exp[j(wt-kz)] (26)
0 0 0 0

where 5o s 
, KS and V are taken as real. Then, Eqs. 24 take the specific forms

A  
-1ok(K0)2 o -Eok(kVs) 2 A

f 0 0 sin(2k6) f 0 0 0sin(2k) (27)
z 4sinh2(kd) z 4sinh2(kd)

The dependence of these forces on the spatial phase of stator excitations and rotor position,
sketched in Table 4.3.1, is typical of salient-pole synchronous devices. That (Tz)z has twice the
periodicity in k6, obtained with the rotor excited directly by sources having the same periodicity as
the stator excitations, is a direct consequence of the induced nature of the magnetizdtion or polariza-
tion. Because the surface traction is proportional to the square of the local field 2the same force
is obtained if the rotor is shifted in relative position by 6 = T/k. The [sinh(kd)]- dependence of the
force on the gap dimension d results because the only excitation is on the stator. By contrast with
the synchronous interactions between excited stators and rotors [with (d) dependence sinh(kd)-l], here
there is a round-trip attenuation of the excitation field, first in reaching the rotor surface and then
in being reflected back to the stator.

Of the many configurations in the general family of "salient-pole" devices, two more are shown in
Part 5 of Table 4.3.1. The magnetic case is considered in the problems, while the electric one is
formally the same as if the rotor were perfectly polarizable. Hence it is also described by Eqs. 24b
and 27b.

Practical devices make use of large amplitude saliency. One approach to obtaining an appropriate
model is developed in Secs. 4.12 and 4.13, where the variable capacitance machine is considered in more
detail.

4.4 Surface-Coupled Systems: A Permanent Polarization Synchronous Machine

With field sources modeled by surface charges or surface currents, it is natural to generalize the

approach taken in Sec. 4.3 to the description of a wide class of complex electromechanically kinematic

systems. The technique involves breaking the region of interest into source-free subregions that have

uniform properties and hence can be described by the transfer relations of Sec. 2.16. Sources are then

relegated to boutdaries between subregions and are taken into account in the boundary conditions used to

splice fields together. It is the objective in this section to illustrate the systematic approach that
can be taken with such models by developing the lumped-parameter mechanical and electrical terminal

relations for the rotating machine shown in Fig. 4.4.1.

The rotor consists of a material having polarization density that is uniform and permanent:

St t -i j(e-er)
P= Po[ir cos(e - er) - i sin(e - Or)] = RePo(ir - jie)e (1)

Field coordinates are (r,O) while e r(t) is the rotor axis. Thus, the polarization density is

uniform and directed collinear with the rotor axis at the angle Or(t). The region between the rotor

(with radius R) and the stator (radius Ro ) is an air gap. Stator electrodes shown in the figure have

respective potentials +v(t) and are imbedded in a dielectric having permittivity cs. The length of

the device in the z direction,£, is considered large compared to the radial dimensions.

Within the rotor, there is no free charge density. Moreover, because the permanent polarization

is uniform and hence has no divergence, Gauss' law (Eq. 2.3.27) reduces to

V-6 E = 0 (2)

Within the rotor, as well as in the air gap and in the surrounding dielectric of the stator, the fields

are Laplacian. The transfer relations of Sec. 2.16 are directly applicable to describing the bulk fields.

Boundary Conditions: The potential at r = Ro is constrained to be +v(t) on the respective portions
of the stator surface covered by the electrodes. The potential between the electrodes on the dielec-
tric surface at r = Ro is approximated by the continuous linear distribution shown in Fig. 4.4.2.
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Fig. 4.4.1

Cross-sectional view of
permanent polarization
rotating machine.
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Fig. 4.4.2. Distribution of stator potential used to model
the device shown in Fig. 4.4.1.

In Fig. 4.4.1, the notation (a)...(d) is used to denote positions adjacent to interfaces between
regions. (This convention is introduced in Sec. 2.20.) Thus, the potential distribution of Fig. 4.4.2
is both Oa and Ob . In anticipation of the Laplacian solutions used to describe the bulk fields in
cylindrical geometry, the potential of Fig. 4.4.2 is now expanded in a Fourier series (see Sec. 2.15
for a discussion of Fourier series):

a + b a J -sin(mO )
) b 0 a(t) e I-jm D = 2v(t) sin( sin ( )

m=- m m = m em sin

(odd)

In the following it is assumed that the dielectric surrounding the rotor is of sufficient radius compared
to Ro, that fields decay to zero before reaching the outer surface of the dielectric.

At the rotor air-gap interface the tangential E and hence the potential must be continuous. Thus
the Fourier amplitudes are related by

c = d (2)m m
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In addition, Gauss' law (Eq. 2.10.21a) and Eq. 1 require that

+ c d d r -jO
nE O 0 E = -n. 0 P EoEr- oEE = Re(Poe e (3)

This latter expression relates the Fourier amplitudes by

oc o d = o [ jr -Jr
E --- E 61e 1 + 6e e (4)

o rm o rm 2 m lm

where 6nm, Kronecker's delta function, is unity for n = m and is otherwise zero.

Bulk Relations: The transfer relations, Eqs. (a) of Table 2.16.2 with k = 0, are now used to
represent the fields at the boundaries. In the stator dielectric surrounding the electrodes (r > Ro) ,
a + m and = R R while E -+ :

s rm sm 0

In the air gap (Ro > r > R), a + Ro, B + R and E- E O so that

_b b
EE fm(R,Ro) gm(Ro,R)o rm m

(6)
0

E c gm(R,R
o rm o) fm(Ro ,R) m

Finally, within the rotor (r < R) the relations are used with a = R, $ + 0 and E c E :

Ed d
E •d = E0 f m(0,R)D (7)o rm

The boundary conditions given by Eqs. 2 and 4 and the bulk relations of Eqs. 5, 6 and 7 comprise six
expressions that can be used to determine the Fourier amplitudes (, , Em, r E E ) with
the driving amplitudes m • given by Eq. 1. The solution for any one of the amplitudes is usually
much easier than this statement makes it seem, but nevertheless it is worthwhile to have the objective
of the model in view before proceeding further.

Torque as a Function of Voltage and Rotor Angle (v,e,): The rotor is enclosed by a surface at the
radial position (c) in the air gap. The method using the Maxwell stress to compute the torque is as
outlined in connection with Eq. 4.2.3. With the fields represented by Fourier series, Eq. 2.15.17
reduces the average of the shear stress over the enclosing surface to a summation on the products of the
Fourier amplitudes:

c o2 L c

z \r 6/ C=_0(EoEC o rm R mTz =R(2TrRe)(DEe = 2 mrR m )  (8)

Substitution for 6 Erm from Eq. 6b introduces the stator field, which is given by Eq. 1, and the same
field 4c as already appears in Eq. 8. On physical grounds it is expected that this latter "self-field"
term should not make a contribution. This is indeed the case, because fm is an even function of m so
that terms in mI4I2 cancel out of the sum. The mth term is cancelled by the -mth term. Thus, Eq. 8
reduces to

z= 2R 29m. - m=00 og m(R,R O ) (bm)(• ) (9)

c
and all that is required to determine the torque is an evaluation of 4 .m

With this objective, substitution of Eqs. 6b and 7 into Eq. 4 with Eq. 2 used to replace Qd with
Dc gives an expression that can m be solved for Oc:m

P jO -j ogm(RR)b

= 2c 6mme -lm m
m o[f (RoR) - f (0,R)] (10)

This expression and Eq. 1 in turn can be used to evaluate the torque, Eq. 9. (Again, because gm and fm
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are even in m, the self-field terms sum to zero):

-4RLgl(R,R o )  sin 
(e

Tz(V,e r ) = fl(Ro,R) - fl(0,R) 8o v(t)P° sin r  (11)

In a lumped parameter model for the device, with v(t) and Or(t) functions of time determined by the
external electrical and mechanical constraints, this relation represents the electrical-to-mechanical
coupling. The reciprocal mechanical-to-electrical coupling completes the model.

Electrical Terminal Relations: To describe the electrical terminals, the total charge q on the
respective electrodes is required, again as a function of the terminal variables (v,dr). The charge
on the upper electrode is

( 
8o - -- 

2 o ° +-
a o -a ~2 -b -jmO

q= (E E - Er )R de k E 0 (EsE 8 - oE )e R0 di

or+ 
+o

2 o o

2 -a -b 2 (SE - EEb)sin m( IT - o )  (12)
0 • m rm rm

The electric flux normal to the outer and inner surfaces of the electrode are computed from Eqs. 5
and 6a, respectively:

Ea - o b = Esf (,R )a f (R,R)b ~  ogm(R~ R)ic (13)S rm o rm s m 0 om o m - o m

The amplitudes (m4 ) are given in terms of v(t) by Eq. 2, while m is given by Eq. 10. Thus Eq. 13
is evaluated in terms of (v,Or):

q = Cs v(t) - ArPo cos 6 (t) (14)

where Cs, the stator self-capacitance, is independent of er and is

4£R +o sin m( - 80 ) sin mO
Cs c 22 o m 0  sin ) Isfm(-,Ro ) - ofm(RRo)

= -
m 0 m 0

odd Eogm(Ro,R)gm(R,Ro (15)
+ fm(Ro,R) - fm(O,R)15)

and Ar is a constant having the units of area

2RRogl(Ro,R)
A = 0g(R 0 cos (16)

r  fl(Ro,R) - fl(0,R)  o

The required electrical terminal relation is Eq. 14.

For reasons that stem from the approximations made in the field description, the model represented
by Eqs. 11 and 14 is not self;coneistent. At the dielectric air-gap interface between electrodes, the
potential is continuous, but n. 'Di is not. In physical terms, this means that the fields are as though
segmented electrodes existed at r = Ro in these transition regions having the linear potential distribu-
tion of Fig. 4.4.2 and supporting a surface charge that can be computed from Eq. 13. This charge is
not included in Eq. 14 and might for some purposes be ignored. But, if the mechanical and electrical
terminal relations are used as stated, the electromechanical system, which after all does not include
energy dissipating elements, is given a model that does not conserve energy. In fact, once the torque
is known, energy conservation formalisms introduced in Sec. 3.5 not only provide an alternative to com-
puting the electrical terminal relations, but lead to a self-consistent model and a recognition that
Eq. 15 can be considerably simplified.

In terms of lumped parameters, the system can be pictured as having the terminal pairs of
Fig. 4.4.3. The electrical terminal pairs are interconnected so that vI = -v2 = v and by symmetry,
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+q

V2
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(VPo',r)

Fig. 4.4.3. Three-terminal pair lumped Fig. 4.4.4. State space integra-
parameter system representing tion contour.
system of Fig. 4.4.1.

= energy conservation equation isql -q = q. the incremental 2 Thus, 

6w = 2v6q - T dOr (17)

Not accessible through the external electrical terminals is the electric energy storage due to the
permanent polarization. In Eq. 17 it is understood that Po is held fixed. Transformation to a hybrid
energy function w"(v,Po,6r) is made by replacing vs(2q) . 6(2qv) - 2q6v and defining w" = 2qv-w, so that

Sw" = 2q6v + r de (18)

This expression is integrated on the state-space contour shown in Fig. 4.4.4. First, with the rotor at
Or = u/2, the polarization is brought up to its final state. Then the voltage is'raised. Finally, with
P and v held fixed, the rotor is turned to the angle 8r of interest. With the rotor at Or = 7/2, the
net charge induced on the upper electrode because of the polarization is zero. Hence, the net charge on
the upper stator electrode is computed from Eq. 13, but with 6oEb determined as if the rotor were not
present. From Eq. 6,

-bbrm = f (0,R )bm (19)

Hence, Eq. 12 gives

4PkR sin m(- - 0 ) sin meo
q = Csv; Cs - 2 mO sin(f)[M fm(,Ro) of m(0,Ro)] (20)

m=-00 m o
odd

In view of Eqs. 20 and 11, the integration of Eq. 18 on v and then on 6r leads to

1 2 4Rigl(R,R ) sin o1
w" = 2[- Cv ] + 1Ro- R :• ) 0 vP cos 6 (21)2 s fl(RoR) - fl(0,R) eo o r

Finally, because w" = w"(v,P ,er), the required terminal charge follows as

1 aw"
q 2 •- = Cv - AP cos 6 (22)

where
- 2Rigl(R,Ro ) sin 06

A= (23)
r f1 (Ro,R) - f (0,R) o0

and Cs is given by Eq. 20. Simplification of Eq. 15 leads to Eq. 20, but for the reasons discussed,
Eqs. 16 and 23 differ by the factor [sin 00/ 0o]/cos 80. The use of Eqs. 22 and 23 for the electrical
terminal relation has the advantage that the model is then self-consistent in its representation of
energy flow. The same advantage would exist if the energy relations were used to compute the electrical
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torque from the electrical terminal relations. This more conventional technique would make use of Eq. 14
and an integration of Eq. 18 in the sequence, Po, er and v. To carry out the second leg of this integra-
tion without making a contribution requires that symmetry be used to argue that there is no electrical
torque even though the rotor is polarized.

4.5 Constrained-Charge Transfer Relations

For field sources constrained in their relative distribution, the transfer relation approach can
not only be used for sources confined to boundaries, but can also be used to describe interactions with
sQurces distributed through the bulk of a subregion. The objective in this section is to develop the
principles underlying this generalization of the transfer relations for electroquasistatic fields and to
summarize useful relations. The method is extended to certain magnetoquasistatic systems in Sec. 4.7.

In a region having a given net charge density p and uniform permittivity E, Gauss' law.and the
requirement of irrotationality for E (Eqs. 2.3.23a and 2.3.23b) show that the electric potential 4 must
satisfy Poisson's equation:

V2= - (1)E

In solving this linear equation, consider the solution to be a superposition of a homogeneous part 0H
satisfying Laplace's equation and a particular solution Op which, at each point in the volume of
interest, has a Laplacian -p/E:

S= H + DP (2)

It is this latter component that balances the "drive" provided by the charge density when the total
solution 0 is inserted into Eq. 1. By definition

2 - (3)

V2 H = 0 (4)

In the three standard coordinate systems, the particular solution can be written as a superposi-
tion of the same variable-separable solutions used in Sec. 2.16 for the homogeneous solution. Thus,

Re %p(x,t) exp[-j(kyy + kzz)] (Cartesian)

p= Re 0p(r,t) exp[-j(m6 + kz)] (cylindrical) (5)

Re %p(r,t) Pm (cos 6) exp[-jmO] (spherical)

With n used' to denote the normal component at the respective bounding surfaces of the region described
by the transfer relations, the homogeneous transfer relations of Tables 2.16.1, 2.16.2 and 2.16.3
relate the components of the homogeneous part of the solutions evaluated at the respective surfaces.
Thus, in these relations, the substitution is made

4- !a = p - ;aP; V 1 - 1
H P' H P (6)(6)

D =D - D + =D -Dn nH n nP' n nH n nP

The transfer relations, which take the general form of Eq. 2.17.6, therefore relate the new surface
variables and the particular solution evaluated at the surfaces:

a P 21 22 n nP

Multiplied out, the transfer relations for regions with a bulk distribution of charge are

-A 11 A 12 D n1 h
(8)

[-A A B a
21 22 n
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where

F AllD P - A12D]
= + (9)

S p A21DnP - A22D p

Associated with the surface variables related by these transfer relations are the bulk distributions of
potential. These are obtained from the distributions of potential for no charge density by again using
the substitutions summarized by Eq. 6. Fr example, in Cartesian coordinates, the potential distribu-
tion is the sum of Eq. 2.16.15 with (0 0, ) replaced by (i, - !, P - i) and the particular solution.

S a) sinh yx _ 8 sinh y(x - A) +
P sinh yA P sinh y (10)

The same substitution generalizes the cylindrical coordinate potentials, Eqs. 2.16.20, 2.16.21 and
2.16.25 as well as those in spherical coordinates, Eq. 2.16.36.

Particular Solutions (Cartesian Coordinates): Any 0p having the form of Eq. 5 can be used in
Eqs. 8 and 9. "Inspection" yields solutions in many cases. However, it is often true that the most
useful solutions belong to a class that can be generated by the procedure now illustrated in Cartesian
coordinates.

Within the planar region (shown in Table 2.16.1) there is a charge distribution that has an arbi-
trary dependence on the transverse coordinate x but the y-z dependence of Eq. 5a for complex amplitude,
Fourier series or Fourier transform representations:

0 -j(k y + k z)
p = Re E pi(t)Hi(x)e y z(11)

i=o

Here, the distribution has been represented as a superposition of modes li(x) having individual complex
amplitudes ýi(t). These as yet to be determined modes are defined such that the particular solution
can be written as a superposition of the same modes:

Gop -t) -j(kyy + kzz)
4p = Re E i(t)Hi(x)e y z (12)

i=0

The same functions are used for both p and 0p because then substitution into Poisson's equation, Eq. 3,
shows that a particular solution has been found, provided that the modes satisfy the Helmholtz
equation:

d11 2 +
2  zi 2 2 i 2 2

+ = 0;i - k (13)

It follows from Eq. 13 that Hi is a linear combination of sin(vix) and cos(vix). Boundary con-
ditions, selected as a matter of convenience and to give orthogonal modes that can be used to expand
an arbitrary charge distribution in a quickly convergent series, complete the specification of the
modes. For example, the transfer relations, Eqs. 8 and 9, are simplified if

S= ; -E --- = 0 (14)
nP dx nP dx

so these will be used as boundary conditions in solving Eq. 13. It follows that for a layer with a and
8 surfaces at x = A and x = 0, respectively,

Hi = cos 1ix; vi = ; i = 0,1,2,... (15)

From the definition of vi, Eq. 13, the potential and charge-density amplitudes called for in Eqs. 11
and 12 are related by

pi
i 2 2 k(16)E(V. +k + k2

1 y z
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The charge-density amplitudes are determined from a given distribution Re p(x,t) exp[-j(kyy + kz)] by
a Fourier analysis. That is, Eq. 11 is multiplied by IHk, integrated from 0 + A, solved for Pk and
k - i:

= I ý(x't)li( ix)dx; i 0 0: Po *MI 1 ( ),t)dx (17)
0

The associated transfer relations, Eqs. 8 and 9 evaluated using Eqs. 12, 15 and 16, with Aij's from
Table 2.16.1, become

1 a
sinh yA x +.

(18)
i=O0

coth yA Di xJ

The potential distribution is given in terms of these amplitudes and the particular solution (Eqs. 12,
15 and 16) by Eq. 10. Note that to make use of Eq. 10 the origin of the x axis need not be coincident
with the 8 surface. The equation applies to a region with the 8 surface at x = a if the substitution
is made x + x + a.

Cylindrical Annulus: In cylindrical coordinates, the given charge distribution and particular
solution take the form

00

p = Re E 4 (t)ll (r)e-j (m+kz). (m+kz)4p = Re (t)H 1i (r)e-j (19)
i-=0

Thus, Poisson's equation, Eq. 1, requires that

d2ni 2
1 di 22+ d + ( v m 2_ Pi 2

d 2 -~) i = 0; (20)r dr i 2idr r EIP

and the potential amplitudes are related to the charge density amplitudes by

-i

i = (21)2 i 2
e(V + k2

Boundary conditions used in selecting solutions to Eq. 20 might be selected analogous to those of Eq. 14.
This would simplify the transfer relations, but require solution of a relatively complicated tran-
scendental equation for the vi's. Instead, the particular solution is required to vanish on the outer
surface only and solutions that are singular at the origin are excluded. In cylindrical coordinates
this is sufficient to result in a complete set of orthogonal modes:

p = -E d = 0 (22)rP dr a~j

Comparison of Eq. 20 to Eq. 2.16.19 shows that the solutions that are not singular at the origin
are Bessel's functions of first kind and order m:

(23)i = Jm(Vir)

To satisfy the boundary condition, Eq. 22, the Vi's must be roots of

viJ (via) = 0 (24)

In now evaluating the transfer relations, Eqs. 8 and 9, the normal flux density is zero at the a
surface, but otherwise all of the particular solution entries make a contribution:
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$a F (,a) Gm(a. ) "Dr (vi a) + ViGm(a,)JV(Vi8)
1 0 i=E- 

[ 
+ E 2 (25)

a i=0 E(V2 + k2)
[(B,a) F (aB) 1 (v B) + vmi(aB)J'(v B)

An important limiting case is 0 + 0 so that the region is a "solid" cylinder. This limit is most con-
veniently taken by first using the limiting form of the transfer relation, Eq. (b) of Table 2.16.2,
which becomes

1a - =F Fm(0,a)D -Dap (26)
P 6 m r rP

Put in the form of Eq. 25, the transfer relation for a solid cylinder is

00 P
Fm(O,a)D + J (a) (27)

i=0 c(vi + k2)

The charge-density amplitudes ýi are evaluated in terms of the given charge distribution by exploiting
the orthogonality of the Hi's.

Orthogonality of Ii's and Evaluation of Source Distributions: The given transverse distribution
of p is used to evaluate the mode amplitudes, Hi(x) or HIi(r) and hence Oi. Because the particular
solutions are in each case a superposition of solutions to the Helmholtz equation, with appropriate
boundary conditions, the eigenmodes Hi are orthogonal. In the Cartesian coordinate cases, this means
that

Sni(R = 6ij  (28)x) n (vjx)dx 

This relation is the basis for evaluating the Fourier coefficients, for example Eq. 17. Proof of
orthogonality and determination of the coefficients is possible in this case by direct integration.
But, in the circular geometry, a more powerful method is needed, one based on the properties of
fi(vir) that can be deduced from the differential equation and boundary conditions. The proof of
orthogonality and determination of the normalizing factor is as follows.

Multiply Eq. 20 by rllj and integrate from the origin to the outer radius. The first term can
then be integrated by parts to obtain

dl(vir) a dI (vir) dR (v r) a 2
r1 (v r) dr - r dr dr dr + r(vi - )i dr =0 (29)

o o o r

This expression also holds with i and j reversed. The latter equation, subtracted from Eq. 29, gives

adHa d.a
(V2 2) ri dr = ri d - rII d- (30)

it is clear that either for Ii = 0 or dRi/dr = Thus, 0 at r = a, the functions Ii and IIj are orthogonal
in the sense that the integral appearing in Eq. 30 vanishes provided i # J.

The value of the integral for i = j is required in evaluating the coefficients in the charge
density expansion, and is deduced by taking the limit where vj vi, or Av + 0 in (vl = Vi + AV)

lj (v r) = j[vir + (Av)r] = I (Vir) + [I! (vr)]rAv (31)

Again, the prime indicates a derivative with respect to the argument (Vjr). Expansion of Eq. 31
to first order in Av shows that in the limit Av - 0,

2 m2 1

rH dr = 6 2 ia)]2 + - ]2 (V a)0 (32)In obtaining this result, the fact that [1 i satisfies Bessel's equation, Eq. 20, has again been used to

In obtaining this result, the fact that Hi satisfies Bessel's equation, Eq. 20, has again been used to
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substitute for "' in terms of Hi and II.

An example exploiting the cylindrical constrained-charge transfer relations and orthogonality
relations is developed in Sec. 4.6.

4.6 Kinematics of Traveling-Wave Charged-Particle Devices

Synchronous interactions between a "stator" potential wave and a traveling wave of charge are
abstracted in Part 3 of Table 4.3.1. In the most common practical devices exploiting such electric
interactions, the space-charge wave is itself created by the electromechanical interaction between a
structure potential and a uniformly charged beam. These examples are not "kinematic" in the sense that
the relative distribution of space charge cannot be prescribed. Nevertheless, by representing the inter-
action as though independent control can be obtained over the beam and structure traveling waves, the
energy conversion principles are highlighted. In addition, this section illustrates how the constrained-
charge transfer relations of Sec. 4.5 are put to work. Self-consistent interactions through electrical
stresses will be developed in Chaps. 5 and 8.

In the model shown in Fig. 4.6.1, the space-charge wave has the shape of a circular cylinder of
radius R and charge density

p = -pB cos(wt - kz + k6) = Re ý exp(-jkz); [-pB exp(jk6)] exp(jwt) (1)

where pB is a constant.

Fig. 4.6.1. Regions of positive and negative charge represent concentrations and rarefactions in
the local charge density of an initially uniformly charged beam moving in the z direc-
tion with the velocity U.

In an electron beam device,1 the stream is initially of uniform charge density. But, perhaps ini-
tiated by means of a modulating field introduced upstream, the particles become bunched. The resulting

space charge can be viewed as the superposition of uniform and periodic space-charge components. The
uiform component gives rise to an essentially radial field which tends to spread the beam. (Through the
qv x B force attending any radial motion of the particle, a longitudinal magnetic field is often used to

confine the beam and prevent its spreading. In any case, here the effect of this radial field is con-

sidered negligible.)

In traveling-wave beam devices, the interaction is with a traveling wave of potential on a slow-
wave (perhaps helical) structure, such as that shown schematically in Fig. 4.6.2a. The structure is
designed to propagate an electromagnetic wave with velocity less than that of light, so that it can be in
synchronism with the space-charge wave. For the present purposes, this potential is imposed on a wall
at r = c:

c = V cos(Wt - kz) = ReV jekz; V = V ejW t (2)

In the kinematic model of Fig. 4.6.1, the coupling can either retard or accelerate the beam, depend-

ing on whether operation is akin to a generator or motor (Table 4.3.1). Traveling-wave electron beam

amplifiers and oscillators are generators, in that they convert the steady kinetic energy of the beam to

an a-c electrical output. The result of the interaction is a time-average retarding force that tends

1. Basic electron beam electromechanics are discussed in the text Field and Wave Electrodynamics, by
Curtis C. Johnson, McGraw-Hill Book Company, New York, 1965, p. 275.
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Fig. 4.6.2. (a) Schematic representation of traveling-wave electron beam device with slow-wave struc-

ture modeled by distributed circuit coupled to beam through the electric field. Below struc-
ture is distribution of space charge in the beam (A), and the equivalent distribution of a uni-
form charge density (B) and a periodic distribution (C). (b) Combination cutaway and phantom
view of low-noise low-power traveling-wave tube that operates in part of the frequency range
2 to 40 GHz. (c) Schematic of linear accelerator designed so that oscillating gap
voltages "kick" particles as they pass. Shown below are "bunches" of particles and hence
space charge (A) and the equivalent superposition of periodic and uniform parts (B) and (C).
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to slow the beam.

The "motor" of particle beam devices is the particle accelerator typified by Fig. 4.6.2c. Here,
the object is to accelerate bunches of particles to extremely high velocities by subjecting them to
alternating electric fields phased in such a way that when a bunch arrives at an accelerating gap, the
fields tend to give it an additional "kick" in the axial direction.2 The complex fields associated with
the traveling particle bunches and accelerating fields are typically represented as traveling waves, as
suggested by Fig. 4.6.2c. The principal periodic component of the space-charge wave is represented in
the model of Fig. 4.6.1.

In this section it is presumed that the particle velocities are unaffected by the interaction; U is
a constant. In fact, the object of the generator is to slow the beam, and of the accelerator is to in-
crease the velocity; a more refined analysis is likely to be required for particular design purposes.

In yet another physical situation, the constraints on mechanical motion and wall potentials assumed
in this section are imposed. At low frequencies and velocities, it is possible to deposit charge on a
moving insulating material. Then, the relative charge velocity is known. Moreover, at low frequencies
it is possible to use segmented electrodes and voltage sources to impose the postulated potential dis-
tribution.

As will be seen, at low velocities it is difficult to achieve competitive energy conversion den-
sities using macroscopic electric fordes. So, at low frequencies, the class of devices discussed in
this section might be used as high-voltage generators rather than as generators of bulk power.

The net force on a section of the beam having length k is found by integrating the stress over a
surface adjacent to the outer wall (see Fig. 4.2.1b for detailed discussion of this step):

fz = 2ra<ADcEcC = f rwaRelz()* jkVo] (3)
z

To compute Dc, and hence f , the potential is related to the normal electric flux and charge density by
the transfer relation for a "solid" cylinder of charge, Eq. 4.5.27 with m = 0:

-a 1 a (0 iJo( ia)
SF(0,a) r + 2 (4)
0o ri= E (v i +

Table 2.16.2 summarizes Fo(0,a ) .

Single-Region Model: It is instructive to consider two alternative ways of representing the fields.
First, consider that the beam and the surrounding annular region comprise a single region with a charge
density distribution as sketched in Fig. 4.6.3. Then, in Eq. 4, the radius a = a and the position
(a) + (c). Multiplication of Eq. 4.5.19a by r1lj(vjr) and integration 0 + a then gives

Io R 0
rJ o ( v r)dr = E i i rJo (Vir)J (v r)dr (5)

oi=0

Fig. 4.6.3

Radial distribution of charge
density.

The right-hand side is integrated using Eq. 4.5.32, while the left-hand side is an integral that can be
evaluated from tables or by using the fact that Jo(vir) satisfies Eq. 4.5.20 with m - 0 and Eq. 2.16.26c
holds for Jo:

R a2 2 RJ 1 (viR)
S 1  R) -2 o Via Jo (via); i 0 (6)

2. A discussion of synchronous-type particle accelerators is given in Handbook of Physics, E. U. Condon

and H. Odishaw, eds., McGraw-Hill Book Company, New York, 1958, pp. 9-156.
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The root vi = 0 to Eq. 4.5.24 is handled separately in integrating Eq. 5. In that case Jo = 1 and o =
R2ý/a2.

Because ýc = V,' Eq. 4 can now be solved for Dc;r

00 2RJ (ViR)
-1

D = F (,a) +2 2 2
r 0 o

L(ak)2 i=l svia (V + k )J (V a)
1 1 0 1~

It follows from Eq. (3) that, for the distribution of charge and structure potential given by Eqs. 1 and
2, the required force on a length £ of the beam is

2fz= -(TR £)(kVo B sin k6)L 1

where

S1 2J1 [(via) a-]
aF (O,a)

1 R 2 + 2 2
(ak) i=l (vja)[(v .a) + (ak) ]J (va) F-0 

Hence, the force has the characteristic dependence on the spatial phase shift between structure potential

and beam space-charge waves identified for synchronous interactions in Sec. 4.3.

Two-Region Model: Consider next the alternative description. The region is divided into a part
having radius R and described by Eq. 4 (with the position a - e and radius a + R) and an annulus of
free space. Because the charge density is uniform over the inner region, only the i = 0 term (having
the eigenvalue ,o = 0) in the series of Eq. 4.5.1 is required to exactly describe the charge and
potential distributions. With variables labeled in accordance with Fig. 4.6.1, Eq. 4 becomes

De F (0,R) +
+

Ek

The annular region of free space is described by Eqs. (a) of Table 2.16.2:

(R,a) g (a,R) 1 c

(10)

(R,a) fo(a,R) [d

Boundary conditions splice the regions together:

~c ~ o d e d ~e
c = V = e, D = Dr (11)

o9 r r

In view of these conditions, Eqs. 9 and 10b combine to show that

-1R - -1 -2
d go(R,a)Vo + Fo (0,R)E k

(12)
-1

F (0,R) - f (a,R)
0 0

From Eq. 10a bc can be found and the force, Eq. 3, evaluated. The result is the same as Eq. 8 except

that L1 is replaced by

-1
[ag o (a,R)][aFo (0,R)] I (kR)

L (13)2
2 ~

2 ( 2  -1 0
(ka) () [aF (O,R) - af (a,R)]a 0o

To obtain the second expression, note that the reciprocity condition, Eq. 2.17.10, requires that

ago(a,R) = -Rgo(R,a).

Numerically, Eqs. 8 and 13 are the same. They are identical in form in the limit where the charge

completely fills the region r<a, as can be seen by taking the limit R + a in each expression

-1
aF (0,a)

(14)
L L o

SL2 (ak)2
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In the example considered here the second repre-
sentation gives the simpler result. But, if
the splicing approach exemplified by Eq. 13 were
used to represent a more complicated radial dis-
tribution of charge,, the clear advantage would
be with the single region representation illus-
trated by Eq. 8.

The dependence of L2 on the wavenumber
normalized to the wall radius is shown in
Fig. 4.6.4. As would be expected, the coupling
to the wall becomes weaker with increasing k
(decreasing wavelength). The part of the
coupling represented by L2 also becomes smaller
as the beam becomes more confined to the center.
Note however that there is an R2 factor in
Eq. 8 that makes the effect of decreasing R L 2

much stronger than reflected in L2 (or L1 )
alone.

4.7 Smooth Air-Gap Synchronous Machine Model

A specific result in this section is the
terminal relations that constitute the lumped-
parameter model for a three-phase two-pole
smooth air-gap synchronous machine. The deriva-
tions are aimed at exemplifying the pattern that
can be followed in describing a wide class of ka----
magnetic field devices modeled by coupling at
surfaces.

In the cross-sectional view of the smooth Fig. 4.6.4. Function L2 defined by Eq. 4.6.8.
air-gap machine shown in Fig. 4.7.1a, the stator
structure consists of a laminated circular cylindrical material having permeability 11s with outside
radius a and inner radius b. Imbedded in slots on this inner surface are three windings, having turns
densities that vary sinusoidally with 0. These slots are typically as shown in Fig. 4.7.2b, where the
laminations used for construction of rotor and stator for the generator of Fig. 4.7.2a are pictured.
Only one of these stator windings is shown in Fig. 4.7.1, the "a" phase with its magnetic axis at e =
-900. The "b" and "c" phases are similarly distributed but rotated so that their magnetic axes are
respectively at the angles 300 and 1500. Thus the peak surface current density for the respective
windings comes at the angles e = 0, 8 = 1200, and 8 = 2400. These stator windings have peak turns
densities Na, Nb, Nc, respectively, and carry the terminal currents (ia, ib, ic). Because the stator
windings essentially form a current sheet at the radius b, their contribution to the field is modeled
by the surface current density

27r 41T
Ks = ia(t)N 2) a cos + ib(t)Nb cos(e - + ic(t)Nc cos(8 - -)

3 (1)

aaa b b c c= Re Kse ; K S= iaNa bNbe + icNe

There is only one phase on the rotor, consisting of sinusoidally distributed windings of peak turns
density Nr excited through slip rings by the terminal current ir . With the rotor angular position

denoted by er, the rotor current is modeled by a surface current density at r = c of

r  - r re r
K = i (t)Nr cos(0 - 8r) = Re Kre ; K = i Ner (2)

These excitations have been written in the complex amplitude notation. Fields in each region are

described by the polar coordinate transfer relations of Table 2.19.1 with m = 1.

The objective in the following calculations is to relate the electrical and mechanical terminal

relations so that electromechanical coupling, represented schematically in Fig. 4.7.3, is specified in

the form

[Xa] a  a  X L L L iL L ab Lac Lar a

b ba bb bc br b (3)

c ca cb cc cr c

S L ra rb rc rr r

T= (i .i..i.i . ) (4)
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(a) (b)

Fig. 4.7.1. (a) Cross-sectional view of smooth air-gap synchronous machine showing only
one of three phases on stator. (b) Distribution of "a"-phase windings on
stator as seen looking radially inward.

(a) (b)
,/ ~~
~ Fig. 4.7.2. (a) Model synchronous alternat~ having rating of about one kVA and modeling 900 MVA

machine. Unit is one of several used in MIT Electric Power Systems Engineering Laboratory as
part of model power system. Slip rings for supplying field current are on shaft near bearing.
Disk with holes is for measurement of angular position of rotor. (b) Rotor and stator lamina­
tions used for model machine of (a). Rectangular slots carry windings. Conducting rods in­
serted through the circular holes in the rotor are shorted at the ends of the rotor to simulate
transient eddy-current (induction machine) effects in full-scale machine. The scaling requires
that the model have extremely narrow air gap of about 0.23 mm, as compared to the gap of about
7 cm in the full-~cale machine.
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_ · .·.· _· r·_· · ~~· · ·
Boundary Conditions: The field excitations represented by Eqs. I

and 2, written in complex-amplitude notation, can be matched by single +
components of the fields represented in each region by the polar co- X,
ordinate transfer relations of Table 2.19.1. In view of the 8 depend- Tz-*

ence of the current sheets, m = 1.

Positions adjacent to the boundaries between current-free regions Xb
of uniform permeability in Fig. 4.7.1a are denoted by (d) - (i). Fields
are assumed to vanish far from the outer surface. At each surface, the
normal flux density is continuous (Eq. 2.10.22). This means that the X,

__7
vector potential is continuous, and hence

Ir ---
+

e d e 
= (5) X,

Af = xg (6)

-h -i Fig. 4.7.3. Electromechanical
coupling network for

to the surface cur- system of Fig. 4.7.1.jump in the tangential field intensity is equal The 
rent density (Eq. 2.10.21), and hence

Rd e =0 (8)

~f ~ ~
H 6 - e= KS (9)

~h ~i ~r
H - H = K (10)

Bulk Relations: Each of the uniform regions is described by Eq. (c) of Table 2.19.1. In the
exterior region, a + 0, 8 = a, and p = po

H = f(-,a) (11)oe 1

In the stator, a = a, 8 = b, and p = ps

1 1= (b,a) g1 (a,b) Ae
1

[J (12)
H s gl(ba) fl(a,b) A

In the air gap, a = b, 8 = c, and i = o:

H 1 f(c,b) 1 gl(b,c) 1  (13)
(13)

H h 10 9gl(c,b) fl(b,c) A

and finally, in the rotor, a = c, -+ 0, and p = r:

i 1 i
H (14)= f1 (0,c)A 

r

Torque as a Function of Terminal Currents and Rotor Angle: With the surface of integration for
the stress tensor just inside the stator, it follows from Eq. 4.2.3 that the rotor torque is

T = 2
z (27rb k) 1 Re (H ) B = rb2iRe[ (bH)*1-) (15)

It will be seen shortly that the electrical terminal relations can be computed from Ag. It is there-
fore convenient to also express Eq. 15 in terms of Ag and the given surface currents. To this end,

1Eqs. 5 and 8 are used to replace (d) - (e) in Eq. 11, while Eqs. 6 and 9 are used to replace Hq and A
in Eq. 12b. Thus, Eqs. 12 can be solved for H as a function of Ks and Ag:

g s Ag gl(b,a)gl(a,b)
= -k + - fl(a,b) + 

ePp1 
. . -b (16)

f1 (-,a) - fl(ba)
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Because the geometric quantity multiplying Ag is real, it is clear that substitution of Eq. 16 into
Eq. 15 gives only

g ]
T = vbkRe[(KS) *jA (17)

To evaluate Ag in terms of K and K (and hence in terms of the terminal currents and Or), Eqs.
and 10 are used in Eq. 14, which is solved for Hh. This latter quantity is substituted into Eq. 13b.
Simultaneous solution of Eqs. 13 then gives a second expression for Hg:

Krgl(b,c) gl(b,c)gl(c,b)
+ (18)

fl(cb) 
]o
L fl ( 0,c ) 

- -fl .(b,c) - fl(0,c) fl(b,c)
r r

By equating Eqs. 16 and 18, it is now possible to solve for Ag in terms of the surface currents:

Pog 1 (b,c)
A - K + (19)

D

D[fl(b,c) - f l (0,c)]
r·I

where

D (ab) + gl(b,a)gl(a,b) I1 + gl(b,c)gl(c,b)

i 1 ( , a ) - fl(b,a fl(0,c) - fl(b,c

L 0 ý1-rI-

A methodical approach to solving the boundary and bulk relations is suited to those comfortable

with the reduction of determinants or inclined to use matrix computations. Following this alternativ

the boundary conditions, Eqs. 5 to 10, are used to eliminate the "d", "f", and "i" variables in the

bulk relations, Eqs. 11 to 14. These latter equations are then written in the form

0-1 fl(,a Ae
) 0 0 H0

e
-1 -1 fl(b,a) 0 - gl(a,b) 0

S1 -1 1- f-0 1 (b,a) 1 (a,b) KS

Ps s (20)

-1 fl(c,b) 0
0o

1
0 - l(c,b) 0

-0 - f1 (b,c)

_Kr0 0 -1 - r]df (0,c)

Cramer's rule is then used to deduce Ag, Eq. 19.

Substitution of Eq. 19 into the torque expression, Eq. 17, shows that

7rbp o0
z Re[jKr(Ks) * ]

z = (21)
]1

D[fl(b,c) - -
o

fl(0,c)]
r

It follows from Eqs. 1 and 2 that the torque, expressed in terms of the terminal currents, is

-Tb9og1 (b,c)
T = irN [iN sin + ibN sin(0 - )

r+r aia a r r bb r - 311o
D[fl(b,c) - ý- f1 (0,c)]

r
+ iN sin(e - 4Tr)] (22)

cc r 3
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Electrical Terminal Relations: The flux linked by one turn of the "a"-phase coil running in the +z
direction at e = 6' and returning in the -z direction at e = 6' + T is

( = £[A(b,O') - A(b,O' + 7)] = ReAg[e - j O - e - j ( l ] (23)

Here, use has been made of the relation between the vector potential and the flux, as described in
Sec. 2.18 (Eq. (f) of Table 2.18.1).

The flux linked by the turns in the azimuthal interval bdO' is then (x(bde'N cos 6'), and the
total flux linked by the "a" phase is

Tr/2

X = -bkN Re [ej + e j  ]1•g[JjT 6 '- d' = g
- l]e-je ZbN fReA (24)

a - a -/2 2 a

Substitution of Ag from Eq. 19 and the surface currents from Eqs. 1 and 2 then gives the terminal relation
for the "a" phase, in the form of Eq. 3a, where

rkbioNaN
L = a L b oac L = L bNN cos
aa D 'ab 2D Lac 2D ' ar o a r r

rP ogl (b,c)
L (25)

o 11
D[fl(b,c) - ~ f 1 (0,c)]

r-I

By symmetry, the inductances for the "b" and "c" phases are obtained without carrying out the evaluation
by simply replacing indices in Eq. 25. For the "b" phase, replace indices a - b, b - c, c + a, and 6r,
Or - 2rr/3 and for the "c" phase, a - c, b + a, c + b, and Or + er - 47r/3.

The remaining flux linkage, Xr, is computed by first recognizing that the flux linked by one turn
on the rotor winding running in the z direction at e' and returning at 6' + Tr is

SX l]e-J '= -ReAh[ej - (26)

Hence, the total flux linking the rotor winding is

er +

S= I h je r
+ N cos(O' - 0 )4 cd0' = N cZRReA e (27)

0r r r X r

The vector potential amplitude required to evaluate this expression follows from Eqs. 7, 10, 13b, and 14:

g1 (c,b)Ag - • K r
A= (28)

r fl(0,c) - fl(b,c)

where Ag is again Eq. 19, and the surface currents are evaluated in terms of the terminal currents using

Eqs. 1 and 2. Thus, with the use of the transfer function reciprocity relation, cgl(c,b) = -bgl(b,c),

Eq. 2.17.10,

2Lr 4Lr
L = L obN N cos 0 r , Lrb = L bNrNb cos(0 r -), 2 -3 L = L bN N cos(r r -2ra o r a rb 0 rb rc o r c 2t_

(29)
g (b,c)

L = LorbN 1
1 ,b

rr o r D[fl(bc) 91(cb) I
D[f 1(b,c) - - f1(0,c)0

Energy Conservation: Because the electromechanical coupling network represented by Fig. 4.7.3 is
conservative, there is considerable redundancy in the terminal relations that have been derived. Con-
servation of energy requires that (Eq. 3.5.7 applied to a magnetic system)
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6w' = Xa61a + Xb6ib + AX6ic + Xr6ir + T6 r  (30)

From the assumption that w' is a state function, it follows that (see Eq. 3.5.4)

aw' 3w'
Ak = ; k = a,b,c,r; Tz  (31)

k r

Lumped-parameter reciprocity conditions are generated by taking cross-derivatives of these relations:

ak x£ aTz  aA k = a,b,c,r

a r = a,b,c,r

The four relations among the electrical terminal variables show that

Lkk = L£k (33)

and these conditions are met by the results summarized by Eqs. 25 and the subsequent substitution of
indices and Eq. 29. The reciprocity conditions between the torque and the flux linkages, Eq. 32, is
also satisfied by Eqs. 22 and Eqs. 25 and 29. Note that to make it clear that the lumped-parameter
reciprocity relations are satisfied, the reciprocity condition for the air-gap transfer relations was
used in writing Eq. 29.

4.8 Constrained-Current Magnetoquasistatic Transfer Relations

By way of exemplifying how transfer relations can be used to represent fields in bulk regions,
including volume distributions of known current density, these relations are derived in this section
for one important class of physical situations. The current density (which is typically the result
of exciting distributions of wire) is z-directed, while the magnetic field is in the (r,8) plane.
Thus, the relations are directly applicable to rotating machines with negligible end effects. Such
an application is taken up in the next section.

In a broad sense, the objective in this section is to magnetic field systems what the objective
in Sec. 4.5 was to electric field systems. But, the solution of the vector Poisson's equation,
Eq. 2.19.2, is more demanding than the scalar Poisson's equation, Eq. 4.5.1, and hence the technique
now illustrated is limited to certain configurations in which only one component of the vector poten-
tial describes the fields. Such cases are discussed in Sec. 2.18 and the associated transfer rela-
tions for a region of free space are derived in Sec. 2.19. The following discussion relates to the
polar-coordinate situations of Tables 2.18.1 and 2.19.1.

In the two-dimensional cylindrical coordinates, the vector Poisson's equation (Eq. 2.19.2) has
only a z component and the Laplacian is the same as the scalar Laplacian:

V2 A = -pJz (1)

Following the line of attack used in Sec. 4.5, the solution is divided into homogeneous and particular
parts,

A - AH + Ap (2)

defined such that

2A- -Jz; 2H = 0 (3)

The imposed current is now represented in the complex amplitude form

(4)Jz = ReJ(r,t)e-jm6 

Of course, by superposition, such solutions could be the basis for a Fourier representation of an arbi-
trary current distribution. Substitution of Eq. 4 into Eq. 3 shows that A must satisfy the equation

P

2-2
d2  1 dAP m22+ r 2 AP=-Iii(r) (5)(5)dr2  r dr r -Jr) 

dr r

The particular solution can be any solution to Eq. 5. The magnetic field associated with this particular
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solution is, by the definition of the vector potential (Eq. 2.18.1),

HP = dr r; BdrP r1

From Eq. 2 it follows that the homogeneous solution is the total solution with the particular solu-
tion subtracted off. That is,

4AH A - ; HOH = HO - Hp

The homogeneous parts 

[F 
are related by the transfer relations, Eqs. (d) of Table 2.19.1, so that substi-

tution from Eq. 7 shows that

a -a

(O,a) G.m(a,) _H'J ep
G(B,c~) E~oBJ Ia - 0

These relations, multiplied out, are the transfer relations for the cylindrical annulus supporting a
given distribution of z-directed current density:

Fm(B,,) Gm(a,O)
GFm (B,) Gm(a,B )

H P
Hep

Gj8Oca) F m (aa)

Following the format used in Sec. 4.5, it would be natural to now proceed to generate particular
solutions that form a complete set of orthogonal functions which are solutions to the Helmholtz equa-
tion. Such an approach to evaluating the particular solutions in Eq. 9 is required if an arbitrary
radial distribution of current density is to be represented. The approach parallels that presented in
Sec. 4.5.

In important physical configurations, to which the remainder of this section is confined, the radial
distribution is uniform:

3(r) = 3 (10)

Fortunately, inspection of Eq. 5 in this case yields simple particular solutions:

AP = I
2r m#2

m2 _ 4
(11)

1 2
- r In r; m = +2

4

Thus, for the case of a radially uniform current density distribution, substitution of Eq. 11 into Eq. 9

yields the transfer relations

m 9

+ Ij l

,a) Fm(ac,B) 
A w J(L 

J[
Jd L 

(12)

where

1 [x 2 + 2 xFm(y,x) + 2 yGm(x,y)]; m # 2
m - 4h (x,y). n m +2
-[z+m(xy)y 2In •1 ; m +2
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and the functions Fm, Gm, and gm are defined in Table 2.16.2 with k = 0.

The radial distribution of A within the volume of the annular region described by Eg. 12 is ob-
tained by adding to the homogeneous solution, which is Eq. 2.19.5 with A A - Ap, and A + A - 8,
the particular solution Ap:

A (A a+(A r)- (13)

For Eq. 12, the particular solution is given by Eq. 11, so the associated volume distribution is evalu-
ated using Eq. 11.

The constrained-current transfer relations are applied to a specific problem in the next section.

4.9 Exposed Winding Synchronous Machine Model

The structure shown in cross section in Fig. 4.9.1 consists of a stator supporting three windings
(a,b,c) and a rotor with a single winding (r). It models a three-phase two-pole synchronous alternator,
and is similar to the configuration taken up in Sec. 4.7. The difference is that the windings on both
rotor and stator are not embedded in slots of highly permeable material and take up a radial thickness
that is appreciable compared to the air gap. As a result, the surface current model used in Sec. 4.7
is not appropriate.

The configuration considered here is an example to which the constrained-current transfer rela-
tions of Sec. 4.8 can be applied. It closely resembles models that have been developed for synchronous
alternators making use of superconducting field (rotor) windings.1 With superconductors, it is possible
to generate magnetic fields that more than saturate magnetizable materials. As a result, the magnetic
materials in which conductors are embedded in conventional machines can be dispensed with. This makes
it possible to design for greater voltages than would be possible in a conventional machine, where the
slot material in which a conductor is embedded must be grounded. But, because the conductors are
exposed to the full magnetic force, methods of construction must be radically altered. A machine built

Fig. 4.9.1.

Cross section of synchro-
nous machine model typi-
fying structure used in
superconducting field
alternator.

1. J. L. Kirtley, Jr., "Design and Construction of an Armature for an Ajternator with a Superconducting
Field Winding," Ph.D. Thesis, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1971; J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large
Superconducting Alternators," IEEE Power Engineering Society, Winter Meeting, New York, Jan. 1975.
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Fig. 4.9.2. Cross section of superconducting field alternator projected in design
for 1000 and 10,000 MVA machines on basis of M.I.T. experiments on 2-3 MVA.1
Not included in model of this section is conducting shell between rotor and
stator to help prevent time-varying fields due to transients from reaching
superconductors. Also, magnetic core of rotor used to simplify model in this
section is not present in machine shown. Phenolic materials are used in
projected design to construct stator and rotor.

to test approaches to constructing a rotating "refrigerator" required if the field is to be superconduc-
ting is shown in Fig. 4.9.2.

In the configuration considered here, it is assumed that surrounding the stator is a highly per-
meable shield material with inner radius (a) equal to the outer radius of the stator windings. Simi-
larly, the rotor windings are bounded from inside by a "perfectly" permeable core. The magnetic mate-

rials are introduced into the model to make the example reasonably free of algebraic complications.
In a machine having a superconducting field, a magnetic core would not be used. Development of a
model without the magnetic rotor core follows the same pattern as now described.

In i

0Z

•dz iana ibrb Icnc

es LJ Fig. 4.9.3

S_ I Azimuthal current
density distribu-
tion on stator

O f. and rotor.

Irnr

I I 
I I

I I
I

The distribution of stator and rotor current densities with azimuthal position is shown in
Fig. 4.9.3. The turns densities (na,nb,nc ,nr) (conductors per unit area) respectively carry the
terminal currents (ia,ibicir). The conductors are unformly distributed. Hence, these current
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density distributions can be represented by the Fourier series

+mo

Js J= ~ s e-jm b < r < a; Jr jr e-jme, d<r<c
z m z m

m=-_o m=-_o

For the stator winding, the Fourier amplitudes are (Sec. 2.15)

jmJT jm2r 1
2 s
ein sin () in a + ibnbe + ine m odd

S e 2 aia aebe cc

m even
while on the rotor the amplitudes are

mef2
2 sin ( 2 ; m odd

q

)irnre~r 7Tm
J m

0 ; m even

The constrained-current distribution is now as assumed in the previous section, Eqs. 4.8.4 and 4.8.10.
The associated transfer relations relate the Fourier amplitudes of the tangential magnetic field in-
tensities and vector potentials at the surfaces of the annular regions comprising the stator, the air
gap and the rotor winding with designations (d) - (j) shown in Fig. 4.9.1.

Boundary Conditions: There are no surface currents in the model, so the tangential magnetic fields
are continuous between regions and vanish on the stator and rotor magnetic materials. The normal flux
density is continuous, and this requires that the vector potential be continuous:

-d 0 e ~f ~ -h -i
em =m Om; Hm m, m 0m

(4)
le -=A f; g = Ah 
m m m m

Bulk Relations: The transfer relations, Eq. 4.8.12, are now applied in succession to the stator,
the air gap and the rotor regions. In writing these expressions, the conditions of Eq. 4 are used to
eliminate (e,h) variables in favor of the (f,g) variables:

~d
A =  omG (a ,b)m + Ish (a,b)m 0 omm

01.o Fm (a,b) -I0 Jsh (b,a)

-1 SFm (c,b) 0 1 G m(b,c) 0
Om

0 
0

·
m(c,b) U F (b.c) 0OG 0 m

0 (dc) --P rh (c,d)om oinm

i = -r
m = oCG (dc) + oJ h (d,c)m om em omm

Because the boundary conditions on the magnetic materials uncouple them from the other relations, the
first and last of these relations are written separately.

Torque as a Function of Terminal Variables: The torque is computed by integrating the Maxwell
stress over the surface at (g) on the rotor side of the air gap (sec. 4.2). Because Br = (l/r)(aA/a6),
the torque becomes (Eqs. 4.2.3 and 2.15.17):

T 2  g  = 2r2ec (6)
z m=_CO

n- ~g *-c m 9 m

To evaluate this expression, the amplitudes g and 9 are found from the matrix equation of Eq. 5,
using Cramer's rule: m

g =JJC 5 + JrC
m 1 m 2 (7)

H~ = JC + JrCem m3 m4
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where
3

1o
C1 = $- hm(b,a)Gm(cb)Fm(d,c)

3

C - h (c,d)[F (a,b)F (b,c) - F(cb)F (b,c) + G(c,b)G (b,c)

2

C3 =- h (b,a)G (cb)

2

C4  - hm(c,d)[Fm(a,b) - Fm(c,b)]

D = 2 {Gm(c,b)Gm(b,c) - [Fm(c,b) - F (a,b)][F (b,c) - Fm(d,c)l}

In using Eqs. 7 to evaluate Eq. 6, observe that J5s(ts and r (ir)* are even in m, as are also the
functions hm, Fm, and G Because of the latter,mthm m . Ci's are also even in m. Thus, the summations
of the self-field terms in Jjsj2 and 1Ir12 are odd functions of m and result in no contribution. Themth -mth terms are canceled by termsthe 
mth terms are canceled by the -mth terms. Only the cross terms appear, as Eq. 6 becomes

... . • . . . . •

T = 27re E (-jm)[J )(C 2C+ 3 j j+ ) r C1 C 4

Substitution of Eqs. 2 and 3 therefore gives the torque as

(C2 C3 - C mOC me
16kc m 1 4 ) sin (2

sin sin z 1 (--) (-~ R7 rnr )[ianasin m
m=11 r

(odd)
+ ibb sin m(Or -) + icnc sin m(er - 21

c c r 3

where

(C2 C3 - C1 C Shm (c,d)hm(b,a)Gm(c,b)[F 4 ) (a,b)F (b,c) - F (c,b)F (b,c)
+ (,b)m(bc) + ,b) - (d,) ,b)

+ Gm(c,b)Gm(b,c) + Fm(d,c)Fm(c,b) - Fm(d,c)Fm(a,b)]

Electrical Terminal Relations: Each of the three phase windings of the stator, as well as the
rotor winding, can be represented by the coil shown cross-sectionally in Fig. 4.9.4. For the "a"
phase of the stator, variables are identified as 61 = s/2,62 = -8s/2,a = a, 8 = b. For the rotor,
81 = 0r + 2 26f/ ,e2 = er - 8f/ , a = c, B = d.

Fig. 4.9.4

Prototype coil representing each
of the four in Fig. 4.9.1.

The flux linked by a single turn of the coil carrying current in the z direction at (r',6') and
returning it at (r',0' + u) is conveniently evaluated in terms of the vector potential (Eq. (f) of
table 2.18.1):

0 = 2[A(r',8') - A(r',O' - wr)] (10)
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With n defined as the turns per unit cross-sectional area, there are nr'de'dr' turns in a differential
area and hence the total flux linked by the coil is

ral61 +~ ~ -)e" -jm(0'-i)
SE [Am(r')e-me' - m (r')-e - ]nr'd'dr' (11)

0 02 m=-m

The integration on 8' can be carried out directly to reduce Eq. 11 to

+00 (e-jml_1 e-jm8)2
X = 2jin E m A (r')r'dr'm m (12)

To complete the radial integration, Eq. 4.8.13 is used to express Am, while for the case being considered
A is given by Eq. 4.8.11:

+0 (e-jme1 - jme2
S= 2j - [ Mmm (a,B) - mMB mo (,a) - Sm(a, ) ] (13)

odd

where

M1(x,y) x22 hm(x,y)]

2 2 4 4

m -4 m2 m 2 4 m•2_4 -m2 

Sm(x,y) = 1 2 1 2 x4 1 y4 1-x n (x,y) + y n yMm(y,x) + [x n x - (in y - -)], m +2

By appropriate identification of variables, Eq. 13 can now be used to compute the flux linked by each
of the four electrical terminal pairs. The procedure is illustrated by considering the field winding.
Then, variables are identified:

of f n ig i rr 
X = Xr, d - c, 8 4 d, 01 = er •

1 r 2 E ,2 = r + T' n = nrP Vm+Ag, B+ 1, (14)
r = 

The amplitudes (Ag,•i) are respectively evaluated from Eqs. 7a and the combination of Eqs. 5f and 7b.
Thus, identified with the field winding, Eq. 13 becomes

1 f f(- -Jmer sXr = -on4 r - sin e r m[ClMm(a,$) - WoG (d,c)C3Mm(8,))]

odd

+ ar[C2Mm(a,O) - oGm(d,c)C4Mm(B,a) + 1PMm(0,a)hm(d,c) - poSm(a,B)] (15)

The current density amplitudes are in turn related to the terminal currents by Eqs. 2 and 3. Thus,
Eq. 15 is expressed in terms of three mutual inductances and a self-inductance, in the form of Eq. 4.7.3d
In writing these inductances, observe that F and G are even functions of m. It follows that h and
hence M and S are also even functions of m, and t~at finally the coefficients of (Jm m) in Eq. 15 are

m summation can be converted to one on positive values of m: mthe 
even in m. Thus, the summation can be converted to one on positive values of m:

n cos m 8
mOf me a r

CO 16£nr sin(---) sin(-•)

r· m [C1Mm(a8) - 1oGm(d,c)C 3Mm(8,'a)]m=l m
odd

n C cos m(r r + 2)
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mOf me
81nr 0 sin(--) sin(-,-)

Lr r = - m 2 [C2Mm(5,B ) - IoGm(d,c)C 4Mm(0,a)
m=1 m m

odd+ poMm(Ba)hm(d,c) - oSm(a,B)] (17)

Because of the energy-conserving nature of the electromechanical coupling, there is redundancy
 information in the electrical and mechanical terminal relations. Reciprocity, as expressed by
. 4.7.32b, can be made the basis for finding the Or dependent parts of the mutual inductances from
e torque, Eq. 9. (Here, there are rotor positions at which each of the mutual inductances vanish,
d hence Eq. 9 uniquely specifies the mutual inductances.) The reciprocity condition shows that an
ternative to the coefficient used to express the mutual inductances in Eq. 16 is

[C1 Mm(a,•) - IQGm(d,c)C 3Mm(0,a)] = c[C2 C3 - C1C4] (18)

ere the quantity on the right is given with Eq. 9.

With the reciprocity relations in view, one efficient approach to determining the complete
umped-parameter terminal relations is to first find the torque, Eq. 9, then use the reciprocity condi-
ions to find the mutual inductances agd finally compute the self-inductances from Eq. 13. This last
tep only requires evaluation of (Am,Am) with self-current excitations (with currents in other
ndings removed).

A more conventional approach is to compute the full inductance matrix from Eq. 13 and use the
umped-parameter energy method (Sec. 3.5) to find the torque.

.10 D-C Magnetic Machines

The wide use of the d-c rotating machine justifies the model development undertaken in this sec-
ion. But, these devices are also a prototype for a family of "conduction" machines which includes
he homopolar generatorl and magnetohydrodynamic energy convertors, to be taken up in Chap. 9.
alogous electric field devices are the Van de Graaff generator, considered in Sec. 4.14, and electro-
as dynamic pumps and generators, described in Chaps. 5 and 9.

The developed model for the d-c machine given in Sec. 4.3 (Table 4.3.1, Part 3) is given a more
omplete characterization in Figs. 4.10.1 through 4.10.4. What is by convention termed the "field"
nding is on the stator, which consists of a highly permeable structure wound with a total of 2nf turns
xcited through the terminal pair (if,vf). The "armature" is the rotor, with a winding connected
hrough the commutator to the terminal pair (ia,va), so that the distribution of current is essentially
tationary in space. The 6 dependence is shown in Fig. 4.10.2. The rotor core, like the stator mag-
tic circuit, is modeled here as being infinitely permeable.

With the assumption that the stator is infinitely permeable, it is clear that the magnetic poten-
ial on the stator surface, Yf, is constant for those points at r = Ro contiguous with the stator. In-
egration of Ampere's integral law, Eq. 2.7.1b, over any contour passing between the pole faces through
he field winding and closing through the air gap shows that the pole faces differ in T by 2nfif. The
rizontal mid-plane is defined as the reference T = 0. As an approximation that specifies the fringing
ield in the ranges of e between pole faces, the magnetic potential is taken as the linear interpolation
hown in Fig. 4.10.2a. Because the rotor is modeled as infinitely permeable, the tangential magnetic
ield at the rotor surface is equal to the surface current density Kz, as shown in Fig. 4.10.2b (an ap-
ication of Eq. 2.10.21). The number of turns per unit azimuthal length on the rotor is Na.

The commutator, which consists of conducting segments that are sequentially connected to the ar-
ture terminals through brushes, as shown in Fig, 4.10.3a,2 is attached to one end of the rotor. Thus
 rotates with the same angular velocity Q (defined as positive in the positive 6 direction) as the
otor. The model now developed does not include "end effects," in that the rotor is assumed to have a
ength k that is much greater than the air gap Ro-R.

The boundary conditions, pictured graphically in Fig. 4.10.2, are first represented by Fourier
eries (Eqs. 2.15,7 and 2.15,8 with knz-+ft and £+27rR). Thus, with (f) denoting the radial position r=Ro,

2n i sin mO ir
f = E f e-jm; f 2nf s oje 2 (1)m=-m m m mT( m)

(odd)

 H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I, John Wiley & Sons, New York,
1968, p. 312.

. A. E. Fitzgerald, Ch. Kingsley, Jr., and A. Kusko, Electric Machinery, McGraw-Hill Book Company,
New York, 1971, p. 192.
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Fig. 4.10.1. Cross section of d-c machine.
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Fig. 4.10.2. Circumferential distribution of magnetic potential at r = R
and tangential magnetic field intensity at r = R. 0
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and at the rotor surface where r = R,

2N i lm'r
a ja -a -J - aa
S= E Home m mW je

m=-00

(odd)

Fields in the air gap are represented by the transfer relations, Eqs. (a) of Table 2.16.2 with
k = 0. Hence, with positions (a) + (f) and (0) + (a) and with radii a + R° and 0 4 R,

] fm(R,Ro :m(Ro, R)] [ i

t 0 m m(R,Ro) fm(Ro R) RH /jm

where A-m has been introduced by using H = -(V)O'em

S0 0 0

+Va-

Fig. 4.10.3. (a) Typical winding scheme for armature of d-c machine shown in Fig. 4.10.1.
The r axis is directed out of the paper. Brushes make contact with commutator
segments which move to the right with armature conductors.2 (b) Winding distribu-
tion of solid wires.
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Fig. 4.10.4

This venerable d-c machine, of historical
interest because it generated electric
power for Boston at the turn of the century,
has the advantage of putting the commutator
segments and brushes in clear view. The
pole faces surrounding the rotor at the
upper right have a shape similar to that
shown in Fig. 4.10.1, but the associated
magnetic circuit is driven by armature coils
wrapped on a horse-shoe magnetic circuit
closing above the rotor. This is one of the
first machines made after Thomas A. Edison
moved from New York City to Schenectady in
1886.

Mechanical Equations: The rotor torque can be computed by integrating the Maxwell stress over a
surface at r = R just inside the stator. This is an application of Eq. 4.2.3:o

f, = (2'ITR R,)R /BfH \. (4)
o o"\r S/S

-f -fBecause H = ~

W
(jm/R ), and in view of the averaging theorem (Eq. 2.15.17), substitution of Eqs. 1 and

2 converts~q.
S to 0

(5)

-f -fWith the substitution of Eq. 3a into Eq. 5, the "self-torque" (involving ~m(~m)
*) sums to zero.

(Because fm/m is an odd_fu~ction of m, the mth term in the sum cancels the -mth term.) The remaining
expression is a sum on H~m~£. These amplitudes are evaluated using Eqs. 1 and 2. The resulting mag­
netic torque is thus expressed as a function of the terminal currents:

+00 ~(RO,R) sin(mS )o
, = -G i i·G = 16 RR R,~ N n L

mfa' m 1T 0 0 a f 2 mS (6)m=l m 0

(odd)
+ +

The speed coefficient, G , is positive. This is consistent with the (J x+B) iensity expected with
if and is positive, as shown i~ Fig. 4.10.1. But the use of the force density J x B misrepresents the
actual distribution of force density on the rotor. With the conductors embedded in slots of highly
permeable material, the flux lines actually tend to avoid the conductors and pass through the rotor
surface between the slots. This means that the magnetic flux in the region where there is a current
density tends to zero as the permeability becomes infinite. In fact, the magnetic torque is largely
the result of the magnetization force density acting on the rotor magnetic material between the slots.
Fortunately, the stress tensor used to find Eq. 6 includes the magnetization force density, so the
deductions are sound. But, because the stress tensor is evaluated in free space, the same calculations
would be carried out and the same answer obtained even if the essential role of the magnetization force
density were not recognized. That the torque is not transmitted to the rotor through the conductor is
important, because it alleviates problems encountered in maintaining insulation in the face of mechani­
cal stress and vibration.

In terms of the electrical and mechanical terminal variables (if,ia"S)' Eq. 6 represents the
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electrical-to-mechanical coupling.

Electrical Equations: To complete the model, it is necessary to express the mechanical-to-
electrical coupling in terms of the terminal variables. This is done by taking advantage of Faraday's
law, written for a contour of integration that is fixed in the laboratory frame of reference and
passes through the appropriate winding:

a -t

C S

For the armature, the circuit C is composed of whatever is externally connected to the terminals (v a,ia)and the armature windings. The brushes are idealized as making continuous contact with the moving
conductors. A particular possible winding that would give the uniform distribution of rotor current
density is shown in Fig. 4.10.3.

Thg fixed frame electric field integrated on the left in Eq. 7 i related to the conductor current
density J by Ohm's Law, Eqs. 3.3.6, 2.5.11b, and 2.5.12b. Hence, = I /la - v x P i and

-vx 1 =0 vx(8)

where v = eRig is the velocity of the moving conductors. At a given instant, the armature winding
amounts to a superimposed parallel pair of windings connected through the brushes to the armature
terminals. One of the pair is shown in Fig. 4.10.3b. The other coil, represented by the dotted wires
of Fig. 4.10.3a, links the same flux. Each of these windings carries half of the armature current an:.
has the turns density Na .

For the "solid" windings, Eq. 7 becomes

-v + f dl + ORB i d B da (9)

wire wire

where S Is an integration over the surface enclosed by the contour C composed of the wire. The integra-
tion of E between the terminals external to the machine gives the term -va.

The current density in the wire is the net current i a/2 divided by the cross-sectional area of the
wire, Aa. Hence, the second term in Eq. 9 becomes

J + i a
.d = W a = Ri ; R - (10)

2A a a a ()2A
aawire a a 

where A is the cross-sectional area of the wire and £ is the total length of the wire joining the
brushesaat the given instant (the total length of the solid" wire in Fig. 4.10.3a). Hence, Ra is
the d-c resistance "seen" at the armature terminals.

The third term in Eq. 9 is evaluated by recognizing that those conductors between 8 and 8 + de
number (NaR)de, and therefore give a contribution QRBr(0)NaRd6. This integrand makes a positive con-
tribution in the interval ./2<6<37r/2, where the contour is in the positive z direction, and a negative
contribution in the interval -7r/2<8<f7/2 where the wires are returning in the -z direction:

37r/2 1r/2

O RBa *.dt = e r 2N Bado - k R2N BadJ
wire 7r/2 -w/2

(11)mT+_ ga 
= -40LR2N Z - je

a m

(odd)

The second equality results from substitution of the Fourier series and carrying out the integration.

It follows from substitution for Ba using Eq. 3b with Eqs. 1 and 2 used to relate m and Hm to the
terminal J 

currents that

fQRBa'i sd = -QG i  (12)

wir mf
wire
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where Gm is the same as defined with Eq. 6. To complete these steps, observe that fm/m3 is an odd func-
tion of m, so that the contribution that is proportional to is sums to zero. Also, Rgm(R,Ro) =
-Rogm(Ro,R), as can be seen from the definition in Table 2.16.2 or by application of the reciprocity
condition, Eq. 2.17.10. There is no contribution to Eg. 12 of the part of Ba induced by the armature
current because this "self-field" contribution to v x B at a winding location 8 is cancelled by that
at -8.

To evaluate the right-hand side of Eq. 9, first observe that the flux linked by the coils having
their left edges in the range de' in the neighborhood of 0' is the product of the flux linked by one
turn and the number of turns in that range of 8':

ch•- 6 '+w •
B aBRd NaRdO' (13)

As a result, the total flux linked by all of the turns is

3w/2 61,+w

sBrda-- - [ (14)BaRd] NaRde' 
r/2 8'

Again, substitution of the Fourier series for Ba and evaluation of the integrals givesr
-a mit

B rda 4£N R2  r e 2 (15)
S mM-9 m

(odd)

Further evaluation, using Eqs. 3b, 1 and 2, with the observation that gm/m3 is an odd function of m
so that the contribution proportional to if vanishes, gives

16LNa-oR 3 m fm(RoR)
Brda = Li ; La E 4 (16)

SS a m m
odd

That if makes no contribution to the net flux linked by the armature winding is evident from Fig. 4.10.1.
The armature and field magnetic axes are perpendicular. Thus, with the substitution of Eqs. 10, 12 and
16, the armature circuit equation, Eq. 9, becomes

di
v = Ri - nG i + L - a  (17)

a a mf a dt

where Ra, Gm and La are given by Eqs. 10, 6 and 16.

The circuit equation for the field winding is similarly found by applying Faraday's integral
law, Eq. 7, to a contour composed of the field winding. The right-hand side of Eq. 7 is approximated.
by the flux contribution over the surfaces of the respective poles:

-- i - 3¶r8 --- 2

Brda = n f BfR d - nf BR dB (18)

S+· o I2 o

Substitution of the Fourier series for B and integration gives
r

mit
'r f  e f

B da = 41 R Z B2 cos me (19)
Sr om=I. (-jm) r o

3 This expression can now be evaluated using first Eq. 3a and then Eqs. 1 and 2. Because gm/m is an
odd function of m, the term proportional to is sums to zero with the result

2
16n LR L a cos mO sin mO

B fda - L2i ; L - 2 m0 fm (R,R ) (20)
S m-l m o

(odd)
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Fig. 4.10.5. Regimes of energy conversion for a d-c magnetic field type interaction. Armature
voltage va is fixed and field current if is varied. With the identification of
variables if - vf, va + i , Ra  ala ~i Gm Ge, the power characteristics also

represent the Van de Graaff type of device developed in Sec. 4.14.

Note from the definition of ~m in Table 2.16.2 or the energy relation, Eq. 2.17.12, that fm(R,RO) < 0,
so that Lf is positive. The left-hand side of Eq. 7 is evaluated as for the armature except that the
conductor is fixed. Hence, Eq. 7 becomes the required circuit equation for the field:

dif

f Rfif + Lf df (21)

The total resistance of the field winding is Rf = Af f/Of, and Lf is given by Eq. 20.

The Energy Conversion Process: Simple consideration of Eqs. 6 and 17 relates the discrete elec-
trical and mechanical terminal variables to the energy conversion process. Consider the field excita-
tion current if and the armature voltage va as constrained by external sources. The steady-state
dependence of the armature current and the magnetic torque on the constrained variables implied by
Eqs. 6 and 17 is then

v QG
i a a

+ m-- (22)
a a

T = - Gmif R + if (23)

The electrical power input to the device follows from Eq. 22 as

v
iv =- - [va + QG if] (24)
aw R a a veoct

while the mechanical power output is given by Eq. 23 multiplied by the angular velocity
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2G

R f a mf

These last two expressions are sketched in Fig. 4.10.5 to show the power-flow dependence on the field
current if with 0 assumed positive.

In view of the physical significance of iaVa and OT, it is possible to classify the regimes of
operation as also sketched in Fig. 4.10.5. It is because the electromechanical coupling has been
defined to include the electrical losses (by contrast with the point of view in Sec. 4.9, for example)
that the brake regime is possible.

The power conversion characteristics exemplified by this d-c machine and summarized in Fig. 4.10.5
are in common to the family of d-c or conduction type interactions. For example, with appropriate re-
definition of variables, the same characteristics pertain to the Van de Graaff machine of Sec. 4.14.

4.11 Green's Function Representations

In dealing with fields that are related to sources (the charge density or current density) through
linear differential equations, it is possible to use yet another approach that is based on the fact
that superposition of sources implies superposition of fields. This approach, which is an alternative
applicable to situations illustrated in Secs. 4.5 - 4.9, is familiar from the use of the superposition
integral to find the potential response from charge specified throughout all space or from the Biot-
Savart law for finding the magnetic field, given the distribution of current density throughout space.

Volume source distributions can often be considered the sum of distributions of surface charge
or surface current. The transfer relations are a convenient vehicle for obtaining the response to
such singular sources. By then integrating over the actual given source distribution, the field is
represented as the sum of field responses to the surface sources.

The determination of the fields and force associated with the charge beam of Sec. 4.6 illustrates
the method. Figure 4.11.1 shows a cross section of the configuration pictured in Fig. 4.6.1, but
with the only volume charge in a shell having radial thickness dr' at the radius r', where the density
is p(r'). The fields due to an arbitrary radial distribution of charge can be constructed once the
response to this surface charge, having density p(r')dr', is determined. At the outset, consider the
field to be a superposition of fields due to the potential Vo imposed at the surface r = a and to the
distribution of charge in the volume. The latter is determined by using the boundary conditions

c = 0, d e d _ e = (r')dr' r r (1)

Implicit is the understanding that there is no e dependence, and that the z dependence is exp(-jkz).

Fig. 4.11.1

Shell having surface-charge
density pf(r')dr' gives rise
to fields that can be summed
to determineA field due to
arbitrary charge distribution.

In the region r > r', the.flux-potential relations, Eq. (a) of Table 2.16.2, apply:

Sf (r',a) g (a,r')
(2)

bd o(r ',a) fo(a,r') 

whereas in the inner region, r < r', the limiting form of Eq. (c) is appropriate:

De = Cf (0,r')e (3)r 0 (3)
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Subtraction of Eq. 3 from Eq. 2b and use of the boundary conditions of Eq. 1 gives

d e = (r')dr' (4)

EL[f(a,r') - f (0,r'j

By the judicious use of these amplitudes and the potential distribution given for a canonical annular
region by Eq. 2.16.25, it is now possible to write the radial distribution of ý for an arbitrary dis-
tribution of charge density. There are three terms. The first is simply the potential due to the
voltage Vo applied at the outer wall. For this part, Eq. 2.16.25 is evaluated with 8 + 0 and m' = Vo"
The second term comes from evaluating Eq. 2.16.25 for the potential at r due to the charge shell at
r' < r (so that a = a, S = r', a = Ic = 0 and l = d) and adding up all contributions attributable to
charge inside the radius of observation r. Finally, the third term is written by again using
Eq. 2.16.25 to express the potential, but this time due to charge at a greater radius than the r, at
r < r' (so that a = r', 8 + 0 and = ý (d) and integrating over the distribution outside the observa-
tion position r:

(jkr) + r [Jo(jka)H(kr) --___p(r')dr__'_H(jka)kr)(jkr)] 

o J (jka) 0 [Jo(jka)H (jkr')-H (jka)J (jkr')J E[f (a,r') - f (0,r')j

(5)
ja Jo(jkr) (r')dr' 
r Jo ( j k r ' ) [f (a,r') - f (0,r')

To find the axial force acting on the entire beam, it is only the normal flux density at the outer
wall that is required. This can be found from Eq. 5, but is more easily determined directly from Eqs. 2a,
used first w th ýc = Vo and (d) + 0 to find the flux density due to the wall potential alone and then with
c = 0 and ýa given by Eq. 4 to find the part due to the volume charge. The latter is summed over the
total distribution of charge.

S=a go(a,r')p(r')dr' (6)
r (0a 0 0[f 0(a,r') - f 0 (O,r')]

The force is thus determined by substituting this expression into Eq. 4.6.3. Equation 6 holds for an

arbitrary charge distribution, but consider the uniform distribution of charge inside the radius R.
Then the integration needs only be carried out from 0 to R. With Vo and p(r') selected consistent
with Eqs. 4.6.1 and 4.6.2, it follows that the force is given by Eq. 4.6.8 with L1 replaced by L3,
where

LR  go(a, r ' ) dr' 1 fkR Io(kr')
L = 0 = (kr') k d(kr') (7)

R3 o(ar') - f(0,r')] (kR)2  a)

The integral is carried out by recognizing that Io(kr') is a solution to Eq. 2.16.19 with r -- r' and

m = 0:

( dlo(kr') 2
d r' d r = k 2rl (kr') (8)
dr' dr' o

Hence, Eq. 7 gives the same result, Eq. 4.6.13, as found in Sec. 4.6 using the "splicing approach."

The same procedure applies if the charge has 8 dependence exp(-jme). Thus, by making use of a
Fourier series representation in 6 and z, the method can be used to describe fields associated with

arbitrary dependence on 6 and z.

The Green's function approach exemplified here is applicable to modeling the synchronous machines

developed in Secs. 4.7 and 4.8.1

4.12 Quasi-One-Dimensional Models and the Space-Rate Expansion

The "narrow-air-gap" model for rotating machines and long-wave models for electromagnetic wave

propagation are examples of quasi-one-dimensional models. The following sections illustrate the use

of such models in the kinematic description of electromechanical interactions. Extensive use will be

made in later chapters of models that similarly exploit a relatively slow variation of distributed
quantities in a "longitudinal" direction relative to "transverse" directions.

1. This is the method used by Kirtley in "Design and Construction of an Armature for an Alternator
with a Superconducting Field Winding," Ph.D. Thesis, Department of Electrical Engineering, MIT,
Cambridge, Mass., 1971, for a configuration closely resembling that considered in Sec. 4.8.
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Fig. 4.12.1. (a) Cross-sectional view of synchronous electric field energy converter with
stator and rotor composed of perfectly conducting materials constrained by a
time-varying voltage source. The stator geometry is static, while the rotor
moves to the right. (b) Interaction represented by time-varying capacitance.
(c) Detail of air gap showing components of Ez to satisfy boundary conditions.

An example is shown in Fig. 4.12.1. Perfectly conducting surfaces having the potential differ-
ence v(t), vary from the planes x = 0 and x = -d by the amounts Es(z,t) and ýr(z,t), respectively.
What are the fields in the gap? This configuration is the basis for the study of the variable-
capacitance machine in Sec. 4.13. Fields in the gap can be approximated by two techniques. If s
and ýr are small compared to d, the boundary conditions can be linearized, and the fields found
approximately. This is the approach used in Sec. 4.3 for describing the salient pole interactions
(Eq. 4.3.16). It formally amounts to expanding the fields in an amplitude parameter expansion with
the zero-order fields those with Es and ýr equal to zero, the first-order terms those given by keeping
only linear terms in (ýs,dr) and so on. Thus, the validity of the model hinges on the amplitudes
(Es,,r) being small.

In quasi-one-dimensional models, amplitudes are not necessarily small. Rather, certain spatial
rates of change are small. In the configuration of Fig. 4.12.1, the distance X typifying variations
in the z direction is long compared to the distance d, y ` (d/X)2 << 1.

The relationship between linearized and quasi-one-dimensional models is illustrated in Fig. 4.12.2.
Linearized quasi-one-dimensional models must be consistent with the long-wave limit of the linearized
model. In establishing complex models, this fact is often used to motivate the appropriate "zero-order"
approximation which is the starting point in developing a quasi-one-dimensional model.

linearization

Fig. 4.12.2. Schematic characterization of relationships among three-dimensional,
quasi-one-dimensional and linearized models.
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Usually, quasi-one-dimensional models are motivated by physical reasoning, with little need for
formality. This is partly because higher order terms are seldom used. But, at least once,.it is
worhwhile to see how higher order terms are found, and that the approximation used is the lowest order
term in an expansion in powers of a space-rate parameter, in the example of Fig. 4.12.1, of y - (d/A)2.

The procedure here is analogous to that of Sec. 2.3 on quasistatics. The spatial coordinate z,
in which variables evolve slowly, plays the role of time. The physical idea that this slow variation
ought to make one field component dominate the other is built into the normalization of variables.
If modulations of the electrodes are slowly varying compared to the transverse distance d, each sec-
tion of the electrodes tends to form a parallel-plate capacitor. With Eo a typical electric field in
the x direction (the "dominant" field component), d taken as the typical length in the x direction,
but X as that length in the z direction, the appropriate normalization is

E = EE x- dxx " O--

Ez = E (d/A)E z = z_ (1)

Er " dr' Es " dE v = (Eod)v

In the gap, E is irrotational and solenoidal. In terms of the normalized variables, these'con-
ditions are

aE aE

az ax
(2)

aE aE
x Z

ax az

where the space-rate parameter y E (d/X)2 . To complete the formulation in terms of normalized variables,
boundary conditions at the scalloped perfect conductors are that the potential difference be v(t) and
the tangential fields vanish:

aB0  aC S
E = L E(x = ); E - E(x - - 1); E dx = v (3)

3z x a x
( -1

Only two of these three expressions are independent.

The normalized field components are now expanded in series of the form

+ Y2Ex  Exo + YExI E + "

(4)

Ez Ezo + E 2z2

Note that only one dimensionless parameter is involved, so for the particularly simple case at hand,
there is no ambiguity as to what lengths are most critical.

Substitution of the series of Eq. 4 into Eqs. 2 gives a pair of expressions which are poly-
nomial in y. Coefficients of each order in y must vanish; thus, the zero-order terms involve only the
zero-order fields

BExo zo

= 0
x

but the first order expressions are "driven" by the zero order fields

aEx1 aEzxl E zl 0
az ax (6)

Exl E- zo
=x 9z
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It follows from Eqs. 3c and 5b that Exo is quasi-one-dimensional. It only depends on (z,t):

V
E = E (z,t) = (7)

xo xo ýs + 1 - r

What has been deduced as the zero-order Ex is just the voltage divided by the distance between con-
ductors. If variations with z are sufficiently slow, each section of the system forms a plane-parallel
capacitor. To find the other component of the zero-order field, note that Exo is only a function of
(z,t), so Eq. 5a can be integrated to obtain

3E
xo

E =x xo + f(z,t) (8)

where f(z,t) is an integration function. This function is determined by substitution of Eq. 8 into
Eq. 3a:

E x (E (9)
zo z z (Exo s

Substitution now shows that the tangential field on the lower surface is zero, Eq. 3b is satisfied. The
zero-order fields are represented in dimensionless form by Eqs. 7 and 9.

The first-order fields are predicted by Eqs. 6, now that the zero-order fields are known. From
Eqs. 6b and 9,

3E 3E 2E
Exl _1 zo aE xo 32 (10)

ax 3x 77- z -xz x z + 2 (E 2  z2 X0)

The functional dependence on x on the right in this expression is explicit, and therefore integration
gives

2 32E 2
E = L xo -x (E + g(z,t) (11)
x1 2 2  z2 o

Because the zero-order Ex already satisfies the boundary condition, Exo integrates to v across the gap
(Eq.3c), the same integral of Eq. 11 must vanish and that serves to determine the integration function
g(z,t). At this point, two terms in the series of Eq. 4a have been found, and they are sufficient to
show what is meant by the expansion

2 3 1
SE xo x 2 1 s 3 + (1 - )v r

x (l + - Edr) I z +2I + (1 r)

(12)
32 1

+-2 (Exo2 s) (x - -[sR - ( - r
3z

2 2 
By the definition of k used in normalizing z, 3 Exo/3z is on the order of Exo. Hence, the first

term in Eq. 12 gives an accurate picture of the field, provided y << 1.

The procedure outlined is mainly of conceptual value. Certainly the quasi-one-dimensional

modeling of a complex problem begins with a physically motivated approximation: here, Eq. 7. Because

no more than the zero-order solutions are usually required, the formalism of normalizing the variables

and identifying dimensionless space parameters is not usually required.

In retrospect, the zero-order fields have a dependence on the transverse direction (x) that is
o

the lowest order polynomial in x consistent with the boundary conditions. Thus, Exo varies as x

(it is independent of x); while Ezo can satisfy the boundary conditions only if it includes a linear

dependence on x.

4.13 Variable-Capacitance Machines

A model for one of the most commonly discussed "electrostatic" synchronous machines (which are

themselves rather uncommon) is shown in Fig. 4 .12.1a. Both the fixed and moving members have saliency
and consist essentially of perfectly conducting material. The time-varying voltage between stator and
rotor can either be the source of electrical power for producing a synchronous force in the z direction
on the rotor, or it can serve as the voltage of a bus representing an energy sink for the device acting
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Fig. 4.l3.lc. Variable-capacitance generator designed for use with vacuum insulation. Estimated
output at 30,000 rpm is 6 kWat 20 kV (courtesy Goodrich High Voltage Corp.). Development
of variable-capacitance machines was attempted for the generation of high-voltage power
with application to ion propulsion in the space program. In space, vacuum insulation is

•
+

(b)

Physical realization of variable-capacitance machine modeled in Fig. 4.12.1.Fig. 4.13.1.
(a) Stator and rotor structure consisting of vanes. (b) Sinusoidal voltage
supplied through slip ri~gs together with v2 (t), showing temporal depend­
ence of instantaneous force.

Image removed due to copyright restrictions.




Photograph of a variable-capacitance generator designed for use with vacuum insulation.

easily obtained. See reports for Contract No. AF33(616)-7230 from Goodrich-High Voltage
Astronautics, Inc., Burlington, Mass., to Aeronautical Systems Division. Air Force Systems
Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio. For example, Phase II
report by A. S. Denholm et al., 1961.
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as a generator. In practice, the stator and rotor members might consist of metallic fins, as shown in
Fig. 4.13.1. In the model, regions on the stator and rotor that project into the air gap represent the
fins, while regions that dip into the stator and rotor material represent the gaps between fins.

The device is often referred to as a "variable-capacitance" machine because, when the relative
position of rotor and stator is such that the projections into the gap are just opposite each other,
the capacitance is at a maximum, while it reaches a minimum when the peak in rotor saliency falls just
opposite a "valley" in the stator material.

One way to view the energy conversion process is simply to represent the capacitance seen by the
voltage source as time-varying. Given the motion of the rotor, the capacitance C is a known function
of time, and the electrical problem comes down to determining a suitable temporal variation for C,
relative to a time-varying voltage, v. If power is supplied to the voltage source, it must come from
the mechanical forces responsible for making the capacitance vary with time. Thus, the other side
of the energy conversion process raises the question: How is a time-average force produced on the rotor
by the combination of the salient configuration and the time-varying applied voltage? In this section,
we will take up the second question first. What is the electrical force in the direction of motion on
the moving member?

The field point of view taken here results in the relation between geometry and capacitance
needed to model an actual system, even if the circuit point of view is taken. But also, it makes
the example useful in conceptualizing electromechanical interactions that cannot be given a lumped-
parameter model. For example, suppose that the undulations on the "rotor" were in fact material de-
formations produced by the field itself. This type of self-consistent electromechanical coupling
is not kinematic and will be taken up in Chap. 9,

Synchronous Condition: With a sinusoidal voltage v(t) having period T, applied between the rotor
and stator by means of a slip-ring, a time-average electrical force can act in the z direction on
the rotor only if there is a synchronism between the applied voltage and the rotor motion. To this
end, consider the physical origins of this force in terms of the model shown in Fig. 4.12.1. Regard-
less of the field polarity, at any position on the rotor surface there is an electric force per unit
area that is directed perpendicular to the surface and into the air gap. This latter fact makes it
clear that without the surface undulations, there can be no electrical force in the z direction.

To make a synchronous motor, on the time average, fields acting to the right over regions of
the rotor surface with a negative slope must produce a greater force than those acting to the left
on the regions where the slope is positive. What is the relationship between the excitation period
T and the rotor velocity U that could result in there being a time-average electrical force? In
terms of the displacement zr of Fig. 4.12.1, a maximum in the force to the right is obtained with zr
in the neighborhood of A/4. Thus, with the rotor in this position, the applied v2 should be at its
maximum. By the time the rotor is at zr = 3X/4, the force produced is in the wrong direction, and
hence v2 should be near a null. By the time zr = 5X/4, v2 should be peaking again. It is concluded
that in the time T/2, the rotor should move one wavelength: UT/2 - X. Thus, the synchronism con-
dition is met if

2X
z = Ut + 6; U (1)

Here, 6 is a spatial phase-angle determined by the mechanical load on a motor or the electrical load
on a generator.

The quasi-one-dimensional electric field is given by Eqs. 4.12.7 and 4.12.9 un-normalized:

aEv x a
E - E = (x + d) x - (Ex) (2)

The force on a section of the rotor one wavelength long and a length 2 in the y direction is
found by integrating the Maxwell stress tensor over an enclosing surface as pictured in Fig. 4.2.1a.
The only surface giving a contribution is the one of constant x in the air gap:

f = E Z+xcEE dZ (3)

z

This integral can be evaluated using the fields of Eq. 2. That it does not matter what x = constant
plane is used in carrying out the integration (except for physical reasons, to have the assurance
that the surface does not cut through one of the electrode inward peaks) is evident from the fact
that
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rz+X E z+2 2 2
= e 0(+d) z z )dz = Eo(x+d)[E (z+X) - E (z)] - 0 (4)0oEx(x+d) X dz 

The final deduction follows from the spatial periodicity of the structure. The remaining contributions
to the integral are expressed using the normalization

z = Xz, ( = d, r d, = X6, zr r (5)

With f E (E v 2/d)f , Eq. 3 becomes

Z + 1Z dz
f =z' l 1 [ r ]dz (6)

z 1 + E - Er az 1 + a - Er

Carrying out the differentiation in the integrand gives

z+1 z+l (1 + ) r _s

f(zr) s z r z dz (7)
dz 

Once the integral is completed, the function f depends on the amplitudes of E and Cr and on their
relative displacement zr. The time-average force is then computed by specifying this relative dis-
placement in terms of Eq. 1. In normalized variables, with t - Tt

S<fz> -- v2 (8)(t)f(2t + 6)dt 

As an example, consider stator and rotor electrodes having sinusoidal shapes of equal amplitude
and a sinusoidal excitation voltage (note that Eqs. 7 and 8 are general in regard to these specifica-
tions):

ýs = ýo cos 2rz, r = o cos 2w(= - Zr) , v(t) = V cos 2wr (9)

Numerical integration of Eq. 7 then gives the dependence on relative displacemenj and amplitude shown
in Fig. 4.13.2a. To highlight the nonlinear effects of Co, f is normalized to Co so that much of the
dependence on the electrode amplitudes is suppressed.

The electrodes make their closest approach to each other with zr = 0.5 and are furthest apart
when Er = 0. Thus, for a given voltage, the fields tend to be more intense in the range 0.25<zr<0.5
than they are in the range 0<Zr<0. 2 5. This nonlinear efffect is reflected in the tendency of the
force to be skewed toward relative deflections in the former range. As would be expected from the
singularity in the denominator of Eq. 7, as the electrodes tend to touch (&o - 0.5), the force tends
to approach infinity just to the left of zr = 0.5. The function f(zr) is then used to numerically
integrate Eq. 8, with the result the normalized time-average force shown as a function of relative
displacement phase 6 and amplitude Eo in Fig. 4.13.2b. Again, the dependence on o0 is partially
suppressed in the normalization.

The electromechanical model exemplified by Eqs. 7 and 8 is nonlinear, in the sense that the
electrode deflections can be of arbitrary amplitude in the range 0 <- o < 0.5. The fact that the
time-average force becomes infinite as o - 0.5 is to be expected. At some instant, the electrodes
are then at the point of touching and the associated field is becoming extremely large where the
electrodes are nearly in contact. (Physically, electrical breakdown would of course present a limit
on the validity of the theory.) Within the validity of an air-gap dielectric that does not permit
electrical breakdown, the procedure which has been followed is an example of the left vertical leg
in Fig. 4.12.2.

Further linearization, based on Es << d and r5 << d, demonstrates what is meant by a "linearized
quasi-one-dimensional" model and by the completion of the step represented by the lower horizontal
leg in Fig. 4.12.2.

For small amplitudes, (I + s - ) - 3 = 1 - 3(Es - Er), and hence Eq. 7 becomes

z+l

f(zr) z [(i + s)z r - 3(s - r) + ...]dz - Cow sin 2 rZr (10)
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Fig. 4.13.2a. Electrical force on rotor of variable- Fig. 4.13.2b. Normalized time-average
capacitance machine (Fig. 4.12.1) as a function force as a function of relative
of normalized relative displacement zr = zr/A, phase of sinusoidal excitation and
with amplitude of electrodes as a parameter. rotor position.

(In carrying out this and the next integration it is helpful to represent the expressions of Eq. 9 in
complex notation and make use of the averaging theorem, Eq. 2.15.14.) In turn, the time average
called for by Eq. 8 can now be evaluated:

= f o d cos2 2¶rt sin 2T(2t + 6)dt (11)

Carrying out this integration gives

o- 0in(IXd-i 2 (12)

This approximation to the time-average force is shown by the broken curve of Fig. 4.13.2b.

Note that the small-amplitude force of Eq. 12 takes the form of the area LA multiplied by the
electric pressure E,(V/d)2 times factors representing the fraction of this product obtained by dint
of the geometry and the relative phase of the rotor and the driving voltage.

The variable-capacitance machine is closely related to the salient-pole machine described in
Sec. 4.3 (Case 4b of Table 4.3.1). In that example, the stator is "smooth" with electrodes con-
strained by a traveling wave of potential. The effect of having a stator with saliencies driven by
a simple voltage source (which is likely to be more convenient) is to produce a similar time-average
force.

Linearized from the outset, the variable-capacitance machine of this section could also be
viewed in terms of an interaction between the rotor traveling wave and one of two stator waves, the
sum of which is equivalent to the physical stator structure considered. The result of such an analysis
would be a model without restrictions as to the gap width relative to the wavelength. For the
related example of Sec. 4.3,. Eq. 4.3.27b retains information (represented by the denominator, sinh2 (kd))
about the effect of the air gap in the limit where d becomes large. This result, restricted to small
amplitude but valid for arbitrary air-gap spacing, is typical of the amplitude parameter expansion
or linearization modeling step of Fig. 4.12.2. Taking the long-wave limit for the example from
Sec. 4.3 constitutes taking the limit of Eq. 4.3.27b, kd<< 1. Following this route of first linearizing
and then taking the long-wave limit for the variable-capacitance machine considered in this section
is an alternative derivation of Eq. 12, and is considered in the problems.
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4.14 Van de Graaff Machine

A cross-sectional view of a Van de Graaff generator is shown in Fig. 4.14.1. An insulating belt
is charged to one polarity as it passes over the lower pulley. This charge is carried upward to the
essentially field-free region under the high-voltage terminal dome where it is removed and replaced by
charge of opposite polarity, which then makes the return trip on the downward moving portion of the
belt. Surrounding the belt are equipotential rings which help in controlling the field distribution by
supporting much of the charge imaging that on the belt. The electric field consists of a generated
field that is essentially vertical and a self-field associated with the charge on the belt. The equi-
potential rings help to insure that the self-field is essentially perpendicular to the belt surface
and hence does not reinforce the generated field. To achieve relatively high electric stress (exceeding
107 V/m), the machine is operated in electronegative gases at elevated pressure.

An objective in this section, achieved while developing a lumped-parameter model for the simplified
Van de Graaff generator shown in Fig. 4.14.2, is to further illustrate the use of quasi-one-dimensional
models. This makes it possible to point out the analogies between d-c magnetic machines, Sec. 4.10,
and what might be termed "d-c electric machines."

In several regards, the model shown in.Fig. 4.14.2 does not include features of the machine shown
in Fig. 4.14.1. To avoid undue complexity, the equipotential rings are uniformly distributed between
the high-voltage dome and the ground at the bottom. In the machine pictured in Fig. 4.14.1, charging is
by means of a corona discharge (ion impact charging). An alternative scheme, which has the advantage
of being more easily related to a physical model, makes use of induction charging of a belt consisting
of conductors linked by insulators.1  For the present purposes, the belt (having thickness d) is con-
sidered to carry metallic segments that are insulated from each other. "Field" voltage sources vf are
used to induce belt charges of opposite polarity at the top and bottom. As the belt passes over the
lower pulley, successive segments contact a grounded brush and hence form essentially plane-parallel
capacitors having a voltage vf across the belt thickness d. With the assumption that the belt elec-
trodes essentially cover all of the belt surface, the belt surface charge is related to the field volt-
age by 

~.) A~\ 
t 6p

- -
1).

,f 60
f d

The current i' both supplies the charge carried upward by the belt and neutralizes that coming downward.
a

Hence, for a pulley angular velocity S1 and radius R,

i' = 2aft(iR) - 2-'RE d vfff

Quasi-One-Dimensional Fields: In the ideal, the generated field is uniformly distributed with
respect to the z axis. To achieve this ideal, in spite of the metal pressure vessel, the equi-
potential rings are tapped onto a distributed bleeder resistance running from the dome to the ground
plane. At least under steady-state conditions, this insures that the ring potential Or(z) has the
required linear distribution consistent with a uniform z-directed electric field. The following
developments identify the implications of having time-varying terminal variables, (va,ia) and
(vf,if).

The transverse field components are determined as though any local region along the z axis is
one in which the x-directed fields are independent of z. Thus, in the region between rings and pressure
vessel,

r
x3 c

The fields Ex2 and Exl (Fig. 4.14.2) must satisfy Gauss' law at the belt surface and be consistent
with the potential being the same on the ring where it faces the belt on the right and at the same z
location on the left. Hence, with fields defined positive if they are as shown in Fig. 4.14.2,

0o(Exl + Ex2) = af

-2bEx2 + 2aEx1 = 0

Here, E 2 is approximated as being uniform over the width of the belt, even though the rings are
cylindrical and the belt is flat. The distance b is an average spacing. Simultaneous solution of these

1. W. D. Allen and N. G. Joyce, "Studies of Induction Charging Systems for Electrostatic Generators:
The Laddertron," J. Electrostatics 1, 71-89 (1975).
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last two expressions shows that

af
Ex2 b (6)

° (1 + b)
0o a

These transverse fields make it possible to now write expressions that determine the field dependence
on z. A section of the ring structure having incremental length Az is shown in Fig. 4.14.2. Con-
servation of charge for this incremental section, which takes the form of a ring-shaped volume
enclosing rings in the length Az, is written be defining a ring charge per unit length (in the z direc-
tion), AX:

-a(X r Az)
ir(z + Az) - ir() - at (7)

In the limit Az + 0, Eq. 7 becomes

air r 

Fz = t (8)(8)

By symmetry, the contribution to the ring structure charge from the field inside (the images of the belt
charges) cancel. What negative charge there is on the rings at the left imaging the positive belt charge
on the upward-moving belt is canceled by the positive charge on the right imaging the downward moving
negative belt charge. Hence, the only contribution to Ar in Eq. 8 comes from the fields between the
ring structure and the pressure vessel wall, approximated by Eq. 3; Ar = 2eo 0r/c. Thus, Eq. 8 becomes

ai 2ke as3
r or (9)

S c at

A second law is required to determine the distribution of (ir,Sr). This is simply Ohm's law relating
the z component of the electric field to the current carried by the bleeder resistance. With Ra the
total resistance, and hence Ra/L the resistance per unit length, it follows that

--ar R (10)
-z L r

quasistatics: There is now enough of the model developed that a meaningful discussion can be made
of two quasistatic approximations implicit to a lumped parameter model for the Van de Graaff machine.

First, Eq. 1 is misleading in that it implies that the belt charge is instantaneously established
in proportion to the field voltage over the full length of the belt. Of course, an abrupt change in vf
would result in a "wave" of surface charge carried to the high-voltage dome by the moving belt. In the
model developed here, temporal variations are presumed to be long compared to a transport time L/GR.
With this caveat as to the dynamic range of the resulting model, the belt charge is taken as proportional
to the field voltage over the full length of the machine. The machine dynamics are quasistatic relative
of the time required for the belt to traverse the distance between pulleys.

A second quasistatic approximation is necessary to approximate the field distribution governed by
Eqs. 9 and 10 in a way that leads to a lumped-parameter model. Elimination of ir between these equations
results in the diffusion equation. The potential (and hence the ring charge) diffuses in the z direc-
tion, and the resulting dynamics are not in general representable in lumped-parameter terms. The
subject of charge diffusion on heterogeneous structures is taken up in Sec. 5.15. Here, the quasistatic
concepts of Sec. 2.3 are revisited to obtain a low-frequency lumped parameter model. But, now the
critical rate process is represented by a charge diffusion time, not an electromagnetic wave transit
time.

If the fields were truly static, Eq. 9 shows that the current would be independent of z. Thus,
the zero-order current is ir = iro(t). The associated potential distribution can then be found by
integrating Eq. 10:

Sv A =Ri (11)
ro a ; va airo (11)

This is the desired potential distribution. It assures a uniform generated field (z-directed) over the
region of the moving belt.

Because the voltages (vf,va) are in general time-varying, there is an additional capacitative
current. The capacitance is distributed between the high-voltage terminal and ground, and is deduced
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by considering the first-order current irl , determined from Eq. 9 with the zero-order voltage (given
by Eq. 11) introduced for Or. (Note that the procedure followed here is an informal version of that
outlined in Sec. 2.3.):

airl 2L£E dva z

8z c dt L (12)

The z dependence is given explicitly, so this expression can be integrated to obtain

Eo dv
i + f(t) (13)
rl cL dt

with f(t) an integration function to be determined shortly by boundary conditions. Introduction of
Eq. 13 on the right in Eq. 10 gives an expression for Orl that is similarly integrated to obtain

R ae dv 3
- _ - o- 

rl 
- a + f(t)z (14)

L cL dt t)

Because Or = 0 at z = 0, the second integration function has been set equal to zero.

The total voltage and current distributions consist of the sum of zero and first order parts.
Because the zero-order distributions already satisfy the correct boundary conditions, the first order
voltage must vanish at z - L. This serves to evaluate f(t) in Eq. 14. If f(t) is then introduced
into Eq. 13, and that expression evaluated at z = L, the current ir(L,t) has been found:

v 2ULE dva o a
ir iro + +a (15)
r ro rl R 3c dta

Note that because of the essentially linear distribution of voltage over the length of the structure,
the equivalent capacitance is 1/3 what it would be if the structure formed a plane-parallel capacitor
with the vessel wall. (This same equivalent capacitance can be computed with much less trouble and 2
.much less insight by simply finding the total electric energy storage and setting it equal to k Ceq a.)

Electrical Terminal Relations: The high-voltage terminal has a total current is which is the
sum of -ia given by Eq. 2, the ring-structure current ir from Eq. 15, and a current required to charge
the dome. With the last of these modeled as charging half of a spherical capacitor, the high-voltage
terminal relation has the form

v dv
a a

i = -- - G ev + C - (16)a R e f a dta
where

2RLE
2.RE o

S -; C 2 e + 2rE (a + b)e d a 3c o

The field terminal relations depend on details of the specific geometry in the region of the
pulleys. They take the form

vf dvf
i = -- + Cf (17)
f R f dtf

where Rf is the resistance of the belt material and the pulley mounting and Cf is the capacitance of
the pulley relative to ground or to the high-voltage terminal.

Mechanical Terminal Relations: The electrical torque acting in the 6 direction on the lower pulley
is computed by simply multiplying the z-directed force per unit area, afEz, by the total belt area
21L and the lever arm R. In view of Eq. 1 for of and the fact that Ez = -va/L,

T = -Gevfva (18)

where the coefficient Ge is' the same as defined with Eq. 16.

Analogy to the Magnetic Machine: The terminal relations summarized by these last three equations
have a canonical form not only found to describe other electric machines of quite different configura-
tion, but also to describe magnetic d-c machines. For example, compare these relations to Eqs. 4.10.17,
4.10.21, and 4.10.6. The analogy is complete provided that the identification is if - vf, va - ias
Ra - R~ , Gm 4 G,.
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The Energy Conversion Process: Modes of energy conversion are explored by considering the machine
constrained in such a way that the high-voltage terminal current ia is fixed, as is also the angular
velocity Q. Then, the machine is made to pass from one energy conversion regime to another by varying
the field voltage vf.

Under steady-state conditions, the electrical power input is expressed by solving Eq. 16 for va
and multiplying by ia:

vi = Rai (i + ~G v ) (19)

The mechanical power output is also written in terms of (vf,ia) by substituting for va in Eq. 18 and
multiplying by 0:

QT = -2 GRav f(ia + Ge v ) (20)

With the appropriate identification of variables, plots of these expressions, and the implied modes of
energy conversion, are as shown in Fig. 4.10.5.

4.15 Overview of Electromechanical Energy Conversion Limitations

This chapter has two broad objectives. On the one hand, examples are chosen to illustrate
techniques for using a field description in deducing lumped-parameter models. On the other hand, the
examples convey an overview of systems that are electromechanically kinematic while providing a back-
ground for understanding the kinematic systems taken up in Chaps 5 and 6 and the coupling to deform-
able media developed in later chapters.

The Maxwell stress acting on a "control volume" enclosing the moving material, introduced in
Sec. 4.2 as a convenient way to relate the fields to the total force or torque, is also useful in
obtaining a qualitative perception of basic limitations on the energy conversion processes. These
volumes are represented in an abstract way by Fig. 4.15.1. The longitudinal direction, denoted by (k),
generally represents the direction of material motion. Perpendicular to this is the transverse direc-
tion denoted by (t).

The net magnetic or electric force on the volume in general has contributions from both the
transverse and longitudinal surfaces, At and At. But, in all of the examples of this chapter, shear
stresses rather than normal stresses contribute to the energy conversion process. To exploit this
fact, the active volume of the devices has a longitudinal dimension that is large compared to trans-
verse diiensions. For example, in rotating machines, maximum use of the magnetic or electric stress
is made by having an "air gap" that is narrow compared to the circumference of the rotor. In the
Van de Graaff machine, the same considerations lead to a "slender" configuration with the belt charges
producing an electric field Et across a narrow gap and the generated field being Ek.

In all of these "shearing" types of electromechanical energy converters, the mechanical power
output takes the form

Pm = UAtK PIkH HtD m = UAtK E kEEtE (1)

Here, U and A are respectively the material velocity and an effective transverse area, e.g., the rotor
surface velocity and area respectively in a rotating machine. The largest possible net contribution of
the magnetic or electric shear stress contribution, PHkHt O and j EEcEtg respectively, is obtained if
stress contributions to one of the surfaces of the control volume are minimized. Generally, this is
accomplished by designing field sources into the volume. The factor K in Eq. 1 reflects geometry,
material properties and phase angles. In a synchronous machine, it accounts for the air-gap spacing,
the sinusoidal spatial dependence of the excitations and the relative phase of stator and rotor excita-
tions. In the variable-capacitance machine of Sec. 4.13, this factor (which represents the "cut" of
the ideal power output that is obtained) is also proportional to the product of the saliency amplitudes
on rotor and stator.

Because of their higher energy conversion density, it is generally recognized that conventional
magnetic electromechanical energy conversion systems are more practical than their electric counter-
parts. This predisposition has its basis in the extreme disparity between electric and magnetic shear
stresses that can be produced under ordinary conditions.

In conventional magnetic equipment, the limit on the magnetic flux density, set by the satura-
tion of magnetic materials, is in the range of 1-2 tesla (10 - 20 kgauss). The electric field
intensity in air at atmospheric pressure (over macroscopic dimensions in the range of 1 mm to 10 cm
usually of interest) is limited to less than the breakdown strength, 3 x 106 V/m. Thus under con-
ventional conditions, the ratio of powers converted by electric and magnetic devices having the same
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1

Fig. 4.15.1. Abstraction of regions of active electromechanical
coupling in magnetic and electric field systems.

velocity U, effective area At and factor K is (from Eq. 1) the ratio of the respective shear stresses.
Using as typical numbers, B = 1 and E = 106 V/m, this ratio is

(Pm electric , oE Et -5
10 (2)

(Pm)magnetic BLBt/ o

The disadvantage inherent to electric energy conversion devices can be made up by increasing the
velocity, the effective area, or the electrical breakdown strength. Now, illustrated by some examples
is the way in which rough estimates of the energy converted can be made with Eqs. 1, provided the fac-
tors are evaluated with some appreciation for the underlying engineering limitations.

Synchronous Alternator: A large synchronous machine, driven by a turbine in a modern power plant,
would have the typical parameters:

rotor radius b = 0.5 m

rotor surface velocity U = 2w60b = 188 m/sec

rotor length k = 7 m

air gap transverse and longitudinal flux densities = 1 tesla

These figures are typical of the full-scale generator modeled by the machine shown in Fig. 4.7.1c. An
upper bound on the factor K in Eq. 1 to take into account the sinusoidal field distributions on rotor
and stator, is reasonably taken as 1/2. Thus, from Eq. la, the mechanical power requirement (and with
reasonable efficiency, therefore the maximum electrical power output) is expected to be approximately

P = (188)[(27)(0.5)(7)](0.5)(l)/47 x 10 - 7 = 1.6 x 109 watts (3)m

This is about 50% more than the power rating of existing equipment having roughly the parameters used.

Superconducting Rotating Machine: The limit on practical magnetic shear stress set by the satura-
tion of magnetic materials more basically arises from the Ohmic heating limit on current density. A
synchronous machine like that described in Sec. 4.9 but with no magnetic materials is in principle not
limited by saturation. But it is limited by the current density consistent with available means for
removing the heat from the windings. (A current density of 3 x 106 A/m2 is projected for the normal
conducting armature of the machine shown in Fig. 4.9.2.) The incremental increase in magnetic field
associated with increasing the current density once the magnetic materials have been saturated makes
conventional operation in this range generally unattractive.

One way to obtain higher field intensities than are practical using conventional conductors is to
make use of superconductors. In time-varying fields, superconductors in fact have losses and are dif-
ficult to stabilize. But, for slowly varying and d-c fields they can be used to produce magnetic field
intensities greater than the 1-2 tesla range of conventional equipment. Under balanced synchronous
conditions, the field winding is only subject to d-c fields, while the armature winding carries a-c
currents and is subject to a-c fields. Thus, in the machine of Fig. 4.9.2, the rotor winding is super-
conducting while the stator is composed of normal conductors. With that machine, the projected (rotor)
field is in the range of 5-6 tesla and the area At required for a given power conversion accordingly
reduced. For example, a two-pole 60 Hz machine having Br = 1 tesla, Be = 5 tesla and rotor length and
radius X = 5 m and R = 0.3 m, respectively, has an estimated mechanical power input of AtTyrRP =
(2T£R)(BrBe/2wo)(R)(27rf) = 2 x 109 watts. These are representative of the parameters for a projected
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2000 MVA superconducting alternator.1

Variable-Capacitance Machine: In machines ex-
ploiting electrical shear stresses, the limit on
power converted posed by electrical breakdown can E
be pushed back by either making the insulation an
electronegative gas under pressure, or vacuum.
Typical improvements in breakdown strength with
increasing pressure above atmospheric are shown in
Fig. 4.15.2.2 In principle the field intensity can
be increased to more than 3 x 107 V/m, and hence the
electric shear stress can be increased by a factor
of more than 100 over that used in calculating Eq. 2.

-4-

The machine shown in Fig. 4.13.1c is designed
for operation in vacuum. Here, the mean free path
is very long compared to the distance between elec-
trodes. As a result, breakdown results as particles
are emitted from the electrode surfaces, accelerating
until impacting the opposite electrode where they can
produce further catastrophic results. Because the
voltage difference between electrodes determines the
velocity to which particles are accelerated, break-
down is voltage-dependent. Put another way, the A
breakdown field that can be supported by vacuum is a U0
decreasing function of the gap distance. It also 200 400
depends on the electrodes. Using steel electrodes - 2
having exposed areas of 20 cm2 , a typical break-

pressure ibs/in
down strength under practical conditions appears

3 Fig. 4.15.2. Breakdown strength of common gases
to be 4 x 107 volts across a 1-mm gap.

as a function of gas pressure for several
different electrode combinations.2

The electric machines illustrate how the power
conversion density can be increased by dividing the
device volume into active subregions. In an electric machine, current densities are small and as a re-
sult little conducting material is required to make an electrode function as an equipotential. By
making stator and rotor blades (as well as intervening vacuum gaps) thin, it is possible to pack a
larger amount of area At into a given volume. The limitation on the thickness and hence on the degree
of reticulation that can be achieved in practice comes from the mechanical strength and stability of
the rotor. Because of material creep and fracture, centrifugal forces pose a limit on the rotational
velocity; but more important in this case, if a blade passes through a high-field region slightly off
center, the result can be a transverse deflection that is reinforced by the next pulsation. The tend-
ency for the blades to undergo transverse vibrations as they respond parametrically to the pulsating
electric stress on each of their surfaces limits the effective area.

As numbers typical of the machine shown in Fig. 4.13.1c (where there are six gaps), consider:

R = mean radius of blades = 0.2 m
blade length = 0.12 m

U = mean blade velocity at 30,000 rpm = 630 m/sec (an extremely high velocity)

E = 5 x 106 V/m

At = (0.2)(2rr)(0.12) = 0.9 m2

Remember that the maximum electric field appears where the electrodes have their nearest approach, so
the average field used is considerably less than the maximum possible. According to Eq. lb with K=l,
the power output is then at most 125 kW. Actually, the factor K significantly modifies this rough
estimate. According to Fig. 4.13.2b, for 0o/d = 0.4 and a X/4 phase,

K = (3.2) -)

1. J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large Superconducting Alternators,"
IEEE Power Engineering Society, Winter Meeting, New York, January 1975.

2. J. G. Trump et al., " Influence of Electrodes on D-C Breakdown in Gases at High Pressure," Elec-
trical Engineering, November (1950).

3. A. S. Denholm, "The Electrical Breakdown of Small Gaps in Vacuum," Can. J. Phys. 36, 476 (1959).
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= For d/X = 0.1, K 2.5 x 10-2 , and the fraction of the ideal energy conversion is not very large. In-
stead of 125 kW, the postulated machine is predicted to produce 3 kW.

Electron-Beam Energy Converters: One class of electric field energy convertors that often have
very respectable energy conversion densities make use of electrons themselves as the moving material.
The model of Sec. 4.6 is developed with this class of devices in mind. A high-energy conversion den-
sity can result from the extremely large electron velocities that are easily obtained. For example,
an electron having mass m and charge q accelerated to the potential 0 has the velocity

U @ (5)

-31 -19
For the electron, m = 9.1 x 10 kg and q = 1.6 x 10 C. Thus, an accelerating potential of 10 kV
results in a beam velocity of 6 x 107 m/sec!

In electron-beam devices, the electric shear is not usually limited by electrical break-
7 ,down, but rather by the necessity for maintaining olumnated electrons in spite of their tendency to

drepel each other. To inhibit lateral motion of the particles due to their space charge, a
d magnetic field is commonly imposed in the direction of electron streaming. The Lorentz force, Eq. 3.1.1,

then tends to convert any radial motion into an orbital motion, while letting electrons stream in the
same direction as the imposed magnetic field.4

Electron beams are typically used to convert d-c electrical energy to high-frequency a-c. In fact,
the high beam velocity requires that for a synchronous interaction, the frequency f is the beam velocity
U divided by the wavelength of charge bunches; f = U/A. Hence, for a wavelength X - 6 cm, the frequency
for a traveling-wave interaction with the 10 kV beam would be essentially f -=6 x 107/6 x 10-2 = 109 Hz.
The practical limit on how short X can be while obtaining useful coupling between beam and traveling-wave
structure is evident from Sec. 4.6.

The kinematic picture for the beam is useful for making the electroquasistatic origins of the
coupling clear and to identify the nature of the synchronous interaction upon which devices like the
traveling-wave tube depend. But, because the electron bunching takes place self-consistently with the
coupling fields, it is necessary, i engineering electron-beam devices, to treat the electrons as a
continuum in their own right.4 Such examples are taken up in Chap. 11.

Both electron-beam devices and synchronous alternators convert mechanical to electrical energy.
As a reminder rather than a revelation, note that the synchronous alternator is of far more fundamental
importance for human welfare, because when attached to the shaft of a turbine driven by a thermal heat
cycle, it is capable of converting low-grade thermal energy to a high-grade electrical form. Its con-
version of energy naturally fits into schemes for production of energy from natural basic sources.
By contrast, the electron-beam devices only convert d-c electrical energy to a high-frequency electrical
form.

4. M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics, McGraw-Hill Book Company,
New York, 1964.
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Problems for Chapter 4

For Section 4.3: I-- S -oo --

KS Re KRexp(-jkz)
Prob. 4.3.1 The cross section of a "double-sided machine"
is shown in Fig. P4.3.1. The "rotor" is modeled as a d /Lo r
current sheet.

I Kr=R e Krexp(-jkz)
(a) Find the force f, acting in the z direction on an

ý00000000000000000000000000Zarea A of the sheet.

(b) Now take the excitations as given by Eqs. 4.3.5a and
4.3.6a for synchronous interactions and evaluate f d S "S

(c) For a d-c interaction, the excitations are given K =ReK exp(-jkz)
by Eqs. 4.3.10a. Find fz" OOOOOOOOOOOOOOOOO°°°°°OOOO o

Fig. P4.3.1

Prob. 4.3.2 The developed model for a "trapped flux"
synchronous machine is shown in Fig. P4.3.2. (See

66666ri6 ~6660606066
case 3a of Table 4.3.1). Te stator surface current
is specified as in Eq. 4.3.y. The "rotor" consists \Ks of a perfectly conducting material. When t=O, the

S Re KSexp(-jkz) X
currents in this material have a pattern such that
the flux normal to the rotor surface is Br=Br cosx 0 dI Br: RBrexp(-jkz)
k[Ut-(z-6)], where U is the velocity of the rotor.
Find fz first in terms of KS and Br and then in terms cI-O-co --
of Ks and B . In practice, such a synchronous force U
would exist as a transient provided the initial current Fig. P4.3.2
distribution diffused away, as described in Sec. 6.6, on
a time scale long compared to that of interest.

Prob. 4.3.3 The moving member of an EQS device takes the
I e=ReDexp(-jkz)form of a sheet, supporting the surface charge af and moving

in the z direction, as shown in Fig. P4.3.3. Electrodes on d
the adjacent walls constrain the potentials there. J o- f=Ref exp(-jkz)
(a) Find the force f, on an area A of the sheet in terms of

(,a & $b).

(b) For a synchronous interaction, w/k = U. The surface charge b -b
is given by -aocos[wt-k(z-6)] and 4a = Vocos(wt-kz). For S bRe=F exp(-jkz)
even excitations ob=oa. Find f .

(c) An example of a d-c interaction is the Van de Graafgmachine
taken up in Sec. 4.14. With the excitations Oa= Db=-Vocos kz Fig. P4.3.3
and Uf=rosin kz, find fz.

For Section 4.4:

Prob. 4.4.1 This problem is intended to give the opportunity to follow through the approach to develop-

ing a lumped parameter model illustrated in Sec. 4.4. However, for best efficiency in determining the

electrical terminal relations, it will be helpful to use the transfer relations of Sec. 2.19, and study

of Sec. 4.7 is recommended in this regard.

The cross section of a model for a permanent-magnetization rotating magnetic machine is shown in

Fig. P4.4.1. The magnetization density in the rotor is uniform and of magnitude Mo . The stator is

wound with a uniform turn density N, so that the surface current density over 260, the span of the

turns, is Ni(t).

(a) Show that in the rotor volume, B is both solenoidal and irrotational so that the transfer

relations of Table 2.19.1 apply provided that pH0 is taken as B .

(b) Show that boundary conditions at the rotor interface implied by the divergence condition on

B and Ampere's law are

n • B = 0 ; nnx [BI = PoKf + o x EM
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Prob. 4.4.1 (continued)

(c) Find the instantaneous torque on the rotor as a function of (0 r,i). (Your result should be
analogous to Eq. 4.4.11.)

(d) Find the electrical terminal relation X(8r,i,Mo). (This result is analogous to Eq. 4.4.14.)

Fig. P4.4.1

For Section 4.6:

Prob. 4.6.1 A charged particle beam takes the
form of a planar layer moving in the z direction
with the velocity U, as shown in Fig. P4.6.1. The
charge density within the beam is

p = Re o ejk

Thus the density is uniform in the x direction
within the beam, i.e., in the region -b/2 < x
< b/2. The walls, which are constrained in
potential as shown, are separated from the
hbem hv nlanar reinno n f free snpa of hilek-

ness d.~ Fig. P4.6.1
(a) In terms of the complex functions of time Vo and po,

find the electrical force acting on an area A (in the y-z plane) of the beam in the z direction.

(b) Now, specialize the analysis by letting

=a = 0f = V cos(wt-kz)

P =-p cos[wt-k(z-6)]

Given that the charged particles comprising the beam move with velocity U, and that k is specified
what is W? Evaluate the force found in (a) in terms of the phase displacement 6 and the amplitudes
Vo and po.

(c) Now consider the same problem from another viewpoint. Consider the entire region -(d+ )< x < (d+•)
as one region and find alternative expressions for parts (a) and (b).

For Section 4.8:

Prob. 4.8.1 Transfer relations are developed here that are the Cartesian coordinate analogues of
those in Sec. 4.8.

(a) With variables taking the form A = Re A(x,t)e-kj y and H, = Re Hy(x,t)e- jk y and a volume current
density (in the z direction) J = Re J(x,t)e-jky, start with Eq. (b) of Table 2.19.1 and show
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Prob. 4.8.1 (continued)

that the transfer relations take the form

A• -coth kA si1h k -coth kA 1 HI A
sinh kA yp p

- +

sinh kA y - coth kA H A
sinh kA yp p

(b) The bulk current density and particular solution for A are represented in terms of modes li.(x):
1

J = Re E Ji(t)HT(x)e-jkY A =.Re E Ai(t)fli(x)e-jky
i=0 i=0

Show that if the modes are required to have zero derivatives at the surfaces,
the transfer relations become

-coth kA sinh kAsinh kA y
III

k + i0 T 2 2
i=O (-y) + k-l

A inh kA coth kA H
sinh kA y

For Section 4.9:

Prob. 4.9.1 A developed model S
ft A 4iLO diA4L hi1-I 4

f
is shown in Fig. P4.9.1. The
infinitely permeable stator
structure has a winding that
is modeled by the surface cur-
rent Ks = Re Ks e-jky. The
rotor consists of a winding
that completely fills the air

gap and is Dacked Dy an inri-
nitely permeable material.
At a given instant, the current
distribution in the rotor windings Fig. P4.9.1

is uniform over the cross section of the gap; it is a square wave in the y direction, as shown. That
is, the winding density (n wires per unit area) is uniform. Use the result of Prob. 4.8.1 to find the
force per unit y-z area in the y direction acting on the rotor (note Eq. 2.15.17). Express this force
for the synchronous interaction in which Ks = Kscos (wt - y).

For Section 4.10:

Prob. 4.10.1 A developed model for a d-c
machine is shown in Fig. P4.10.1. The field
winding is represented by a surface current
distribution at x = b that is a positive
impulse at z = 0 and a
negative one at z = k, Fig. P4.10.1
each of magnitude n f if as
shown. Following the outline given in
Sec. 4.10, develop the mechanical and elec-
trical terminal relations analogous to
Eqs. 4.10.6, 4.10.17 and 4.10.21. (See
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Prob. 4.10.1 (continued)

Prob. 4.14.1 for a different approach with results that suggest simplification of those found here.)

For Section 4.12:

Prob. 4.12.1 The potential along the axis of a cylindrical coordinate system is O(z). The system is
axisymmetric, so that Er = 0 along the z axis. Show that fields in the vicinity of the z axis can be
approximated in terms of O(z) by Ez = -do/dz and

KEr dz

For Section 4.13:

Prob. 4.13.1 An alternative to the quasi-one-dimensional model developed in this section is a "linear-
ized" model, based on the stator and rotor amplitudes being small compared to the mean spacing d. In
the context of a salient-pole machine, this approach is illustrated in Sec. 4.3. Assume at the outset
that Er/d << 1 and Es/d << 1 but that the wavelength X is arbitrary compared to d. Find the time-
average force acting on one wavelength of the rotor. Take the limit 2rtd/X << 1, and show that this
force reduces to Eq. 4.13.12.

Prob. 4.13.2 A developed model for a salient
pole magnetic machine is shown in Fig. P4.13.2.
A set of distributed windings on the stator
surface impose the surface current

K = Ks sin(wt-kz)
y o

and the geometry of the rotor surface is
described by

E = Eo cos 2k[Ut-(z-6)]

Both the rotor and stator are infinitely Fig. P4.13.2
permeable.

(a) What are the lowest order Hx and Hz in a quasi-one-dimensional model?

(b) Find the average force fZ on one wavelength in the form of Eq. 4.13.8.

(c) Compare your result to that of Sec. 4.3, Eq. 4.3.27.

For Section 4.14:

Prob. 4.14.1

(a) For the magnetic d-c machine described in Prob. 4.10.1, show that the quasi-one-dimensional fields
in the gap (based on a >>,4 are

N i nfif
H aNa a (z - 0 < z < (1)

x b 3X/2 - 2b

- H Nai -1) a< 2 (2)

(b) Based on these fields, what is the force on a length, 2k, of the armature written in the form

fz = - Gmifia?

(c) Write the electrical terminal relations in the form of Eqs. 4.10.17 and 4.10.21.
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5

Charge Migration, Convection
and Relaxation



5.1 Introduction

In Chap. 4, the subject is electromechanical kinematics. Field sources are physically constrained
to have predetermined spatial distributions and the relative motion is prescribed. As a result, in a
typical example, the electromechanical dynamics can be incapsulated in a lumped-parameter model. In
this and the next chapter, the mechanics remain kinematic, in that the material deformations are again
prescribed. However, now material may be suffering relative deformations, represented by a given ve-
locity field v(r,t). More important, in this and the next chapter, electrodes and wires are no longer
used to constrain the "free" field sources. Rather, the distribution of free charge and current is now
determined by.the field laws themselves, augmented by conservation laws and constitutive relations.

The physical situations now considered are electroquasistatic and the sources are therefore charge
densities. In Chap. 6, magnetoquasistatic systems are of interest, the relevant sources are the free
current density and magnetization density, and the subject is magnetic diffusion in the face of material
convection.

In the next section, equations are deduced that represent the fate of each species of charge.
Throughout this chapter, the charge carriers are dominated in their motions by collisions with neutral
particles and with each other. On the average, collisions are so frequent that the inertia of each
carrier can be ignored. Such collision-dominated carrier motions are introduced in Sees. 3.2 and 3.3,
where the observation is made that it is only if the particle inertia is ignorable that the electrical
force on the carrier can be taken as instantaneously transmitted to the media through which it moves.
If the carrier inertia is important, the carrier densities constitute mechanical continua in their own
right. Such examples are the electron beam in vacuum and the ions and electrons that constitute a "cold"
plasma. These models are therefore appropriately included in Chaps. 7 and 8, where fluids and fluid-
like continua are studied.

The conservation of charge equations, together with the electroquasistatic field laws and the
specified material deformation, constitute a description of the way in which the fields and their
sources self-consistently evolve. Whether to gain insights concerning the implications of these equa-
tions, or to solve these equations in a specific situation, characteristic coordinates are valuable.
Thus, the characteristic approach to partial differential equations is introduced in the context of
charge-charrier migration, relaxation and convection. The method of characteristics will be used ex-
tensively to describe other phenomena involving propagation in later sections and chapters.

Examples treated in Secs. 5.4 and 5.5, which illustrate "imposed field and flow" dynamics of
systems of carriers, involve a space charge due to the charge carriers that is ignorable in its con-
tribution to the field. The impact charging of macroscopic particles treated in Sec. 5.5 results in a
model widely used in atmospheric sciences, macroscopic particle physics and air-pollution control.

When space-charge effects are significant, it is necessary to be more specialized in the treat-
ment. In Sec. 5.6 only one species of charge carrier is presumed to be significant. The unipolar
carriers might be ions injected by a corona discharge into a neutral gas or into a highly insulating
liquid. They might also be charged macroscopic particles carrying a constant charge per particle and
migrating through a gas or liquid. Section 5.7 considers steady-flow one-dimensional unipolar con-
duction and its relation to the d-c family of energy converters.

Bipolar conduction, discussed in Secs. 5.8 and 5.9, has as a limiting model ohmic conduction;
These sectiona have two major objectives, to illustrate charge migration and convection phenomena
with more than one species of carrier, and to put the ohmic conduction model in perspective. In
Sec. 5.10, charge relaxation is described in general terms by again resorting to the method of charac-
teristics. The remaining sections are based on the ohmic conduction model.

The transfer relations for regions of uniform conductivity are discussed in Sec. 5.12 and applied
to important illustrative physical situations in Secs. 5.13 and 5.14. These case studies are profit-
ably contrasted with their magnetic counterparts developed in Secs. 6.4 and 6.5.

Temporal transients, initiated from spatially periodic initial conditions, are considered in
Sec. 5.15. Just as the natural modes are closely related to the driven response of lumped-parameter
linear systems, the natural modes of the continuum systems discussed in terms of their responses to
spatially periodic drives in Secs. 5.13 and 5.14 are found to be closely related to the natural modes
for distributed systems. This section, which is the first to illustrate the third category of response
for linear systems that are uniform in at least one direction, as presaged in Sec. 1.2, also illus-
trates how heterogeneous systems of uniform ohmic conductors (which support a charge relaxation process
in each bulk region) can display charge diffusion in the system taken as a whole. This type of dif-
fusion should be discriminated from diffusion at the carrier (microscopic) level. Diffusion in the
latter sense is included in Sec. 5.2 so that the domain of validity of migration and convection proc-
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esses in which diffusion is neglected can be appreciated. Molecular diffusion and its effect on charge
evolution, introduced in Sec. 5.2, is largely delayed until Chap. 10.

Finally, in.Sec. 5.16, the response of an Ohmic moving sheet is used to introduce the fourth type
of continuum linear response eluded to in Sec. 1.2, a spatially transient response to a drive that is
temporarily in the sinusoidal steady state.

5.2 Charge Conservation with Material Convection

With the objective of deriving a law obeyed by each species of charge carrier in its self-
consistent evolution, consider a volume V of the deforming material having a fixed identity. That is,
in a macroscopic sense, the surface S enclosing this volume is always composed of the same material
particles: S - S(t). The ith species of charge carrier is defined as having a number density ni
(particles per unit volume), charge magnitude qi (per particle) and hence a magnitude of charge density
Pi = niqiq Positive and negative charge or charge density will be denoted explicitly by upper and lower
signs respectively.

A statement that the total charge of the ith species is lost from V at a rate determined by the
net outward current flux and accrued at a rate determined by the net effect of volumetric processes is

TF d J-idV f+ -V " - 'J 'nda +  

- (G R)dV (1)
±P S I V

Generation and recombination of the carriers within the volume are represented by G and R, 4espectively,
which have the units of charge/unit volume/sec. Because S is fixed relative to the media, J1 is defined
as the ith species current density measured in the materials frame of reference.

The generalized Leibnitz rule for differentiation of an integral over a time-varying volume,
Eq. 2.6.5, makes it possible to take the time derivative inside the integral on the left in Eq. 1. In
using Eq. 2.6.5 for this purpose, note that the velocity of the surface S is the material velocity _.
Thus Eq. 1 is converted to

(2)
_t dV + ±pivnda = - J'.nda + (G - R)dV 

V S S V

By Gauss' theorem, Eq. 2.6.2, the surface integrations are converted to volume integrations. Because
the volume V is arbitrary, it follows that

a6t+ V. [ + ] = G - R (3)

To make use of this differential law, the current density must be related to the charge density, and the
rates of generation and recombination must be specified.

Carriers, dominated by collisions in their motion through a neutral medium, are usually described
by the current density

J' - nibiiE %iV(qin) E b pE + KDil (4)

The term proportional to q E represents migration and is familiar from Sec. 3.2. Because of the elec-
tric field, a charged particle sustains a net migration as it undergoes frequent thermally induced col-
lisions with neutral particles. These collisions are so frequent that on the time scale of interest
there is an instantaneous equilibrium between the electrical force and an effective drag force. In
terms of a friction coefficient (mivi), this force equilibrium is expressed by

±qiE = (mi v) 1 (5)

The particle velocity vi relative to the neutral medium is expressed in terms of the mobility bi as

4. 4
vi = +biE (6)

where bi E qi/mvi i Thus, the first term in Eq. 4 is the product of the charge density _pi and the
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1 2particle velocity vi . Large molecules and macroscopic particles in gases and liquids are often
modeled as being spherical and obeying Stokes's law (Sec. 7.21), in which case the friction factor is

mivi = 6iTa, where n and a are the fluid viscosity and particle radius respectively. For such parti-
cles, the mobility is

bi = (7)
1 6wna

The second term in Eq. 4 recognizes that because of the thermally induced motions of the particles,
on the average there will be a particle flux away from regions of high concentration. This flux is
proportional to the spatial rate of change of concentration.

As might be expected from their common origins in the thermal particle motions, the diffusion co-
efficient KDi and the mobility are related properties of the medium through which given particles mi-
grate and diffuse. For ideal gases and liquids, KDi and bi are linked by the Einstein relation

kT kT -3 o (8)
KM --)bi; - = 26.6 x 10 volts at T =-20 C

where k is the Boltzmann constant, T is the absolute temperature in degrees Kelvin and qi is the par-
ticle charge. The quantity kT/q is measured in volts and at room temperature for q equal to the elec-
tron charge, e, has the value given with Eq. 8.

Physical examples to which Eq. 4 applies are given in Table 5.2.1, together with typical values
for the mobility and diffusion coefficient.

In inserting Eq. 4 into the charge conservation equation, Eq. 34 it is now assumed that the mate-
rial deformations of interest are incompressible in the sense that V.v = 0, so that

api __ -- .

t + (v + biE).VPi =V(KDiPi) + iVbiE+ G - (9)R 

Each of n species contributing to the transfer of charge is described by an expression of the
form of Eq. 9. The evolution of one species is linked to the others through Gauss' law, which recog-
nizes that the net charge from all of the species is the source for the electric field:

+. n
V.-E = + pi (10)

i=l

Of course, in the electroquasistatic approximation E is irrotational, a condition that is automatically

met by requiring that

E = -4V (11)

Given appropriate source and recombination functions G and R, and the material velocity distribu-
tion V(r,t), Eqs. 9-11 constitute n+l scalar expressions and one vector equation describing n charge
densities, 0 and the vector E.

In the remainder of this chapter, certain of the physical implications of these relations are
explored, with emphasis on the interplay of the material convection and the charge transport processes.

Approximations are necessary if practical use is to be made of these relations. In this regard, the

relative importance of the migration and diffusion contributions to the current density, Eq. 4, is
important. To approximate the ratio of diffusion and migration terms for a given species, the charge
density gradient is characterized by pi/t, where k is a typical length. For media described by the
Einstein relation, Eq. 8,

diffusion current density kT/qi
migration current density = (12)

Suppose that each carrier supports one electronic charge. Then if j = 1 V/m, the influence of dif-
fusion equals or exceeds that of migration for length scales shorter than about 2.5 cm. But, for

1. C. Orr, Jr.,. Particle Technology, Macmillan Company, New York, 1966, p. 296.

2. F. Daniels and R. A. Alberty, Physical Chemistry, 3rd ed., John Wiley & Sons, New York, 1967,
pp. 405-406.
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Table 5.2.1. Typical mobilities of various charged particles.

Macroscopic Particles in Fluids

Charged to saturation by ion impact, the particle charge is given by Eq. 5.5.1. Introduced into
Eq. 7, this charge implies the mobility

2e aE
b - (a)

where a is the particle radius, E is the electric field in which the charging occurs, and n is the
viscosity of the gas or liquid. In air under standard conditions this expression is valid for radii
down to about 0.5 wm, below which the finite mean free path of air molecules and diffusional charg-
ing become important.3  For air, this expression becomes 8.8 x 10-7 aE, so that for a = 1 Um and E =
10 V/m the mobility is 10-7 (m/sec)/(V/m).

Ions in Gases

At atmospheric pressure, ions are typically generated by a corona discharge. Ions drawn from the
discharge by an electric field are usually not distinguished. Reported ion mobilities distinguish
among various gases, but do not specify the type of ion. Some published values, unless otherwise
indicated for atmospheric pressure and 200C, are:

Air H20 N2
Gas (dry) CC14 CO2  H2 (100oC) H2S N2  Very 02 802

pure

b (units of 104 m2/V sec) 1.36 0.30 0.84 5.9 1.1 0.62 1.27 1.28 1.31 0.41

b (units of 10- 4 m2/V sec) 2.1 0.31 0.98 8.15 0.95 0.56 1.84 145 1.8 0.41

Low mobilities in impure gases are thought to result from formation of "clusters," while extremely
4

high negative mobilities are attributed to an "ion" spending part of its time as a free electron.

Ions in Highly Insulating Liquids

Approximate formulas relate mobility to the viscosity,

-11 -11
b+ = 1.5 x 10 -11/n; b = 3 x 10 /n (b)

Thus, for a liquid having the viscosity of water, n = 10- , mobilities are 1.5 x 10 and 3 x 10
respectively. For a careful evaluation with liquid and type of ion specified see Adamczewski.5

Ions in Water at 250C Forming an Electrolyte at Infinite Dilution
6

I I
3. H. J. White, Industrial Electrostatic Precipitation, Addison-Wesley Publishing Company, Reading,

Mass., 1963, p. 137.

4. Handbook of Physics, E. U. Condon and H. Odishaw, Eds., McGraw-Hill Book Company, New York, 1958,
pp. 4-161.

5. I. Adamczewski, Ionization, Conductivity and Breakdown in Dielectric Liquids, Taylor & Francis,
London, 1969, pp. 224-225.

6. Ref. 2, p. 395.
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fields of the order of 104 V/m, the length scale must be shorter than 2.5 um for this to be true. In
relatively conducting materials, such as electrolytes, fields of interest might be no more than 1 V/m.
But, motions of ions in insulating liquids and gases, with fields typically exceeding 104 V/m, are not
influenced by diffusion except in accounting for certain processes in the immediate vicinity of bound-
aries.

5.3 Migration in Imposed Fields and Flows

In this section, the spatial scale of interest is such that the diffusion current can be con-
sidered negligible compared to the migration current. In addition, the medium is one in which genera-
tion and recombination of the charged species is negligible. Hence, the first and last two terms in
Eq. 5.2.9 can be dropped. For carriers having a constant mobility, what remains on the right in
Eq. 5.2.9 is proportional to the divergence of the electric field. By Gauss' law, this term is there-
fore proportiopal to the net space charge. If the density of carriers is small, Gauss' law, Eq. 5.2.4,
requires that E be solenoidal:

V*E = 0 (1)

and Eq. 5.2.9 therefore reduces to

api -)- 4
- + (v + biE)'Vpi = 0 (2)

In this "imposed field" approximation, the electric field is essentially determined by charges
outside of 4 he region of interest. Typically, these charges reside on boundaries and, in terms of the
potential, E is governed by Laplace's equation. Thus, as an example, if the potentials of all bound-
aries were constrained, E would be determined by solving Laplaces equation subject to these boundary
conditions, and that value of E "imposed" in Eq. 2. For such a physical situation, each species migra-
tes independently of the others, as is evident from the fact that the coupling between species af-
forded by Gauss' law is now absent.

The assumption that the electric field distribution is not appreciably affected by the migrating
species says that the net charge density is small but not necessarily zero. In general there is an
electrical force density acting throughout the moving medium. As in all of jh4s chapter, it is assumed
that the effect of this force density on the relative velocity distribution v(r,t) is negligible. In
this sense, the flow is also-"imposed."

The imposed field and flow approximation gives the opportunity to study the effect of convection on
the migration of charged particles. As San be seen from Table 5.2.1, ions moving in a field of 105 V/m
through air have a migration velocity biE on the order of 20 m/sec. Thus, an air velocity on this order
could have a large influence on an ion trajectory. Macroscopic charged particles, such as dust in an
electrostatic precipitator, typically have a considerably lesser mobility, and are therefore strongly
influenced by modest motions of the gas. Although typical velocities of a liquid are likely to be less
than for a gas, because of the relatively lower mobilities of ions and macroscopic particles in high-
ly insulating liquids, the effects of convection can again be appreciable.

With the replacement of the velocity by the ion velocity 4 + b 1, Eq. 2 takes the form of a con-
vective derivative. It states that the time rate of change of the species charge density as viewed by
a charged particle of fixed identity is zero (see Sec. 2.4 for a discussion of the physical signifi-
cance of the convective derivative):

dpi
dLJ 0 (3)
dt

on

dr I + b_ (4)
dt i

In what amounts to a rederivation of the convective derivative, consider the transition from Eq. 2
to the representation of Eqs. 3 and 4 in a somewhat more formal way. The three spatial coordinates
and time constitute a four-dimensional space. Each set of coordinates (~,t) in this space has an associ-

ated solution pi(t,t). An incremental change in the coordinates therefore leads to a change in pi given
by

api ap, 'Pi 'pi
dpi = dt + dx + dy B- + dz z (5)

As it stands, this expression is nothing more than a prescription for computing dpi for a given change
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(dt,dt) in the coordinates of the (-,t) space. But, can these incremental changes be specified so that
Eq. 2 reduces to an ordinary differential equation? Division of Eq. 5 by dt and comparison to Eq. 2

shows that the desired specification is Eq. 4. Along a given characteristic line, represented by Eq. 4,
Eq. 2 becomes Eq. 3. These lines have the physical significance of being the trajectories of the car-
riers.

If the evolution of the charge species is to be determined within a given volume V, then the charge
density of each species must be specified where the associated characteristic line "enters" the volume
of interest. The "direction" of a characteristic line is one of increasing time. Formally, with n taken
as positive if directed outward from the volume of interest, the boundary condition is imposed on the
ith species wherever

n.(v ± b E) < 0 (6)

Boundary conditions consistent with causality seem obvious in the transient case, but Eqs. 4 and 5 per-

tain also to steady flows in which rates of change with respect to time for an observer at a fixed loca-

tion are zero.

÷4.
Steady Migration with Convection: In the laboratory frame of reference, v,E and the boundary con-

ditions represented by Eq. 6 are all invariant. Even so, the time rate of change for the particle, as
expressed by Eq. 4, is finite. Explicit expressions for the particle trajectories can be found in a wide
class of physically interesting situations, following the approach now illustrated.

Both v and E are solenoidal, and hence can be represented in terms of vector potentials. The dis-
cussion of Sec. 2.18 centers around four common configurations in which only a single component of these
vector potentials is required to describe the vector functions. By way of illustration, the polar and
axisymmetric spherical configurations are now considered, with the results applied to specific problems
in the next two sections.

In polar coordinates, define vector potentials such that

S1 _8 (7)

as suggested by Table 2.18,1. Similarly, 4.n spherical coordinates

r sin 8 r i- e r
V

In terms of these functions, in the respective configurations, Eq. 4 becomes

Polar Axisymmetric spherical

dr 1 (A + bi) dr 1 1 a
dt T er 6iAE)v dt r sin 6 [r Ts ( v biE) .)E)

de bi ) S1 a +
dt -ar v(A- i dsin tT (Av + biAE) (10)

r- d - r sin e " v--

Remember that steady-state conditions prevail, so that the quantities on the right are independent of

time. Time is therefore eliminated as a parameter by solving each of these expressions for dt and

setting the respective equations equal to each other

a a a a
+ v)dr - (A + b AE)dO = 0 (11)

T-(A biAE)dr + + (A biAE)dE = 0 (AE ± + bi + 

Because there is no time dependence to the potential functions, these expressions constitute total de-

rivatives, and can be just as well written as

d(A + biAE) =0 d(A V biAE) = 0 (12)

The lines along which a species charge density is constant are implicitly given by

A + biAE = constant A + bi AE = constant (13)
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quasistationary Migration with Convection: To integrate the particle equations of motion, and thus
arrive at Eqs. 13, it is necessary to require that the particles be in essentially the same field and
flow distribution throughout their motions through the volume of interest. In that sense, the motions
are steady. But the particle transit times may be brief compared to a dynamical time of interest, per-
haps that required for a surface upon which the particles impinge to charge, and hence change the elec-
tric field intensity. Thus, over a longer time scale, the flow and field distribution, hence the func-
tions (AE,BA) and (AE,A),may be functions of time. This is often the situation during impact charging
of macroscopic particles, discussed in Sec. 5.5.

For unipolar migration, the assumption that the electric field is solenoidal (that space charge
has a negligible effect on the electric field distribution) is equivalent to the postulate of quasista-
tionary migration (that the transit time for a particle through the volume of interest is short com-
pared to the time required to charge a boundary). This point is best made in Sec. 5.6 after a quasi-
stationary process is considered in Sec. 5.5.

5.4 Ion Drag Anemometer

The example of this section is intended to illustrate how charged particle trajectories can be
computed using the approximations introduced in Sec. 5.3. A pair of electrodes is embedded in the
wall bounding a fluid moving uniformly to the right, as shown in Fig. 5.4.1. A potential V, applied
to the right electrode gives an electric field intensity which terminates on the left electrode. In
the neighborhood of the coordinate origin this field can be approximated as azimuthal. Thus, the
imposed velocity and electric field intensity distributions are

v U[sin 64r + cos 6e] (1)

-V +
E Tr ie (2)itr 8

Tr

[Li
I I I V
c - a v

Fig. 5.4.1. Electrodes embedded in a smooth wall have the potential difference V.
Ions enter from the left, entrained in the uniform velocity U. With a positive
V, the left electrode intercepts some of the ions from the flow.

Fluid flow is represented as inviscid, and hence uniform right up to the electrode surfaces. Positive
ions, present in the stream entering from the left, are sampled by the electrodes. The flux of ions
to the left electrode caused by applying a positive voltage V to the right electrode is to be computed

1with a view toward obtaining the associated current i as a way of measuring the gas velocity.

7
It follows from Eqs. 5.3. /that

AE = In (-) (3)

Av - -Ur cos e (4)

The characteristic lines, along which the charge density is constant, are given by Eq. 5.3.13, which
in view of Eqs. 3 and 4 becomes

-Ur cos 8 + In (1) - constant (5)
7I a

1. K. J. Nygaard, "Anemometric Characteristics of a Wire-to-"Plane" Electrical Discharge," Rev. Sci.
Instr. 36, 1771 (1965).
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atten-evaluated by fixing The constant is 

tion on t h e c 
at an

enterin line 
teristic h aLLIIc 5 .

altitude h over the left edge of the left elec-
trode. Thus, at r sin 6 = -c, r cos 6 = h and

r =7h 2 + c2 . Then, Eq. 5 becomes

V InF/ = h - r cos 6 (6)

where normalization of (V,h,r) is introduced:

bV h rV -= bV h r r
- rUc c c

The quantity on the right is the distance down- 0
ward (toward the electrode) measured from the
initial altitude, h, of a particle. Hence, the
particle trajectories can be simply plotted by
specifying the normalized voltage V and h for the
trajectory of interest. With compass in hand,
a graphical cosLruciLLUL oL of a LraJLory is o- U -o

tained by picking a normalized radial coordi- ja/
nate r, computing the left-hand side of Eq. 6,
and finding the azimuthal angle 0 at which the Fig. 5.4.2. Characteristic (force) lines for the
distance downward from the initial height h, is physical configuration of Fig. 5.4.1. Ver-
as computed. tical and horizontal distances have been

normalized to c, with the left electrode then
Typical plots are shown in Fig. 5.4.2. Con- extending from l-a/c. In this sketch, V=0.5.

cern is with positive ions only so that character-
istic lines emanating from the wall to the right of the origin enter the volume of interest where there
is no source of charge. Hence, the constant charge density to be associated with those lines is zero.
On lines entering from the left, the charge density is a constant determined by conditions to the left.

The point (r,6) = (0.5,V) shown in Fig. 5.4.2 is one of zero force. Setting the r and 6 compo-
nents of v + bE to zero shows that this critical point is at r = V and 6 = 0. At this point, charac-
teristic lines entering from the left split into those that remain in the stream and those that reach
the plane 6 = -7/2.

The characteristic line passing through the critical point is found by evaluating Eq. 5 at
r = V,6 = 0:

-r cos 6 + V In (r -) = -V + V In (V -) (7)
a a

The position r = r on the surface 6 = -r/2 where this critical characteristic line impinges then
follows by evaluating Eq. 7 with 6 = -7/2:

r v (8)
e

Thus, the critical characteristic line impinges on the electrode if r > (a/c),i.e., if

V > )e (9)

For lesser values of V, all of the electrode surface collects particles entering from the left, and the
total current i is the integral of -pbE6 over the entire electrode surface:

i = w pbV dr = (pUcw)V In (c) (10)

a
a

This dependence of i on V is presented graphically in Fig. 5.4.3, valid so long as V < - e.
c

If V is increased beyond this value, only that portion of the electrode to the left of r = r
collects particles. The rest intercepts characteristic lines carrying no charge because they originate
on the boundary 6 = U/2 to the right. Thus, the current is

c

w i pbVdr = pUcw V(l - ln V) (11)
i=w(cV/e) -r r

/i.~Y
U~~ ̀ _ s
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ae/c I 2 e 3
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Fig. 5.4.3. Normalized current to electrode in Fig. 5.4.1 as function
of normalized voltage •-= bV/rrUc.

With V beyond the value e, all of the characteristic lines reaching the electrode surface originate to
the right where there is no source of particles. For voltages greater than this, the electric field
diverts the particles completely before they can reach the electrode, and i = 0. The current depend-
.ence given by Eq. 11 is also summarized in Fig. 5.4.3.

It should be clear from the i-V characteristic summarized by Fig. 5.4.3 that there are many ways
in which practical use could be made of the charged particle collection process. The peak current is
a measure of U, while the voltage at which the curve peaks, or cuts off, gives a measure of either the
velocity or the mobility.

5.5 Impact Charging of Macroscopic Particles: The Whipple and Chalmers Model

Electrostatic precipitators, used for the collection of particulate from gases in air-pollution
control systems, make use of ion impact charging. A typical configuration is shown in Fig. 5.5.1. Dust
laden gas enters the metallic tube from the bottom, and the object is to separate the dust from the gas
before the latter leaves at the top. The high-voltage wire supported at the center of the tube sustains
a corona discharge, a type of electrical breakdown that remains localized around the wire. Within this
corona discharge, both positive and negative ions are created. Positive ions are drawn outside the
immediate vicinity of the corona where they migrate along the lines of force toward the grounded co-
axial electrode.

A particle of dust that interrupts the electric field also interrupts the ion migration. As a
result the particle becomes charged.

Once charged,it too is subject to an electrical force and hence also tends to migrate to the
cylindrical wall. The final stage of particle collection consists in rapping the electrode so that
compacted dust falls from the walls into a hopper below.1

Provided that the contribution of the migrating ions to the electric field in the immediate
vicinity of the particle is negligible, the model developed in this section describes the charging
process. As the particle acquires charge, its own contribution to the field is altered, so this ex-
ample gives the opportunity to exemplify the quasistationary migration presaged in Sec. 5.3.

Typical electric fields in an electrostatic precipitator are 5 x 105 V/m. Thus, ions having a
mobility of about 2 x 10- 4 (m/sec)/(V/m) have velocities bE = 100 m/sec. Typical gas velocities are
only 1-2 m/sec, so the effects of convection on the charging process are usually not significant.

But convection is an important factor in other situations to which the impact charging model
pertains. It is well known that as drops of water fall through the atmosphere, they become charged
because of interactions with ions. In a thunderstorm, a system of ions and drops can be subject to a
significant electric field.

The particle shown in Fig. 5.5.2 is taken as spherical with an "imposed" electric field E that is
locally uniform and if positive directed as shown. As envisioned by meteorologists, the particle is a

1. H. J. White, Industrial Electrostatic Precipitation, Addison-Wesley Publishing Company, Reading,
Mass., 1963, pp. 33-48.
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water drop falling through the atmosphere, so from the
frame of reference of the particle, there is an ambient
gas velocity U directed upward in the -z direction.
For the meteorologist the question is, given ions of a
certain density carried by the combined field and flow,
what is the charging law for the particle? How fast
does it become charged and to what final value? Whipple
and Chalmers 2 were interested in a quantitative model
of Wilson's theory of thunderstorm electrification,
which centered around how a particle could acquire
charge while falling through essentially equal den-
sities of positive and negative ions.

2

In the following discussion, the particle being
charged will be called the "drop," while the impact-
ing particles will be termed ions. In fact, the
"ions" might be fine macroscopic particulate being

3
collected (scrubbed) by charged drops.

At the outset, two useful parameters are
identified. Regimes of charging are demarked by the
critical charge

qc E 127E R2 E
c0

which can be positive or negative, depending on the
sign of E. Rates of charging will be characterized
by the currents

I+ = 7TRb pE = qc ± 12
-- --- 0

which are also determined in sign by E. The mag-

nitudes of the positive and negative ion charge

densities are p+ respectively, uniformly distributed
at 

4 
the 

neighboring 41 
"infinity," where the ions enter volume

the drops.I E I 1 Fig. 5.5.1. Single-stage tube-type
electrostatic precipitator.

charge
Fig. 5.5.2.

Y Spherical conducting drop in imposed
electric field E and relative flow U
that are uniform at infinity. In
general, the electric field intensity
E can be either positive or negative
with E and U positive if directed as

I!t A I 
80 

A 
Z

LAAI I A
shown.

A

2. F. J. W. Whipple and J. A. Chalmers, "On Wilson's Theory of the Collection of Charge by Falling
Drops," Quart. J. Roy. Meteorol. Soc. 70, 103 (1944).

3. J. R. Melcher, K. S. Sachar and E. P. Warren, "Overview of Electrostatic Devices for Control of
Submicrometer Particles," Proc. IEEE 65, 1659 (1977).
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That the charging rate is to be calculated implies that the electric field and hence the ion motions
are not in the steady state. However, as discussed in Sec. 5.3, it is assumed that ion transit times
through several particle radii R are short compared to charging times of interest. Hence, at any
instant the particle charge is taken as a known constant, which then makes a contribution to the in-
stantaneous electric field intensity.

The particle is taken as perfectly conducting. The electric potential is therefore constant at
r = R, becomes -E r cos e far from the particle and is consistent with there being a net charge q on
the particle. The appropriate combin tion of the potentials (satisfying Laplace's equation, as dis-
cussed in Sec. 2.16) r cos e, cos e/r and q/4nEor therefore is the "imposed" field:

3  q R
E -V = = E(-- 2R + 1) cos + -- 2 + {E( r- 1)sin O}li (3)

r 4~r r r

It follows from this result and Eq. 5.3.8a that the "stream" function for the electric field intensity
is

AE = ER2 [ + 1 r ] sin 2  - q cos 8 (4)
r 2R 4TrE0

The velocity distribution in the neighborhood of the particle must have both tangential and normal
components that vanish on the particle surface, and must approach the uniform flow at infinity. Written
in terms of a stream function, in accordance with Eq. 5.3.8b, the velocity distribution automatically
is solenoidal (the flow is incompressible). Conservation of momentum supplies the additional law to
determine the velocity distribution, but there is no exact analytical solution valid for all velocities.
As is shown in Sec. 7.20, if forces due to viscosity dominate those due to inertia, Stokes's flow around
a sphere applies, and the associated stream function is (from Eqs. 7.20.13 and 7.20.17)

-UR2  r2 3r 1R 2
Av = 2 [( - + ]sin e -(5)

The flow field found by using Eq. 5.3.8b is valid, provided the Reynolds number (Sec.7.20) R,=pRU/n<l,
where n is the fluid viscosity. A fifty micron radius water droplet in free fall through air has R =
0.7.

Given Eqs. 4 and 5, the characteristic lines are determined by substituting into Eq. 5.3.13b to
obtain

1 U r 2 1R 3r 2 R + 1r2 2
2 - ()• + i(-) - iT )]sin2 0 [ + ( )2 ]sin2 e + cos 0 = C (6)

S+ 2 R r 2 - q (6) 

The upper and lower signs, respectively, refer to positive and negative migrating particles and C is a
constant which identifies the particular characteristic line.

Just what constant charge density should be associated with each of these lines is determined by
a single boundary condition imposed wherever the line "enters" the volume of interest.

In terms of parameters now introduced, the object is to obtain the net instantaneous electrical
current to the particle, i+(q,E,U,p.). With the imposed field, velocity and charge densities held
fixed, this expression then serves to evaluate the drop rate of charging

dq = i+(q) (7)

Permutations and combinations of flow velocity, imposed field, instantaneous drop charge, and sign
of the incident particles are large, so an orderly approach is required to sort out the possible collec-
tion regimes. These are conveniently pictured in the (q,bE) plane: for positive particles Fig. 5.5.3,
for negative ones Fig. 5.5.4.

First, recognize the surfaces which satisfy the condition of Eq. 5.3.6, and hence at which bound-
ary conditions on the charge density are imposed. For positive particles (upper sign) and b+E > U the
distribution of particle densities for particles entering at z + - a is required. Otherwise, the
charge density is imposed as z - + - because the positive particles enter from below. These conditions
therefore respectively apply to the left and right of the line b+E = U in Fig. 5.5.3. Characteristic
lines originating on the particle surface carry zero charge density. Also, at the particle surface
the normal fluid velocity is zero; hence the characteristic lines degenerate to +b+4. This greatly

simplifies the charging process, because the electric field intensity given by Eq.-3 can be used to
decide whether or not a given point on the particle surface can accept charge. Evaluation shows that
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Fig. 5.5.3. Positive ion charging diagram. Charging regimes depicted in the plane
of drop charge q and mobility-field product b+E. With increasing fluid ve-
locity, the vertical line of demarcation indicated by U moves to the right.
Initial charges, indicated by (, follow the trajectories shown until they
reach a final value given by Q If there is no charging, the final and

initial charges are identical, and indicated by ® . The inserted diagrams
show the force lines ? + b +E.
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Fig. 5.5.4. Negative particle charging diagram. Conventions are as in Fig. 5.5.3.
With increasing fluid velocity, the line of demarcation indicated by U moves
to the left.

haracteristic lines are directed into the particle surface wherever

o E 0< O< positive ions, > 
c negative ions, E < 0

< positive ions, E < 00< ec; negative ions, E > 0

here the critical angle, Oc, demarking regions of inward and outward force lines, follows from the
adial component of Eq. 3 evaluated at r = R:

cos O = --
c (10)

qc
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A graphical representation of what has been determined is given by the direction of incident force
lines on the particle surfaces sketched in Figs. 5.5.3 and 5.5.4. Where directed inward, these force
lines indicate a possible electric current density. Whether or not the current is finite depends on
whether the given characteristic line originates elsewhere on the drop boundary or at infinity.

In any case, if a characteristic line is directed outward, there is no charging current density to
the particle, and so without further derivations, regimes (a), (b) and (c) for the positive particles
(Fig. 5.5.3) and (j), (k) and (Z) for the negative particles (Fig. 5.5.4) give no charging current. Frol
Eq. 7, within these regimes the drop charge remains at its initial value.

Regimes (f) and (i) for Positive Ions; (d) and (g) for Negative Ions: To continue the characteriza-
tion of each regime shown in Figs. 5.5.3 and 5.5.4, upper and lower signs respectively will be used to
refer to the positive and negative ion cases.

The characteristic line terminating at the critical angle on the drop surface reaches the z - -
surface at the radius y* shown in the respective regimes in the Fig. 5.5.3. Particles entering within
that radius strike the surface of the drop within the range of angles wherein the drop can accept ions.
Hence, to compute the instantaneous drop charging current, simply find this radius y* and compute the
total current passing within that radius at z + - -. The particular line is defined by Eq. 6 evaluated
at the critical angle, and on the particle surface: e - 8c, r = R. Thus, the constant is evaluated as

c -= [1 + (11)

To find y , take the limit of Eq. 6 (r + 0, y - (r sin 8) and cos e + -1) using the constant of Eq. 11
to determine that

(y*)2(1 T U) - 3R2[1 - ] 2  (12)
+ Eq

The current passing through the surface with radius y is simply the product of the current density and
the circumscribed area:

+*2

ii = + n+q(tb+ E - U)a(y ) 2  (13)

The combination of Eqs. 12 and 13 is

+ 31 (1 - -L) 2 +311 1 (l T (14)
1  + q - +(14)

- I-.,

The second equality is written by recognizing the sign of E in the respective regimes.

In the positive ion regimes (f) and (i), the charging current is positive, tending to increase
the drop charge until it reaches the limiting value q = qcl. Charging trajectories are shown in the
figures, with iI the rate of charging, whether the initial drop charge is within the respective
regimes or the charge passes from another regime into one of these regimes, and then passes on to its
final value, Iqc . For example, in the case of the positive ion charging, it will be shown that a
drop charges at one rate in regime (L) and then, on reaching regime (i), assumes the charging rate
given by Eq. 14, which it obeys until the charge reaches a final value on the boundary between regimes
(f) and (c).

Also sketched in Figs. 5.5.3 and 5.5.4 are the characteristic lines, and the critical angles
defining those portions of the drop over which conduction can occur. As a drop charges and then passes
from regime (i) to (f), and finally to the boundary between regimes (f) and (c) in the positive particle
case, the angle over which the drop can accept particles decreases from a maximum of 27 to r at q - 0,
and finally to zero when q = Iqcl. It is the closing of this "window" through which charge can be
accepted to the particle surface which limits the drop charge to the critical or "saturation" value qc.

Regimes (d) and (g) for Positive Ions; (f) and (i) for Negative Ions: These regimes are analogous
to the four just discussed except that the particles enter at z + -, rather than at z + - c. The deriva

tion is therefore as just described except that the limiting form of Eq. 6 is taken as 6 + 0, with C
again given by Eq. 11 to obtain

(y*) 2 (1 3R2( + 2 (15)
bThen, the currents particle can be evaluated as

Then, the particle currents can be evaluated as
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I =-31 + -(lq) = +3 1+1 (1 + 2 (16)
1cT

As would be expected on physical grounds, the positive ion case gives
charging currents and final drop charges in regimes (d) and (g) which
are the same as those in (f) and (i).

Regimes (j) and (k) for Positive Ions; (b) and (c) for Negative
Ions: For these regimes, the total surface of the drop can accept
particles. The radius for the circular cross section of ions
reaching the surface of the drop from z + - is determined by the line
intersecting the drop surface at e = 7. This line is defined by
evaluating Eq. 6 at r = R, e = ff to obtain

C = + (17)qc

Then, if the limit is taken r + 0, 0 of Eq. 6, y is obtained and
the current can be evaluated as

+ 2 1211 ±1
(18)

12 = :t~+qq ýtE + U)7 (y) = - qc

Note that in the positive ion regimes, q is negative, so the result
indicates that the particle charges at this rate until it leaves
the respective regimes when the charge q = -1q .

Regime (k) for Positive Ions; (a) for Negative Ions: The situa-
tion here is similar to that for the previous cases, except that
ions enter at z + = -m, so the appropriate constant for the critical
characteristic lines given by Eq. 6 evaluated at r = R, 6 = 0, is the Fig. 5.5.5. Force lines in
negative of Eq. 17. The limit of that equation given as r + -, 08 e+ detail for regimes (e)
gives y* and evaluation of the current gives a value identical to for positive ions and
that found with Eq. 18. In regime (k), for positive particles, where (h) for negative ions.
the initial charge is negative, the charging current is positive, and Here, all of the char-
tends to reduce the magnitude of the drop charge until it enters acteristic lines ter-
regime (i), where its rate of charging shifts to iI and it continues minating on the par-
to acquire positive charge until it reaches the final value lqcl in- ticle also originate
dicated on the diagram. on the particle; hence,

there is no charging.
Regime (e), Positive Ions; Regime (h), Negative Ions: In regimes For the case shown,

(e) and (h) for either sign of particles, the window through which the U = +2bE, q = +qc/2.
drop can accept a particle flux is on the opposite side from the in-
cident particles. Typical force lines are drawn in Fig. 5.5.5. Force
lines terminating within the window through which the drop can accept ions can originate on the drop
itself. In that case, the charge d~nsity on the characteristic line is zero, since the drop surface is
incapable of providing particles.

To determine the particle charge that just prevents force lines originating at z 0 + from termi-
nating on the particle surface, follow a line from the z axis where the drops enter at infinity back to
the drop surface. That line has a constant determined by evaluating Eq. 6 with 8 = 0

C = + 3q (19)
- qc

Now, if Eq. 6 is evaluated using this constant, and r = R, an expression is found for the angular posi-
tion at which that characteristic line meets the drop surface

3sin 6 = (cos 6 - 1) (20)
2 q c

Note that the quantity on the right is always negative if q/qc is positive, as it is in regimes (e) for
the positive particles and (h) for the negative. Thus, in regime (e) for the positive particles and (h)
for the negative, the rate of charging vanishes and the drop remains at its initial charge.

Regime (h) for Positive Ions; (e) for Negative Ions: In these regimes, q/qc is negative and
Eq. 20 gives an angle at which the characteristic line along the z axis meets the drop surface. Typical
force lines are shown in Fig. 5.5.6. To compute the rate of charging, the solution to this equation is
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not required because a circular area of incidence for ions at z - m is
then determined by the characteristic line reaching the drop at 6 = 7.
Actually, no new calculation is necessary because that radius is the

same as t hk at f4 oun A f opos 4i (k)% f4 thk i i- i ons anA fk% f P k

negative. The charging current is i , as given by Eq. 18. Drops in
these regimes discharge until they reach zero charge. Moreover, if the
initial drop charges place the drop in regimes (k) for the positive
ions or (b) for the negative ions, the rate of discharge follows the
same law through regimes (h) for the positive ions and (e) for the neg-
ative until the drop reaches zero charge.

As a matter of interest, in regimes (e) and (h) for both positive
and negative ions a doughnut-shaped island of closed force lines is
attached to the critical line if 0.5 < IbEI/U < 1. An illustration is
Fig. 5.5.7.

Positive and Negative Particles Simultaneously: If both positive
and negative particles are present simultaneously, the drop charging is
characterized by simply superimposing the results summarized with
Figs. 5.5.3 and 5.5.4. (The independence of species migration is dis-
cussed in Sec. 5.3.) The diagrams are superimposed with their origins
(marked 0) coincident. A given point in either plane then specifies
the drop charge and associated field experienced by both families of
charges. This justifies superimposing the respective currents at the
given point to find the total charging current:

dt = i+(q) + i (q) (21)
dt +

+ +
Here, i+ is il, i2 or 0, in accordance with the charging regime and
similarly, i_ is the appropriate current due to negative ions.

lrnn rhr 4ina Transi4n:* The nusis4ttionar har in r.o..

is illustrated specifically by considering the fate of a drop start-
ing out in regime (k) of Fig. 5.5.3, in a field b+E > U and with a Fig. 5.5.6. Regimes (h) for

charge q < -Iqcl. Then, Eq. 7 with i+ given by Eq. 18, becomes positive ions and (e)
for negative ions.

f t 12) tp+b+ Some of the character-
S - --dt = -o dt (22) istic lines extend to

q0 o 0 where the charge enters.
U = +2b+E, q = ±+c/2.

where qo is the drop charge when t = 0. Thus, so long as the charge
remains in regime (k), the charging transient is

-t/T

q = q e ; ET Co/+b+ (23)

When the drop has been discharged to q = - qcI , the rate of discharge switches to il, given by Eq. 16.
Thus, the g charging equation is t'

S d = +311+ I (24)dt' 

where t' is the time measured relative to when the drop switches into regime (i). Integration gives a
charging transient

q = q (25)
q t'/4T + y

which completes the discharging of the drop and goes on in regime (f) to charge the drop positively un-
til it approaches the saturation charge qo.

Note that although the detailed temporal dependence of Eqs. 23 and 25 is quite different, the same
charge relaxation time Eo/P+b+ characterizes the charging dynamics. It is this time that must be long
compared to the particle transient time to justify the quasistationary model. The same time constant
has a second complementary significance, brought out in the next section. There, it is possible to
appreciate the relation of space-charge effects to the quasistationary model used in this section.
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Fig. 5.5.7

In regimes (e) and (h) with 0.5<JbEI/jUI,
a "doughnut" of closed force lines is
attached to critical line around drop.
Positive particles are illustrated with
q = 0 and b+E/U - 0.75.

5.6 Unipolar Space Charge Dynamics: Self-Precipitation

Complementary assumptions in Secs. 5.3 - 5.5 are that the effect of the electric field on the flow
can be ignored, and that the volume space charge density makes a negligible contribution to the imposed
field. Although often good approximations in predicting the trajectories of dilute ions and charged
macroscopic particles in moving gases and liquids, these are usually not good assumptions if there is
to be an appreciable coupling between the electric field and the neutral fluid through which the charged
particles migrate.

What are the effects of "self-fields" (space-charge contributions) left out in the imposed field
approximation used in Secs 5.3 - 5.5? In this and the next section, this question is addressed while
again considering a single species of either positively or negatively charged particles.

The pertinent laws are Eqs. 5.2.9 - 5.2.11 without source or recombination contributions (G-R=0)
and with lengths of interest large enough to justify ignoring diffusion. In writing Eq. 5.2.9, the
creation of a field divergence by the space charge is recognized by substituting on the right with Gauss'
law, Eq. 5.2.10:

Bp+ p2b+
+ ( ++ +- v + b V) + = - (1)

()

This expression is converted to one describing how the charge density changes with time for an observer
moving along a characteristic (or force) line by following the procedure developed in Sec. 5.3.2. In-
stead of Eq. 5.3.3, Eq. 1 becomes

dp+ p2b+

d t (2)

along the characteristic lines

dr +--- v + E (3)dt -- +
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Although the velocity v is still considered to be imposed, E in Eq. 3 has contributions from not only
charges on the boundaries, but from those within the volume of interest as well. So it is that the
time dependence of the charge density can be determined from an integration of Eq. 2. For a character-
istic line originating when t = 0 where p+ = Po

t
b+ (4)

+ dp 
fp S = - b dt 
Po  P+ 0

Thus,

P+
-- 1 .= 1+ l T (5)p 1 + t/T' e pob

This result is both remarkably general and somewhat deceiving. Without apparent regard for the
particulars of a physical situation, for the boundary conditions and hence for any imposed component
of the field and for the locations of charges that image those evolving in the volume, the decay law
of Eq. 5 is deduced. But, the law applies for an observer measuring time as he follows a given particle
along a characteristic line, defined by Eq. 3, originating when t = 0 where p+ = Po. At each step 4n the
evolution, all of the charge (in the volume and on the boundaries) instantaneously contributes to E.
This contribution is embodied in Gauss' law. The characteristic viewpoint is now used to make some
general deductions, and then by way of illustration, to make specific predictions.

General Properties: Suppose that when t - 0 the charged particles are uniformly distributed over
some confined region V within the total volume, as suggested by Fig. 5.6.1. When t = 0, the volume of
interest consists of regions either occupied by no charge density or by the uniform density Pu. At a
later time, the cloud of charged particles has changed its shape and general location. Particles
initially at the locations A, B and C are respectively found at A', B' and C'. At a point like A', with
a characteristic line originating within the initial cloud of particles, the charge density is given by
Eq. 5 as

PU T -- 
(6)

P+ 1 + t/T e pb+

Note that Te is itself dependent on the initial charge density.

Now, consider the time dependence of P+ at a fixed location A'. So long as A' is within the region
occupied by the charge cloud, this time depenidence is also given by Eq. 6. At each instant, the point
in question can be traced backward in time to a location in the cloud when t = 0 where the charge density
is the same number, Pu. As time progresses, different locations originate the characteristic A', but
because Pu is the same throughout the initial cloud, each of these has the same charge density Pu or no
charge density at all. That is, at a position like B', the characteristic originates on no charge den-
sity, and there is no charge density at the instant in question.

Fig. 5.

When t-0, charge,

Pu, is uniformly
V. By the time t
ted over V' with
by Eq. 6.

.P P±(t)

Sec. 5.6 5.18

I



So it is that the charge transient at any
fixed location consists of either a charge den-
sity decaying according to Eq. 6 or no charge
density at all. Generally, at a position like
A', the charge density is zero until the "front"
arrives. Then, the position A' is enveloped by
the particle cloud which is expanding under its
self-field so that the density decays in accord-
ance with Eq. 6. At a position like C', there
is no delay in the arrival of this front so that

- the decay is given by Eq. 6 from time t 0. But,
the time may come when the cloud passes beyond
the point in question and the decay in charge
density is then abruptly terminated by the den-

4
4t-., onin t .n rn +T-hen the ron. a rrivea and

when the cloud has passed by is a matter that 0 2 4 6 8 10
must be resolved by integrating to find the t/T
characteristic lines.

Fig. 5.6.2. Comparison of self-presipita-
The tendency of the cloud to expand or self- tion transient to exponential decay.

precipitate, as the cloud as a whole is carried by
the deforming medium and the total field, is described by a decay that is relatively slow. Figure 5.6.2
emphasizes this point by comparing Eq. 7 to an exponential decay.

The rate of decay along a characteristic line represented by Te is the same as the charging time
constant for the "drop" in Sec. 5.5. An important observation can now be made relevant to taking into
account space-charge effects on the collection of charged particles by isolated drops. If space-charge
effects are really important, then processes of interest must occur on the time scale of Te. This im-
plies that the drop described in Sec. 5.5 must change its charge in a time on this same scale. But, the
drop charge contributes to the electric field, and in the analysis of Sec. 5.5 the electric field is
assumed to be constant during the time that a particle migrates several drop radii. Thus it is apparent
that if space-charge contributions to the field are to be taken into account, the quasi-steady approxi-
mation is not valid.

A Space-Charge Transient: As a simple illustration of the fate of a cloud of charged particles
that is initially of uniform charge density, consider the radially symmetric configuration of Fig. 5.6.3.
When t-0, the particles occupy the annular region Ri < r < Ro . Image charges are presumed sufficiently
remote that the field can be regarded as radially symmetric. There is a source of fluid inside the
region r < Ri giving rise to a volume rate of flow Ov (m3/sec). Because the flow is incompressible,
the resulting velocity distribution is determined by the requirement that the material flux at any
radius r be the same: 4wr2vr = v. The characteristic lines are then found from the one nontrivial com-
ponent of Eq. 3:

v +dr b+Er (7)
dt 47r2 +- r

4ir --

Because the initial charge distribution is uniform, any region within the cloud is known to have a den-
sity that decays according to Eq. 6. In this simple example it is easy to find the position of the
outward propagating front, and hence locate the region where this decay applies. By the integral form
of Gauss' law, Eq. 2.7.1a, the electric field at r, the leading edge of the cloud, is

1 (R3 - R )Pu
r - 3 2

Er

Substitution of this expression into Eq. 7 and integration gives

[30 T1(9)

Similar arguments apply to the trailing edge, where Er - 0 and hence

[e l3  r o de\ 1/3r _ Ri R +30 -4¶rR e tTa
T T (10)

These last two expressions define the region occupied by the charged particles. During the time that
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P!

Pu
I

Fig. 5.6.3. When t = 0, a uniform density Pu of charged particles fills the spherical shell
Ri < r < Ro . A source of gas at the origin imparts a radial velocity. For this plot,
Ro/Ri = 0.5, 34vTe/47R3 = 1. Remember that the charge is self-precipitating in three
dimensions. At any time, the product of the charge density and the volume of the
region filled by the charge is constant.

the particles surround a given fixed radial location, the temporal-ecay at that radius is given by
Eq. 6. The evolution of the cloud is illustrated in Fig. 5.6.3. Fig.

Steady-State Space-Charge Precipitator: What from the laboratory frame of reference appears to be
steady or stationary phenomenon is from the particle frame of reference still a transient. The char-
acteristic time is typically a transport time R/U, and the ratio

T U

R (11)
e Z/U £pob+

represents the degree to which convection competes with self-field migration in determining the distribu-
tion of the charged particles. Re is defined as the electric Reynolds number.

As a specific illustration, consider the circular cylindrical duct shown in Fig. 5.6.4. Gas enters
at the left with a uniform velocity profile carrying a uniform distribution of charged particles. The
channel wall is at zero potential, and hence only the self-fields contribute to the migration. With the
assumption that variations in the z direction of the particle density occur relatively slowly goes the
quasi-one-dimensional model of an electric field that is dominantly in the radial direction. Hence, the
characteristic lines are determined from Eq. 3 approximated as

dr b
-d = Ui + b+E (r)ir  (12)
dt z - +r r(12)

The z component of this expression can be integrated to describe the characteristic line associated with
the solution given by Eq. 6, i.e., for the particles entering at z = 0, where p+ = po = u when t = 0:

z = Ut (13)

Hence, the distribution of charge density with z is obtained directly by substituting Eq. 13 into Eq. 6.
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Fig. 5.6.4

Space-charge precipitator
having circular cylindri-
cal cross section and
Re = 1 showing character-
istic lines.

I --- a -- -

Pu (14)
- + (-)I UT

e

The fact that the axial component of I is neglected has
made it possible to find the spatial distribution of p+
without solving the self-consistent characteristic -
equations.

A length k of the channel might be used as a pre-
cipitator, for the removal of pollutant particles which
are charged upstream. The cleaning efficiency of such
a device follows from Eq. 14 integrated over the channel
cross section A at z = E and z = 0,

If pda - IP+()da -1
A A- e 77.0

(15)
pda 1 + R-1u e

and is determined by the jatio of transport time to Te.
The dependence of 7l on Re is shown in Fig. 5.6.5. The
relatively poor efficiency even with a residence time
several times T has its origins in the relatively slow
decay depicted Cy Fig. 5.6.2.

The trajectories of the particles are determined 0 2 :3
from both the radial and axial components of Eq. 12. -IR------
Gauss' law relates the charge density at a given cross
section along the z axis to E :

r
Fig. 5.6.5. Efficiency of space-charge precipi-

1 a P+ tator as function of reciprocal electric
=(rE) Reynolds number, the r•- - (16) ratio of residence

time to T.e
This expression can be integrated in the radial direction
to give

r
Pudr 1 r Pu

E =+f ±+ e (17)r r -- 2 E (+R z 
(1+ Re1) o(+ e

Thus, the radial component of Eq. 12 becomes

dr 1 b r Pu
dt 1 +b o 1 + R (18)

I Re

But, in view of the axial component of this same equation,

dr dr dz dr
dt dz dt d- (19)
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Thus, the time is eliminated as a parameter to obtain an equation for the characteristic line in the
(r,z) plane. Integration of Eqs. 18 and 19 gives

r z -1
(20)

0

Which trajectory is considered is determined by r , the radial position at which a particle enters where
z = 0. A sketch of the characteristic lines is included with Fig. 5.6.4.

5.7 Collinear Unipolar Conduction and Convection: Steady D-C Interactions

The electrohydrodynamic coupling undertaken in this section illustrates the electromechanical
energy conversion processes that can take place if the space charge density is large enough to provide
a significant contribution to the electric field. In the configuration shown in Fig. 5.7.1, a pair of
electrically conducting grids at z = 0 and z = k provide electrical "terminals" through which the fluid
can pass and by which entrained charge particles are either injected or collected. The grids have the

potential difference v. Charged particles are injected with zero potential at z = 0 and collected at
potential v on the grid at z = Z. Hence, with a load attached to the terminals, the charge carried by

the fluid results in a current through the load, so that the configuration converts mechanical energy
to electrical form. In this case, the fluid plays the role of the belt in a Van de Graaff generator.

In fact, as for the Van de Graaff machine described in Sec. 4.14, it will be seen that generator, pump

(motor) and brake operation are all possible.

M
I 1 w

Fig. 5.7.1

One-dimensional unipolar
d-c pump, generator or
brake.

There is an important difference between the collinear configuration considered here and the Van
de Graaff machine. In the latter, the generated field is orthogonal to the field associated with the
charge carried by the belt. Here, transverse dimensions are very large and the charge entrained in
the fluid produces a field that i4 collinear with the "generated" or "imposed" field associated with

charges on the grids. Thus, E = izE(z). As a result, the electromechanical energy conversion is

through normal stresses, rather than shear stresses. The volume between the grids can be identified

with the volume shown in the abstract by Fig. 4.15.1, or specifically by Fig. 5.7.2.

-----------

no shear
str e ss Fig. 5.7.2

- (-- p(R)
The fluid volume between the

T (0)' grids is subject to the mech-
anical normal stresses (pres-

zzQ) sure) p defined as positive
if acting inward.

ZZ

'---------------
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Interest is confined to steady-state conditions, so conservation of charge, represented by
Eq. 5.2.2 with G-R = 0 and (Dp/Dt) = 0, requires that the current density be solenoidal. The fluid
is incompressible, sa that 4 is also solenoidal. It follows from the one-dimensional model that the
fluid velocity : = U z and the current density 1 = -zJ, where U and J are independent of z:

i
J= = p(bE + U) (1)

The scale of interest is presumed large enough that effects of diffusion are negligible.

-). -1-
In addition to Eq. 1, Gauss' law relates p to E = 1zE(z). Elimination of E between these equa-

tions gives

-1 -1 b
p dp dz (2)

EJ

If the charge is injected with density p(O) = po, Eq. 2 is integrated to give

pO Re  i

where i Ep UA and the electric Reynolds number Re E Ue/bp k. Note that Re is the ratio of the charge
relaxation time s/bp o (based on the charge density at the entrance) to the fluid transport time R/U.
Hence, if Re is large, convection plays a dominant role in determining the charge distribution.

Now, if Eq. 3 is used with Eq. 1, the electric field intensity is known:

SU i Re - (4)

and integration of E in turn gives the potential distribution

_ e 0 )U + 1 9 - 1 (5)

Thus, because 4(X) is the terminal voltage v, the "volt-ampere" characteristic of the device has been
obtained.

The pressure rise Ap = p(k) - p(O) is balanced by the net electrical force on the fluid. Hence

it is simply the difference in the normal electric stresses evaluated at the outlet and inlet. From

Eq. 4,

221 / 
Ap = *[E (£) - E2 (0)] = - 1 + - - - (6)

2b 2  R

The pump, brake and generator energy conversion regimes can be identified by considering the depend-

ence of the electrical power out, Pe = vi, and of the mechanical power in, Pm = -ApUA, on the normalized

current i/io . These dependences are shown in Fig. 5.7.3 with the electric Reynolds number, Re, as a

parameter. Note that as Re is raised, the v-i relationship approaches that of a current source with

i = io (a vertical line through i/io = 1 on the plot). The short-circuit current isc , normalized to io,

is determined by Re . From Eq. 5 evaluated at z = k and with v = 0,

R 3 (4 r - 3) + [9(4r - 3)2 - 192r 3(r- 1)] / r sc (7)
e 12r2(1 - r) o

For convenience, Re is expressed here as a function of isc/i o . The current ibp (at which the pressure
rise is zero) follows from Eq. 6:

ibp/io = 2Re/( 2Re + 1) (8)

These currents isc and ibp are sketched as a function of Re in Fig. 5.7.4. They demark the extremes
of the brake regime of operation, and hence also define the upper and lower currents, respectively, of
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Fig. 5.7.3. Electrical and mechanical terminal char-

i
acteristics as a function of the normalized
terminal current with the electric Reynolds
number Re as a parameter. v is normalized to
poL 2/E, Ap is normalized to (ppt)2 /2E, and i
to io .

I
I
I
I
I

aa.

Fig. 5.7.4. Dependence of the normalized short-
circuit and zero-pressure-drop currents on n
the electric Reynolds number Re.

the generator and pump regimes.

The Generator Interaction: The optimum generator performance, from the point of view of electrical
breakdown, is obtained by making E(k) = 0, so that the maximum pressure change is obtained for a given
maximum E. In this case, it follows from Eq. 4 that i/io should be adjusted to make

i __1 = 1 + [(l/R ) 2 + 1]11/2/2
i R e
o e

In any case, the electrical power output is given by Eq. 5 as

p AU2£ i Re 2 2 1 3/2
P = vi = -Re (i)2[ (1 - 1] (10)e b

0' Re i

For this particular case, the mechanical power input follows from Eqs. 6 and 9 as

3AE i 2
Pm = - ApUA -U 2  (o - 1) (11)

2b o

From these last two expressions, an electromechanical energy conversion efficiency is determined as a
function of Re or i/io:

Pe 1 + i
. (1 + 2 -) =.I1 + 2[(/R) + 111] (12)

P m 3 i o0 e

The dependences of the energy conversion efficiency and i/i1 on Re are summarized in Fig. 5.7.5.

The Pump Interaction: Consider now the distribution of fields that gives rise to the greatest
pressure rise for a given maximum electric field intensity within the flow. From Eq. 6, in this case
E(0) - 0: a condition obtained by making i - io. That is, at the entrance current is entirely carried
by the convection, there being no slip velocity between the charge carriers and the neutral fluid.
The electrical power Pe is again given by Eq. 10, but now i/io = 1. The mechanical power Pm follows
from Eq. 6 and the current condition as

Pm - 3A [(1 + 2/Re) /2 1]2 (13)
m 2b

The efficiency of the electrical to mechanical energy conversion is then fully determined by the
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D /D -- __ ---- ___ _ Fig. 5.7.5
'e'

Dependence of generator electromechanical
energy conversion efficiency Pe/Pm and
normalized terminal current i/io on the

-0 electric Reynolds number Re.

I I I I I I I I I

1 23456 789
Re

Fig. 5.7.6

Efficiency of electrical to mechanical
energy conversion for unipolar one-
dimensional interaction with current i-io
so that the entrance electric field in-
tensity is zero.

P
Po bE

U

-4

-4- + + e

-+- + - +
-H -4---- -+ + 4-

+
+

+-T

Fig. 5.7.7. Distribution of charge density and electric field intensity
for generator and pump. The parameter Re H (E/bp )/(L/U) can be
regarded as a normalized velocity.
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electric Reynolds number

Pm 1/2 -1-- = 3[2(1 + 2/R) + 1] (14)
P e

e

The dependence on Re is summarized in Fig. 5.7.6.

For both the generator and pump under these idealized conditions, the charge and electric field
distributions are illustrated in Fig. 5.7.7. Because the relationship between i/io and Re is determined
by the operating conditions (Eq. 9 for the generator and i/io = 1 for the pump) the only parameter is Re,

In this steady-state interaction, characteristics, emphasized in Sec. 5.6, still offer an alterna-
tive point of view. In the neighborhood of a given charged particle as it passes through the inter-
action region, the charge density must decay in accordance with Eq. 5.6.2. The spatial rate of decay
shown in Fig. 5.7.7 decreases with increasing electric Reynolds number because the particle then
spends less time in the interaction region.

5.8 Bipolar Migration with Space Charge

Common conduction phenomena involve more than one charge species. Media supporting one positive
and one negative species are used here to illustrate interactions between carriers caused by space-
charge fields, recombination and generation. The method of characteristics is further developed as a
means of understanding the evolution of the charge distributions. Based on the bipolar model of this
section, the limit of ohmic conduction is examined in the next section.

Each of the charge species is governed by a conservation equation taking the form of Eq. 5.2.3:

at + V (+ + J') = G+ - R+ (1)

where the current density relative to the moving material is

4+
J = bp E + K Vp (2)

Consider some physical situations to which these expressions pertain. Because pairs of charged par-
ticles are generated and recombined, G+ = G_ E G and R+ = R• E R.

Positive and Negative Ions in a Gas: Perhaps by means of a corona discharge, a flame or a radio-
active source, ion pairs are created and then carried into the region of interest by a gas flow or by
an electric field. With the proviso that the charge per particle of each species has the same mag-
nitude, q+ - q, recombination results in the creation of a neutral particle. Carriers can recombine
at a rate-that is proportional to the product of the charge densities:l

R = -- (3)
q

One recombination results in the loss of one particle from each of the species,. so R+ is the same in the
two equations summarized by Eq. 1.

At pressures somewhat exceeding atmospheric, the recombination coefficient a can be computed by
picturing the process as one of oppositely charged particles being attracted to each other with a
Coulomb force that is retarded by collisions between the ions and the neutral gas molecules. This
results in the Langevin recombination coefficient:

q(b+ + b )

o

A radioactive source of a or 8 particles could be used to create a generation term, G+, that would
then be dependent on the density of neutral particles at not only the point in question, but points
in the gas between the radioactive source and the point of interest, since these could contribute to

the slowing and hence final absorption of the ionizing particle.

1S. C. Brown, "Conduction of Electricity in Gases," in Handbook of Physics, E. U. Condon and
H. Odishaw, eds., McGraw-Hill Book Company, New York, Toronto, London, 1958, pp. 4-166.
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Aerosol Particles: Submicron particulate products of combustion are an example of macroscopic par-
ticles that oftedi carry a natural charge of both signs. Self-agglomeration of overtly charged particles
is also of interest in air pollution control.2 In these cases, the charge per particle can be many
electronic charges, and so electrically induced agglomeration of oppositely charged particles does not
necessarily result in a neutral particle. Rather, with the assumption that the agglomeration is stable
(the particles stick), yet another species of charged particles is created and the situation is gen-
erally much more complicated than can be described by the bipolar model. But, for a mixture of uniform-
ly charged particles, the model applies with G+ = 0 and the self-agglomeration represented by the re-
combination term of Eq. 3.

Intrinsically Ionized Liquid: In liquids, thermal processes result in dissociation (ionization)
of conWituent molecules. For example, in pure water, a small fraction of the H20 molecules disassoci-
ate into H+ and OH- ions. With these constituting the positive and negative species, there is a local
thermal generation of ion pairs that is proportional to the number density, n, of neutral molecules:

G = On (5)

and a recombination rate given by Eq. 3 with cE + E. In the terminology of chemical kinetics, the re-
combination process would be regarded as a second order rate process.3

Partially Dissociated Salt in Solvent: When dissolved, materials such as NaCl or KC1 tend to
disassociate into positive and negative ions, Na+C1- and K+Cl-. These then contribute to the con-
duction and, in this regard, can dominate over the intrinsic ionization. In that case, the conduction
is represented in terms of just the two species, but it is also important to recognize that the un-
ionized neutral molecules represent a third species. The number density, n, of this species is now,
like the ion number densities n+ and n_, a function of space and time.

To describe the evolution of the neutral particles, a conservation equation is written much as
for the ions, Eq. 1. However, because these particles are not charged, the only particle current
density is due to diffusion. The migration term in Eq. 2 is absent. Also, generation of ion pairs
now means that neutral particles are lost, and recombination means that neutrals are gained. Hence,
terms on the right-hand side of the conservation equation are the negatives of those on the right in
Eq. 1:

••+ V(nv - KDVn) = G + (6)q q

Summary of Governing Laws: Each of the illustrative situations that have been outlined can be
described by deleting the inappropriate terms from the laws now summarized. The two charge densities
contribute to Gauss' law:

V.E - p - p_ (7)

where polarization is modeled as being linear and hence represented by the permittivity E. In the
fbllowing discussions is taken as being uniform. The electric field is irrotational, and so

E = -Vo (8)

With the understanding that the given material deformations are incompressible (that V.* = 0), the
carrier evolutions are represented by Eqs. 1 and 2, which in view of Gauss' law, Eq. 7, combine to
become the two equations

ap+ (P+ - P-) P+P_ 2
b e+b +K±V2p+ (9)

Here, Eqs. 3 and 5 are used to represent the recombination and generation. If n is a constant, or the
generation term is absent, then the law governing the neutrals is not required; but if the neutral
evolution is also part of the story, then Eq. 6 is added to the list:

an -0 n + 2+
t + v Vn = +- - p p + KV n (10)

q

Equations 7 - 10 constitute one vector and 4 scalar equations in the unknowns -, 0, p+, p_ and n.

2. J. R. Melcher, K. S. Sachar and E. P. Warren, "Overview of Electrostatic Devices for Control of
Submicrometer Particles," Proc. IEEE 65, 1659 (1977).

3. K. J. Laidler, Chemical Kinetics, McGraw-Hill Book Company, New York, 1965, p. 535.
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Characteristic Equations: With the understanding that lengths of interest are large enough to jus-
tify ignoring the diffusion contributions to Eqs. 9 and 10 (typically, the ratio given by Eq. 5.2.12 is
small), Eqs. 9 can be written in the characteristic form introduced in Sec. 5.3:

dp (p+-) p)
+P+b+ b + Bn - p+p_ (11)

Here, the time rate of change is measured by an observer moving respectively with the ± ions, on
the characteristic lines

dr - +-= v + bE (12)
dt +

Similarly, Eq. 10 becomes

dn n (13)
dt q + (13)

q

on the characteristic lines that are physically the particle lines for the neutrals

-- v (14)
dt

Following a particle of the neutral material, the neutral number density changes with time in
accordance with the local balance between generation and recombination. What makes the bipolar situ-
ation more complex than for unipolar migration is that not only are the positive and negative species
described by Eqs. 11 along different characteristic lines, but the space-charge term on the right has
an effect that is proportional to the net charge, generally with contributions from both species.

One-Dimensional Characteristic Equations: Consider the one-dimensional configuration, illustrated
by Fig. 5.8.1, in which densities and fields are independent of (y,z), with t - E(x,t)7 and v - U(t)l .
Because v is solenoidal, U is at most a function of time only. Then, Eqs. 11-14 reduce to the first
six ordinary differential equations summarized by Eq. 15:

b 7

p+ - p+(p+ - p_) + Bn - 1 p+p_

b
P_ - p_(p -p_) + Bn - P+P_

U+ b+E+

x+ U-bE

d
n (15)dt

q

xn U
n

(b+ + b_)
E+ e PE++

E (b+ + )+ b_ C(t)

n C S

where

Ce l d v E J P+(U + b+E) - p_(U - bE)]dxCe d ddt efIdo
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Fig. 5.8.1. One-dimensional bipolar Fig. 5.8.2. Characteristic lines
migration configuration. in (x-t) plane.

Here, subscripts are used to distinguish the characteristic lines. Thus the first two equations re-

spectively apply along lines in the (x-t) plane represented respectively by the third and fourth ex-

pressions. Similarly, the fifth equation applies along the lines defined by the sixth expression.

In numerically integrating these equations it is convenient to take account of Gauss' law, Eq. 7,
by having equations for the time rates of change of the electric field for an observer moving along

of the respective characteristic lines.4 each To this end, the time rate of change of Eq. 7 is written
as

a E 1 a (16)
= - - )  p (16)(• -• (P+ 

The difference between Eqs. 9 becomes

-- -(P - p ) + -- [p+(U + b E) - p_(U - b_E)] = 0 (17)

Elimination of the term in p+ - p_ between these equations leads to the conclusion that

@ BET- •E - + [p+(U + b+E) - p_(U - bE)] = 0 (18)

The quantity in brackets, the sum of the displacement current and the migration currents, is defined
as C(t). Integration of C(t) from x = 0 to x = d results in the expression given with Eq. 15. The
voltage v, defined as the integral of E between the planes x = 0 and x = k, brings in the remaining
field law, Eq. 8.

Gauss' law can be used to eliminate the net charge p+ - p_ from C(t), the quantity in brackets
in Eq. 18, to obtain

aE aE C(t) 1DE + U C(t) (b+P+ - bp)E (19)

What is on the left is the time rate of change of E for an observer moving on the neutral character-
istic lines. Thus, Eq. 19 is the last of Eqs. 15. To obtain the time rates of change of E on the
charged particle characteristic lines, add to both sides of Eq. 19 ±b+EaE/ax. On the left is then the
time rate of change of E for an observer moving on the respective chafacteristic lines xk. With Gauss'
law used to replace aE/ax on the right with (p+ - p_)/E, these equations become the seventh and
eighth expressions of Eq. 15.

The functions E+(t), E_(t) and En(t) are numerically the same as E(x,t). Each is now regarded as
solely a function of time because it is understood that the respective functions are measured by an

observer moving along the lines x+(t), x_(t), and xn(t), respectively.

Numerical Solution: A beauty of the method of characteristics is that it reduces partial differ-

ential equations to a system of ordinary differential equations, Eqs. 15. Many numerical techniques

4. M. Zahn, "Transient Electric Field and Space Charge Behavior for Drift Dominated Bipolar Conduction,"
in Conduction and Breakdown in Dielectric Liquids, J. M. Goldschvartz, ed., Delft University Press,

1975, pp. 61-64.
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exist for integrating nonlinear equations in this form, e.g., Runge-Kutta or predictor-corrector.5

The region of interest in the (x-t) plane is bounded by x = 0 and x = d, where screen electrodes
are respectively constrained to potential v(t) and 0. These planes define two sides of a "U" shaped
region, sketched in Fig. 5.8.2, with the initial line t - 0 the third side. Wherever one of the
characteristic lines (x+,x_,xn) enters this region, there must be a condition on the associated density
p+,P- or n. In addition, the potential of the boundaries at x = 0 and x = d is constrained. Thus,
when t = 0, characteristic lines enter the region with the initial values of p+, p_ and n. Taken with
the constraint on the potential difference between the screens, this determines the initial distribu-
tion of E(x,O), because at any time, Gauss' law can be integrated to obtain

E(x) = dx' + E (20)
00 o

The constant of integration, E , is determined by integrating E from x = 0 to x = d and requiring that
the result be v. If the resuleing value of E is substituted back into Eq. 20, an expression is
obtained for E(x,t) in terms of p+ and p_ when t = t:

E(x,t) = C dx' - - dx f - dx' + - (21)
o o o

With the initial values of all quantities on the right in Eq. 15 established, it is now possible
to begin marching forward in time.

In the integration scheme used to generate the distributions shown, a predictor-corrector sub-
routine is used which calls a user-written subroutine for evaluation of derivatives (Eqs. 15) after
each prediction or correction step. Because Eqs. 15 are a set of coupled ordinary nonlinear differ-

ential equations, there are readily available routines for carrying out the main integration (compiled
subroutines for predictor-corrector integration are available, for example, in the International
Mathematical & Statistical Library).

Note that the derivatives are not entirely determined by quantities naturally evaluated on the
same characteristic line. For example, dp+/dt is determined by not only p+, but by p_ and n as well,
and these quantities are naturally found along their respective characteristic lines. If the distance
d is broken into (i - 1) segments, there are (i) characteristic lines of each family emanating from
the t=0 line into the region of interest. Equations 15 comprise (91) coupled ordinary differential
equations. The equations for values on a (+) characteristic line are coupled to those on neighboring
characteristic lines by Eqs. 15b and 15e, and coupled to all the other characteristic lines thru C(t).
Thus, at each step in time, values of p- and n on the x+ characteristic must be interpolated from
values on the neighboring characteristics x_ and xn. Similarly, values of p+ and n must be inter-
polated from their respective characteristic lines onto the x lines for use in the equation for p_,
and values of p+ and p_ must be interpolated onto the neutral characteristics in order to compute
dn/dt. The interpolation for the examples illustrated here are done with a four-point Lagrangian
formula. This fits a cubic equation to the nearest two data points on both sides of the interpolation
point.

The charge and neutral density profiles are conveniently initiated with step singularities. In
order to prevent the smearing out of these step edges, a two-point (linear) interpolation is used when
near these edges, so that the data on one side of the edge does not influence the interpolated values
on the other side.

The integration in C(t) is carried out in two parts: the p+(U+ + b+E) term is integrated over the
(irregular) set of x+ points using the readily available values of p+ and E+ on these points, and the
p_(U - b_E) term is similarly integrated over the x- points.

Numerical Example: (The numerical analysis of this section was carried out by R. S. Withers)
A situation which is the basis for gaining physical insights in this and the next section is sketched
in Fig. 5.8.3. When t = 0, equal amounts of positive and negative charge uniformly occupy the region
next to the lower screen, with the region above initially free of charge. Initially, neutral particles
are absent throughout and there is no generation at any time. Because the effect of the convection
in one dimension is to translate the material in the x direction, the material velocity U is taken as
zero. Hence, the model is appropriate to describing what might be considered a "conducting layer" ad-
jacent to an insulating layer of material sandwiched between plane-parallel electrodes. It is assumed
that charged particles leaving the region by arriving at one or the other of the electrodes are neutral-
ized and removed from the volume. Further, charged particles cannot be generated at the electrode

5. F. S. Acton, Numerical Methods that Work, Harper & Row, Publishers, New York, 1970.
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When t=O, voltage is applied to plates.
Initially, lower half of region between

.- V is filled with equal densities of posi-
tive and negative charges. Figure 5.8.4
shows evolution with time if there is no
generation. Figure 5.9.3 illustrates

-,+ -+ - +- + - +- + -.I-- what happens with generation.
S+ -- + -+-+ -+ -+ -+ -+

surfaces, and hence characteristic lines emanating from the electrodes carry no associated particle
density.

The evolution of electric field and net charge are displayed in Fig. 5.8.4a, where the x-t plane
forms the "floor." Similarly, the x-t dependence of the particle densities is shown in Fig. 5.8.4b.
The critical characteristic lines, x+ and x., are also shown in these plots. (The neutral character-
istics, Xn, are simply lines running parallel to the t axis.)

Considerable insight can be extracted from this example by identifying the dominant processes in
each of the regions demarked in Fig. 5.8.5 by critical characteristic lines. In region I, bounded by
x+ originating at the lower electrode and x. originating at the initial interface between the charged
layer and the region above, the initial charge densities at A, A', and A" are the same. It follows
that these initial points can be chosen such that B and B' occur at the same time (on the same line
t = constant). Also, the initial conditions are the same so the values of p+ and of p. at the points
B and B' are the same. In turn, the value of the charge densities at C are the same as at other
positions in region I at this same time. It is concluded that Eqs. 15a and 15b describe the time
dependence at any given fixed location x in region I. In the example, initial conditions set p+ = p_
and these equations reduce to the same equation for subsequent times. Thus, the net charge density
p+ - p_ is zero in region I, and, through recombination alone, the individual charge species decay ac-
cording to the law

P Eo
p + 1 Po + tT ; o (22)

PO (b+ + b_)

where Eq. 5.8.4, the Langevin recombination coefficient, has been used.

Because there is no generation, the recombination simply feeds the neutral equation, and Eq. 15e
shows that in region I

n n = t Po d(t'/T) = Po t/T (23)(23)
o q  ( + t'/) 2  q (1 + t/r)

Region II, like region I, has uniform initial conditions, so the same arguments apply. But, the
initial conditions on (p+,p.,n) are all zero, and so these quantities remain zero throughout. It follows
from the characteristic electric field equations, Eqs. 15g-15j, that E is uniform in this region.

In region III, the x+ characteristics enter from the lower electrode carrying no p+. At a point
like D, Eq. 15a establishes p+ = 0, and a step-by-step march into this region shows that at each point
p+ = 0. Hence, Eq. 15b applies with p+ = 0 and it is concluded that along x. in this region the charge
evolution is as though the process were the unipolar self-precipitation process discussed in Sec. 5.6.
Because there are only negative charges, there is no recombination.

Region IV, where the positive charges are moving upward along the E lines but the negative charges
have been swept downward, is of essentially the unipolar character of region III. Because charges do
not originate on the upper electrode, region VII is also unipolar.

Finally, it can be argued that in regions V, VI and VIII, p+ = 0 and p_ - 0.

The neutral characteristics, xn, do not enter into the classification of regimes because the
coupling to n is "one-way." But, neutrals created by recombination remain behind the x. wavefront
defining the demarcation of regions IV and I. As a result, the distribution of n at a given time is
uniform in region I (with amplitude given by Eq. 23) and makes a smooth transition to zero at the
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Fig. 5.8.4. Evolution of layer composed of equal densities of positive and negative carriers
occupying lower half of region between capacitor plates. Initially there are no
neutrals. Generation is absent (8 = 0) so recombination results in neutrals. For the
case shown, t =~[i~b+ + b_)], where If= Vo/i. Also, b+ • b_ and the initial charge
densities are such that P+ - p_ - 30(EV /i2). (a) Electric field and net charge den­

osity; (b) neutral density and positive and negative charge densities.
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initial location of the region IV-I
interface.

At a given instant, the net charge
in region IV increases with x. The
reason for this is apparent from fol-
lowing the x+ characteristic originating
at A in Fig. 5.8.5. At first, p+ decays
by recombination, with a time constant
T = EC/p (b+ + b_), until x+ passes from
regime I to region IV. The subsequent
decay is due to self-precipitation and
occurs with the larger (slower) unipolar
time constant E /Pob+. Thus, at G in
Fig. 5.8.5, particles have spent more
time in the unipolar regime and less
time in the recombination regime than
those at G'. This is.why, at a given
instant in Fig. 5.8.4a, the net charge
at the x4 wavefront of the regime IV
(which is decaying at the unipolar rate)
is greater than behind the front. (Note,
however, that the po used in evaluating
this latter time constant is the value
of P+ when the characteristic line enters

Fig. 5.8.5. Regions are delimited by x+ and x.region IV, which is not the same for points
characteristics emanating from interfaceG and G'.)
and electrodes.

5.9 Conductivity and Net Charge Evolution with Generation and Recombination: Ohmic Limit

The net free charge density and conductivity for the bipolar systems treated in Sec. 5.8,
defined as

Pf = P+ - p_; a = b+p+ + b_p

are natural variables for understanding the relationship between charge migration and relaxation. In
terms of (pf,0), the charge densities p+ and p. are found by inverting Eqs. 1:

a + b;Pf

P+ b + b

With the objective of casting the charge evolution in terms of pf and a, the difference is taken
between the conservation equations for + and - species, Eqs. 5.8.9, and p+ and p_ are replaced on
the right using Eqs. 2:

DPf K b_ ap + Kb++/K -K\
- -E.V + a

Dt E \b+ + b b / b + b vf

To similarly obtain an expression for a, Eqs. 5.8.9 are respectively multiplied by b+ and summed to
obtain

Do Pf- = EV[(b .- -b )a + b b pf]-[(b+b )a + bbb P] -+ (b +b_)$n

2
- [o2 -(b .b_).p - bb p 2 b++. V (K -K )V (4)qCb++b_) + - f b+b b +b +

To complete the description, Eqs. 2 are used to write Eq. 10 as

Dn= - n+ a [a2 2  (b-b )ppf- b+b p2] + KDV2n
Dt q q2 (b +b_)2 -

These last three expressions are an alternative to Eqs. 5.8.9 and 5.8.10 in describing the mi-
gration and diffusion of the carriers in a deforming material. The method of characteristics could
be used to solve these expressions, much as illustrated in Sec. 5.8. But the objective in this sec-
tion is to identify the rate processes encapsulated by these laws and hence to discern the dominant
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contributions to the equations. Limiting forms of the equations, for example the ohmic model emphasize
here and used in the remainder of this chapter, are necessary if the conduction laws are to be embodied
in models that bring in still other dynamical processes.

The approach now used is similar to that introduced in Sec. 2.3, where the quasistatic limits of
the electrodynamic laws are recognized by using a normalization of the laws to discern the critical
characteristic times. Given that dynamical times of interest are characterized by T, what are the
times characterizing the processes represented by Eqs. 3-5?

Variables are normalized such that

+ + X,
t = tr, (x,y,z) = (x,7,Z)R, v = vi/r, a = cE, E = f = Pef /

Thus, E is a typical electrical conductivity and Fis a typical electric field intensity. The free
charge density is normalized so that it is typically the charge dersity that would "shield out" the
field F'in the distance £. In the state of equilibrium where the charge density is zero, while 0 and n
are uniform and constant, the generation and recombination terms balance. Thus, at each point

(b + b)

q q2(b + + b )2n

This expression makes it possible to use equilibriun data to evaluate the generation coefficient, given
the parameters on the right. It also suggests that the neutral number density be normalized such that

2
aE

2b_)q(b + 

Introduction of these normalizations into Eqs. 3-5 results in the expressions

Dof (-•.Va - • p) + T tmir (K+-K_)(b++b_.) 2 T 2

Dt T f T TD (K b_+K b ) V T

Do T (b -b_) T b+b_ 2
(E.Va + pf) - T(EVpf e + p )

FDt Tmig (b++b_)
'mig 'mig (b +b_)

b -b
]

+ T [ ___-~-__ + 
(b++b_) q ]n - e [ 

[ _ (1o)
(b++b_)q o 2 mig (b +b_)q ++-

mig + -

(K b +K b )i e ea - f2 ( ++ 2
f (Kb +Kb+)T T (b++b)q b+b - -

Tmig Tmig - (b++b_)

STe b+b_ (K+-K_)(b+b_ )
T m T D 2  (K+b +Kb+) V2f
Tmig D(b++b_) - _

Dn
T 2 (b+-b_) e K'• D2 (b++b_) 2

___ n + [2_ op (11)
Dt th (b b ) Tmig Pf mig ]D (Kb_+K b+)Tth (b+_)+b 2 t +

where the following characteristic times have been identified

2
T k2 =T'e = ' (12)mig - (b++b_) D K 1- b_ + Kb 1 th 

The other dimensionless coefficients in Eqs. 9-11 are typically of the order of unity. (Note that at
least for Langevin recombination, where a is given by Eq. 5.8.4, the coefficient Ca/(b++b_)q is unity).
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Fig. 5.9.1. Hierarchy of characteristic times and range of dynamical

times appropriate to the use of an ohmic model.

With the objective of ordering the time constants of Eq. 13, Tth is estimated by substituting
the equilibrium values given by Eq. 7, a from Eq. 5.8.4 and a = (n+b+ + n_b_)q:

2 2
q (b + b_) n

_- n (13)th 2 e (n+b+ + n b )/(b+ + b )

Thus, Tth is essentially Te multiplied by the ratio of the neutral to the charged particles. If 8 is
large enough that essentially all of the particles available are ionized, then Tth is a small fraction
of the charge relaxation time Te.

The ordering of characteristic times shown in Fig. 5.9.1 is typical if a configuration is to be
appropriately modeled as "ohmic." Because lengths of interest are relatively large, the diffusion time
is extremely long. That the migration time Tmi is also long compared to times of interest is also a
matter of the length scale of interest, and is lustified if the typical electric field intensities are

not too large. Times of interest in the ohmic model are arbitrary relative to Te. They can be long or

short compared to the charge relaxation time.

With the understanding that the equations are valid for processes in this dynamic range, Eqs. 9-11

are approximated by

Dpf T (-. 
(14)

Dt - T (-E.VO - Qfa)f
e

- T= [ Ea ](n - 2) (15)
Dt T (be + b_)q

Dn
T (n 2 (16)

Tth

By multiplying Eq. 16 by (Tth/Te)[sc/(b+ + b_)q] and adding it to Eq. 15, it follows that

D Tth Ca S[a + (b+b)q n] = 0 (17)

Dt Te  (b +b)q

Now, if Tth is short compared to times of interest, as depicted by Fig. 5.9.1, this expression becomes

(with variables written in dimensional form),

D7 = 0 (18)
Dt

For an observer attached to a given particle of the material, the conductivity is constant. In this

limit, the conductivity can be regarded as a property of the material.

In unnormalized form, Eq. 14 is

Dpf Pf

- (E/ - (19)Dt - E.Va 

In this charge relaxation expression, a can now be regarded as a given parameter. These last two

expressions constitute the "ohmic" model.

Maxwell's Capacitor: In terms of an ohmic model, the bipolar migration with generation and re-

combination is the two-region lossy capacitor of Fig. 5.9.2. The lower region is a fixed material,

which according to Eq. 18 conserves its initially uniform conductivity. The upper region is of the same

permittivity, but is insulating.
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Fig. 5.9.2. Maxwell capacitor model for bipolar migration of Fig. 5.8.6.

As will be shown in the next section, with the application of a constant voltage Vo to the elec-
trodes, there is never a net free charge density in the material. Hence, fields in each region are
uniform, Ea(t ) and Eb(t). Because of the voltage constraint,

Ea -+ Eb _ v (20)

Accumulation of surface charge af = CE - CE, at the interface between the lossy material and the insu-
lating upper region is caused by the conduction current oEb feeding the interface. (This boundary con-
dition is considered in general terms in Sec. 5.11). Thus,

d
- (CEa - EEb) - aEb (21)

These two expressions combine to give a differential equation for the field inside the lossy material
with the applied voltage as a drive:

d a 1 dv 2v
dt + a - -E dv; Ea - E (22)

It follows that the transient resulting from the application of a step in voltage to the amplitude V0 is

V -t/Te  2CV -t/Te
Eb e  ; f [1 - e ];T e 2E/a (23)

Numerical Example: (The numerical analysis of this section was carried out by R. S. Withers) Now,
by comparing the predictions of the ohmic model to the "exact" solution afforded by the numerical scheme
described in Sec. 5.8, consider the response of the Maxwell capacitor to a step in applied voltage. The
configuration, shown in Fig. 5.8.3, is initially with the lower half of the region between the electrodes
uniformly filled with positive and negative charge densities. In this lower region, generation and re-
combination are initially in equilibrium, as represented by Eq. 7. Thus, there is also an initial uni-
form distribution of n in the lower region.

With parameters arranged so that the characteristic times have the ordering shown in Fig. 5.9.1,
the response to a step in applied voltage is displayed by Fig. 5.9.3. As would be expected from the
ohmic Maxwell capacitor model, the electric field in the conducting region, shown by Fig. 5.9.3a,
decays exponentially with the time constant Te, while the surface charge "density" builds up with a
similar time constant (Eqs. 23).

Figure 5.9.4 identifies some of the regions demarked by the three families of characteristics,
particularly those emanating from the initial position of the interface. Regions I and IV are
described by the Maxwell capacitor model. This means that the electric field on the demarking character-
istics x+ and x. is known. For example, on x., I is given by Eq. 23. Thus, the characteristic equa-
tion, Eq. 5.8.15c, can be integrated to delimit region I. In region I, charge neutrality prevails and
generation is in equilibrium with recombination.

To further refine the picture, the role of the neutrals in determining the generation of new
charged particle pairs must be recognized. Because region III is "ahead" of the neutral characteristic
originating at the interface, this region is one where neutrals can only be created by recombination.
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Fig. 5.9.3. Evolution of (a) field and free charge density and (b) charged particles and
neutrals, with recombination and generation in the Maxwell capacitor configuration of
Fig. 5.9.2. When t = 0, voltage is turned on. Characteristics X+ and x are in the
x-t plane. Neutral characteristics are xn = constant. For the case sho~, b+ = b_,
t = ~Tmig, where Tmig is given by Eq. 12 with ~= Vo/~. Also, initially p+ = p_
30€oVo/£2, n = €Vo/q£2 (i.e., 30 ion pairs for each neutral so that according to Eq. 13,
Tth = Te /30 and S is equilibrium value given by Eq. 7. Recombination is Langevin
(Eq. 5.8.4).
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Because there are no negative charges in this
region, there is no recombination and hence no
neutrals. Initially, in region II, there are
neutrals. However, because of the high degree
of ionization intrinsic to the ohmic model
(Tth << Te), the generation in this region (which
for lack of negative charges is not balanced by
recombination) quickly depletes the neutrals.
Essentially, the neutral density in region II
is zero. Thus, in both regions II and III,
essentially unipolar dynamics prevail, with
the positive charge density decaying in accordance
with Eq. 5.6.6 and the initial charge density,
essentially determined by p+ where the character-
istic enters region II from region I, equal to p+
in the equilibrium region.

This unipolar picture of the charge density
decay along an x+ characteristic in regions II and
III explains why p+ decays with increasing x at
any given time. Charact

region II at A and A 
'

(Fig. 5)..4) carry the
same equilibrium charge density. Thus there is
more time for decay of p+ at point B than there Fig. 5.9.4. Regions in x-t plane delimited by

s B"characteristic lines emanating from ini-
is at B', even though B and B' are at the same tial interface position.
instant in time.

DYNAMICS OF OHMIC CONDUCTORS

5.10 Charge Relaxation in Deforming Ohmic Conductors

If it is taken as an empirically substantiated fact that a material at rest is an ohmic conductor,
then, moving in an inertial (primed) frame of reference, it is described by the constitutive law

J = GE' (1)f

The conductivity, a(r,t), is a parameter characterizing (and hence tied to) the material. The elec-
troquasistatic transformation laws require that ' =- but that 1 = If - pfv (Eqs. 2.5.9a and 2.5.12a)
and show that in terms of laboratory-frame variables, the constitutive law implied by Eq. 1 is

Jf - E + fv (2)

With the use df Eq. 2 to describe an accelerating material goes the postulate that the conduction
process is not altered by material accelerations. Because of the high collision frequency between
charge carriers and the molecules comprising the material, this is usually an excellent assumption.

In this section, it is further assumed that polarization can be modeled in terms of a permittivity
E(r,t), in general a function of space and time. Like the conductivity4 e is a property tied to the
material. Also, the given material deformations are incompressible: V.v = 0.

The fundamental laws renu4red to define the relaxation process picture E as irrotational, relate
pf to A through Gauss' law (V.cE = EV.E + E*Ve) and envoke conservation of charge:

E = -V0 (3)

4 Pf E.Vs
V*E = (4)

E E

V.iJf + o 0-- (5)

The charge refaxatio equation is obtained by entering N from Eq. 2 into Eq. 5, using Eq. 4 to
replace the divergence of E and remembering that ; is solenoidal,

+ v-.Vpf Pf - 'E.V + I E.Ve (6)

For a material of uniform permittivity, this is the same expression as Eq. 5.9.19, a fact that empha-
sizes the multispecies contribution to the conduction process necessary to justify the use of the
ohmic model.
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If characteristic lines are defined as the trajectories of fluid elements, then

dr (7)rt =v (7)

and time is measured for an observer moving along a line satisfying Eq. 7, the charge relaxation equa-
tion, Eq. 6, becomes

dpf O p- f - E.Va + EVe (8)(8)

For an observer moving with the material, the three terms on the right are the possible contributors to
a time rate of change of the charge density. Respectively, they represent the relaxation of the charge
due to its self-field, the possible accumulation of charge where the electrical conductivity varies, and
where the permittivity is inhomogeneous. Typically, these latter two terms are at interfaces, and hence
are singular.

Region of Uniform Properties: In this case, the last two terms in Eq. 8 are zero, and the equation
can be integrated without regard for details of geometry and boundary conditions:

p -t/T e (9)
f PO(r) e T e /a(9)

For the neighborhood of a given material particle,po is the charge density when t - 0. With Eq. 9, it
has been deduced that at a given location within a deforming material having uniform conductivity and
permittivity, the free charge density is zero unless that point can be traced backward in time along a
particle line to a source of free charge density.

The general solution summarized by Eq. 9 has a physical significance which is best emphasized by
considering two typical situations, one where the initial charge distribution is known, and the other
involving a condition on the charge density where characteristic lines enter the volume of interest.

Suppose that the charge distribution is to be determined in an ohmic fluid as it passes between
plane-parallel walls in the planes x = 0 and x - d. The flow is in the steady state with a velocity
profile that is consistent with fully developed laminar flow:

v - (1 - )U (10)

Initial Value Problem: When t = 0, the charge distribution throughout the flow is known to be

Pf(x,0O) = Pt sin(kz) (11)

This distribution is sketched in Fig. 5.10.1a. For the given steady velocity distribution, it is simple
to integrate Eq. 7 to find the characteristic lines x = xo, y = Yo and

z = - (1 - ) Ut + z (12)

The integration constant, zo, is the z intercept of the characteristic line with the t = 0 plane.
Figure 5.10.1b represents these characteristic lines in the x-z-t space. In the channel center, the
characteristic line has its greatest slope (U) in the z-t plane, while at the channel edges the slope
is zero. The lines take the same geometric shape regardless of zo, and therefore other families of
lines are generated by simply translating the picture shown along the z axis.

Now according to Eq. 9, the charge density at any time t > 0 is found by evaluating the initial
charge density at the root of a characteristic line, when t = 0, and following that line to the point
in question. The charge decays along this line by an amount predicted by the exponential equation
using the elapsed time. If (x,z,t) represent the coordinates where the solution is required at some
later time, then these coordinates are related to zo through Eq. 12, and the initial charge density
appropriate to the point in question is given by Eq. 11 with z + zo . Thus, the required solution is

4x ( t-t/T
Pf(x,z,t) = Pt sin k[z - (1 - )Ut]e (13)

This distribution is the one sketched in Fig. 5.10.1c.

The consequences of a boundary-value transient serve to provide further background for establish-
ing the point of this section.
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Fig. 5.10.1. (a) The initial distribution of charge density as a function
of (x,z). (b) Characteristic lines in (x,z,t) space. Those lines
originating along the cross section z = zo when t = 0 are shown.
(c) Distribution of charge density by the time t = T. Charge is
transported downstream in proportion to the stream velocity, and
decays as exp(-t/Te).

Injection from a Boundary: It is possible to inject charge into the bulk of an ohmic fluid so that
a steady-state condition can be established with a space charge in the material volume. However, the
position of interest in the material bulk must then be joined by a characteristic line to a source of
charge. As an illustration, consider the case where, initially, there is no charge in the material.
Again, the fluid flow of Eq. 10 is considered. However, now charge is introduced by a source in the
plane z = 0. When t = 0, this source is turned on and provides a volume charge density ps henceforth
at z = 0. The problem is then one of finding the resulting downstream charge distribution. The
boundary condition is shown graphically in Fig. 5.10.2a.

For this type of problem, the characteristic lines of Eq. 12 are more conveniently used if written
in terms of the time t = ta when a given characteristic intercepts the z = 0 plane, where the source of
charge is located, and it is known that for t > 0, the charge density is ps. Then

S=x ( - -)U(t - ta) (14)

The family of characteristics having roots in the z = 0 plane when t = ta is sketched in Fig. 5.10.2b.

From the characteristic lines of the sketch, Fig. 5.10.2b, it follows that the distribution of
charge can be divided into two regions, the surface of demarcation between the two being the surface
formed by the characteristic lines with ta = 0. For z greater than the envelope of these characteristic
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Fig. 5.10.2. (a) When t = 0, a uniform and henceforth constant source
of charge is turned on at z = 0. (b) Characteristic lines.
(c) Later distribution of charge density.

lines there is no response, because the characteristic lines originate from the z - 0 plane at a time
when the charge density is constrained to be zero. For z less than the envelope, the initial charge
distribution at z - 0 is the constant ps. Thus, there is a wavefront between the two regions, as
sketched in Fig. 5.10.2c. The charge density at any point behind the wavefront is determined by multi-
plying exp[(t-taYTeV] times the charge der;sity at z=0. That is, the appropriate evaluation of Eq. 9 is

-(t-,a)/Te
pf - pse (15)

and in view of the relation between a point in question (x,z,t) and the time of origination from the z = 0
plane, ta (given by Eq. 14), the charge distribution of Eq. 15 can be written in terms of (x,z,t) as

-z/[v(x)T e 4x
pf Pse ; (x) - (1 - d)U (16)

This stationary distribution of charge is shown in Fig. 5.10.2c.

Because of the dependence of the velocity on x, the spatial rate of decay behind the front depends
on the transverse position x. At the center of the channel, where the velocity is U, the spatial rate
of decay is determined by the ratio of the relaxation time to the time required for the material to
transport the charge to the given z position in question. This ratio is a measure of the influence of
the material motion on the charge distribution: for a characteristic length Z in the z direction, it is
convenient to define the electric Reynolds number of an ohmic conductor as
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EU
Re (C/o)/(/U) = - (17)

and Eq. 16, written for the channel center where x = d/2, becomes

d (l/Re)
pf( 2 ,z,t) = pse (18)

At a given location z, once the wavefront has passed, the response represented in general by Eq. 9 is
independent of time.

5.11 Ohmic Conduction and Convection in Steady State: D-C Interactions

The one-dimensional configuration of Fig. 5.7.1 is revisited in this section using an ohmic rather
than a unipolar model. This gives the opportunity to exemplify the role of the electric field and
boundary conditions while making a contrast between the ohmic model, introduced in Sec. 5.10 and the
unipolar model of Sec. 5.7. As in Sec. 5.7, the model is used to demonstrate a type of "d-c" pump or gen-
erator exploiting longitudinal stresses. Again, screen electrodes are used to charge a uniform z-direc-
ted flow: = Ut•z

Because the fluid has uniform properties, the steady one-dimensional form of Eq. 5.10.6 is

dpf
+ dz u• Pf 0 (1)

and it follows directly that the space-charge distribution is exponential:

-z/R 2)-Z/Re0 -=v
of = Pe ; Re = _ (2)

The electric Reynolds number Re is introduced at this point because it reflects such attributes of the
flow as the efficiency of energy conversion.

Conservation of charge requires that in the steady state Jf = Jtz is a constant: the total current
I divided by the area A. Thus the constitutive law, Eq. 5.10.2, can be solved for B = E(z)t z with pfsubstituted from Eq. 2:

i PoU -z/R e
E = - -, e (3)

In turn, the terminal potential is determined,

S.i cPo W U -l/Re
v -Edz-- + R(1 - e ) (4)

UA a e

This is the electrical terminal relation for the interaction: a "volt-ampere" characteristic sketched
in Fig. 5.11.1.

The electrical force on the charged particles is fully transmitted to the vehicle fluid, and hence
the pressure rise between inlet and outlet is simply the difference in electric stresses at z = 2 and
z = 0, evaluated using Eq. 3:

2 U e2 i Po2U =1 2I Op i-/R )2
Ap = - P [2() - E2()] =  [(e -2 i) (5)

This mechanical "terminal relation" has a dependence on the terminal current i summarized by
Fig. 5.11.1. Observe that isc < ibp, where the short-circuit and zero pressure-rise currents follow
from setting Eqs. 4 and 5 to zero:

) -1/R
Ise = A p/R(l - e ) (6)

-1/Re
/ Ibp = ApkV(1 + e )/2 (7)
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Three energy conversion regimes are defined
by recognizing that the electrical power
out is Pe - VI, while the mechanical power
in is Pm I -ApUA. Each of these quantities
must be positive to give a generator func-
tion. Similarly, if both Pe and Pm are
negative, energy is converted from electri-
cal to mechanical form and the device is a
pump. There is a midregion, which tends
to vanish as Re is increased, wherein both AP\ 00

|

electrical and mechanical energy are
absorbed. This region gives a braking isc tbp I
*effect 

I 
- ---

at the expense of electrical energy.
These I -three-regimes are summarized by
Fig. 5.11.1.

- I I
- I IThe Generator Interaction: A primary - - I-limitation on electrohydrodynamic I Ienergy - I I

conversion devices is the relatively small I I
- I I

electric pressure that can be obtained with- - I
-- . I

out incurring electrical breakdown. Dif-
ficulties in making an efficient converter generator-.. brake,- pump -
are amplified by the extremely small frac-
tion of the available mechanical energy FP>O;* Pe)0  > 'e

I I

I__that is altered by the electric coupling.
It is clear from Eq. 5 that any electric Pm>O Pm<O -
stress at the outlet detracts from the
total pressure change. To take the
greatest advantage of the available elec- Fig. 5.11.1. Dependence of terminal voltage and pres-
tric stress, E(k) should be adjusted to sure rise on terminal current i. Energy con-
vanish. This can be done, according to version regimes are as indicated.
Eq. 3, by operating with the space-charge
density

I /Re
Pov -K e (8)

It follows from Eq. 4 that (use upper sign):

2 +l/R

P = -  [l+R(1-eR 
e E A - e

while Eq. 5 shows that (upper sign)

UA~ 2 1+/Re)2
Pm = +- (1-e m -- 2 a ) (10)

The efficiency of energy conversion.from mechanical to electrical form is then only a function of the
electric Reynolds number (upper sign)

+1/R +1/R
P /P =2[+R(e e 1) - 1]/[+R (1 - e e e2 (11)m -e e

Of course, the conversion becomes perfectly efficient as R e m. The detailed dependence is shown in
Fig. 5.11.2.

The Pump Interaction: If it is a pumping function that is desired, Eq. 5 makes it clear that the
space charge should be adjusted so that E(O) - 0, and it follows from Eq. 3 that

i
= v (12)po

The electrical and mechanical powers are now given by Eqs. 9 and 10 using the lower signs. In turn, the
efficiency of electrical to mechanical conversion is the reciprocal of Eq. 11, using the lower signs.
This pumping efficiency is summarized also in Fig. 5.11.2.
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Fig. 5.11.2

Energy conversion efficiency
of one-dimensional flow with
ohmic fluid and immobile
charged particles.

0 2 4 6 8 10
Re ---

5.12 Transfer Relations and Boundary Conditions for Uniform Ohmic Layers

Transport Relations: In a region having uniform conductivity and permittivity, the free charge
density is zero unless the material occupying the region can be traced back along a particle line to
a source of charge. With the understanding that charge-free bulk regions are being described, it
follows from either Gauss' Law or conservation of charge (Eqs. 5.10.4 or 5.10.5) that I is solenoidal
in the bulk of such regions. Because I is also irrotational (Eq. 5.10.3), it follows that the dis-
tribution of potential 0 is governed by Laplace's equation. To describe the volume field distributions,
the same relations are applicable as used to derive the flux-diplacement relations of Sec. 2.16. The
transfer relations for planar layers, cylindrical annuli and spherical shells summarized in Sec. 2.16
are also applicable to regions having uniform conductivity. Because the effect of material motion on
the fields comes from the convection of the free charge density, and Pf is zero in the material, these
relations hold even if the material is moving. For example, the planar layer of Table 2.16.1 could be
moving in the z direction with an arbitrary velocity profile.

In conjunction with the transfer relations, the conduction currents normal to the bounding surfaces
(a,$) are of interest, and these are simply

n n
i] a (1)

n n

where n signifies a coordinate normal to the (a,8) surfaces and a has the value appropriate to the region
between.

Conservation of Charge Boundary Condition: A typical model involves two or more materials having
uniform properties and separated by interfaces. The boundary condition implied by the requirement that
charge be conserved is given with some generality by Eq. 2.10.16. With the proviso that the regions
neighboring the interface have the nature described in the previous paragraph, the volume current den-
sities are simply If = at. In certain situations, the interface is itself comprised of a thin region
over which the conductivity is appreciably greater than in the bulk. Then, a surface conductivity as
is used to model a surface conduction and the surface current density is

K = sEt> Kf = asEt + tf (2)

where the subscript t means that only components of the vector tangential to thq interlace contribute

and of is the surface charge density. Incorporating the appropriate values of Jf and Kf, the required
boundary condition, Eq. 2.10.16, becomes

-t + V*.(asE +vaf) + n* aE - 0 (3)

The tangential component of I is continuous at the interface, and so lt or the potential can be evaluated
on either side of the interface.
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As an example used in subsequent sections, suppose that the interface is planar (in the y-z plane)
and moves with the uniform velocity U in the z direction. Then, for n T, Eq. 3 becomes

x

aa DE BEz
+U

+ -) - a(T + T--) + 0 aEx

Physically, this expression states that, for an observer moving with the material, the rate of decrease
of af with respect to time is proportional to the conduction current flowing out of the interfacial
region in the plane of the interface and to the disparity between volume conduction currents leaving and
entering from the bulk regions to either side of the interface.

5.13 Electroquasistatic Induction Motor and Tachometer

A configuration for establishing basic notions concerned with electric induction interactions is
shown in Fig. 5.13.1, where a thin sheet having surface conductivity as moves uniformly in the z-direc-
tion with the velocity U.1 At a distance d above the sheet, a traveling wave of potential is imposed
by means of electrodes, while the potential a distance d below is constrained by a solid electrode to be
constant. The objective in this section is to determine the dependence of the electrical shear force
tending to carry the sheet in the z direction on the frequency w, the relative material and wave ve-
locities, and the electrical surface conductivity. Later, the configuration is used to make a tacho-
meter. In actual construction, the sheet might be wrapped around on itself to form a rotating shell.

Re V.exp j(wt- kz)

----------(a)
(E0 ,a-..O)

Fig. 5.13.1
I (b)
i
T (C) A conducting sheet moves with

(C.,-(0) velocity U and interacts with
traveling waves of potehtial

(d) imposed on adjacent electrodes.

The active volume breaks into two regions joined by the conducting sheet. Thus, an analytical

model simply involves the combination of transfer relations for the free space regions, and the boundary

conditions for the sheet. The transfer relations of Table 2.16.1, Eqs. (a). become

s k
-c k coth(kd)

sinh(kd)

-n k
e k coth(kd)

sinh (kd) o

where the surface potentials have been identified as those of the electrodes and sheet, and the vari-

ables refer to the upper region with superscripts as defined in Fig. 5.13.1. From Eq. 5.12.4 with

B( )/By - 0 and Jx U =- 0 (the regions adjacent to the sheet are insulating),

a k 2 Pb + j( - kU)(D b - - ) 0 (2)

where it is recognized that the net surface charge density on the sheet is (DA - Dx). Finally, the de-
scription is completed by the transfer relations for the lower region, again provided by Table 2.16.1:

Fk

-Co k coth(kd) sinh(kd)

-s o k
Sk coth (kd)
o

1. For description of a somewhat similar device, see S. D. Choi and D. A. Dunn, "A ourface-Charge
Induction Motor," Proc. IEEE 59, No. 5, 737-748 (1971).
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Incorporated in the potentials on the right are the boundary conditions that b = c and d = 0.
These three expressions can be viewed as five equations for the unknowns Ob and (Dxa, Db, Dx, Dd). Before
further manipulation is undertaken, it is advisable to look forward to the required variables.

Induction Motor: Summation of shear stresses on the sheet (see Eq. 4.2.2) shows that the space-
average force density in the z direction is

1 Re [bkb b (4)c* 
Tz> = - Rejk~ [D - D ]

The total complex surface charge density required in Eq. 4 follows from the subtraction of Eqs.
lb and 3a:

k  b -c 0o ^b
D -D sinh(kd) Vo + 2e k coth(kd) b  (5)
x x sinh(kd) 0 0

and substitution of this expression into Eq. 4 further reduces the surface force density to

-e k

T o Rej b V (6)
oz z 2sinh(kd) 

The complex sheet potential is found by again using Eq. 5, but this time to eliminate Db x - De x from Eq. 2:

b jjS eV
jS= (7)S= 2 sinh kd(l + jSe coth kd)

where Se is product of the angular frequency (w - kU) measured by an observer moving with the material

velocity U and the relaxation time constant 2E /kas:

2e (w - kU)
S o (8)
e ka

s

The surface force density follows by substituting Eq. 7 into 6:

2 ^ 
2 ^

s k V V* S
T o oo e (9)

z 4 sinh2 (kd) (1 + S2 coth 2kd)
e

This result is analogous to one obtained for a magnetic induction machine in Sec. 6.4. It exhibits

a maximum which is determined by the frequency in the frame of the moving sheet relative to the effective

relaxation time. That is, the optimum or largest electric surface force density is

E k2V V
KTz' = o o o tanh(kd) S = tanh(kd) (10)

z 8 sinh2(kd)e

Again, this result fits the general description of a "shearing" type of electromechanical energy
2

converter given in Sec. 4.15. The surface force density takes the form of an electric stress Eo(kVo) /2
- 2

multiplied by factors reflecting the geometry and charge relaxation phenomena. The factor (sinh kd)

represents the Laplacian decay of the fields from the excitation to the sheet and then back again.

A sketch of the dependence of Tz> on Se is shown in Fig. 5.13.2. The physical origins of this

curve are understood by interpreting Eq. 7. At very low material-frame frequencies, Se + 0 and Ob + 0.

The sheet behaves as a perfect conductor, supports no tangential electric field intensity, and hence no

electrical force in the z direction.

theIn the opposite extreme, the frequency is large compared to the reciprocal relaxation time for 

system of sheet and adjacent regions of free space, and the amount of surface charge induced on the sheet

becomes small. This follows from Eqs. 5 and 7. The optimum of Fig. 5.13.2 represents the compromise

between the extremes of Se small, and hence the wrong lag angle, and Se large and hence reduced sheet

surface charge.

Electroquasistatic Tachometer: It is the induced force upon the moving, semi-insulating sheet that

is emphasized so far. The reverse effect of the motion on the field is emphasized by the slightly
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0.

Fig. 5.13.2

Dependence of time-average sur-
face force density normalized
to (EolkVoI2/4 sinh2 kd) as a
function of frequency in moving
frame of reference, normalized
to relaxation time. Se is
defined by Eq. 8 (kd = 1).

Se 9.

revised configuration of Fig. 5.13.3. Instead of a traveling wave, the imposed potential is now a
standing wave. Points of zero amplitude retain fixed positions along the z axis. For the purpose of
detecting the material velocity U, a pair of electrode segments is positioned in the grounded wall just
below the moving sheet. The time variation of charge induced on these segments gives rise to a current,
i, which is measured by means of external circuitry. Each segment is one half-wavelength, and posi-
tioned so that, in the absence of material motion, there is as much positive as negative surface charge
induced on a segment surface. Thus, the electrodes are designed so that there is no output current in
the absence of a material motion. But, with motion, the fields are skewed so that there is a net charge
induced on each output segment. The result, an output signal vo reflecting the material velocity U, is
now going to be computed.

There is considerable analogy between the interaction studied here in the context of charge relaxa-
tion, and the magnetic diffusion example of Sec. 6.4. To make a practical device for measuring the
rotational velocity of a shaft, the sheet pictured in Fig. 5.13.3 would be closed on itself, with the
standing wave of imposed potential and the output segments perhaps arranged as in Fig. 5.13.4. By con-
trast with the conventional drag-cup tachometer, the sheet material in the device studied in this sec-
tion would be made from semi-insulating material, rather than a metal.

Re V, cos(kz) exp(jwt)

(a)
(b)
(c) U
(d) output electrodes

- V -

Fig. 5.13.3. A device for measuring the velocity Fig. 5.13.4. Adaptation of the planar
U is made by exciting from above with a configuration of Fig. 5.13.3 to
standing wave of potential and measuring measure rotational velocity of
the induced current on an electrode pair shell of slightly conducting
below the sheet. material.
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The fields from a standing wave of excitation potential are simply the superposition of two of the
traveling waves analyzed already. That is, the excitation can be written as

V
a jwt o -jkz jkz jewta = ReVo cos(kz)e Re (e-kz + e )e(11)

The surface charge induced on the equipotential plane below the moving sheet is desired. It is assumed

that the current, i, is measured through a sufficiently small resistance that the output eleatrodes

remain at essentially zero potential. Thus, the output electrode surface charge is simply Dx and is

found from Eq. 3b, as the superposition of the responses to the two traveling-wave components of the

drive identified by Eq. 11:

Ad -e k
d o b b) (12)
x sinh(kd) (4 + (12)

The potential amplitudes called for with Eq. 12 are given by evaluating Eq. 7 with Vo Vo/2 o and k first
positive and then negative:

+ = JSe+Vo/4 sinh(kd)[l + JSe+coth(kd)] (13)

Se+ E 2Eo(w + kU)/k as

The combination of Eqs. 12 and 13 give the space-time dependence of the charge induced on the lower
surface:

kV j k z-jkz 

Dd = Rej o e+ + e- eJ t (14)
x si2 kd 1 + Se+coth(kd) + 1 + Secoth(kd)

4 sinh (kd) 1 + o d

The net charge on the right electrode is now computed by integrating the surface charge over its area,

from z = 0 to z = 7/k and over the width w of the electrode in the y direction. The required current

is the time rate of change of the net charge on the electrode, and therefore given by

jA wwVo Se+ Se-

2 (15)i= 2 sinh (kd) 1 + Se+coth(kd) 1 + jSecoth(kd) 

As required, the net charge on the electrode vanishes in the absence of a material motion. To bee the
dependence of the output current on the material velocity, Eq. 15 is expanded, using the definition of

Se+ from Eq. 13:

o coth(kd) (kU/w)

1 =I s -(16)
2o[i + Se+coth (kd)][l + Se-coth2(kd)]

where
we Vo w 2E 0W kU

o sinh(kd)cosh(kd)' e+ -- ks s i

With the excitation frequency large compared to kU, the dependence of Se± on U is weak, and Eq. 16

shows that the output current is then a linear function of the material velocity. The general depend-2
ence of jil on the ratio of sheet velocity to wave phase velocity, w/k, is illustrated in Fig. 5.13.5.

2. For a similar approach to measuring fluid velocity, see J. R. Melcher, "Charge Relaxation on a Moving

Liquid Interface," Phys. Fluids 10, 325-331 (1967).
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material velocity U relative to
phase velocity (w/k) for tacho-
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5.14 An Electroquasistatic Induction Motor; Von Quincke's Rotor

The configuration of Fig. 5.14.1 gives the opportunity to study charge relaxation for finite-
thickness conductors. Regions (a) and (b) are each composed of homogeneous materials having uniform
conductivity and permittivity. The b-c interface moves to the right with a uniform velocity, U. The
materials may move as rigid bodies with this same velocity, or might be composed of fluids which have
some unspecified velocity profile v = vz(x)Tz . They are bounded from below by a constant-potential
plane, and from above by a system of electrodes used to impose a traveling wave of potential.

An objective is to determine the fields and hence the electrical surface force density acting on
the interface in the direction of motion. From Sec. 5.10 it is known in advance that the only charges
within the moving materials exist where the conductivity and permittivity have a spatial variation, at
the interface. The planar configuration could be a developed model for a system "closed on itself" so
that the interaction considered would be between a system of rotating, semi-insulating materials and an
imposed rotating electric field. Except for geometric factors, the torque on the semi-insulating rotor
sketched in Fig. 5.14.2 depends on the physical parameters and the imposed fields in essentially the
same way as for the planar case study (see Problem 5.14.1).

The potential is the given traveling wave atthe boundary denoted by (a), is continuous at the
interface, and must vanish at the lower boundary (4a = Vo, Ob = $c, Od = 0). Thus, the transfer rela-
tions representing the field distributions in the bulk of each region, Eqs. (a) of Table 2.16.1, are

^a Sk

-E kcoth(ka) a Vx a sinh(ka) o

(1)
-E k kcoth(ka)^bDx sinh(ka) akcoth(ka)

Ic Sbk b
- kcoth(kd) 

x b sinh(kb)
I

(2)-Eb k

x sinh(kb) bkcoth(kb) 0

By contrast with the model used in Sec. 5.13, there is no surface conduction, but rather a

volume conduction, so that the boundary condition implied by conservation of charge for the interface,
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U

Fig. 5.14.1. Cross-sectional view of two Fig. 5.14.2. Circular analog of the planar sys-
planar layers of material having tem of Fig. 5.14.1. Qualitatively, fields
thicknesses a and b, respectively. in the planar problem are the same as those
The potential is constrained to be in this circular configuration if the z axis
a traveling wave just above, and to of Fig. 5.14.1 is wrapped around on itself
be constant just below. in an integral number of wavelengths.

and represented by Eq. 5.12.4, becomes

b b c) + j ( - kU)(^b " ca
Saa

X x x
x 6 b x x

The space average of the surface force density acting on the only charges within the volume of interest,
those at the interface, is given by integrating the Maxwell stresses over an incremental volume enclosin
the interface and having one wavelength in the z direction (see Sec. 4.2 for a similar calculation).
Thus, the space-average force per unit area is

/^b *^b ^ *c 1 b ^b "c*
TReD ) E - (D ) E ] = - Rejki (D - D)

z x z z 2 x x

The jump in Dx called for with Eq. 4 is the surface charge density given by subtracting Eq. 2a from lb:

bh e -E aokV•
D - D = -> + Pk[eccoth(ka) + E coth(kb)]

x x sln[kKa)  a u

Then, substitution into Eq. 4 shows that it is the interfacial potential which determines the space-
average of the surface force density

C 2k2

<Tz> = 
Z

2 sinh(ka) ReJ]bo

With the objective of finding b, the first quantity in brackets in Eq. 3 is found in terms of the
potential $b by multiplying Eq. lb by Ga/Ea and subtracting Eq. 2a multiplied by ab/Ib:

b
aD abc - a 
ax •bD - ak + +b

S +sinh(ka k[aacoth(ka) + bcoth(kb)]
a

Then, substitution of Eqs. 5 and 7 into 3 gives the required surface potential in terms of the driving
potential

b [j(w - kU)E a + a ]V
(D

sinh(ka){[aacoth(ka) + obcoth(kb)] + j(W - kU)[Eacoth(ka) + Ebcoth(kb)]}
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For purposes of physical interpretation, it is helpful also to have the surface charge density
given in terms of the driving potential by substituting Eq. 8 into Eq. 5:

^b ^c -kVocoth(kb)(Eaab - Eb a )

x x sinh(ia) [a coth(ka) + Obcoth(kb)](l +.jSE)

where

kU [ acoth(ka) + ebcoth(kb)]
SE wTE( 1 - k) TE E E (10)E- [acoth(ka) + abcoth(kb)]

Finally, the electric surface force density is found by substituting Eq. 8 into Eq. 6:

1 ^ * SE
kVba) 1 + SE11)

where
where K - coth(kb) nh2(ka) [acoth(ka) + Ebcoth(kb)][aacoth(ka) + abcoth(kb)]

What has been computed relates to a number of different physical situations. If the material
layers are solid, then Eq. 11 represents the force per unit x-y area acting on the layers. Even though
Eq. 11 came from an integration of the stresses over a volume enclosing only the interface, because
there is no free charge density anywhere else in the volume of the materials, it includes all of the
force on the material. It is possible that one or the other, or both, of the materials could be fluids,
in which case Eq. 11 is the surface force density acting at the interface and U is the interfacial
velocity. The calculation remains correct, even if the material to either side of the interface moves
with some velocity other than U.

To examine the physical implications of Eq. 11, suppose that the traveling-wave frequency is fixed,
and interest is in the dependence of the electrical surface force density on the material velocity.
First, note that for a given kU/w, the sign of the surface stress depends on the relative permittivities
and conductivities. If the lower material is sufficiently more conducting than the upper one, so that

ObEa > aacb, then for kU/w < 1 the force is in the same direction as the wave velocity. As a function
of SE, this stress first rises linearly, reaches a peak, and then falls off, in a manner familiar from
Sec. 5.13. The dependence on U has the same nature except that the point where SE vanishes is at the
synchronous velocity U = w/k, and increasing U is equivalent to decreasing SE . Hence, a plot of <Tz) z
as a function of the normalized velocity kU/w is as shown in Fig. 5.14.3. If the lower material is a
conducting solid or fluid, and the intervening material an insulator, such as air, and the interface
moves at a velocity less than synchronous, there is an induced electrical force tending to pull the
material in the direction of wave propagation.

If the electrical force is retarded by one proportional to the velocity, as would be the case with
viscous damping, then the velocity at which there would be an equilibrium between the electrical force
and the retarding viscous force is the intersection (i) of Fig. 5.14.3a. The material tends to follow
the traveling wave at a somewhat lesser velocity than the vhase velocity w/k. Note that, if a perturbing
force makes the velocity decrease in magnitude slightly, the electrical force dominates the viscous
force and tends to return the material to its steady equilibrium position. An experiment illustrating
the force as it pumps a liquid is shown in Fig. 5.14.4a.

So far, there is little qualitative difference between what has been found for the finite-thick-
ness slab and the results of Sec. 5.13 for the sheet conductor. But now, suppose that the material
adjacent to the traveling-wave structure conducts sufficiently more than that below so that aacb > abca,
From Eq. 11, it is clear that the electrical force now acts in a direction which opposes the direction
of relative propagation for the field. Even more, there are now three velocities at which the elec-
trical force can be equilibrated by a viscous retarding force. At position (ii), the material is moving
in a direction opposite to that of the wave.

Arguments similar to those given for equilibrium (i) can be used to see that (ii) is also stable.
Two equilibria are possible with the material moving faster than the traveling wave. Of these, (iii)
is unstable and (iv) is stable.

The example illustrates that there are exceptions to the intuitive notion that in an induction
type of interaction, the material always tends to follow the traveling wave, and that under conditions
of "motor" operation, the material velocity is less than the phase velocity of the wave.

The seemingly mysterious finding, with aaeb > Caab, is explained first by considering why the
material follows the traveling wave in the case of Fig. 5.14.3a. Equation 9 gives the surface charge
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Courtesy of Education Development Center, Inc. Used with permission.

Fig. 5.14.4. (a) Electrodes embedded in a plastic sheet are driven by a 60-Hz 6-phase source so
as to approximate a wave of potential traveling to the right. Separated from the electrode
structure by an air gap, corn oil (doped to make WeE = 1) has an interface that is pumped
to the right, illustrating equilibrium (i) of Fig. 5.l4.3a. To conserve mass, the liquid
recirculates below the interface. (From film "Electric Fields and Moving Media," Reference
12, Appendix'C.) (b) The traveling wave still propagates to the right but the electrode is
immersed in the corn oil. The interface, which is now above, moves in the opposite direc­
tion of the wave. The configuration is Fig. 5.14.1 turned upside down, and the pumping
illustrates equilibrium (ii) in Fig. 5.l4.3b. (c) Von Quinckets rotor, consisting of a
Teflon rotor immersed in a semi-insulating liquid. As a d-c potential applied between the
electrodes is raised to about 20 kV, the rotor begins to rotate in either direction.
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density, and shows that there is negative surface charge lagging the peak in potential on the electrode

above by an angle less than 90o. The picture is one of a field axis on the f n

along charges induced in the material. But, if the material adjacent to the electrodes is the conductor,
so that oaEb > eaab, then Eq. 9 shows that the sign of the charge at the interface is reversed. Regions
of positive charge on the electrodes induce positive surface charge on the adjacent interface. What was
a force of attraction in the case of Fig. 5.14.3a, becomes a force of repulsion in Fig. 5.14.3b. This
is why the material can actually be repelled in a direction opposite to that of the traveling wave.
An illustrative experiment is shown in Fig. 5.14.4b.

Equilibrium (iii) is best illustrated by considering the limit where the applied frequency vanishes
Thus, the applied potential is static. In the circular analog of Fig. 5.14.2 the applied field might be
produced by a pair of parallel plates used to impose a field perpendicular to the z axis that, in the
absence of the conducting materials, would be uniform. Such a configuration is Von Quincke's rotor,
illustrated in Fig. 5.14.4c. The rotor is insulating relative to the corn oil in which it is immersed;
hence oaab < EbOa . The electrical force then depends on the material velocity, as sketched in
Fig. 5.14.3c. If the applied field is raised, then there is a threshold value of field at which the
slope of the electric force curve exceeds that of the viscous force. At that condition, equilibrium
(iii) becomes unstable and the material spontaneously moves, in the developed model either to the right
or left, in the circular geometry clockwise or counterclockwise, so as to establish a new equilibrium
with a steady-state velocity either at (ii) or (iv). At the position (iii), the static field induces
positive charges on the interface directly opposite positive charges on the electrodes. As a result,
any small excursion of the material which tends to carry that charge distribution to the right or left
is accompanied by a proportionate electric stress that tends to further the original deflection.

Spontaneous rotation of insulating objects immersed in somewhat conducting media and stressed by
d-c fields are observed in seemingly unrelated situations. Examples are macroscopic particles in semi-
insulating liquids and objects in ionized gases.

5.15 Temporal Modes of Charge Relaxation

Temporal Transients Initiated from State of Spatial Periodicity: The configurations of the two pre-
vious sections are typical of linear systems that are inhomogeneous in one direction only and excited
from transverse boundaries. Pictured in the abstract by
Fig. 5.15.1, the transverse direction, x, denotes the di-
rection of inhomogeneity, while in the longitudinal (y and 4 Od= Re#deXp j(wt-kyy-kzz)
z) directions the system is uniform. In Secs. 5.13 and
5.14, it is at transverse boundaries (having x as the per-
pendicular) that driving conditions are imposed. In the transverse
picture, 0d imposes a driving frequency w and a spatial
dependence on the longitudinal coordinates that is peri- boundaries z
odic, either a pure traveling wave with known wavenumbers
(ky,kz) or a Fourier superposition of these waves. The
most common configuration in which spatial periodicity is
demanded is one in which y or z "closes on itself," for Fig. 5.15.1. Abstract view of systems
example becomes the e coordinate in a cylindrical system. that are inhomogeneous in a trans-

verse direction, x, and uniform in
The temporal transient resulting from turning on the exci- longitudinal directions (y,z).

tation when t = 0 with the system initially at rest can be rep-
resented as the sum of a particular solution (the sinusoidal steady-state driven response) and a homo-
geneous solution (itself generally the superposition of temporal modes having the natural frequencies

sn):
j(wt-kyy-kzz) sn t-j(k y+k z z)

4(x,y,z,t) - ReO(x)e + Ren(x)e
n n

Turning off the excitation results in a response composed of only the temporal modes. The coefficients
conditions for allOn(x) are adjusted to guarantee that the total response satisfy the proper initial 

values of x. In some situations this may require only one mode, whereas in others an infinite set of

modes is entailed.

Identification of the eigenfunctions and their associated eigenfrequencies is accomplished in one

of two ways. First, if the driven response is known, its complex amplitude takes the form

^ d
(x) = D(w,k ,k )

Yz

By definition, the natural modes are those that can exist with finite amplitude even in the limit of

zero drive. This follows from the fact that the particular solution in Eq. 1 satisfies the driving
conditions, so the natural modes must vanish at the driven boundaries. Thus, for given wavenumbers
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(k y,kz) of the drive, the frequencies sn must satisfy the dispersion relation

D(-jsn,k y,kz) = 0 (3)

Alternatively, if it is only the natural modes that are of interest, then the amplitudes are required
to satisfy all boundary conditions, including those implied by setting the excitations to zero. In the
abstract system of Fig. 5.15.1, 'd = 0.

The natural modes identified in this way are only those that can be excited by means of the struc-
ture on the transverse excitation boundarX. Thus, the implied distributions of sources within the

4volume are not arbitrary. The functions n(x) are complete only in the sense that they can be used to
represent arbitrary initial conditions on sources induced in this way. They are not sufficient to rep-
resent any initial distribution of the fields set up by some other means within the volume. The remainder
of this section exemplifies this subject in specific terms. Magnetic diffusion transients, considered
in Chap. 6, broaden the class of example.

Transient Charge Relaxation on a Thin Sheet: The build-up or decay of charge on a moving conducting
sheet excited by a sinusoidal drive can be described byrevisiting the example treated in Sec. 5.13. In
terms of the complex amplitude of the sheet potential, Db, and with x=0 at the sheet surface, the poten-
tial distributions above and below the sheet are (for a discussion of translating coordinate references
to fit eigenfunctions to specific coordinates, see Sec. 2.20 in conjunction with Eq. 2.16.15)

V sinh(kx) -b sinh k(x-d) Fig. 5.15.2

o sinh(kd) sinh(kd) ' x Driven response
p(x) = ((4)

^b sinh k(x+d)
sinh(kd) x

The eigenfrequency equation is the denominator of Eq. 5.13.7 set equal to zero and evaluated with jw=sn:

2E
sinh(kd) + j ko (-jsn - kU)cosh(kd) = 0 (5)

s

This expression has only one root,

ka
s1 = jkU - u tanh(kd) (6)

o

The one eigenfunction is determined by using the complex amplitudes of Sec. 5.13 with jW = sl and Vo=0.

In this example, the eigenfunction has the distribution with x of Eq. 4 with Vo=0, and a complex ampli-

tude 01 determined by the initial conditions:
d

^b sinh k(x-d)
x > 01 sinh(kd) Fig. 5.15.3

(7) Eigenfunction.$1(x) = b 

^b sinh k(x+d)
1 sinh(kd) x < 0

d-

In general, the initial condition is on the charge distribution in the region -d < x < d. In this exam-

ple, the charge is confined to the sheet and only the one eigenmode is needed to meet the initial con-

dition.

Suppose that when t = 0 there is ko sheet charge and the excitation is suddenly turned on. The

potential is given by Eq. 1 with O(x) and $1(x) given by Eqs. 4 and 7. In terms of this poten-total 
tial, the surface charge is in general

Sf(z,t) = b - Dx = k R e  - sinh(kd) - 2 bcoth(kd)]ej(ot-kz)

'b S1 t-jkzcoth(kd)e
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To make of(z,0) = 0, the eigenfunction amplitude must be such that when t = 0, Eq. 8 vanishes for all z:

^b _b + o
3b b ~ o(9)1M 2 cosh(kd)

When t = 0+, the surface charge density is still zero, but the potential is finite over the entire
region -d < x < d. It can be shown by using Eq. 9 in Eq. 1 (evaluated when t = 0 using Eqs. 4 and 7)
that at this instant the potential is what it would be in the absence of the conducting sheet.

The surface charge builds up at a rate determined by sl, which expresses the natural frequency as
seen from a laboratory frame of reference. The oscillatory part is what is observed in the fixed frame
as a spatially periodic distribution moves with the velocity of the material. If the driving voltage
were suddenly turned off, the fields would decay in a way characterized by the same natural frequencies,
with an oscillatory part reflecting the spatial periodicity of the initial charge distribution as it
decays with a relaxation time 2Eo/kas tanh kd. Because the electric energy storage is in the free-space
region, while the energy dissipation is within the sheet, this damping rate is not simply the bulk
relaxation time of the conducting sheet.

In the long-wave limit, kd << 1, the relaxation in this inhomogeneous system can be largely attribu
ted to energy storage in the transverse electric field and dissipation due to the longitudinal electric
field. On a scale of the system as a whole, the charge actually diffuses rather than relaxes. This can
be seen by taking the limit kd << 1 of Eq. 6:

ad

sl+(-jk)U s= (-jk)2  (10)
o

to obtain the dispersion equation for diffusion with convection. By infering time and z derivatives from
the complex frequency s and -jk respectively, it can be seen from Eq. 10 that in the long-wave limit the
surface charge density is governed by the equation

a a a d a af Cd
St + z )f 2c 2

This model is consistent with the distributed network shown in Fig. 5.15.4. The rigorous deduction of
Eq. 11 would exploit the space-rate expansion introduced in Sec. 4.12. The dominant electric fields
are - = Ex(z,t)ix in the air gaps and E = Ez(z,t)lz in the sheet. This model is embedded in the dis-
cussion of the Van de Graaff machine given in Sec. 4.14, Eqs. 4.14.9 and 4.14.10.

Fig. 5.15.4

Distributed network in the long-
wave limit, equivalent to system
of Fig. 5.13.1.

Heterogeneous Systems of Uniform Conductors: A generalization of the system of two uniformly con-
ducting regions (the theme of Sec. 5.14) is shown in Fig. 5.15.5. Layers of material, each having the
thickness d, have different conductivities and move to the right with the velocity profile v = U(x)tx.
Charge is confined to the interfaces, which have a negligible surface conductivity. Thus, the nth inter-
face moves to the right with the velocity Un and is bounded from above and below by regions having the
uniform properties (En,an) and (cn+l,On+l) respectively. Variables evaluated just above and below the

nth interface are denoted by n and n' respectively.

In the limit where the number of interfaces, N, becomes large, the "stair-step" conductivity dis-
tribution approaches that of a continuous distribution. The following illustrates the second method

of determining the natural frequencies, while giving insight as to why an infinite number of natural
modes exists in systems having a distributed conductivity.

The regions just above and just below the nth interface are described by the planar transfer rela-

tions representing Laplace's equation, Eq. (a) of Table 2.16.1:
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Fig. 5.15.5. A material having a conductivity that depends on x moves to the right
with the velocity distribution vx = U(x).

^n'-1 1 ^n'-1
-coth(kd) sinh(kd) D

k  = E= n 1 ýn(12)
D sinh(kd) coth(kd) (2

n' 1 n'
nD -coth(kd) sinh(kd)

^ n+l n+k 1 n+ (13)
D x J L Icoth(kd)sinh(kd)

 each interface, the potential is continuous:

An'-= An-l ýn' n (14)

th the understanding that the natural modes now identified are associated with the response to poten-
al constraints at the transverse boundaries, potentials at the upper and lower surfaces must vanish:

o = 0; N+= 0 (15)

On the nth interface, conservation of charge (Eq. 5.12.4) requires the additional boundary con-
tion:

A ^nn an+l n'
(-s + kUn)f.= f n x 7 x

n n+l

 each interface, the surface charge is related to potentials at that and the adjacent interfaces, as
n be seen by using Eqs. 12b, 13a and 14 to write

^n-1 ^n+l
^n =  ̂ n n' n n = k + (e +  ^n n+l(

D B )coth(kd) - (17)
f x x sinh(kd) + (n + sinh(kd)

is expression holds at each of the N interfaces. In view of the boundary conditions at the transverse
undaries, Eqs. 15, Eqs. 17 are N equations for the N an's in terms of the interfacial potentials on:

f = [A] (18)
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where [f] and [] are Nth order column matrices and

k(E1 +E 2 )coth(kd) -ke2/sinh(kd) 0

-ke 2 /sinh(kd) k(e2+C3)coth(kd) -kE3/sinh(kd) 0

0 -kEN/sinh(kd) k(e~+N+l)coth (kd)

Equation 16 can similarly be written in terms of the potentials by using Eqs. 12b, 13a and 14:

-kdan •k+ o n+l n+l
sinh(kd) + (nn+l ) coth (k d ) - sinh(kd+ n+ (19)

In view of Eq. 15, this expression, written with n = 1,2,...,N, takes the matrix form

-s+jkU 0 0
1

0 -s+jkU2

= [B [0 (20)

-s+j kUN

where

-ka2

k(a •+a2)coth(kd) sinh (kd)

-k -ka
d 3

k(02+a3)coth(kd)
sinh(kd) sinh (kd)

IBI -

Sinh
k(oN+aN+l)coth(kd)0 sinh(kd)

Now, if Eq. 18 is inverted, so that = [A] -1 and the column matrix [W] sub tituted on the righ
in Eq. 20, a set 

[I 
of equations are obtained which are homogeneous in the amplitudes a,

jkU -C1-C -C
11-s 1 2 1 3

-C jkU2-C -C21 2 2 -s 2 3

(21)

jkUN-CNN-s

where[C] = B] [A -1
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For the amplitudes to be finite, the determinant of the coefficients must vanish, and this constitutes
the eigenfrequency equation D1(,kx,ky) - 0. The determinant takes the standard matrix form for a
characteristic value problem. Expanded, it is an Nth order polynomial in s, and hence has N roots
which are the natural frequencies.

As an example, suppose that there is a single interface, N-1. Then, from Eqs. 18 and 20,

A-1 1
B - k(a1 + o2 )coth(kd) (22)

k(£ 1 + e 2 )coth(kd)

and it follows that C11 - (01 + 02)/(e1 + £2) so that Eq. 21 gives the single eigenfrequency

2
81 jkU 1 -( + = (23)

With a = b = d, this result is consistent with setting the denominator of Eq. 5.14.8 equal to zero and
solving for jw.

With two interfaces, there are two eigenmodes, with frequencies determined from Eq. 21:

(jkU1 - 11 - s) -C12 (24)

-C21 (jkU
2 - C22 - a)

The entries Cij follow from [C] [A] -1

S-ko k(s 2 +C3 )coth(kd) 
2 ke2

k(a 1 +o2 )coth(kd) sinh(kd) DET DET sinh(kd)

C6= -k2 ke2  k(el+e2) coth (kd)
:oth(kd:

sinh(kd) k(o2+o DET"Ie 3 ) DET sinh(kd) 

(25)

- £2022 coth(kd)
[(o1+02) (E2+E (kd)3 )coth2 [(01•2- 2l1 sinh(kd)

sinh (kd)

[((032 -02 2 3) [(02+03) (el+ (kd) 3 3' sinh(kd) 2 )coth2 
2 coth(kd) - sinhq2:22 (kd)

where

DET k2[( + E2)(2 + e3)coth2(kd) - e2 /sinh2(kd)]

The eigenfrequency equation, Eq. 24, is quadratic in s, and can be solved to obtain the two eigenfre-
quencies

i- (26)2[jk(Ul+U2 )-C 11 -C2 ] +± 4 Jk(UI+U2)-C 1 1 -C 2 2]
2 -

2 (kU 1 -C1 1 )(jkU2 -C2 2 )-C 1 2 C2 1

where the Cij are given by Eq. 25.

The N eigenmodes can be used to represent the temporal transient resulting from turning on or
turning off a spatially periodic drive. Although more complicated, the procedure is in principle much
as illustrated in the sheet conductor example. As expressed by Eq. 1, the transient is in general a
superposition of the driven response (for the turn on) and the natural modes. The N eigenmodes make
it possible to satisfy N initial conditions specifying the surface charges on the N interfaces.

In the limit where N becomes infinite, the number of modes becomes infinite and the physical

system is one having a smooth distribution of conductivity. a(x), and permittivity, E(x). This infinite

1. F. E. Hohn, Elementary Matrix Algebra, 2nd ed., Macmillan Company, New York, 1964, p. 273.
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set of internal modes can also be used to account for initial conditions. Such modes are encountered
again in Sec. 6.10, in connection with magnetic diffusion, where an infinite number of modes are pos-
sible even with systems having uniform properties. What has been touched on here is the behavior of
smoothly inhomogeneous systems, described by linear differential equations with space-varying coeffi-
cients. The finite mode model, implicit to approximating a(x) and s(x) by the stair-step distribution
is one way to take into account the terms I.Va and A*Ve in the charge relaxation law, Eq. 5.10.6.

5.16 Time Average of Total Forces and Torques in the Sinusoidal Steady State

Two descriptions are used to generalize the complex amplitude representations describing the ste
state response to a sinusoidal drive having the angular frequency w. If the system is spatially perio
or can be modeled by a portion of a periodic system, a Fourier series generalization of the complex
amplitude description is appropriate. If it extends to "infinity," a Fourier transform is convenientl
made the complex amplitude. The conventions and formulas for computing the time-average of field prod
ucts, for example of forces, are summarized in this section.

Fourier Series Complex Amplitudes: With a periodicity length Z in the z direction, the Fourier
series becomes one of complex amplitudes:

& wet 4 -jknz
A(z,t) = ReA(z,w)eJ ; = E An (k ,w)e (1)

n n=-Co n n

where kn - 2nlrw/. The series, which determines the phase as well asEmplitude of the field at any giv
point, is in general complex. Thus, An is not necessarily equal to A-n. Each term in the series can 
regarded as a traveling wave with phase velocity W/kn. The Fourier amplitudes are determined by multi
plying both sides of Eq. lb by exp(jkmz), integrating both sides over the length I and exploiting the
orthogonality to solve for Am . With m - n,

1 f2 jkn zA = -- Ae dz (2)

The time-average of a product of fields A and B, written in this form, is obtained by regarding each
series as the complex amplitude (Eq. 2.15.14, with k + w and z -) t) to obtain

S -[ ^ -jk z +- jkz

(3)KAB = 1 Re Ae *e 
1- n m=_-m

The total time-average force (or some other physical quantity involving the product AB) is the space
average of Eq. 3 multiplied by the length. To compute the space-average of the time average, think of
writing out the first series in Eq. 3, and then successively multiplying it by each term from the seco
series and averaging over the length. Each term from the second series forms only one product having
a finite integral over the length A, the term with m = n. Thus, Eq. 3 becomes

z AB tdz =  Re E AB (4)
t 2 nn

a n=-Oc

Application of this expression is illustrated in Sec. 6.4. Its role with respect to Fourier series
complex amplitudes is analogous to that of the formula developed next in connection with Fourier
transform complex amplitudes.

Fourier Transform Complex Amplitudes: In a spatial transient situation, such as illustrated in
Sec. 5.17, the complex amplitude takes the form of a Fourier superposition integral:

j & ft 1 ' -Jkz
A(z,t) = ReA(z,w)eWt; A -= 7 le dk (5)

The Fourier transform is found from the complementary integral

A^= f-I ejkzdz (6)

and is not necessarily real. Hence, A(k) is not necessarily equal to A*(-k).

To compute the total time-average force acting over the interval -- < z < c, use is first made o
the complex amplitude theorem, Eq. 2.15.14, with z - t and k + w:

KABt = Re AB*
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The integral of this time average over z, perhaps the total time-average force, is

(8)Bt dz Re A(z)B* (z)dz 

With the objective a Fourier transform analogue of Eq. 4, a convolution integral is defined such that
f(O) is the integral required to evaluate Eq. 8:

f(¢) ( A(z)B•(z - t)dz (9)

This function can be written as an integral on k (the equivalent of a summation on n in Eq. 4) by taking
its Fourier transform. Then the inverse integral, Eq. 5, is the desired integration on k. Thus, the
Fourier transform (defined by Eq. 6) is taken of Eq. 9, to obtain

f(k) =- A(z)B*(z - t)ejkdz dt (10)

Now, the substitution z - + - z' is made, so that, for an integration holding z fixed, dE = -dz' and the
limits of integration on 5 are reversed:

f(k) = A(z)B*(z')e jk(z-z ') dz dz' (11)

Finally, this expression can be factored to make it clear that the transform of the integral defined
with Eq. 9 is in fact the product of the individual transforms:

f(k) - A()e dzJ (z')eJ dz' - A(k)B*(k) (12)

Hence, by using the inverse integral, Eq. 5, it follows that

f() = ~ A(k)B* (k)e -kF dk (13)

In summary, it has been found that the integration over z called for in Eq. 8 can alternatively be made
an integration on k, because substitution of f(O) from Eq. 13 into Eq. 8 gives

f(0AB>t dz =- Re A(k)B*(k)dk (14)

Application of this theorem is illustrated in Sec. 5.17.

5.17 Spatial Modes and Transients in the Sinusoidal Steady State

An abstract view of systems that are uniform in a longitudinal direction and inhomogeneous in a
transverse direction is shown in Fig. 5.17.1. The thin sheet and finite conductor configurations of
Secs. 5.13 and 5.14 are specific examples. In those sections, it is the spatially periodic sinusoidal
steady-state response that is emphasized. In any real system, the excitation must be turned on, and so
there is a temporal transient before this sinusoidal steady state is established. For spatially periodic
systems, Section 5.15 introduced the temporal modes representing this turn-on transient. But, except
for systems that are reentrant (for example rotating machines), the spatial extent of the excitation is
also limited. In terms of Fig. 5.17.1, where the "system" extends over the length L, the excitation is
applied to transverse boundaries of region II. Within this region, the excitation is spatially periodic.
It might consist of a pure traveling wave having an "imposed" wavenumber 8 and frequency w, or (by super-
position) have an arbitrary periodic z-t dependence.

In terms of the longitudinal coordinate z and time t, the general response of the fields in some
transverse plane can be pictured as shown in Fig. 5.17.2. When t = 0, the sinusoidal steady state
excitation is turned on over region II. At any position along the z-axis, the response of a stable
system consists of a transient beginning at the earliest when t - 0 and, as t - 0, approaching a temporal
sinusoidal steady state with the same frequency w as the drive. But at any given time t > 0, there is
the possibility of a response outside the region X as well as within. In the limit where the driven
region is long (or the system is reentrant so that the extremes of region II are in fact the same loca-
tion), the response in the middle of region II can be expected to have the same spatial periodicity as
the drive. This is the limit in which the temporal transient and sinusoidal steady state of Secs. 5.13
or 5.14 and Sec. 5.15 pertain.
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Fig. 5.17.1. Abstract view of systems having excitation on transverse boundaries which
are in the temporal sinusoidal steady state but confined to the region £.

/U/
n

Uz

Fig. 5.17.2. Response in a given transverse plane of the system of Fig. 5.17.1 to a pure
traveling wave turned on when t=0 and confined to the range 0 < z < X.

In this section, a long enough time has elapsed that the temporal steady state has been established
but the spatial extent of the excitation is not large enough to justify ignoring the end effects. A sig-
nificant portion of region II is not in the spatial sinusoidal steady state. However, time has progresse
to the point where the fields at any given location have the same temporal sinusoidal variation as the
drive. Implicit to this section is the presumption of stability. If the turn-on transient gives rise to
components that grow in time, then these will dominate the temporal sinusoidal steady state presumed to
prevail as t + -. A related question asks if the spatial transient in Regions I and III actually ap-
proaches zero far from the excitation. In this section, it is assumed that this is the case. It will be
found in Chap.10 that to identify those systems where this assumption is not well founded it is necessary
to consider the entire z-t transient.

Spatial Modes for a Moving Thin Sheet: The configuration shown in Fig. 5.17.3 is the same as that
considered in Sec. 5.13, except that the excitation is confined to region II. A thin semi-insulating
sheet, moving with velocity U, passes between electrodes constrained in potential as shown. In the range
0 < z < £, the upper wall is excited with the traveling wave of potential. Elsewhere on the walls, both
above and below, the potential is zero.

At every position in the system, fields have the same temporal frequency w as the drive. Thus, at
any location the temporal dependence is recovered by the operation

4(x,z,t) = Re 4(x,z,w)ewtj

But then, the spatial Fourier transform of this complex amplitude is
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(a)=0 O#=Re Vo exp j(wt-/3z) P=0

(b)
7z=n0 Z=, (c)

AI I' (d)

i- I -4-- 1PLO EI

Fig. 5.17.3. A thin sheet moving with velocity U in the z direction enters
the excitation region at z = 0 and leaves at z = k.

$(x,k,w) = J (x,z,w)e j kZ dz

with an inverse

1(X,Z,W) R ,- (x,k,wm)eJ dk
•(x,z,w) - 2r-

Because the rule fol taking the transform of a derivative with respect to z is the same as if a
substitution of the form Oe-Jkz is made, relations among complex amplitudes can now be regarded as
relations among the Fourier transforms. For the specific problem at hand, these relations are developed
in Sec. 5.13 where the Fourier transform of the sheet potential is given by Eq. 5.13.7:

J S ̂ a

2 sinh(kd) [1 + jSecoth(kd)]

s_ 2c(W - kU)
e ko"

The fields are completely determined if the driving potential #a is specified. For the traveling-
wave driving potential of Fig. 5.17.3,

Sa=Reo 0e-JZ [U_(Z ) - U1(Z - 1)]e j e t
(5)

where u-1_(z) is the function; unity for z > 0, 0 for z < O0. From Eq. 2, the transform follows as

A

V
Ao S-= a0 [e j -P), - i]

3 k - P) -

Thus, Eqs. 3 and 4 give the complex amplitude of the sheet potential as

r' '(_d-(w - j 
a ~V de(w - k)ee ku)(e (-z)k e-jl _ -e -Jkz))

D I 1 I o dk

2it _L-p)JW,I • U . 11. %.I,, Ik
5 k-8Dm

where D(w,k) is the dispersion equation, Eq. 5.15.5, familiar from discussions of the temporal natural
modes. In terms of normalized variables,

D(w,k) = k sinh k + jU(w - k)cosh k (8)

where
2E

k kd, U_ - ( )U
-jU ' - a

5
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The integration called for in Eq. 7 is
conveniently performed by closing the integra-
tion at infinity in the complex k plane and
evaluating by Cauchy's integral theorem.1

The contributions to the integration are then
seen to be a sum of residues determined by the
zeros of the denominator. One of these, k =
8, is associated with the "driven response,"
while the others are residues from the poles:

D(w,k) = 0 (9)

Remember, w is a prescribed real number.
The roots of Eq. 9, kn, are in general
complex and arp each associated with an
eigenfunction On(x)e-3J nz that satisfies all
of the bulk conditions and boundary condi-
tions in the interval -d < x < d with the
drive set equal to zero. Over the cross sec-
tion, the eigenfunctions associated with a
given root of Eq. 9 are

b sinh k (x-d)

n sinh kd x > 0
A n
n (x) = (10)

s sinh k (x+d)
Q n sinh k d x < 0

n
Fig. 5.17.4. Normalized complex wavenumber of

The complex roots of Eq. 9 must be found lowest modes as function of normalized
numerically. However, the dominant roots are
easily identified in the long-wave limit IkdI << frequency.
because then Eq. 9 is quadratic in k and can be
solved for the two roots,

U ± 2 1 U2 jwU
k = [ + (2 •)J_ /(1 + ) (11)2 2 2
+1

(Note that these are the same roots that would be determined from Eq. 5.15.10, with sl - jai, and are
therefore the only ones retained by a quasi-one-dimensional model.) Typical roots of Eq. 11, as a
function of real w, are shown in Fig. 5.17.4.

For kd not small compared to unity these roots retain the same qualitative nature. Thus k-1 and

kl are respectively waves that have phase velocities in the - and + directions with the first decaying
rapidly in the -z direction and the second decaying slowly in the +z direction. Although it is not in
general possible to attribute certain of the modes to one aspect of the system or another, these two
dominant modes are associated closely with the spectral build-up and decay of surface charge on the
sheet.

The higher order modes are more closely connected with the fields that would exist in the free
space regions in the absence of the sheet. In the limit where U is large enough that U >> w/k, the
term in w in Eq. 8 is ignorable, so that approximately

1 = jUcoth k (12)

This expression has an infinite number of purely imaginary solutions k = jki, as can be seen by sub-
stituting into Eq. 12 to obtain

tan ki = U (13)

which can be solved graphically. In the limit U >> 1, roots k + +j(2n' - 1)Tr/2, where n' is an integer.

Note that these are the eigenmodes that would be obtained if the sheet were absent. The x distribution

of potential associated with these approximate eigenvalues is given by Eq. 10, and is sinusoidal. The

associated pure decay in the +z directions is typical of solutions to Laplace's equation that are peri-
odic in x.

1. F. B. Hildebrand, Advanced Calculus for Applications, Prentice Hall, Englewood Cliffs, N.J., 1962,
P. 548.
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Fig. 5.17.5. Numerical solution illustrated graphically. The zero of the complex func-
tion D(k) of the complex variable is approximated at the trial value ko by a
straight line. The approximate root follows by setting Do(k) = 0. This root can
then be used as ko in refining the approximation and the process repeated until
the desired accuracy is obtained. To obtain roots of Fig. 5.17.6, k is first
approximated by Eqs. 11 and 13.
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Fig. 5.17,6. Wavenumber eigenvalues given by Eqs. 8 and 9 for case
wU = 0.1, U = 1.
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The numerical solution of D(w,k) is described in Fig. 5.17.5. Given in Fig. 5.17.6 are specific
roots conveniently found by using the approximate roots given from Eqs. 11 and 13 as a first approxi-
mation. Roots are denoted by the integer n, which ranges from -- to +-, with n = 0 omitted.

Spatial Transient on Moving Thin Sheet: Now that the spatial eigenmodes have been found, consider
how the integral solution, Eq. 7, is tantamount to a superposition of these eigenmodes and, in region II,
a "driven" response with wavenumber 8 of the drive.

Except at the poles D(w,k) = 0, the integrand of Eq. 7 is an analytic function. This is even true
at k = 8, because

ej(-z)ke-jk ejkz (k-) sin [(k-O8)a
e e -e j-jkZe 2 2

k- [(k] (14)
2

is not singular at k = 8.

To apply the Cauchy integral theorem, the integration of Eq. 7 is extended to an integration around
a closed contour, with the closure defined such that there is no additional contribution to the integral.
For integration around a contour C in the counterclockwise direction,

f (k) dk = 27j[K1 + K2 + *""] (15)

C

where the residues Kn (at isolated singular points k = kn) of a function N(k)/D(k) are N(kn)/D'(kn).
Which of the contours shown in Fig. 5.17.7 is appropriate depends on the range of z of interest. With
the three regions defined in Fig. 5.17.3, the appropriate contours are identified as follows. First,
observe that with k = kr + jki, the two z-dependent terms in Eq. 7 can be written as

j( 2 -z)kr -(£-z)ki -jkz -jkrZ kiz
e ( - z )k = e =e e (16)

Thus, in region I,z < 0 and (k - z) > 0, so both terms go to zero as ki 4+ 0 and C is appropriate. In
region II, (Z - z) > 0, so the first term converges for ki + m and C1 is appropriaie. Also in region II,
Z < z, so the second term converges for ki --- and C2 is appropriate. Finally, in region III, £ < z and
(2 - z) < 0, so each term decays as ki +-c and C2 is appropriate.

It follows that in region I, integration of Eq. 7 gives

j (kn- )-
&b jVode - (w - knU)[e - 1] -jknz

a (k - )D'(w,k) e (17)
8 n=-1 n n

In region II, the integration is broken into an integration of the first and second terms individually.
Thus, for each of these integrations, k -= becomes a singular point and k - 0 must be included with
D(w,k) in determining the residues. This singular point can be regarded as being just below the
axis, and hence as contributing to the integration on C2, but hot on C1. Then, it follows that in
region II

&b b n (18)
jVd~ ee ] (w-8u)e 0 (<w-knU)e

n (k -B)D'(w,kn ) D(,8) E (k -)D' n-1 (,k ) (18)s n n nD1 n n

Finally, in region III

SJde (w-k U)[e -1] -Jknzo In na (19)

as 1 (kn-O)D'(wnk)

In regions I and III, the response is a superposition of the spatial modes that decay in the
-z and +z directions, respectively. These are the bow and stern waves. In region II, all of the
spatial modes are involved in accounting for the finite length of the traveling-wave excitation. In
addition there is the "driven" response at the same wavenumber as the excitation, the second term in
Eq. 18. Note that for positions z well away from both ends, for example at z - £/2, the sums over the
natural modes in Eq. 18. approach zero while the driven response that remains is the spatial sinusoidal
steady-state response found in Sec. 5.13.
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Fig. 5.17.7

Contours used to evaluate
the integral of Eq. 7.

As a useful longwave approximation, only the two lowest spatial modes are used with k1 and k-1
given by Eq. 11 and

D(w,k) - d2(k - kl)(k - k_1 ) (20)

Then, Eqs. 17-19 reduce to:

j (kl-)
(w-kU)(e -'b jVo6 1) ;b e o jkz ; (k-1 -) (k_-k ) region 

1 I
(21)

a d

-jklz

'b e (w-_U)e-(w-k-1U)e ~j z (w-klU) e
JVo0 (k -)+ 1 region II (22)

ad + (B-kl)(B-k_l)
s (k l-8)(k_ -k )

j(kl-8)2 -jklz
(W-klU)(e - l)e

b -j - o
) ; region III (23)

ad (kl-8)(kl-k_s 1)

The z-t dependence of the sheet potential, recovered by using these equations in Eq. 1, is illustrated
in Fig. 5.17.8.

Time-Average Force: To compute the total time-average force acting on the sheet, the steps are the
Fourier transform extension of those leading from Eq. 5.13.5 to Eq. 5.13.11. The total force is the
integral over the length of the sheet oi the time-average surface force density. This is in turn
written as an integration over the wavenumbers, in accordance with Eq. 5.16.14:

-H Re = b5bb e)*dz = wRe 1 bb c * (24)
z. 2 - z x x 27 2 x

^b ^b
Because Ez = jkD , the integrand of Eq. 24 is the same as Eq. 5.13.4. Thus, with V 4 (a, steps paral-

o
leling those of Eqs. 5.13.5 and 5.13.6 give the total time-average force as simply

Sk 2 S a^a*dk

/fz w o e (25)
z/ t -27r 4 sinh2(kd)[1l + S2coth2(kd)]

e

For the excitation represented by Eq. 6, this expression becomes

2 2 Y
we 2 +o kS 2sin [-y (k - )]dk

(26)
zt 2=-r - (k-8)2sinh2 (kd)[1 + S2coth 2 (kd)]

e
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Fig. 5.17.8. Sheet potential ýb given by Eqs. 20-23 as a function of z and the
normalized time wt. The excitation potential Da is also shown when t = 0.
It takes the form of a traveling wave confined to the structure length Z
with phases following the broken lines in the z-wt plane. Note that, in
the region under the excitation electrodes, the sheet potential, cb, tends
to a spatially periodic response. At any given location z, the fields are
temporally periodic with the frequency w. For the case shown, w = 0.5,
U = 0.5 and B = 0.3 so that W/g = (w/B)/U > 1, and the stator-wave phase
velocity exceeds the sheet velocity.

Because the integrand of Eq. 26 is positive definite, and has a denominator that increases ex-
ponentially for large kd, numerical integration is straightforWard. Typical results are illustrated
by Fig. 5.17.9. For motor operation, the peak force per unit area and general frequency dependence
is diminished by the end effects.

The integration over the Fourier components used to compute the total force in this section is
one of two alternative approaches that can be used. In the second approach, the fields (expressed
as functions of z) can be used to represent the stress, and this integrated on z to find the total
force. The most convenient control volume is one that encloses the sheet, but extends across the air
gap so that it has surfaces contiguous with the (a) and (d) surfaces of Fig. 5.17.3. Because the
electric shear stress on the (a) and (d) surfaces is confined to the region between z = 0 and z = k
on the (a) surface, the integration reduces to one over that interval only. Care must be taken to
include the singularities in Ez z that appear at end points of the interval.
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Fig. 5.17.9

Normalized force per unit length, Eq. 26,
as a function of normalized frequency
showing "end effect." The number of poles,
p E (f/T)(Z/d) (the number of half-wave- f
lengths), is the parameter and U and ý are

0.5 and 0.3 respectively. Note that the
phase velocity of the drive exceeds that
of the material velocity for w > B = 0.3.
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Problems for Chapter 5

For Section 5.3:

Prob. 5.3.1 For flow and field that are two-dimensional and represented
the definitions suggested by Table 2.18.1, show that lines along which tT
are represented by Eq. 5.3.13a.

Prob. 5.3.2 For flow and field that are axisymmetric in cylindrical coc
that case in Table 2.18.1, show that lines along which the charge densit3
Eq. 5.3.13b.

For Section 5.4:

Prob. 5.4.1 Gas passes through the planar
channel shown in Fig. P5.4.1 with the velocity
4U(x/d)[1 - x/d]iL. An electric field is
imposed by placing the lower plane at poten-
tial V relative to the upper one. Between

tx= 0 and 4= a on this lower plane, posi-
tively charted particles having mobility b

itý
are injected through a metallic grid. A
goal is to determine the current i collected
by an electrode imbedded opposite the injec-
tion grid. It is presumed that the potential
of this electrode remains essentially zero.

(a) Use the result of Prob. 5.3.1 to show
that the injected particles follow the
characteristic lines

U 2 2x bV
-2 - x (1 - -) + y = constant

d 3d d Fig. P!

(b) Show that the current-voltage relation is

bV 2 Ud
[a , V > 2-Ud 2/ba

3 (bV/d)

0, V (< Ud2/ba
3

Prob. 5.4.2 The potential of a spherical particle having radius
R is constrained to be

0(r=R) = Vcos8

(This could be accomplished by making the surface from electrode

segments, properly constrained in potential.) The sphere is sur-
rounded by fluid generally moving in the z direction. The flow

is solenoidal and irrotational, consistent with its being inviscid

and entering at z + - m without. rotation. (See Fig. P5.4.1. Such

flows are taken up in Chap. 7.) The fluid flow velocity is given

v -rv ; =]cose R 
v = = -UR [ 2

There are no other sources of field than those on the sphere
itself. The following steps establish the electrical current on
the sphere created by ions entering uniformly with the fluid at
Z + -m

(a) Assume that the contribution of the ion space charge to the field is

and v in terms of AE and AV.
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Prob. 5.4.2 (continued)

(b) Find the expression for the particle trajectories in the form

r Vb
f(R' 8, UR) = constant

(c) Assume that V > 0 and that the ions are positive. Find the critical points in the region outside
the sphere.

3 3
(d) Plot the characteristic lines in two cases: for bV/RU < - and for bV/RU > 1. Identify the

critical points in the case where they exist in the region outside the sphere.

(e) Find the current i to the particle as a function of bV/RU. (Be sure to identify any "break points"
in this V-i relation.

Prob. 5.4.3 A circular cylindrical conductor having
radius a has the potential V relative to a surrounding
coaxial cage having radius Ro (Fig. P5.4.3). Hence it -
imposes an electric field E = (V/r)/ln(Ro/a) on the air ,
in the region a < r < Ro . The wind passing perpendicular -"
to this conductor has the velocity /

2 2

v = -U(1 - cos i r + U(1 + ) sin 0 i2 r 2 e I

r r I
I
I
r

consistent with an inviscid model. (Thus, there is a finite
tangential wind velocity at the surface of the conductor.) I

Charged particles enter uniformly at the appropriate \%
"infinity." This might be a model for the contamination %, R O
of a high-voltage d-c conductor by naturally charged dust.

(a) Consider two cases: (i) conductor and particles of the
same polarity and, (ii) conductor and particles of oppo-
site polarity. This is equivalent to taking the particles Fig. P5.4.3
as positive and V as positive or negative. Find the critical
points (lines).

(b) Find the characteristic lines and sketch them for the two cases.

(c) Determine the electrical current to the conductor as a function of V.

Prob. 5.4.4 Fluid enters the region between the electrodes shown in Fig. P5.4.4 through a slit at the
top (where x = c). The system extends a length k into the paper and the volume rate of flow through
the slit is Qv m3/sec. The electrodes to left and right
respectively are located at xy = -a2 and xy = a2 and
have the constant potentials -Vo and Vo . The elec-
trodes in the plane x = 0 are essentially grounded,
with the one between x = -a and x = a used to collect
the current i. Entrained in the gas as it enters at
x = c is a charge density that is uniform over the
cross section at that location. The charge density
is po. The fluid velocity is

4- _t t

v = 2C(xi x - yi y)

(a) What is the constant C?

(b) Find the critical lines, if any.

(c) Given a certain volume rate of flow Qv, find the

currentL I L Lhe centLe eIecLrode as a LunICL on
of bV,, where b is the mobility of the charged Fig. P5.4.4
particles. Present i(bVo) as a dimensioned
sketch. (Assume that Qv and Vo , as well as the charge density po, are positive.)

For Section 5.5:

Prob. 5.5.1 For a "drop" in an ambient electric field and flow as discussed in this section, both
positive and negative "ions" are present simultaneously. The objective here is to make a charging
diagram patterned after those of Figs. 5.5.3 and 5.5.4. Because there are now two different
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Prob. 5.5.1 (continued)

mobilities, b+ and b_, it is best to make the abscissa the imposed electric field E. Construct the
charging diagram, including charging trajectories, showing final values of charge. (With bipolar
charging, the final charge can be less than qc in magnitude. Expressions should be derived for these
limiting values of charge.)

Prob. 5.5.2 The objective is to determine the charging diagrams, Figs. 5.5.3 and 5.5.4, with the low
Reynolds number flow represented by Eq. 5.5.5 replaced by an inviscid flow. (See Sec. 7.8 for discussion
of this class of flows.) Important here is the fact that such a flow can have a finite tangential veloc-
ity on a rigid boundary. The fluid velocity is given here as

R3

v -U[ = - R3 os + U[+ ] sin
r r 2r

(a) Find A and the general characteristic equation that replaces Eq. 5.5.6.

(b) Because both tangential and normal velocity are zero on the surface of the "drop" for the low
Reynolds number flow, the points on the surface described by Eq. 5.5.10 are critical points.
With an inviscid flow, matters are not so simple. Show that, as before, there are now two
types of critical points, one type lying on the z axis and the other not. Find analytical
expressions for the (r,e) locations of these latter critical lines.

(c) Construct the charging diagrams for positive and negative "ions."

For Section 5.6:

Prob. 5.6.1 Unless some of an initial charge distribution reaches a boundary, self-precipitating
charge of one polarity must conserve its total value. With the charge density given as a function of
time by Eq. 5.6.6 and the volume filled by this density described by Eqs. 5.6.9 and 5.6.10, show that
for the example of Fig. 5.6.3 this is indeed the case.

Prob. 5.6.2 Fig. P5.6.2 shows a one-dimensional configuration
involving a unipolar conduction transient. Gas flows through a duct
with the uniform velocity Uiz . Screen electrodes at z = 0 and z = e 0
hzive the cnnstnt , nntentiln differPncr v When t = 0 there ins a I Z
uniform distribution of charged particles having charge density po
and mobility b in the region between z = zB and z = zF. The regions
in front of this layer and behind it have no initial charge density.
Assume that the charge is positive. In the following the evolution
of the layer is to be described during the time that it has not
encountered the screen electrodes.

(a) Show that the charge density within the layer remains uniform and
find its dependence on time.

(b) Use Gauss' law to deduce that (zf - b) = (1 + t/T)(zF - zB);
T /p b.

o0 o

(c) Use Gauss' law and the potential constraint to relate Eb(t), Ef(t),. Fig. P5.6.2

zb(t) and zf(t).

(d) Use the second characteristic equations to also relate these four quantities.

(e) Find zf(t) and zb(t) and sketch the charge evolution in the z-t plane (as in Fig. 5.6.3).

For Section 5.7:

Prob. 5.7.1 The steady-state charge distribution of Eq. 5.7.3 is time-varying from the particle

frame of reference. Hence, in accordance with Eqs. 5.6.2 and 5.6.3, the charge density decays from

the frame of reference of a given particle. Start with these characteristic equations and deduce

Eq. 5.7.3.

For Section 5.9:

Prob. 5.9.1 When t = 0, a region of fluid described by the bipolar laws, Eqs. 5.8.9 and 5.8.10, has
uniform neutral 'density n0 and species charge densities p+ = p_ = 0. A self-consistent picture of the

ensuing dynamics has these densities evolving uniformly. This is possible because there is no applied
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Prob. 5.9.1 (continued)

electric field and because p+ = p_, so there is no self-field either.

(a) Use the conservation laws to show that P+ = p_ is consistent with E = 0.

(b) Write an ordinary differential equation for n(t) and one for P+ (t).

(c) Argue that the stationary equilibrium state is one having in = a• +
q -

(d) Show that the time characterizing the early stages of the system's approach to this
equilibrium is Tth q.

For Section 5.10:

Prob. 5.10.1 (conductivity model) In the region 0 < x < d, the fluid velocity is v = U(x/d)i z.
When t = 0, the volume charge density is zero for z < 0 and is a constant po for 0 < z. Describe
Pf(x,z,t) for t > 0. Represent the distribution in the (x-z) plane, giving analytical expressions
for wavefronts and decay rates.

Prob. 5.10.2 (conductivity model) The fluid velocity is as in Prob. 5.10.1. When t = 0, Pf(x,z)
= 0 for z > 0. A source of charge is used to constrain the charge density to be a step function in
the z = 0 plane. That is, Pf(x,0,t) = Psu_l(t). Describe the charge evolution, including sketches
in the x-z plane and analytical expressions for wavefronts and decay rates. What is the steady state
condition and at a given position (x,z) when is it established?

Prob. 5.10.3 A particle initially has a net charge q = qo and is immersed in an electrolyte that has
uniform conductivity and permittivity. Write integral statements of Gauss' law and the conservation of
charge for a volume enclosing the particle. Show that q(t) = qoexp(-t/T), where T is the charge relaxa-
tion time E/a.

For Section 5.12:

Prob. 5.12.1 The planar layer of Table 2.16.1 is composed of a material having uniform permittivity
E and uniform anisotropic conductivity aij, such that

J=aEi + Ei +oEi
xxx y y y z z z

(a) Show that for variables taking the form 0 = Re$(x) expj(wt-kyy - k z), the current density
! (jWE + C )fE (the sum of the displacement and conduction currents needed to write the conserv-

ation xf charge boundary condition at an interface) evaluated at the (a,B) surfaces is related to the
potentials there by

S-cothyA h1 

= (j WE + x )y

x sinhyA

where Y2 = [k 2( + jwc) + k2(a + j~W)]/(ax + jws)
y y z z x

(b) Consider as a special case ay az G = 0, so that conduction is only in the x direction.
Discuss implications of y for penetration of the field in the x direction as function of
frequency and of k2 E k + k2 . In particular, what is the nature of field distribution in
the limit w - 0?

(c) Consider a = 0 and a = = a Go, so that conduction is confined to y-z planes. Discuss the

field distXibution asYin (b) and draw contrasts.
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For Section 5.13:

Prob. 5.13.1 A circular analogue of the case study considered ) =Re /oe t - m 8
in this section is shown in Fig. P5.13.1. A rotating shell has

)
radius R and angular velocity Q. A traveling wave of potential
is applied to electrodes around the shell at a radius a, while ,
an equipotential electrode is at the center with radius b. /

(a) Find the surface potential of the rotating shell.

(b) Determine the electrical torque acting on the shell.

Prob. 5.13.2 As a continuation of Prob. 5.13.1, a tachometer
is constructed as shown in Fig. 5.13.4. Determine the output

1
current in forms analogous to Eqs. 5.13.15 and 5.13.16.

· , ,I

For Section 5.14:

Prob. 5.14.1 The circular analogue of the planar configura-
Fig. P5.13.1

tion considered in this section is shown in Fig. 5.14.2. The
following steps are intended to parallel those of the text for this configuration. Define the angular
velocity of the rotor as 0 = U/R.

(a) Write the electrical torque in a form analogous to Eq. 5.14.6.

(b) Find the surface potential of the rotor in a form analogous to that of Eq. 5.14.8.

(c) Write the electrical torque in a form like that of Eq. 5.14.11, identifying Se and TE -

Prob. 5.14.2 Motions of Von Quincke's rotor, shown in Fig. 5.14.4c, can be of far greater complexity
than the steady rotations considered here. To study these motions, it is appropriate to develop a
"lumped parameter" model which exploits the fact that the dynamics enter only through the boundary
condi ions at the rotor interface. Plane parallel electrodes are used to impose an electric field
-E(t)1 perpendicular to the cylinder. The region surrounding the rotor is electrically taken as
extending to "infinity," where the electric field is this imposed field. In the region immediately
surrounding the rotor, the potential takes the form

cosO sin80 = E(t)r cos + Px (t) r + Py (t) sinr

Permittivities of the surrounding fluid and the cylinder are respectively Ea and Cb. The cylinder is
insulating while the fluid has conductivity a. The rotor has radius b, moment of inertia per unit axial
length I and a viscous damping torque per unit length -Ba, where Q(t) is the rotor angular velocity.

(a) Show that motions of the rotor are in general described by the nonlinear equations

pe + = EPe ---- y

0 2 o
P + P + P = H (-fE + E)

0 
--- -- I 2
p - OP + P = fH2E
-y -x -y e----

where variables have been normalized such that

t = tT ; T = 
e (Ea + Eb)/a

0 = eT ; E(t) = E(t)/g-- -e -

= a e pP
B

so that e is a typical electric field intensity. For example, if E(t) is a constant, 9 is that
constant and E = 1. Other dimensionless parameters are the electric Hartmann number H (given in

e
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Prob. 5.14.2 (continued)

Sec. 8.7 as the square root of the ratio of the charge relaxation time to the electro-viscous time
TE ) and the electric Prandtl number Pe (the ratio of the charge relaxation time to the viscous
diffusion time). Thus

22E 1R T Eb- a
i a e = Tp /I/B ; f = aH 

e B e e Eb+Ea

If I is the moment of inertia of the rotor alone (ignoring inertial effects of the fluid),
I = 7rb4p/2. If viscous diffusion in the liquid is complete, B = 47rb 2f, where r is the fluid
viscosity and p is the rotor mass density. (See Sec. 9.3). Then H2 = Te/TEV TEV 2f/Eac 2

and pe Te/TV; TV Pb2/8n.

(b) The imposed field is raised very slowly. Use the results of (a) to deduce the threshold value
of He at which the static equilibrium of the rotor is unstable. What steady values of 0 result
from raising He beyond this critical value?1

For Section 5.15:

Prob. 5.15.1 Identify the temporal modes for the rotor of Prob. 5.13.1.

Prob. 5.15.2 Identify the temporal modes for the rotor of Prob. 5.14.1.

Prob. 5.15.3 An insulating spherical particle having radius R and permittivity Eb has angular velocity
0 about the z axis. It is surrounded by insulating material of infinite extent having permittivity Ea.
On its surface is a conducting coating having surface conductivity a5. Find the natural modes of decay
for charge distributed on the surface. Modes included should represent the ý dependence exp (jm*) by
the mode number m, and the 6 dependence by the mode number n of the function Pm. From these modes,
pick the one that represents the rate of decay of a spherical particle initially in a uniform electric
field, which is then suddenly turned on or off. Your result should be T = R(26a + Eb)/2as.

Prob. 5.15.4 A particle has the properties given in Prob. 5.15.3. In addition, it has a bulk conduct-

ivity Ob and the surrounding material has a bulk conductivity aa. Show that the relaxation time of the
nth mode is

Ea (n+l) + Ebn
n C (n+l) + obn + s

a n b -j- n(n+1)

Prob. 5.15.5 The planar layer described in terms of transfer relations in Prob. 5.12.1 is bounded in
the planes x = A and x = 0 by equipotentials.

(a) Find an expression for the eigenfrequencies of the temporal modes.

(b) Show that as the material becomes isotropic in conductivity, so that x = Oy = z, the infinite

set of temporal modes all degenerate to the same eigenfrequency.

(c) Identify the eigenfrequencies for conduction confined to the x direction (ay = az = 0) and plot
as a function of k Ek + k2  with the mode number n as a parameter.

(d) Proceed as in (c) for the case ox = 0, ay = az = ao.

For Section 5.17:

Prob. 5.17.1 For the same configuration as developed in this section, define the sheet position as
being at x = 0. Find the potential distribution for the regions above (0 < x < d) and below (-d < x
< 0) the sheet. The expressions should reduce to Eqs. 5.17.17, 5.17.18 and 5.17.19 on the sheet
surface (x = 0).

1. Aperiodic motions such as these have been studied in connection with mathematically analogous models
for thermal convection. See W.V.R. Malkus, "Nonperiodic Convection at High and Low Prandtl Number,"
Memoires Societe Royale des Sciences de Liege, 6 serie, tome IV, (1972), pp. 125-128.
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Prob. 5.17.2 The system shown in Fig. P5.17.2 is the same
as considered in Sec. 5.14, except that the excitation on the
upper boundary starts at z = 0 and ends at z = aRe j(Aw i. The poten- -D~ Nr\ VO_

e t-3z)
tial upstream and downstream on this surface is zero. Also,
the interface is midway between the transverse boundaries, : ,a
so a and b from Sec. 5.14 are equal to d. i h
(a) The potential at the interface in the sinusoidal steady V

state is 4b(z,t) = Re'b(z,w)ejwt. Show that d ab-b
+W U j(Z-z)k 

]
-j$k -jkz d

SVo[(-kU) j e e -ej ]dk

·
(k - 8) D(w,k)

Fig. P5.17.2

where

D(w,k) = cosh kd[(aa+ob ) + j(w-kU)(Ea + b)]

(b) Show that the wavenumbers of the spatial modes are

S ( a+'b)

U - j Uý(:(a ab +6 ) n = 0

kn
k(12nl-l) .T

d j , n = +oo ... +1

Sketch the transverse and longitudinal dependences of these modes. Why do modes n # 0 have no depend-
ence on material properties, w, or U?

(c) Use the Cauchy integral theorem to find Ib(z,t) from the result of part (a) and the modes of part (b).

(d) Find the total time average electrical force exerted in the z direction on the material. The
expression can be left as an integral on k.
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Magnetic Diffusion and Induction
Interactions



6.1 Introduction

Except that magnetoquasistatic rather than electroquasistatic systems are considered, in this chap-
ter electromechanical phenomena are studied from the same viewpoint as in Chap. 5. Material deformations
are again prescribed (kinematic) while the magnetic field sources, the distributions of current or mag-
netization density, evolve in a dynamical manner that is self-consistently described throughout the
volume of interest. Most of the discussion in this chapter relates to magnetic diffusion with material
convection.

In practical terms, this chapter takes leave of the windings and associated slip rings or commu-
tators used in Chap. 4 to constrain current distributions in moving elements and takes up conductors in
which the currents seek a distribution consistent with the magnetoquasistatic field laws and the imposed
motion. The magnetic induction machine is an important example. Most often encountered as a rotating
machine, it might also have as a zioving member a "linear" sheet of metal or even a liquid. The study of
temporal and spatial transients and of boundary layer models in Secs. 6.9-6.11 is pertinent to the linear
induction machines, whether they be applied to train propulsion or manufacture of sheet metal. The
"deep conductor" interactions considered in Secs. 6.6 and 6.7 give insights concerning liquid-metal in-
duction pumping, a topic continued in Chap. 9.

The boundary conditions and transfer relations summarized in Secs. 6.3 and 6.5 are a basic resource
for developing analytical models representing systems suggested by the case studies of Secs. 6.4 and
6.6. Similarly, the dissipation and skin-effect relations developed in Secs. 6.7 and 6.8 are designed
to be of general applicability.

Much of the magnetic diffusion phenomena developed in this chapter, the mathematical relations as
well as the physical insights, pertain as well to the diffusion of molecules or of heat. Hence, divi-
dends from an investment in this chapter are in part collectable in Chap. 9. In addition, what in
Sec. 6.2 is a theorem concerning the conservation of flux for material surfaces of fixed identity, in
Chaps. 7 and 9 relates to fluid mechanics and becomes Kelvin's vorticity theorem. Diffusion of vorticity,
a momentum transfer process in fluids taken up in Chap. 7, has much in common with magnetic diffusion.

The conduction model in this chapter is exclusively ohmic. The model is especially appropriate in
the relatively highly conducting materials of interest if magnetic diffusion effects are an issue.
Typically, conductors are solid or liquid metals, or perhaps highly ionized gases. The development is
purposely one that parallels the sections on ohmic conductors in electroquasistatic systems, Secs. 5.10-
5.16. A comparative study of electroquasistatic and magnetoquasistatic rate processes, models and
examples results in the recognition of both analogies and contrasts.

Although resistive types of induction interactions are by far the most common, time-average forces
can be developed through phase shifts created by other types of loss mechanisms. The important example
of magnetization hysteresis interactions is used in Sec. 6.12 to exemplify not only how time-average
magnetization forces can be developed, but by analogy, how polarization interactions can be created in
an electroquasistatic context.

6.2 Magnetic Diffusion in Moving Media

For a material at rest in the primed frame of reference, Ohm's law is

J I= E' (1)

where the conductivity 0 is in general a function of position and time. This law, introduced in Sec. 3.3,
implies at least two charge-carrier species and a Hall parameter (Eq. 3.3.4) that is small compared to
unity. Use of the field transformations If = - (Eq. 2.5.11b) and E' = + v x poH (Eq. 2.5.12b) ex-
presses Eq. 1 in the laboratory frame of reference,

Jf = a(E + v x p) (2)

where v is the velocity of the material having the conductivity a. This generalization of Ohm's law to
represent conduction in a moving material is clearly valid provided that the material is moving with a
constant velocity. But the law will be used throughout this chapter for materials that are accelerating.
The assumption is made that accelerations have a negligible effect on the processes responsible for the
conduction, for example, in a metallic conductor, that the acceleration of the ponderable material has
a negligible effect on electronic motions.

Solution of Eq. 2 for E gives an expression that can be substituted into Faraday's law, Eq. 2.3.25b,
to obtain
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V x f B + (
x =- - + V x (v • B) (3)

where the definition B E Vo(H + M) has been used.

The embodiment of Ohm's and Faraday's laws, represented by Eq. 3, has a simple physical signifi-

cance best seen by considering the integral form of these same laws. With E' replaced using Eq. 1,
Faraday's integral law, Eq. 2.7.3b, becomes

Fig. 6.2.1

÷Jf + d
d-" dt B nda (4) Surface of fixed

identity.C S

C S
In writing this equation, the surface S enclosed by the contour C, Fig. 6.2.1, is one of fixed identity
(one attached to the deforming material), so v = v . (The same expression would be obtained by inte-
grating Eq. 3 over a surface of fixed identity and applying the generalized Leibnitz rule, Eq. 2.6.4.)

According to Eq. 4, the dissipation of total flux linked by a surface of fixed identity is propor-

tional to the "iR" drop around the contour of fixed identity enclosing the surface. The statement is a
generalization of one representing an ideal deforming inductor having the terminal variables (X,i)
shorted by a resistance R:

dX (5) Fig. 6.2.2
iR =.

dt
Circuit equivalent
to C in Fig. 6.2.1.

In the limit of "infinite" conductivity, the flux intercepted by a surface of fixed identity is invariant.

Equations 3 and 4 represent the same laws, so if the left side of Eq. 3 is negligible, it too implies

that the flux linking a contour of fixed identity is conserved. The circuit helps to emphasize that in

most of the chapter the subject is distributed "resistors" and "inductors" typified in their dynamics

by "L/R" time constants.

Ampere's law, Eq. 2.3.23b, eliminates If from Eq. 3 in favor of 1. With magnetization described

B = ýH, where 1i can be a function of space and time but not of H, Eq. 3 then becomes

Vx - (Vx B) = + V X (v X B) (6)

In regions where the properties (o,i) and material velocity v are uniform, Eq. 6 becomes the convective
diffusion equation*

i VB = ( + v.V)B (7)

pa St
On the right is the rate of change with respect to time for an observer moving with the velocity v of the

material (Sec. 2.4). This convective derivative represents two ways in which time rates of change are

a givenexperienced by a given element of material. Pprhaps created by a time-varying field source, at 
T. Motion of thefixed location there is a magnetic induction OB/at with a rate characterized by a time 

material through a spatially varying field givs rise to a second magnetic induction contribution gener-

ally represented by the "speed" term V x (v x B) (Eq. 6) and particularly reduced to v.VB in Eq. 7.

This contribution is characterized by a transport time k/u, where k and u are respectively a typical
two length and velocity. Parameters representing the competition between these rates of change and the

diffusion process are identified by writing Eq. 7 in terms of the dimensionless variables

t = tt; v = vu; (x,y,z) = (x,X,z)k (8)

(v x B) v(V.B) - --(V.'*) V+ ; V. 0V O,V.* = 0, Vv = 0

V x (V x B) V(V.B) - V2
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Note that either Eq. 6 or Eq. 7 is linear in B, so that the flux density need not be normalized. In terms
of these variables, Eq. 7 becomes

-I +
V2 m m + R vVB (9)

T at m

where

T = Pt2 : magnetic diffusion time

R = Oaut: magnetic Reynolds numberm

For 11,0 and v not uniform, Tm and Rm are defined using typical magnitudes of these quantities.

If the diffusion term on the left in Eq. 9 (in Eq. 4) is negligible, the dynamics tend to be flux
conserving. Thus, Tm/r and Em are dimensionless numbers, really representing the same ghysical process,
that are an index to the degree of flux conservation. If a process is steady so that aB/Dt = 0, thdn Rm,
which is the ratio of the magnetic diffusion time to a typical transport time i/u, is the appropriate
index. If Rm is large, material convection tends to dominate in determining the field distribution.

Few physical situations involve only one dimension. Usually, practical systems are heterogeneous,
in that they are made up of materials having different electrical properties each with its own dimen-
sions. As a result, a model may involve several different Tm's and Rm's. Identifying the most critical
diffusion times and magnetic Reynolds numbers is an art developed by having as background examples such
as those in the following sections.

Skin effect, a magnetic diffusion phenomenon, is conventionally characterized by the skin depth 6m.
As a parameter representing the extent to which a sinusoidal steady-state magnetic field diffuses into a
conductor, it embodies the magnetic diffusion time Tm . The extent to which the field diffuses into an
"infinite" conductor is itself the characteristic length £, while the characteristic time is the recipro-
cal of the imposed field frequency. In fact, setting Tm/T = i06w 2 = 2 results in what will be identified
in Sec. 6.6 as the magnetic skin depth:

6 _ (10)

The skin depth is the length that makes the magnetic diffusion time equal to twice the reciprocal angular
frequency of a sinusoidal driving field.

Typical electrical conductivities for materials in which magnetic diffusion is of interest are
given in Table 6.2.1. For these materials, the magnetic diffusion time, Tm, is given as a function of
the characteristic length £ in Fig. 6.2.3 and the skin depth, 6, is given as a function of frequency
f = w/2w in Fig. 6.2.4.

Table 6.2.1. Typical electrical conductivities of materials in which magnetic diffusion
is of interest. Permeability is essentially Po unless otherwise stated.

Material Conductivity 0 (mhos/m)

Solids

Copper 5.80 x 107
4% silicon-iron 1.7 x 106 (p r 5000 1o)
Silver 6.17 x 107
Aluminum 3.72 x 107
Graphite 7.27 x 104

Liquids

Mercury 1.06 x 106
Sodium 1.04 x 107
Sodium potassium 22%-78% 2.66 x 106
Cerrelow-117 (tin-bismuth-

lead-antimony alloy) 1.9 x 10
Seawater 4 -6
Deionized pure water 4 x 10
Alumium 4.31 x 106 (8700C)
Tin 2.1 x 106 (231.90C)
Zinc 2.83 x 106 (4190C)

Gases

Typical seeded combustion gases ,.40
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Fig. 6.2.3. Magnetic diffusion time as a function Fig. 6.2.4. Skin depth as function
of characteristic length for solid copper, of frequency for materials of
liquid mercury and gas typical of that used Fig. 6.2.3.
in MHD generator.

6.3 Boundary Conditions for Thin Sheets and Shells

Currents induced in a sufficiently thin conductor
can be regarded as essentially uniform over its cross
section. Some of the most important models for magnetic
diffusion exploit the resulting simplification of the (a
field representation. The magnetic diffusion process is
condensed into a boundary condition at the surface
occupied by the conductor, in Fig. 6.3.1, the surface
separating regions (a) and (b).

Fig. 6.3.1. Conducting sheet having normal
Because the conducting sheet is bounded from either flux density Bn, thickness A and hence

side by insulators, the current distribution is essen- surface conductivity as - Aa.
tially that of a surface current

The normal flux density is continuous, so it is denoted by Bn without distinguishing between regions (a)
and (b).

Ohm a law and Faraday's law are embodied in Eq. 6.2.3. For the present purposes, the normal com-
ponent of this equation is the essential one. Multiplied- by the sheet thickness, A, it becomes

(Vx 4.n Kf ) as [V x ( +B x 4B)]n
( x f n s t s n

Continuity of current (Eq. 2.3.26) requires that

V.K f =- 0

where VE* is the two-dimensional divergence, the usual divergence with the vector component normal to
the surface omitted.
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Table 6.3.1. Boundary conditions on conducting moving sheets and shells.
Normal flux density, Bn, is continuous and as E Au.

n 5

Configuration Boundary condition

v=U i X z

(a) - U 2  2

( + R H -a (- + U -)Bx (a)
tr slt zn y p sy Ut y x

translating planar sheet

, 2  2 s a )B (b)
a De H2) e ' r

rotating cylindrical shell

2S2 + Ha (a-
a2 De2 2 zs D t z r(c)

translating cylindrical shell

Either

r sine - sine + L H- = -asasine (•t + 0 )Br (d)

a s(a)i- D 2

or

rotating spherical shell sin sin + sa sin2 + )Br] (e)

Finally, the jump condition implied by Ampere's law relates gf to the fields (Eq. 2.10.21):

+ + +

These last three equations combine to provide a description of how the magnetic field diffuses through
conductors of arbitrary geometry. Four typical geometries and associated boundary conditions are sum-
marized in Table 6.3.1. The derivation of each of these conditions follows the steps now carried out in
Cartesian coordinates.

Translating Planar Sheet: In this case, Bn = Bx and v = Uiy. Then, Eqs. 2 and 3 become

aK 
z 

aK aB B
z = - s a x-+ U x)x

Dy DZ J Dt + y

aK aK
S+ z = 0

ay 9z

Of the variables Ky and Kz, the latter is the more convenient. Hence, with the objective of eliminating
between these questions, a/ay is taken of Eq. 5 and a/az is taken of Eq. 6 to generate a cross

derivative that can be eliminated between these equations. Thus, Eqs. 5 and 6 become
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(2

y2 2 = -)K .D at + U a B
Dy) x

Finally, Eq. 4 is used to write Eq. 7 as the required boundary condition, Eq. (a) of Table 6.3.1.

6.4 Magnetic Induction Motors and a Tachometer

A developed model for the rotating machine, shown in Fig. 6.4.1a, is detailed by Fig. 6.4.1b. It
incorporates a stator structure much like that for a synchronous machine, for example the smooth air gap
machine of Sec. 4.7. The windings shown here however have two rather than three phases, backed by a
highly permeable magnetic material. The rotor also consists of a highly permeable material, but having
its windings replaced by a sheet of conducting material wrapped on its periphery.

What makes this an induction machine is that the rotor currents are induced rather than imposed by
means of windings and terminal pairs. The stator currents produce a magnetic flux density that has a
component normal to the conducting sheet. Application of the integral induction law and Ohm's law
(Eq. 6.2.4) to a surface lying in the plane of the sheet shows that circulating currents are induced in

the sheet. These tend to produce their own fields and hence limit the normal flux density in the sheet.
With the rotor assumed very long in the z direction compared to the rotor diameter, these sheet currents
are modeled as mainly z-directed, closing in circulating paths on perfectly conducting "shorts" at z=+±.

w

stator ... .

3se

(I) 0a)
Fig. 6.4.1. (a) Cross section of rotating induction machine with thin-sheet conductor on

rotor. (b) Developed model for (a) with air gap d and sheet conductor of thick-
ness a. One of two phases on the stator is shown.

Viewed in terms of lumped parameter models, the induction machine is often represented by a con-

servative electromechanical Coupling, such as developed for the synchronous machine in Sec. 4.7, with
the rotor terminals shorted by resistors. In fact, some induction machines are constructed with wound
rotors that can be connected to variable resistances through slip rings. However, most induction
machines are made inherently more rugged by letting the currents flow through solid conductors, not
windings. An important point made by the field representation used in this section is that the thin

sheet model is in fact equivalent to the lumped parameter model, provided that the rotor is modeled by

a properly distributed polyphase winding with equal resistances connected to each winding. But, if the
sheet has finite thickness, the circuit model is not equivalent, as will be evident in Sec. 6.6.

Two-Phase Stator Currents: There are two windings on the stator, each with a sinusoidal distribu-
tion of turns density. The "b" phase is displaced by 900 relative to the "a" phase. Because magnetic
induction depends explicitly on time rates of change, the description is one in terms of temporal complei
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amplitudes. Hence, the stator current is modeled as being the surface current,

K Re[iae N cos ky + ejWt Nb co k(y -)] (1)

where N and Nb are the peak turns per unit length on the respective phases and 2 is the wavelength in
the y-direction. For a two-pole rotating machine, a is the rotor circumference. The complex amplitudes
of the electrical terminal currents are (ia,ib).

By using Euler's formula, cos 6 = (ej e + e-j )/2, the cosines in Eq. 1 are written in terms of
exponentials so that the surface current takes the alternative form

K = Re[Kee j (wt-ky) + Se (t+ky)] (2)

where k)
A s  1^ A +k4
K - 2 (iN N + Nbe )

Thus, the excitation is written in the form of a complex amplitude Fourier series. This type of
representation is discussed in Sec. 5.16. In general, the series takes the form of Eq. 5.16.1. In the
case at hand, there are only two terms, n = 1 (k1 = k) and n = -1 (k-1 = -k), corresponding physically
to waves propagating in the + and -z directions.

The fields satisfy linear bulk and boundary equations. Hence, the response to Eq. 2 is the super-
position of the response to the first term and a response to the second, found from the first by simply
replacing iK + KS and k + -k.

Fields: Because the flux linkages aje to be computed, it is convenient to describe the air-gap
fields i- terms of the vector potential, A - Aiz, the Cartesian coordinate case of Table 2.18.1; thus,

x = -jkA. In view of the "infinitely" permeable stator and rotor materials, boundary conditions on

single complex amplitudes of the fields at the stator and rotor surfaces follow from.Ampere's law

(Eq. 2.10.21). The boundary condition at the stator is thus

Hs . _-K (3)
Y

and the composite boundary condition for the thin sheet, Eq. (a) of Table 6.3.1 with a/az - 0, is

a a
-A 5- - r) (4)

y k x k

Fields at the stator and rotor surfaces are related by the transfer relations (b) of Table 2.19.1:

s 1 s
A -coth(kd) sinh H

Ssinh(kd) y5)

k

r -1 coth(kd) fir
sinh(kd) y

With the objective of finding ^r, which by Ampere's law is the rotor surface current, these last three
equations are now combined. EGation 4 (solved for Ar) and Eq. 3 are substituted into Eq. 5b. This
expression is then solved for H :

K; Sm+[j + Sm+ coth(kd)]

H - 2 (6)
sinh(kd)[1 + Sm+coth2(kd)]

The dimensionless number Sm combines the ratio of a magnetic diffusion time Tm - poas/k to the character-
istic time 1/1 and a magnetic Reynolds number iooaU:

Po
S m - a (W ; kU) (7)

In writing Eq. 6, the components induced by the respective traveling waves of Eq. 2 are identified by

replacing KS * Ke and k - + k. Note that coth(kd) and sinh(kd) are odd functions.
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Time-Average Force: To determine the force of magnetic origin acting in the y direction on the
rotor, the appropriate volume of integration is as shown in Fig. 4.2.1a. The only contribution to the
integration of the stress over the enclosing surface comes from S1 , here taken as a surface adjacent to
the rotor. It then follows from Eq. 5.16.4 that the time-average rotor force is simply

[A r-r * r (8)
(fy> ( w) Re[BH ) + Bx (HY) 8)

where w is the rotor length in the z direction and p is the number of poles (the number of half-wave-
lengths). Hence, pX/2 is the total rotor length in the y direction.

In Eq. 8, " - +jkA , where A; follow from Eqs. 3 and 5b:

Ar o r K coth(kd) (9)
+ k Lsinh(kd) (9)

Thus, substitution for in Eq. 8 exploits the fact that self-fields can make no contribution to the

total force to express the force as an interaction between stator and rotor surface currents:

< - p shw "o Ra[j i s( r )* sfr ]* (10)
4 sinh(kd)

In terms of stator currents, Eq. 6 serves to evaluate this time-average force:

. p 0 [ S - 1 (11)
4 sinh2(kd) 1 + S(coth M+ (kd) 1 + Scoth(kd)M_

Balanced Two-Phase Fields and Time-Average Force: The stator currents become a pure traveling wave

if the (b) phase is made to temporally lag the (a) phase by 900, and the windings have the same peak

turns densities. Formally, this is seen from the definitions of Ks given with Eq. 2:

A Ae-jwr/2 As A
Sa aa (12)

Na Nb -

contributes to the force. The dependence of this force on Sm is familiarOnly the first term in Eq. 11 
is shown as afrom the electroquasistatic analogue developed in Sec. 5.13. In Fig. 6.4.2a, the force 

function of the material velocity divided by the traveling-wave phase velocity w/k. Given the depend-
, result of first shifting the origin so that Sm+ - 0 whereence of the force on S this plot is the 

w - kU and then "flipp ng" the plot about the vertical axis passing through this origin.

The parameter S+ is the effective magnetic diffusion time multiplied by the angular frequency

(w-kU) for an observer moving with the conducting sheet. The force is in the same direction as the

provided S is positive so that the traveling wave has a speed greater than that of thetraveling wave, 
material. To understand tie force-speed diagram, consider the phase relationship between stator and

between traveling wave androtor surface currents, implied by Eq. 6 (H K7 ). For near synchronism 

material, (i) typifies the operating point. In q. 6, small S implies the complex amplitude (i)
lags thatshown in the phase diagram of Fig. 6.4.2b. At a given instant, the rotor current spatially 

than 900, as sketched in inset (i) of Fig. 6.4.2a. This current hason the stator by slightly more 
just the right distribution for producing a force to the right, but because S is small (the time rate

Ts small. The magneticof change in a frame moving with the materials is small) the induced current 
field is distributed essentially as if there were no rotor current. Increasing Sm improves the mag-

but at the price of compromising the relative spatial phase. The ultimate com-nitude of the current 
promise between phase and magnitude comes at (ii) where Sm = tanh(kd). As Sm becomes large, currents

as large as isin the rotor completely shield out the normal magnetic field. The rotor current becomes 

possible, but the spatial phase relation is wrong for producing a force in the y direction. Operating

approaching this condition, with the magnetic field approximating that for a perfectlypoint (iii) is 
conducting sheet.

Electrical Terminal Relations: To compute the voltages (va,vb) required to produce the terminal

currents (ia,ib), the flux linkages (Aa,Xb) must be determined. For example, consider the (a) phase

of a two-pole machine. The windings carrying current in the z direction at y' and returning the cur-

rent at y' + 1/2 each link a magnetic flux (Eq. (f) of Table 2.18.1):
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(a)
Fig. 6.4.2. (a) Time-average force for induction

machine of Fig. 6.4.1 with balanced two-phase
excitation. Abscissa is material velocity ,Im^r
relative to wave phase velocity. The slip is Hmy
sm - S /(oo 8w/k). Insets show spatial

ReAH
phase of stator and r9tor currents at a given Hii) (i)
instant. (b) Phasor r!, showing effect of in-
creasing Sm on the phase and amplitude. Oper-
ating points (i) + (iii) are shown in (a). In

Sm
nomenclature of lumped parameter induction (b)
machines, (i) is resistance dominated operation
while (iii) is reactance dominated.

0 = w[AS(y') - AS(y' + £/2)] (13)

Written as the superposition of the two field components, so that the dependence on y' is explicit, this
expression becomes (k 27r/4)

S= wRe[A e j (at-ky') + j5ej(Wt+ky') - jAe jej(wt-ky') - jsejlre (wt+ky') (14)

= wRe2(Ae-jkY ' + ASeJky')e j wt

In the interval dy' in the neighborhood of y = y' there are N cos ky' dy' turns, so the flux linked by
the (a) phase is altogether

X l /4 (y')Na cos ky' dy' wNaRe (ASejky + A~sekY')(ejky' + ejky')ewtdyl (15)
-1/4 -£/4

Only the constant terms contribute to the integration, and substitution for A; from Eq. 5a gives

N(Hr +ArA

Sw-- P R e oth(kd)(s + ) + e (16)a =2 k o0 c K; + ) sinh(kd)

Remember that K are given functions of the terminal currents, Eq. 2. Thus, Hb are also given as
a function of the terminal currents by Eq. 6 and Eq. 16 is the required (a) phase teiinal relation
Aa(O ,ib). The Rame line of reasoning shows that Ab is given by Eq. 16 with Na + -jNb, Xf + K- i - Ka
and + + -
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wN2 2 2
L1 EL 2  tanh ( -)

wN2 2P o £wN2

a R a

4Tr sinh (--) 2s R/Sm
kU

sm E "slip" = (1 - -) = Sm+/(1oas/k)

Fig. 6.4.3. Equivalent circuit for balancedBalanced Two-Phase Equivalent Circuit: With
operation of induction machine.excitations as summarized by Eq. 12, the terminal

voltage on the (a) phase follows from Eq. 16 as

2a J + [j + S+coth(kd)] + kd(l+Scothkd) ] a

v a= j aj = j coth kd (17)
sinh2kd(1+S 2 coth2kd). aM+

This relation of voltage and current is the same as is obtained for the circuit of Fig. 6.4.3. The
parameter Sm+ , normalized to a magnetic Reynolds number based on the wave velocity c/k, is what is
conventionally defined as the "slip," m*.

Single-Phase Machine: With only the (a) phase excited, positive and negative traveling waves
result having equal magnitudes. According to Eq. 2,

^s ^s 1
ib =0 (18)K = K - 2 Naia

The time-average force, Eq. 11, is the superposition of the forces that would be induced by purely
forward and backward traveling waves. The resulting force-speed characteristic, sketched in
Fig. 6.4.4, is rigorously the sum of the time-average forces from the traveling-wave components. At
zero speed, these forces cancel. Provided the slope of the characteristic at zero speed is positive,
once started in either direction, the rotor experiences a force tending to further increase the veloci
It follows from Eq. 11 that at U = 0 the slope is

ptwN2 iaj 2 dUfy>t k (4R coth2kd - 1)
2 (19)dU 8 sh kd8 sinh 2kd (1 + 2 coth kad)

so the slope is positive, provided the frequency is high enough to make RM > tanh(kd).

Fig. 6.4.4. Time-average force for single-phase induction machine as function of material
velocity normalized to wave velocity. Total force is superposition of forces due to
forward and backward wave components.

ty.

Sec. 6.4 6.10



In practice, single-phase induction machines are started by pole shading or by using a (b) winding
connected to the excitation in such a way that a temporal phase shift takes place, perhaps by a capaci­

ltor. Under start conditions. one force component then dominates the other.

Fig. 6.4.5

Drag-cup tachometer with end cap and
attached magnetic core removed so that
thin-walled rotating cup is visible.
The core is the lower highly permeable
rotor material in Fig. 6.4.1, the cup
is the moving conducting sheet. C01ls
adjacent to the cup rim are the stator
windings. In this example the core is
actually fixed and there is an appreci­
able air gap between core and cup.

Tachometer: One common way in which the induction machine sees application as a generator is for
speed measurement. As a rotating machine, the model pertains to the drag-cup tachometer shown in
Fig. 6.4.5. In linear geometry, the induction interaction might be used to measure the velocity of a
moving conducting sheet. Single phase excitation, say of the (b) phase, is equivalent to a standing­
wave excitation. With no motion, currents induced in the sheet also form a standing wave in spatial
phase with the excitation. Material motion induces an imbalance in the forward and backward wave com­
ponents. Thus, with no motion no signal is detected on the (a) phase, but with motion there is a sinu­
soidal signal at the frequency w. The magnetic interaction exploited here is the analogue of that dis­
cussed for an electroquasistatic interaction in connection with Figs. 5.13.3 and 5.13.4.

A AS _ -1
With single phase excitation of the (b) phase, i a = 0 and according to Eq. 2, K+ - + 2 ibN

A

• Theb
voltage on the (a) phase follows from Eq. 16:

S
v

A wwW Nbll l b ( S +
j WA = _ m-j a 0 ...--:-":"'J!!'"_m_-..,....-~ (20)a a 4k sinh2kd 1 + jSm+ coth kd 1 + jS cothm-

As expected, the output voltage is zero if U = 0 (Sm+ = Sm-). The dependence of va on the velocity can
be used to measure U. For example, the amplitude of the output follows from Eq. 20 as

I~a I (21)
2coth kd)

where
wwtN Nbll

T-
11 (J i/

v0 - 2k sinh k~ CO~h kd ; Sm+ == (lJ)+ kU)

The analogy to the electroquasistatic tachometer of Sec. 5.13 is emphasized by the direct correspondence
between Eqs. 20 and 5.13.15, and between Eqs. 21 and 5.13.16. The dependence on U given by Eq. 21 is
illustrated by Fig. 5.13.5.

6.5 Diffusion Transfer Relations for Materials in Uniform Translation or Rotation

In terms of the vector potential X, discussed in Sec. 2.18, magnetic diffusion in regions having
uniform permeability and conductivity is described by Eq. 6.2.6 with ~ = Vx Xand V·X = 0:

1. For a description of induction machines in lumped-parameter terms, see H. H. Woodson and J. R.
Melcher, Electromechanical Dynamics, Pt. ~J John Wiley & Sons, New York, 1968, pp. 127-140; also,
A. E. Fitzgerald, C. Kingsley, and A. Kus~o, Electrical Machinery, McGraw-Hill Book Company, New x
York, 1971, pp. 525-531; S. A. Nasar and I. Boldea, Linear Motion Electric Machines, John Wiley and
Sons, New York, 1976.
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V x [-V (V X A) + - v x (Vx )] 0 (1)

Because the curl of the gradient of any scalar, say -4, is zero, a solution to this equation is

1 Vx (V x A) + a vx .(V x ) - -V (2)

For a given material motion, this equation is linear in A so that solutions can be superimposed. The
inhomogeneous solutions resulting from the "drive" on the right can be added to the homogeneous solu-
tions satisfying Eq. 2 with 0 = 0. A vector identity* converts the latter equation to

1 V 1 = - x (Vx ) (3)

where the vector Laplacian must be distinguished from its scalar counterpart (Appendix A). This section
is devoted to developing certain useful solutions to Eq. 3 in such a form that they can be used in
problem solving. The geometries to be treated, summarized in Table 6.5.1, are extensions of those
identified in Sec. 2.19, two-dimensional or symmetric configurations where the vector potential has a
single component.

Planar Layer in Translation: In ýartesian coordinates, with A = A(x,y)iz and the material moving
uniformly in the y direction, so that v = Ut1, Eq. 3 reduces to its z component, which is

1 V2A = +A UA (4)
Ia at ry

With solutions taking the complex-amplitude form A(x,y,t) = ReA(x)exp j(wt - ky), this equation reduces
to

d1 2 2 2(5
d 2 = O; Y2 ~ k + jpo(w - kU) (5)
dx

Transfer relations can now be deduced following the same line of reasoning used in preceding from

Eq. 2.16.13 to the relatlons of Table 2.16.1, or from Eq. 2.19.3 to the Cartesian relations of

Table 2.19.1. With (Aa,AO) the complex amplitudes at x = A and x = 0, respectively, the solution to

Eq. 5 is:

=A sinh yx AB 0 sinh y(x-A) (6)
sinh yA sinh yA

Evaluation of Hy = -(1/li)dA/dx (Table 2.18.1) at x = A and x = 0 then gives the transfer relations,
Eqs. (a) of Table 6.5.1. Inversion of these relations gives Eqs. (b). Note that y = Yr + iYi in Eq. 6.
Thus,

sinh Yx = sinh(Yrx + jYix) = sinh yrx cos yix + j cosh yrx sin yix (7)

is a complex function. In computer libraries it is usually the circular rather than the hyberbolic

functions that are provided with the capability of having complex arguments. Then, evaluation is

accomplished by replacing sinh yx - -j sin jyx in Eq. 6.

The diffusion transfer relations are the same as those for a nonconducting region (Table 2.19.1),
and degree of penetrationexcept that k is replaced by y. The transverse wavenumber governs the manner 

planarof the field into the conductor, and is examined in Sec. 6.6. The transfer relations for a 

region are applied in Secs. 6.6-6.8 and 6.10.

Rotating Cylinder: In a material suffering rigid-body rotation with the angular velocity 0, the

velocity is - PrTe. * For field dynamics not depending on z, the appropriate form is A = A(r,e,t)Ez,
the polar coordinate case of Table 2.18.1. Then, Eq. 3 reduces to its z component:

1 V2A - + (8)

Substitution of A = Rel(r) exp j(wt - me) reduces this expression to

V x (V x ) = V(V.) -V2
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d2- +d r - (Y2 + -)A 2dr2 r dr = 0; = J.a(w - mn) (9)

With the identification k2 + y2 , Eq. 9 is Eq. 2.16.19, Bessel's equation. The appropriate solution for
the cylindrical annulus shown in Table 6.5.1, with outer and inner radii at r = a and r = 8, respectively,
takes the same form as Eq. 2.16.25:

Sa [H1m(J0)Jm(jyr) - Jm(JYB)Hm(JYr)]
A=A

[H (JyB)Jm(jyca) - Jm(jyB)H (jyc)]

(10)

+ [Jm(jyta)H (Jyr) - Hm(jyct)J (Jyr)]
+A

[J (jya)H (jy) - H (jya)Jm(jy0)]

Evaluation of He = -(l/U)dA/dr (see Table 2.18.1) at the respective surfaces then gives the transfer
relations (c) of Table 6.5.1. Inversion of these relations results in Eqs. (d).

The entries appearing in these transfer relations are those used to represent Laplacian fields,
defined in Table 2.16.2, except that k is replaced by y. In modeling a configuration composed of two or
more regions having differing values of ja, it is necessary to distinguish among two or more values of y.
By agreement, if the third argument is simply k, it is suppressed. For example,

fm(x,y,k) H fm(x,y) (11)

so that the transfer relation entries introduced in this section are natural generalizations of those
introduced in Sec. 2.16.

Bessel and Hankel functions of complex argument bear much the same relationship to the real-argument
limiting cases as do the circular functions in Cartesian coordinates. Computer library functions that
allow complex arguments may be in terms of the Bessel function of second kind, Nm, in which case the
definition of the Hankel function, Eq. 2.16.29, is used to evaluate HHm . For the rotating cylinder, the
real and imaginary parts of the arguments are equal and, in this case, the Bessel and Hankel functions
are tabulated as the Kelvin functions:1

bermx + jbei mx J m(eJ 3 /4x)

(12)

ker x + Jkei 2 x H (ei3 r/4x)
m m 2 m

Axisymmetric Translating Cylinder: To complete Table 6.5.1, consider the annular shaped material
moving with a uniform velocity v =o in the axial direction under axisymmetric conditions. Then, the
appropriate vector potential is I = t;A(r,z,t) and Eq. 3 becomes

B 2

Substitution of A = ReA(r)exp j(wt - kz) results in an equation of the same form as the homogeneous part
of Eq. 2.19.9,

d21. + dA 2 1 A 2-2
+ dA 2 +-)A - 0; Y2 = k2 + jla(w - kU) (14)

dr r

where k2 has been replaced by y2. Thus, the solution is Eq. 2.19.10 with k + y:

= A -A [H1(jyB)rJ1 (jyr) - J 1 (jYB)rH1 (jyr)]

[Hl (jYB)J l (jy a ) - Jl(jYB)H 1 (jyca)]

(15)
+A [J 1 (jya)rH1 (Jyr) - H1(jya) zJ 1 (jyr)]

+ A

[Jl(jya)H1 (jyB) - H1 (jya)J1 (jya)]

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, U.S. Government Printing Office, Washington D.C., 1964, p. 379 and pp. 430-433.
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The transfer Eqs. (e) of Table 6.5.1 follow by evaluating Hz = (1/pr)aA/Dr at the outer and inner radii.
Identities, Eqs. 2.19.12 and 2.16.26c, are used to write the entries in terms of previously defined func-
tions. The inverse relations are Eqs. (f).

6.6 Induction Motor with Deep Conductor: A Magnetic Diffusion Study

While also being of practical significance, the induction interaction considered in this section is
chosen to give insights concerning sinusoidal steady-state magnetic diffusion into the bulk of uniform
conductors. The model is similar to the thin-sheet developed model shown in Fig. 6.4, except that the
rotor conductor now has a finite thickness, a, that can in general be comparable to the effective skin
depth 6', to the wavelength 2rr/k of the imposed traveling wave of surface current on the stator and to
the air gap d. The revised cross section is shown in Fig. 6.6.1. With the understanding that various
stator configurations could be represented as in Sec. 6.4, the stator current is taken as a pure traveling
wave.

K,= Re ks ex p j (tt-k y)
The configuration allows for an examination of ..... .. ... .......... i iii i'i iii

the thin-sheet model of Sec. 6.3 while also placing '''''''''''''''' '..............................jii~fiii~ji~.............................i
short iiiiiiiiii..... i iin perspective the opposite extreme, the skin- .............................. .. . ..... ............i ;

depth model introduced in Sec. 6.8. The sinusoidal ... .. .. .. .... .::
steady-state driven response emphasized in this sec-
tion is also related to the temporal modes of the
system in Sec. 6.10. L10 ,~'U

1 .,S, (b)
In terms of the locations defined in Fig. 6.6.1,

boundary and jump conditions represent Ampere's law
(Eq. 2.10.21): a () (L,o-)

S (d)
Ha = -ReRse j (wt-ky) C

.... ... .... ... . ....
c rotor el. z 

j
b 

y
H = H

y y -S3
H = 0 .. ... .... .... . .......
y

Fig. 6.6.1. Induction machine with rotor con-
and continuity of magnetic flux density (Eq. 2.10.22), ductor having finite thickness a.

c 
Bb = B Ab = Ac
x x

Identification of the bulk relations (b) of Table 6.5.1, first with the air gap and then with the

conducting layer, gives

A a -coth(kd) sinh(kd) +

k k
b ^b -1 ^b

A B coth(kd) JL7L Hy
x sinh(kd)

Ac -coth(ya) sinh Hib

^d d -1
-i coth(ya) 0

sinh(ya)L x 

In writing these expressions, the jump and boundary conditions have been inserted. These four equations
determine the complex amplitudes (Ba, Bb, Bd, Hb) in terms of the stator surface current density. Before
proceeding, it is prudent to determine which amplitude is required.

Time-Average Force: With a pure traveling-wave excitation, the time-average force per unit y-z area
is independent of y. This is true because, except for a temporal phase shift, each "slice" of the mate-
rial, shown in Fig. 6.6.1, is stressed by the same fields. Formally, this force per unit area is found
by integrating the stress tensor over the surfaces S1...S 4 shown in the figure. The sum of these sur-
faces is like that of Fig. 4.2.1a, except that its extent in the y direction is arbitrary; it is the
time-average rather than the space-average that is being taken. With the understanding that z + t, the
complex-amplitude averaging theorem, Eq. 2.15.14, is applicable. The time-average stress integrated
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over surface S2 cancels that integrated over surface S4. The fields on S3 are negligible,

A~h b1 -4k *Ah b4vg

T = S Re[(Be J) H e IJ
S/t y

and, as expected, the y dependence is eliminated. To eliminate the self-field term from this equation,
Eq. 5b is substituted for Bb:x

S j(K*ib,]
/T Re

YT

is required and so Eqs. 5b and 6a are equated and solved for fib:Thus, it is Hb that 
y y

-K.~a +
H-Y

sinh(kd) ~ - coth(ya) + coth(kd)
V

Substitution of this expression into Eq. 8 then gives the time-average force per unit area as a function
of the stator surface current:

=-- 2 2 Re

I]
- ; ya -/(ka) 2 + (10)jS

F.ka[l M
t sinh 2(kd) coth(ya) + coth(

where SM F poa2 (w - kU). With a balanced two-phase ex:citation, K+ would be related to the terminal cur-
rents by 6.4.2 and 6.4.12.

The dependence of the time-average
force on SM, the normalized frequency
as measured from the rotor frame of
reference, is illustrated in Fig. 6.6.2.
The function is odd in SM . If the mate-
rial velocity U exceeds the wave-phase-
velocity w/k, so that SM is negative,
the sign of the force is negative.

The dependence -is somewhat similar
to that for the thin-sheet interaction
of Sec. 6.4 (see Fig. 5.13.2). A quali-
tative difference is that the deep-con-
ductor force falls off less rapidly with
increasing rotor-frame frequency than
does the thin-sheet force. Two obser-
vations point to the origins of this dif-
ference. First, for SM exceeding 2, the
skin depth based on the rotor frame fre-

quency, 6' E /2/ij-kU'loa a 2/ISMI, is '-
shorter than the conductor thickness. In
the thick-conductor model, currents re-
distribute themselves in such a way that
the effective L/R time constant remains
on the order of the rotor-frame frequency
(see discussion accompanying Eq. 6.2.10).
Second, it is shown in Sec. 6.10 that 0 2 4 6 8 10
whereas the thin-sheet model embodies a SM b
single natural temporal mode, the deep-
conductor model retains an infinite

deepnumber of such modes. At high frequencies, Fig. 6.46.2. Time-average force/unit area acting on 

contribute to the sinu- conductor a spectrum of these in direction of traveling wave. ka=kd=1,
P=P . The force is an odd function of SM -soidal driven response, and tend to broaden

(
the frequency dependence of curve is the high-fre-the force. p•aZ w - kU). The broken 

quency asymptote given by Eq. 11.

The high-frequency limit of Eq. 10 is
>> (ka)2taken by recognizing that if ISMI , then ya + (1 + j ISMb/2, where the upper and lower signs

pertain for SM positive and negative, respectively. As the magnitude of ya becomes large, coth(ya)l.
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Thus, Eq. 10 becomes approximately

jt I' 2  (ak)-/ 
o 'V(11)

<Ty>t= 2 sinh2 (kd) [(ak) L+ /I S• 2 coth(kd)] 2 + [ / 2 coth(kd)]2 (11)

This high frequency approximation is represented by the broken line curve of Fig. 6.6.2. Because of the
skin effect, in this high-frequency limit, the force is inversely proportional to the square root of the
rotor frequency. By contrast, in this limit with the thin-sheet model (represented by the first term in
Eq. 6.4.11), the force varies inversely with the frequency.

Thin-Sheet Limit: What approximations are implicit to the thin-sheet model of Sec. 6.4? This is
tantamount to asking what approximations are necessary if the thin sheet force for a pure traveling wave
(the first term in Eq. 6.4.11) is to adequately approximate Eq. 10. It is clear from Eq. 10 that there
are two measures of the conductor thickness a, one the quantity (ka) which is small compared to unity if
a < A/2f,where X is the wavelength of the spatially periodic excitation. The other is ya (Eq. 10), which
can alternatively be written in terms of a skin depth 6' based on the rotor frequency,

(10 - 2. 2a- kUI Sl/2 (12)
Ya = /(ka)2+ JSM = A(ka)2 + 2j(-) 2  ' E 2 kU = a// /2 (12)

In order for lyal < < I, there are therefore two requirements, and these are the fundamental approximations
validating the thin-sheet model:

ka << 1; -- >> 1 (13)
a

With these approximations, coth ya - 1I/ya and Eq. 10 can be written in the form of the first term in
Eq. 6.4.11. Note that SM = (ka)Sm. In the limit (ka) << 1, these expressions are in fact identical.

Conceptualization of Diffusing Fields: With the objective of picturing the space-time evolution
of the fields in the conducting layer as a function of 6'/a and ka, remember that all fields have been
represented in terms of

A = ReA(x)e j ( wt - ky) = Re 1A(x) e[Wt - ky + 0(x)] (14)

where A(x) in general is given by Eq. 6.5.6, and in particular for the configuration considered in this
section (where H y(0) = 0 and hence dA/dx(0) = 0) is

S. cosh(yx) IA(x) Ie e (x) (15)
cosh(ya)

This expression can be deduced formally by manipulating the complex amplitudes, but is just as well found
by inspection. From Eq. 15, the field intensity in the conductor follows from H = Vx't/P (Table 2.18.1),
and the current density is

J= 1 V V SZ 1 d2 k2- 2 A (16)
1 1 a dx2

or in particular, because -j = exp(-jW/2)

S ja( e j  - k) cosh ) = - j  (x) (17)

P coshya -j - A(x) Pa

Of course, Ac is determined from Eqs. 5 and 6 by the stator surface current density, but for the present
purposes it is just as well to think of Pc as imposed at the air-gap surface of the conducting layer
(at x = a). The amplitude and phase of A(x), defined by Eq. 15, are then typified by the distributions
over the conductor cross section shown in Fig. 6.6.3. At any given plane x = constant in the conductor,
the fields take the form Rf a sinusoid traveling in the y direction with the phase velocity m/k. The
amplitude of this wave, IA(x) , varies with distance into the conductor as shown in Fig. 6.6.3a. (Note
that there is decay of the field in the -x direction even if 6'/a -* -. This is simply the decay char-
acterizing Laplace's equation in free space. For the plots, ka = 1.) Points of the same phase on the
traveling sinusoidal wave, say of phase 80, have the space-time relationship

ky = wt + 8(x) - 00 (18)

That is, for values of y given by Eq. 18, the exponential in Eq. 14 becomes exp j0o, a complex constant.

Thus, at any instant, the plot of 8(x) shown in Fig. 6.6.3b is equivalent to the (x-y) distribution of
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IAl/I l e(rn)

(a) (b)

Fig. 6.6.3. Amplitude and phase of A = RelA(x)Iexp j(&t - ky + 6(x)j for fields diffusing through
conductors of Fig. 6.6.1. The parameter is the skin depth, based on the material frame

= frequency, normalized to the conductor thickness, 6'/a;ka 1.

the points of a given phase on the sinusoidal traveling waves. For example, when t = 0, an x - y plot
of the zero crossing for a co-sinusoid is given by Eq. 18 with 8o = •r/2.

The distribution when t = 0 is now readily visualized in terms of the amplitude and phase plots of
Fig. 6.6.3. As an example, Fig. 6.6.4 shows the distribution of A when t = 0 for d'/a = 0.2. As Eq. 18
shows, the time dependence is seen by simply letting this picture propagate to the right with the phase
velocity w/k.

Fig. 6.6.4. Magnetic diffusion wave distribution A across conducting layer of Fig. 6.6.1
with pure traveling wave of excitation. For fields shown, phase velocity w/k of
wave exceeds material velocity U. As time proceeds, picture translates to the right
with phase velocity c/k.
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The decay is of course least when the skin depth is largest, assuming a limiting value consistent
with Laplace's equation. In this limit, the contours of constant phase in the x-y plane become parallel
to the x-axis.

In the thin-sheet model, the Laplacian decay is negligible (ka << 1) and the skin depth is large
enough compared to (a) that the amplitude and phase are essentially uniform over the cross section.

In the opposite extreme where the skin depth is short compared to the conductor thickness, there
is little effect reflected back into the layer by the highly permeable backing material at x - 0. In
this limit, the traveling wave leaves a trail of magnetic field in the conductor that appears at any given
y plane as a rapidly attenuating wave with phases advancing in the -x direction.

For the picture shown, SM > 0, meaning that the wave velocity exceeds that of the material. If the
material moves faster than the wave, SM < 0, and the sign of the imaginary part of y is reversed. This
reverses the sign of the phase shift. The lines of constant phase in a field picture like Fig. 6.6.4
now run to the right with increasing y rather than to the left. This is true even though the wave
velocity w/k is still to the right. To make this observation consistent with intuition, note that the
material is moving even more rapidly to the right than the wave.

To emphasize the effect of the material motion, consider a thought experiment in which all param-
eters are fixed while the material velocity U is increased, starting at zero. At zero velocity, the
picture is as in Fig. 6.6.4, with the skin depth determined by the imposed frequency w alone. As the
velocity is increased, the skin depth 6' increases. Hence, the decay and phase shift are reduced. At
synchronism, the skin depth 6' is infinite, the decay is Laplacian and there is no phase shift. Further
increase of the velocity results in a positive phase shift and a decreasing skin depth. The picture
returns to that typified by Fig. 6.6.4, except that the constant phase lines "stream ahead" of the
traveling wave.

The short skin depth approximation is the basis for a far-reaching boundary layer model, discussed
in Sec. 6.8.

6.7 Electrical Dissipation

Induction interactions of the type exemplified in Sec. 6.6 involve electromechanical energy conver-
sion at somi price of electrical power converted to heat. In fact, one of the most common applications
of induced currents is to the efficient electrodeless production of heat in the volume of a conducting
material. But, even where the objective is electromechanical energy conversion, the heating is likely
to be a significant consideration. In this section, general relations are derived that can be applied
to any situation in which the canonical conducting layer of Sec. 6.5 is embedded.

Some preliminaries are required to have a way of representing power dissipated in terms of quan-
tities evaluated at the surfaces of the layer. The magnetoquasistatic form of Poynting's theorem,
Eq. 2.13.16 with terms given by Eq. 2.14.16, is written in the inertial (primed) frame moving with the
material:

(El ') - a1 1 jjj) = (1)

Magnetization has been taken as linear, po((' + M') - pH'. For purposes of physical interpretation,
note that the integral of this expression over a volume V' enclosing material of fixed identity takes
the form of Eq. 2.13.12. This expression states that the total flux of power across the surface and
into the volume either goes into increasing the total energy within the yolume or it leaves the magneto-
quasistatic subsystem in a way represented by the term on the right. In general, power can either
leave as mechanical work done through the action of the magnetic force on the moving material, or it
leaves as electrical dissipation. Because there is no velocity of the material in the frame for which
Eq. 1 is written, the term on the right cannot include power flow into the mechanical subsystem. It
must be the electrical dissipation density Pd*

For the present purposes, what is required is an integration of Eq. 1 over a volume that is fixed
in the laboratory frame. Thus, Eq. 1 is rewritten in terms of fixed frame variables. That is, in
accordance wilh EQ 2.5.2, V' + V and D( )/at'+ a( )tat + *V( ). Also, because the system is magneto-
quasistatic, H' = H (Eq. 2.5.9b). Thus, Eq. 1 is equivalent to

P = - [V(E x H) + - ( HH) + vV(-1 2HH)

Because 
e 
v is 

s
uniform, and hence V.v = 0, the energy convection term can be taken inside the divergence:

P- _V. (t, X ý + v If JIM) 1 (3)
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In the sinusoidal steady state, the time rate of change makes
no time-average contribution. This expression therefore makes it
possible to evaluate the electrical power dissipated by evaluating
fields on the enclosing surface. Consider again the planar layer
of material described in Sec. 6.5. It is embedded in a system that
is periodic in the y direction and is in the sinusoidal steady state.
The volume over which the electrical dissipation is to be found has
the fundamental length of periodicity in the y direction and has y-z
surfaces denoted by a and a adjacent to the upper and lower surfaces
of the layer (Fig. 6.7.1).

The fields are presumed to be generally represented in terms of a Fig. 6.7.1. Control volume fixed
Fourier complex-amplitude series, in the form of Eq. 5.16.1. Inte- in laboratory frame with
gration of the time average of Eq. 3 over the volume is converted
by Gauss' theorem to an integration of the quantity inside the diver- fundamental periodicity
gence over the enclosing surface. Because of the periodicity, contri-
butions to surfaces cutting through'the layer, surfaces S2 and S4 and
those in the x-y plane, cancel or are zero. It follows from the averaging theorem, Eq. 5.16.4, that the
integration over the surfaces S1 and S2 is evaluated by multiplying the area A of Sl or S3 by the spatial
average

1 1 40 A A* A A

1 
yt 

f <PdtdV = Re l(E HE, ) - (E' Hy )] (4)
X 'V 2 zn yn zn yn

Thus, the power dissipated over the cross section of the material within a volume having unit area in
the y-z plane is evaluated in terms of complex amplitudes at the bounding surfaces. It is convenient
to replace El with variables already used in the transfer relations. By Ohm's law, Eq. 6.2.1 and
Eq. 6.6.16,

A J _ 1 2 2

z a Ia 2dx

This expression is expressed in terms of the surface variables using Eq. 6.5.6 and the result evaluated
at the respective surfaces. In view of the definition of y2 , Eq. 6.5.5,

= -j(w - kU) (6)

Thus, Eq. 4 can also be expressed as

+m (w - k U) ^ ^c * ^ (7)
Sd = - Re E 2 [An H ) - A(7)

t n=- n yn n yn

This is the required time- and space-average power dissipation per unit y-z area in the layer. Similar
relations can be derived for the other configurations of Table 6.5.1. Application of Eq. 7 is made in
Sec. 6.8.

6.8 Skin-Effect Fields, Relations. Stress and Dissipation

In the short skin-depth limit, the planar layer of Table 6.5.1 becomes representative of all of the
configurations in that table. The skin depth 6' is identified by writing y (defined with Eq. 6.5.5) as

y 2 - k2  j2/(6') . > U; 6' -2 (1)
k < - kUli~a

Note that the frequency that determines 6' is that experienced by the material; hence the appendage of
a prime.

There are two approximations inherent to the model. First, the induced fields dominate over the
"reactive" fields in determining the decay into the conductor:

(1 + j)
k6' << 14 y 6' (2)
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;f
A ky= wt+(x-a)/- o +Ak8 U

/k= wt ýx/ '_

y- t IN
Fig. 6.8.1. Lines of constant phase move to right with velocity w/k. For W/k exceeding U, these

lines form a "wake" to the left, as shown. If material velocity were to exceed w/k, lines
would slant to the right. Amplitude decays into material as shown, with depth for attenua-
tion by e-l equal to 6'.

Essentially, the skin depth is short compared to the wavelength of periodicity (divided by 2rr).

Second, the skin depth is short compared to the thickness of the conductor:

IAl >> 1 (3)

Then, the fields represented by the vector potential, Eq. 6.5.6, become two independent rapidly decaying
waves confined to the respective surfaces:

[j + (x-A) +x
j(wt-ky - -- ) + -(x/6') j(Wt - ky (4)A=ReLe e +ABe-(x/ e (4)

These fields are of course a limiting case of the example depicted by Figs. 6.6.3 and 6.6.4. In the

short skin-depth limit, the lines of constant phase, sketched in Fig. 6.8.1, are exactly straight
lines. It is assumed in the sketch that the wave phase velocity w/k exceeds the material velocity U.

Transfer Relations: In the short skin-depth limit summarized by Eqs. 2 and 3, the planar layer
transfer relations take a form representative of all of the configurations of Table 6.5.1. The mutual

coefficients tend to zero as the thickness becomes large compared to 6', so that the short skin-depth

transfer relations are

1A -1 0
= -jk .(+_l - j)ky6' k U (5)

x y
According to these relations, in a frame of reference moving with the material, the fields diffuse into

the conductor as though they were independent of y. That is, if the y component of the magnetic dif-

fusion equation is written (Eq. 6.2.7), the contribution of the y derivative to the diffusion term is

negligible compared to that from the x derivative. Thus, consistent with Eq. 5 is the approximation

that

S2
H

S = ()H ( + U (6)
a x2  ' y y

where the convective derivative on the right is the time rate of change for an observer moving with the

material. If there were actually no y dependence, there would be no Bx .  This is evident from the

limit k + 0 of Eq. 5. But, once having solved Eq. 6 to obtain Hy, the normal flux density can be found
from the fact that B is solenoidal. The result would be Eq. 5. From a frame of reference moving with

the conductor, short-skin-depth magnetic diffusion is as though the fields were independent of y.

Stress: But, without some y dependence there is no Bx and hence no magnetic stress. To compute

the stress, the layer is enclosed by a control volume with surfaces as shown in Fig. 6.7.1. The force
follows from an integration of the stress over this surface (as described in Sec. 4.2). The time-
average force per unit y-z area tending to propel the slab in its direction of motion is found by
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applying the time-average theorem, Eq. 5.16.4:

<BTy xBH - B!HYt = Re nZ--n - B' H n (7)

Evaluated using Eq. 5, this expression becomes

+.

1 4 nE - Vk6V'(IH yn I2 + IH n2) (8)yn

For a given available magnetic pressure, PH , the shearing force is proportional to the skin depth and
the wavenumber of the traveling wave.

The force in the x direction might be used to levitate a layer or system of layers. Suppose that
the layer is surrounded by free space, where p - p.. In general the space-time average is then written
in terms of quantities that are continuous across ehe surface as

T -<Txt= - (Bx)- (H B) 2 (H>)2] _-ý 2 (B y (9)- (Bx) 2 - (H) 2

Because the x component of i is of order (k6) smaller than the y component, this expression is con-
sistently approximated by Bx . 0 and hence

(10)
xt n -[t2 n + n2] 

In the short skin-depth approximation, the normal torce is simply the available magnetic pressure as it
would exert itself on a layer of perfectly conducting material. In spite of the fact that the layer can
be highly permeable, in the short skin-depth limit, the magnetic field "pushes" on the layer.

Dissipation: The power going into heating of the layer is computed in terms of the same surface
variables as used to express the stress by applying Eq. 6.7.7. Evaluated using the short skin-depth
transfer relations, Eqs. 5, it becomes

1d (t2 + II 2) (11)

For a given magnetic pressure, the power dissipation is inversely proportional to the skin depth. Hence,
as the skin depth decreases, the heating increases and (from Eq. 8) the propulsion force decreases.

6.9 Magnetic Boundary Layers

An alternative title for Sec. 6.8 might be "magnetic boundary layers in the sinusoidal state." In
essence, the skin-effect model is based on the same boundary layer approximation used in this section.
Transverse magnetic diffusion dominates over that in the longitudinal (y) direction. Thus, in the mag-
netic diffusion equation, Eq. 6.2.7, the diffusion term is approximated by the second derivative with
respect to the direction of field penetration, the x direction. With the conductor moving uniformly in
the y direction, diffusion is therefore again governed by Eq. 6.8.3:

82H
1( + U ,)Hy (1)

where it is presumed that 3( )/zz 0. Once the longitudinal field, H , is determined, the transverse
field is determined by the rate-independent condition that the field bi solenoidal:

aB aH
Sax-- (2)

The configuration of Fig. 6.9.1a is used in this section to illustrate the implications of the
model. A relatively thick conductor moves to the right with velocity U. Just above the conductor, a
fixed structure (perhaps windings driven by a current source) imposes a uniform current density Kz--H oto the right of y - 0. This sheet is backed by an infinitely permeable material which extends over all
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x < 0
moving in y direction with uniform velocity U. Region x > 0

•( ) is "infinitely" permeable "stator" material. (b) Structure
on "stator" imposes magnetic field Hy(x=0) = Ho, which is
turned on over region y > 0 when t = 0.

of the region x > 0. Because the distance between sheet and conductor is small compared to other dimen-
sions of interest, the boundary condition imposed on Hy at the conductor surface is that it be Ho to the
right of y = 0 and that it vanish to the left. When t = 0, the current excitation is turned on. A sum-
mary of the space-time dependence imposed on Hy at the conductor surface is given in Fig. 6.9.1b. What
are the implications of the boundary layer approximation for the evolution of Hy in the moving conductor?
How can the boundary layer model be used to compute the drag and lift on the excitation structure?

One of the more dramatic of many practical and proposed applications involving a magnetic diffusion
process having the nature of that considered here is shown in Fig. 6.9.2.1 The structure is in that case
a magnetically levitated train and the conducting material the "rail." The y coordinate measures dis-
tance relative to the vehicle. From this frame of reference, the turn-on transient settles into a steady
state in which the current imaging that on the structure in a given conductor element penetrates into the
conductor to a depth determined by the time elapsed since the element passed the leading edge of the
structure.

The convective derivative on the right in Eq. 1, the time rate of change for an observer moving
with the velocity U of the conductor, can be written in terms of time t' measured from the reference
frame of a material element (see Secs. 2.4 and 2.5):

1 a2H

0 ax2 - at'

with a( )/at' defined as the partial derivative holding y' = y-Ut constant. The lines of constant y',
shown in the y-t plane of Fig. 6.9.1b, have intercepts (yo,to) respectively with the positive y and t
axes. These parameters both denote the constant y' and distinguish between those lines in regions I and
II of the y-t plane separated by the line y = Ut:

Ut + yo; y > Ut, region I

U(t - t ); y < Ut, region II

From the material frame of reference, the magnetic diffusion represented by the boundary layer
equation, Eq. 3, is one-dimensional. Only the time dependence of the boundary condition on Hy at x=O
reflects the temporal transient. For the particular excitation shown graphically by Fig. 6.9.1b, Hy is
a step function that turns on when t = 0 so long as y > Ut. Physically, material elements having a dis-
tance from the leading edge greater than the transit time Ut, see a uniform magnetic field applied when
t = 0. But, for y < Ut, an element experiences a step that turns on when t = to. This is the time when
the element passes the leading edge of the structure at y = 0. These general remarks pertain regardless
of the details of the field excitation, once it is turned on. For example, the excitation might be a
traveling wave confined to y < 0 and turned on when t = 0.

Here, discusson is confined to an excitation that is constant for t > 0 and y > 0.
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coils

Fig. 6.9.2. Magneplane vehicle and "rail." Levitation results from interaction between conducting
rail and magnetic fields from d-c excited superconducting coils mounted on vehicle. Currents
are induced in rail by relative motion. The same d-c fields interact in synchronous fashion

1
with traveling wave of magnetic field on center section of "rail" to provide propulsion.

Similarity Solution: Can x and t' be related so that Eq. 3 becomes an ordinary differential equa-
tion? With t' understood to be the elapsed time since the field was turned on, it is expected that the
field would have penetrated in the x-direction to a depth A typified by setting the magnetic diffusion
time (defined with Eq. 6.2.9) equal to t' and solving for tie length

m (5)

Thus, it is reasonable to scale the actual distance x to this length with a factor of 2 introduced to
make the resulting equation assume a standard form

S- v (6)

The conjecture is that the field intensit found at x = x, when the elapsed time from turn-on is t' = t 1
will be the same at time t where x = xl't/tl. Evaluation of the derivatives in Eq. 3 justifies the
supposition by converting the equation to

d2H dH
+ 2 d _ = 0 (7)

In spite of the coefficient that depends on 5, this equation has a simple solution satisfying the bound-
ary condition Hy( = 0) = Ho,

2
H = H[l1 + erf(S)]; erf _ 2 J e• dý (8)

as can be seen by direct substitution. The error function,2 erf(E), is normalized so that erf(E) - -1
as E + -

In applying Eq. 8, it is necessary to distinguish between regions I and II of the y-t plane,
Fig. 6.9.1b. In region I, the elapsed time since turn-on of the field is simply t'=t. Hence, Eq. 8

1. See H. H. Kolm and R. D. Thornton, "Electromagnetic Flight," Sci. American 229, 17-25 (1973).

2. Jahnke-Emde-Losch, Tables of Higher Functions, McGraw-Hill Book Company, New York, 1960, pp. 26-31.
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Fig. 6.9.3. Diffusion into moving conductor of magnetic field generated by current sheet Kz=-Ho

to right of y = 0 backed by highly permeable material and turned on when t = 0. Field
has stationary profile to left of y = k = Ut and profile that is independent of y but in-
creasing its penetration with time to right of y = Ut. The plots show penetration of field
at y = 0.25k and y = E with Rm .ioUe = 100. Note that magnitude of Hx is much less than H y

with ý defined by Eq. 6 with t' + t gives the x-t dependence of Hy. The plot of Hy for y = Z = Ut in
Fig. 6.9.3 illustrates the x-t dependence implied by the similarity solution. Region I is to the right
of this location, so to the right the field is independent of y and increasing its depth of penetration
with time.

In region II, between the leading edge and y = Ut, the. elapsed time t - to follows from Eq. 4b as
t' = y/U and hence from Eq. 6

x iaU
iVy

With this parameter used in Eq. 8, it is clear that the field in region II is stationary, with the role
of t replaced by y/U. Thus, in region II, the boundary layer grows in thickness with increasing y but
remains constant in thickness at a given y. As time progresses, the front between the stationary field
of region II and the temporally evolving field of region I moves to the right so that finally the sta-
tionary condition prevails. Of course, at some distance Z, the depth of penetration may be large
enough to bring the finite thickness of the conductor into play. Alternatively, the length k may reach
the length L of the structure used to impose the field. In this latter case, a second boundary layer
could be used to describe the field decay for y > L. The simple causal relation between excitation and
downstream response can be traced to there being no longitudinal diffusion included in the boundary-
layer model. There is no bow-wave in front of the leading edge and conditions downstream from the
region of interest have no influence.

Normal Flux Density: To find the drag force on the conducting layer, the distribution of Bx is
required. With Hy given by Eq. 8, it follows from Eq. 2 that

0 ; y > Ut
ýB
x

x2 qaU (10)
*ýx PH o IJH L a

xe ; 0 < y < Ut
Y
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.Holdiný y constant, this expression is integrated from x = -m (where Bx must vanish) to x to obtain

(fxe-ax dx = e-ax2dx2

0 ; y > Ut

x _2 (11)
Bx V {je-- ; 0 < y < Ut

This distribution of B, is also sketched in Fig. 6.9.3. Note that at the conductor surface, B =
oV/-Ai, where the magnetic Reynolds number R, = paUy x 

is based on the distance from the leading edge.
The boundary layer model is only valid if Am << y, and in Region II this is equivalent to Rm >> 1.
Thus, in. the boundary layer approximation, Bx is much less than pHo . As the boundary layer thickens
in region II, the total magnetic flux in the y direction (which is proportional to pHoAm) increases.
Thus there must be a flux of Bx into the boundary layer from across the conductor surface and this is
why a positive Ho implies a negative Bx.

Force: To find the total force on the conductor, the Maxwell stress is integrated over a surface
enclosing the conductor and passing between the conductor and the structure in the x = 0 plane. The
only contribution to the integration comes from this latter surface. Thus, the x-directed force on the
conductor (the negative of the force tending to levitate the structure)due to a structure of length L
and width w in the z direction is

f =w x 1 ( H ) dyo 2 x y (12)

In the boundary layer approximation, Hx<<Hy. Therefore, consistent with this approximation is a normal
force that is simply the product of the area of the conductor exposed to the magnetic stress and (½ poH20).

Because region I has Bx 0 and hence no shear stress, the force in the direction of motion is
simply

fy =w [BxHy]x=0dy -2Ho U (13)

During the turn-on transient this drag force increases in proportion to k = Vj' until X reaches the
full length L of the structure. Thereafter, the force is constant, given by Eq. 13 with k = L. With
Rm again defined as Rm = PoUL, this steady-state force can also be written as

f = -2UH 2 Lw/-RR (14)

to make it clear that the final drag force is inversely proportional to the square root of the magnetic
Reynolds number based on the length of the interaction region. From Eq. 14 it is clear that in the
boundary layer limit, only a small fraction of the available magnetic stress, 11oH2, contributes to the
drag force.

6.10 Temporal Modes of Magnetic Diffusion

Temporal transients initiated from a state of spatial periodicity are introduced in Sec. 5.15.
Just as that section revisited charge relaxation examples treated under sinusoidal steady-state con-
ditions earlier in Chap. 5, this section returns to the configurations considered in Secs. 6.4 and 6.6.
Analogies and contrasts between natural temporal modes of magnetic diffusion and charge relaxation are
drawn by comparing the two magnetic configurations of this section to the corresponding electric pair
from Sec. 5.15. It will be seen that there is a rather complete analogy between the thin sheet models.
However, whereas a smoothly inhomogeneous conductor is required to give rise to an infinite set of
natural modes in the charge relaxation bulk conduction model, here a uniform conductor is found to
involve an infinite set of natural modes of magnetic diffusion.

Thin-Sheet Model: The natural frequencies for the system shown in Fig. 6.4.1 are given by setting
the denominator of Eq. 6.4.6 equal to zero with jW + sn:

D(-jsn,k) = sinh kd(-j + Sm coth kd) = 0 (1)

Secs. 6.9 & 6.10 6.26



Only Sm+ - Sm is considered in this expression because, in Eq. 1, k can be
negative as well as positive. Solved for sn, Eq. 1 becomes

s = +jkU -

( 
(T tanh(kd)

ks/

The thin-sheet model implies a single natural mode having a damping part
determined by the effective "L/R" time constant [(oas/k tanh(kd)] and an
oscillatory part caused by the relative motion of the conductor through
the spatially periodic fields. Note the complete analogy between Eqs. 2
and 5.15.6. In the air gap, the single eigenmode, A(x), associated with
the eigenfrequency given by Eq. 2 is of thq form of Eq. 2.19.3 with the
coefficients adjusted to make the slope, dA/dx, zero at the stator surface Fig. 6.10.1. Sheet model
(Hy = 0) and to make A continuous at the sheetAsurface. Because the normal eigenmode.
flux density is continuous through the sheet, A(x) is essentially uniform
over the sheet cross section. This is consistent with HV (which is proportional to dA/dx) being zero on
the surface of the highly permeable rotor next to the conducting sheet. The distribution of A(x) is
therefore given by

SIA cosh k(x-d); 0 < x < d

(3)Ainside sheet
A ; inside sheet

which is sketched in Fig. 6.10.1. The significance of the thin-sheet model is further appreciated by
considering the higher order modes which it does not embody.

Modes in a Conductor of Finite Thickness: For the same conductor air-gap configuration, but with
account taken of the conductor thickness, consider now the temporal modes implied by Eq. 6.6.9:

D(-jsn,k) = sinh kd(- _- coth ya + coth kd) = 0
nY o

The frequency enters in this expression through the parameter Yn, defined according to Eq. 6.5.5 by

= 2yn %/k + jao(-js n - kU)

In general, solution of Eq. 4 involves finding the complex roots sn that make the real and imaginary
parts of D(-js ,k) = 0. Because an enters only through yn, it is convenient to find the roots, Yn, and
then use Eq. 5 to find the implied roots sn. Fortunately, an infinite number of roots, Yn, are purely
imaginary, as can be seen by recognizing that coth u = jcot ju so that Eq. 4 becomes

cot(jyna) "o coth kd

1 kajyna 

What is on the right in this expression is independent of (jyna)(and hence the frequency) and is real.
Provided that (jyna) is real, what is on the left is also real. Hence, a graphical solution for the
roots appears as shown in Fig. 6.10.2, where three of the roots Jyna = Bna (n = 0,1,.2) are shown. Given
the geometry and the layer permeability, which determine the right-hand side of Eq. 6, these roots are
a set of numbers which can be inserted into Eq. 5 (solved for Sn) to determine the associated eigen-
frequencies:

1 2 [(B a)2s = jkU - + (ka) 2]n U 'n

Thus, there are an infinite number of modes, each having its own characteristic dependence on the
transverse coordinate x. In terms of the vector potential A(x), Eq. 6.6.15 gives this dependence in
the air gap, but this distribution is best found by simply adjusting the origin Rf the x coordinate so
that a single hyperbolic function suffices to assure dA/dx = 0 at x = a + d and A = Ac at x = a:

-ic cosh k[x (a + d)] a+d>x>an cosh kd

n
cosh ynx cos[ [n a (-)x

A =c ; a > x > 0n cosh ya n cos a an 
n

The three eigenvalues found graphically in Fig. 6.10.2 are used to plot the eigenfunctions of Eq. 8 in
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Fig. 6.10.2. Graphical solution for eigenvalues (jyna) satisfying Eq. 6. Inserts show associ-
ated eigenfunctions, A(x), with ka = kd = 1 and P/io = 1. Roots shown are Boa = 0.776,

La = 3.364 and B2a = 6.401.

the inserts to Fig. 6.10.2. Note that the n = 0 eigenmode approximates the sheet mode, Fig. 6.10.1.

Formally, the n = 0 mode becomes the thin-sheet mode in the limit of "small a." First, this means
that Iyal << 1, so that cot u + 1/u, and Eq. 6 can be solved approximately to obtain

(Y a)2 = - ka tanh kd (9)

Thus, the n = 0 eigenfrequency follows from Eq. 7 as

S jkU ka 2 tanh kd + ka) (10)

n pa o

If the second term in brackets can be dropped compared to the first, Eq. 10 indeed reduces to the eigen-
frequency for the thin-sheet model, Eq. 2. Provided that (p/po)tanh kd is of the order of unity or more,
this condition is met if ka << 1. This is the second condition to validate the thin-sheet model. Note
that the two conditions for the thin-sheet model to approximate the lowest mode are just those given by
Eq. 6.6.13.

An important proviso on the use of the thin-sheet model is apparent from these deductions. Unless
the air gap is large compared to the sheet thickness, Eq. 10 does not follow from Eq. 9 and the thin-
sheet model is not meaningful. In physical terms this is true because, in the model, magnetic energy
storage within the sheet is ignored. To be meaningful, the sheet model must be incorporated into a
system that allows for energy storage outside the sheet volume. In this example, that region is the
air gap.

The general effect of decreasing the air gap can be seen from Fig. 6.10.2. As d is reduced,
coth kd + - and the horizontal curve moves upward. Thus, decreasing the gap decreases the values of

Bo**B* to the asymptotic roots ni,n = 0,1,*... It follows from Eq. 7 that reducing d results in a
decrease in the damping, in an increase in the time constant for decay of the sheet currents. This is

reasonable, because the reduction in gap width results in an increased inductance for current loops

in the y-z plane. Note that the n = 0 mode has an eigenvalue Bo that approaches zero as the gap is
reduced. Hence, in Eq. 7, the term ka (which represents the energy storage within the sheet) must be

retained. In the n=o mode, electrical dissipation is in the sheet while magnetic energy storage is

largely in the gap. In the higher order modes, energy storage in the conducting layer is appreciable.
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Orthogonality of Modes: Given an initial distribution of currents in the conducting layer, the
eigenmodes can be used to represent the resulting transient. More generally, the modes play the role
of the homogeneous solution in describing the response of a system to spatially periodic excitations,
as described in Sec. 5.15. This homogeneous solution is the superposition of the eigenmodes

Jz = Z n(x)ekY en (11)

The process by which the amplitudes Jn(x) are determined, given the initial conditions, is similar to
that for a Fourier series. But, because the eigenmodes do not satisfy simple boundary conditions, it is
not clear that these modes are orthogonal, in the sense that

Jn dx = (12)0, n 0 m 
o

A proof that Eq. 12 is in fact valid follows from the differential properties of n*. The equation
governing the current density modes follows from Eq. 6.6.16:

z  1 d2  k2 1 (13)

z \dx2

which is applied to Eq. 6.5.5 to see that

d2^
n 22

dx2  n SYn n = 0 (14)

3Now, Eq. 14 is multiplied by another eigenmode, m, and the result integrated over the cross section of
the conducting layer. The first term can be integrated by parts to generate terms evaluated at the con-
ductor surfaces and an integral that is symmetric in m and n:

A a a A A

dJ 
J 

dJ n 2A A

Jm dx dx dx + YJ n nJmJ )dx=0 (15)
o

These same steps can be carried out with the roles of m and n reversed, and if the resulting expression
is subtracted from Eq. 15, an expression is obtained that begins to look like Eq. 13:

[m 
dJ dJ I n m • Y  . 2 a a ^ ^
d- J = ( - Y) J J dx (16)
dx n dx n n m'i nm(1

In the usual orthogonality condition (for example Eq. 4.5.28) homogeneous boundary conditions apply at
the extremes of the interval. Here, the nature of the fields in the air gap must be considered to see
that the left-hand side of Eq. 16 is zero. To express this in terms of A, observe from Eqs. 6.5.5 and
6.6.16 that

J = -(2( ) = -ja(-js - kU)A (17)

d A

S= -jo(-js n - kU) (18)

It follows from this last expression that because Hy = -(l1/)di/dx = 0 at x = 0, the left-hand side of
Eq. 16 evaluated at the lower limit is zero. Using Eqs. 17 and 18, what remains on the left can be
written as

dJ dA dA a
n Jn -dJ a = (-js - kU)(-s m - kU) Am - An-- (19)

Lim dx J n dx n m Wd n dm

That this quantity also vanishes follows from the properties of the gap fields. In the gap, where
Y2 - k2 , Eq. 6.5.2 becomes

d2A
n 2S _ k2A = 0 (20)

dx n
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Following steps analogous to those leading from Eq. 14 to Eq. 16, the field properties represented by
this expression are exploited to show that

F n  - -4] a+d

A m d =0 OA (21)

Because dA/dx = 0 at x = a+d (the highly permeable stator surface), it follows that Eq. 19 vanishes.
So long as sn # sm, Eq. 12 is valid.

6.11 Magnetization Hysteresis Coupling: Hysteresis Motors

Although induction devices of the type discussed in Secs. 6.4 and 6.6 are of the most common
variety, they are particular examples from a class of machines in which sources are induced in the
moving material. A somewhat less common member of the family is the hysteresis motor, known for its
relatively constant torque over speeds ranging from "start" to synchronism.

It is the magnetization that is induced in the rotor of the hysteresis motor, rather than free
current, as in the induction motor. Basic to the advantages of a hysteresis motor is the magnetization
characteristic of the moving member. The currents in the induction machine depend on a time rate of
change for their existence. They are rate-dependent, and so the magnitude and spatial phase of the
currents in the moving member, and hence the ponderomotive force, depend on the relative velocity of
material and traveling wave. By contrast, the spatial phase and magnitude of the magnetization induced
in the moving material through a hysteresis interaction tends to be state-dependent.

The quasi-one-dimensional model pictured in Fig. 6.11.1a gives the opportunity to explore the
physical basis for the hysteresis interaction in a quantitative way, but still avoid the extreme
complexity inherent to the complete understanding of a practical device. The model harks back to ones
developed in Secs. 4.12 and 4.13 for the variable capacitance machine. The stator surface current den-
sity, Kz(y,t), is a wave traveling in the y direction. Windings backed by a highly permeable "stator"
structure are perhaps as described in Sec. 6.4. Across the air gap, a, the moving material consists of
a highly magnetized "core" covered by a layer of magnetic material having thickness b, and the magneti-
zation characteristic shown in Fig. 6.11.1b.

As suggested by the permanent polarization interactions of Sec. 4.4, all that is required to obtain
a net force in the y direction is a spatial phase lag between the induced magnetization and the magnetic
axis of the current sheet. This phase delay is provided by the hysteresis, which insures that the
driving current must provide a certain coercive magnetic field intensity before the magnetization can be
reversed.

b
x

(a) (b)
Fig. 6.11.1. (a) Cross-sectional view of quasi-one-dimensional model. (b) Magnetiza-

tion characteristic approximated by hysteresis loop of Fig. 6.11.2.

At the risk of oversimplification, it is helpful to have a specific model in mind when dealing with
the magnetization characteristic. Typically, magnetic materials used in electromechanical devices are
polycrystalline, and can be thought of as composed of randomly oriented magnetlike domains. Application
of a magnetic field intensity tends to align these 4omains, but because of what might be termed a
"sticking friction," there is a threshold value of H at which the domains tend to flip into alignment with
the imposed field. In some materials, complete orientation of the domains is very nearly achieved, once
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this threshold has been exceeded. For that reason,
and because it is then possible to make a relative-
ly simple analytical model, the hysteresis loop is
now approximated by the rectangular loop shown in

Fig. 6.11.2. (To some degree, the characteristic
depends on the rapidity with which the fields vary,
but for present purposes the curve is shown, re-
gardless of time rates of change.) The loop is
double-valued, so the manner of arrival at a given
point must be stipulated. That is, the magnetiza-
tion induced by the applied field depends on the
state of the fields, and not on their rate of
change. But also, it depends in an essential way
on the history of the magnetization.

Because of the highly permeable surfaces
backing the current sheet and the magnetizable
layer, the dominant magnetic field in the gap is
x-directed. Ampere's law in integral form for the
contour Cl of Fig. 6.11.1 shows that

-K Ay = [Ha(y + Ay) - Ha(y)]a
z x x

+ [Hb(y + Ay) - Hb(y)]b (1)
x x

Fig. 6.11.2. Idealization of magnetization char-
In the limit Ay + 0, this expression becomes acteristic showing graphical solution

(a + b)/a = 2.
,Ha aHb 

x x
-K = a + b x (2)
z 3y 3y

The flux density in the x direction is continuous at the air-gap/magnetic-layer interface, so

Ha = Hb + M 
x x x (3)

These last two expressions combine to relate the magnetization and field intensity in the magnetized
layer,

aHb 3M
x x

-Kz =(a + b) + a-- (4)Dy ay

For the present purposes, the surface current density is a given function of y, and so Eq. 4 can be
integrated:

M I _ (a + b) b; I K dy (5)
x a a x z

Under the assumption that steady-state operation implies that neither Mx or Ri have space-average
values, it follows that if I(y,t) is defined as having no space-average value, the integration con-
stant is zero. Because I is then a given function of y, Eq. 5 is a "load line" which can be used with
the magnetization characteristic of Fig. 6.11.2 to graphically solve for (Mx,Hx). For illustrative
purposes, the surface current is taken as a square wave, traveling to the right as sketched in
Fig. 6.11.3a. Although there are no rate processes, it is essential to recognize that, if the moving
member has a velocity less than that of the wave, the current distribution travels from left to right
with respect to the material. The magnetic axis associated with the stator wave is indicated on
Fig. 6.11.3a.

In the graphical solution of Eq. 5 and the magnetization characteristic depicted by Fig. 6.11.2,
begin at point (a), where I/a has its peak amplitude. Because the wave travels from left to right,
the magnetic material experiences a local evolution of I/a that proceeds from right to left on
part (b) of Fig. 6.11.3. Thus, the points (a) - (f) denote the history of the (Mx,Hx ) function in
Fig. 6.11.2, and these points correspond to those indicated in Fig. 6.11.3. The graphical solutions
for the magnetization and field intensity Hx are thus determined to be those shown in Fig. 6.11.3c.
The induced magnetization lags the magnetic axis on the stator. The hysteresis has created the con-
ditions for a force to the right.
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To determine the average force/unit area acting on one wavelength of the moving member, use is
made of the free-space stress tensor. The force density is due entirely to magnetization, and might
be taken as the Kelvin force density, Eq. 3.5.12 of Table 3.10.1, with Jf = 0. However, from
Table 3.10.1, the stress tensor evaluated in free space is the same regardless of the model for the force
density. This stress tensor is now integrated over a volume one wavelength long in the y direction,
with its upper surface at x = 0 and its lower surface adjacent to the perfectly permeable substrate.
Because there is no shear stress on the bottom surface, the average force/unit y-z area is

= o(Hx HT HTyx HaHb (6)

Note that Eq. 6 cannot be completed unless the y component of the magnetic field intensity is
known. Ampere's law in integral form, written for the contour C2 of Fig. 6.11.1a, relates Hy to fields
already determined,

-AyH(x = 0) + b[H(y + Ay)- H(y) ]  0 (7)
y x x

In the limit Ay -+ 0,

Hb
b  x

H = b (8)
y ay

and so Eq. 6 can be written as

aHb
(9)

(T)y = bHa 

b
The componentsof H required to evaluate Eq. 9 are sketched in Fig. 6.11.3d with aH /Dy determined by
taking the derivative of H~ from (c) of that figure, and H~ following from Eq. 3.

It is easy to take the spatial average indicated by Eq. 9, because the net contributions of those
segments indicated in brackets in Fig. 6.11.3d will cancel, and the remaining segments clearly give a
positive contribution. Thus, a space-average surface force density is deduced. It is independent of
the material velocity U, so that the force-velocity curve is as shown in Fig. 6.11.4. Once the material
velocity exceeds that of the wave, the relative direction of the current excitation is from right to
left, and the arguments already outlined lead to an oppositely directed magnetic force.

The simple quasi-one-dimensional model
illustrates why a hysteresis "torque-speed"
characteristic gives a torque that tends to be
independent of speed. The induced magnetization
has an effect similar to that of permanent magnets,
with the desired phase relationship between imposed
magnetic axis and material magnetization determined
by the history of the rotor as it is magnetized by
the stator current.

For design purposes, a more complete represen-
tation of the rotor material would be desirable,
although attempts to make use of analytical models
in dealing with hysteresis motors are not numerous.

Fig. 6.11.4. Dependence of magnetic surface force
density on speed for a hysteresis-type
device.

1. M. A. Copeland and G. R. Slemon, "An Analysis of the Hysteresis Motor: I - Analysis of the Idealized
Machine," IEEE Trans. on Power Apparatus and Systems, Vol. 82, April 1963, pp. 34-42, and II - "The
Circumferential Flux Machine," ibid., Vol. 83, June 1964, pp. 619-625.
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Problems for Chapter 6

For Section 6.2:

Prob. 6.2.1 Consider the configuration described in Prob. 2.3.3. In the MQS approximation and at low
frequencies the configuration can be represented by an inductance in series with a resistance. Because
the current is distributed, and in fact essentially uniform and x-directed, how should the inductance
be computed?

(a) One method uses the field in the zero frequency limit to determine the magnetic energy density,
and hence by integration the total stored energy. This is then equated to ½Li2 to obtain L. Use
this method to find L and show that it is 1/3 of the value for electrodes without the conducting
material but shorted at z = 0.

(b) Now, consider an alternative approach which considers the fields as quasistatic with respect to
the magnetic diffusion time o1M. In terms of the driving current, find the zero order fields as
if they were static. Then, from Eq. 6.2.7 find the first order fields that result from time varia-
tions of the zero order field. Evaluate the voltage at the terminals and show that it has the form
taken for a series inductance and resistance.

For Section 6.3:

Prob. 6.3.1 Show that Eq. (b) of Table 6.3.1 describes the rotating cylindrical shell shown in that
table.

Prob. 6.3.2 Show that Eq. (c) of Table 6.3.1 describes the translating cylindrical shell shown in
that table.

Prob. 6.3.3 Show that Eqs. (d) and (e) of Table 6.3.1 describe the rotating spherical shell shown in
that table.

Prob. 6.3.4 If a sheet is of extremely high permeability, the normal flux density Bn is not continuous.
Consider the sheets of Table 6.3.1 in the limit of zero conductivity but with a very high permeability
and show that boundary conditions are

nx H = 0; A=(V & H) + [[B = 0

These boundary conditions are appropriate if wavelengths in the plane of the sheet are long compared to
the sheet thickness. Thus the boundary condition can be used to represent a thin region that would
otherwise be represented by the flux-potential transfer relations of Sec. 2.16. To see this connection,
show that for a planar sheet, the above boundary condition can be written as

Ak 2 2 + Bix 0

Take the long-wave limit of the transfer relations from Table 2.16.1 to obtain this same result.

Prob. 6.3.5 In the boundary conditions of Table 6.3.1 representing a thin conducting sheet, Bn is
continuous while the tangential 1 is not. By contrast, for the condition found in Prob. 6.3.4 for a
highly permeable sheet, Bn is discontinuous and tangential H is continuous. What boundary conditions
should be used if the sheet is both highly permeable and conducting? To answer this question it is
necessary to give the fields in the sheet some dependence on the normal coordinate. Consider the
planar sheet and assume that the fields within take the form

)  B Bb + (B - H = Hb + (Ha - Hb
x x A x x y y A y y

Define <A> = (Aa+Ab)/2 and show that the boundary conditions are

AV >nIB <H >+ = 0

and Eq. (a) of Table 6.3.1 with B + <B >.
x x
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For Section 6.4:

Prob. 6.4.1 A type of tachom-

magnet
a permanent 

employing eter -t--- - lo in a -ermanent ma ·-- ~-net
is shown in Fig. P6.4.1a. In the
developed model, Fig. P6.4.1b, the
magnetized material moves to the
right with velocity U so that the
magnetization is the given func-
tion of (y,t). M is a given
constant. The thickness, a, of
the conducting sheet is small
compared to the skin depth.
Find the time average force per
unit y-z area acting on the con-
ducting sheet in the y direction.
How would you design the device
so that the induced force is pro-
portional to U?

Fig. P6.4.1a Fig. P6.4.1b
Prob. 6.4.2 Use the electrical
terminal relations derived from the model, Eq. 6.4.17, to show that the equivalent circuit of Fig. 6.4.3
is valid.

Prob. 6.4.3 For the developed induction motor model shown in Fig. 6.4.1b, the time average force in
the direction of motion is calculated. In certain applications, such as the magnetic levitation of
vehicles (see Fig. 6.9.2), the lift force is also of importance. Find the time average lift force
on the stator, <fx>t, with two phase excitation. With single phase excitation, sketch this time
average lift force as a function of Sm and explain in physical terms the asymptotic behavior.

Prob. 6.4.4 The cross section of a rotating induction machine is shown in Fig. 6.4.1a. The stator
inner radius is (a), while the rotor has radius (b) and angular velocity Q. The windings on the stator

have p poles and two phases, as in the planar model developed in the section. For two phase excitation,
find the time average torque on the rotor, an expression analogous to Eq. 6.4.11. Define 0 as the
clockwise angle from the vertical axis in Fig. 6.4.1a.

Prob. 6.4.5 For the rotating machine described in Prob. 6.4.4, find the two phase electrical terminal
relations analogous to Eq. 6.4.17. Determine the parameters in the equivalent circuit, Fig. 6.4.3.

Prob. 6.4.6 This problem is intended to illustrate the application of the boundary conditions for a
thin sheet that is both conducting and highly permeable, as in Prob. 6.3.5. In the plane x=0 there is
a surface current density Kf = izRe Ko exp j(wt-ky). The region x < 0 is infinitely permeable. In the
plane x=d, a sheet of thickness A, permeability p and conductivity a moves in the y direction with
velocity U. This sheet can shield the magnetic field from the region x > d either by virtue of its
conductivity or its magnetizability. Find the magnetic potential just above the sheet (x=d+). Con-
sider p + po and show that for iooA(w-kU)/k large, the field is excluded from the region x>d. Simi-
larly, take a + 0 and show that if kA(f/po) >>I, shielding is obtained. Show that the effect of the
permeability is to reduce the effectiveness of conduction shielding. In qualitative physical terms,
why is there this conflict between the two types of shielding?

Prob. 6.4.7 A linear induction machine has the configuration of Fig. 6.4.1. However, the stator
winding has a finite length k in the y direction. Thus the stator surface current is

Ks = [u 1 (y)-u 1 (y-k)] Re K exp j(wt-Sy)

Thus, the "stator" might be attached to a vehicle (such as that shown in Fig. 6.9.2) and the conducting
sheet and magnetic backing might be the "rail." Using the approach of Sec. 5.17, show that the time

average force exerted on the rail is

-<oK2w H IKol Sm sin [(k )P,]dk
<f > =

w __ _ _ (k-_)___ __2 

z t (k-)2sinh2 kd(l + S2 coth2 kd)
m

where S = I a (w-kU)/k.
m Os
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Prob. 6.4.8 The induction machine rotor is a useful model for understanding phenomena observed if
liquid metals are stressed by a-c magnetic fields. Motions of the liquid result from a competition of
viscous and inertial forces with those from the magnetic field. Instability can result from the effect
of the motion on-the field. To illustrate, consider the single phase excitation of the configuration
shown in Fig. 6.4.1. The "air gap" is filled with a liquid having viscosity 1. Under the assumption
that the flow in the gap resulting from the relative motion of the rotor and stator is fully developed
and laminar, the viscous stress acting to retard the motion of the rotor is given by Eq. 7.13.1. As the
magnetic field intensity Ho E Naia is raised, there is a threshold at which the rotor spontaneously moves
in one direction or the other. Write the condition for this instability in terms of the dimensionless --

numbers kd, RM (product of frequency and magnetic diffusion time) and TMV (TMV 2 n/oHo, the magneto- -V

viscous time as defined in Sec. 8.6). Mh 0

For Section 6.5:

Prob. 6.5.1 Carry through the steps of Eqs. 6.5.8 - 6.5.10 leading to the transfer relations for
rotating cylinders. Check relations (c) and (d) of Table 6.5.1.

Prob. 6.5.2 Carry through the steps beginning with Eq. 6.5.13 and leading to the transfer relations
(e) and (f) of Table 6.5.1.

For Section 6.6:

Prob. 6.6.1 The rotor of an induction motor has finite
thickness. Dimensions are defined in Fig. P6.6.1. The
stator windings have p poles and two phases, the circular
analogue of the windings for the developed model of
Sec. 6.4. Hence the stator surface current distribution
is the circular analogue of Eq. 6.4.1. Find the time
average torque on the rotor.

Prob. 6.6.2 An induction machine is used to propel a
circular cylindrical conductor in the longitudinal direc-
tion z. The "stator" consists of circumferential wind-
ings at the radius (a) surrounded by an infinitely perme-
able magnetic material in the region r > a. The material
being propelled is coaxial with this structure and is of
radius R, conductivity a and permeability p. Thus, there
is an annular air gap of thickness a-R. The conducting rod
has a velocity U in the z direction.

(a) The stator windings are in a three phase configuration
driven by the three phase currents (ia, ib, ic ). Thus Fig. P6.6.1
the surface current on the stator structure is

Ke = Re[iaeJW a cos(k) + bbetNb cos(kz- 2 ) + ic jtNc cos(kz T)]

Represent this driving surface current in the form

j 
K = Re [i e j ( wt-kz) + As e (wt+kz)]

0 

and identify K and K in terms of the terminal currents, turns per unit length Na, Nb, Nc, etc.

(b) Find the time average longitudinal force <f >t acting on a length of the rod.

Prob. 6.6.3 A linear induction machine has the configuration of Fig. 6.6.1, except that the stator
surface current spans a limited length £ in the y direction. The driving current is

K = [u 1 (y)-u_ (y-i)] ReK exp j(wt-by)

Use the approach illustrated in Sec. 5.17 to show that the total force on the conducting slab and its
highly permeable backing is
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Prob. 6.6.3 (continued)

wliK + j sin [(k ]dk
<f > = Re2 k

y t Y  (k-B)2 sinhj kd[• coth ya + coth kd]
-· Y 1o

where ay = /(ak) 2 + j SM, SM E a2 (c-kU)

For Section 6.7:

Prob. 6.7.1 The conducting layer of Fig. 6.7.1 represents the only lossy element in a linear induction
machine. Arrangement of air gaps and magnetic materials is arbitrary. Special cases are the configura-
tions of Fig. 6.4.1 and 6.6.1. Stator windings impose a pure traveling wave having phase velocity w/k
in the y direction. With Pm and Pd defined as the time average mechanical power output and electrical
dissipation, respectively, the electrical power input is Pm + Pd. Show that the efficiency, Eff

Pm/(Pm+Pd), is U/(W/k). Define the "slip" by s E [w/k)-U)]/(m/k), and show that Eff = 1-s.

Prob. 6.7.2 In terms of the same variables as used to express the time average force (Eq. 6.6.10),
determine the time average electrical dissipation for the induction machine of Fig. 6.6.1.

For Section 6.8:

Prob. 6.8.1 A high frequency magnetic field is used to raise
a liquid metal against gravity, as shown in Fig. P6.8.1. The
skin depth is short compared to other dimensions of interest.
Express the magnetic surface force density acting on the
interface at the right in terms of the power dissipated in
the liquid. What is the height E as a function of the power
dissipated? (See Section 7.8 for the modicum of fluid statics
needed here.)

For Section 6.9:

Prob. 6.9.1 Carry out the similarity transformation con-
verting Eq. 6.9.3 to Eq. 6.9.7.

Prob. 6.9.2 A container holds a layer of liquid metal
having depth b and length £, as shown in Fig. P6.9.2.
The system extends far enough in the z direction that it
can be regarded as two-dimensional. At a distance h(y)
above the interface is a bus-bar. Alternating current
passes through this bar in the z direction and is returned
through the liquid metal in the opposite z direction.
Because the skin depth in both conductors is short com-
pared to h(y) and b, magnetic flux is essentially ducted
between the bus and the liquid metal, as sketched. The
field throughout the air gap therefore has the same tem- Fig. P6.8.1
poral phase. In the sairit of a quasi-one-dimensional
model, in the air gap P has the zero order dependence Hy = H a/h, where Ho = Re Ho exp(jwt) is the field
intensity at the left where y = 0. The slope of the bus, dh/dy, at y = 0 is given as S.

(a) Find Hy in the skin region of the liquid using the boundary layer model, Eq. 6.9.1. Assume that

the fluid velocity has a negligible effect.

(b) Use the divergence law, Eq. 6.9.2, to approximate the normal flux density at the interface.

(c) Find the time average magnetic shearing surface force density acting over the thin skin layer.

- .
(d) Show that if this quantity is to be independent of y, the bus gegmetry must be h = a[l - 2S(y/a)]

(e) Show that this uniform surface force density is

<T >t IoH S 6
yt 4a o0
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Prob. 6.9.3 For the configuration described in Prob. 6.9.2,

l

find the total power dissipatio 

X
Prob. 6.9.4 For the configuration considered in this sec- S.. . .:

tion, the magnetic structure has a total length L. As a
† † † † † † † † . † † † † . † † (Y).

function of time and y, compute the power dissipation in I
the conductor. What is the total power dissipation? a 7... . . .. ... .

.. . . . . . .. . . . . . . .: . . .t. . .·-- . . . .

.. . . . . . . . . .. . . . . . . . . ..

For Section 6.10: . . . . . .. . . . . . .. . . . . . . . . . . . *

Fig. 6.10.1 A uniformly conducting slab of thickness 2a Fig. P6.9.2
and permeability 1 moves in the z direction with velocity
U. To either side of the slab are air gaps of thickness d backed by infinitely permeable materials.
Thus, half of the system is like that of Fig. 6.6.1 for x > 0, with x=0 a plane of symmetry. Because
of the symmetry, temporal modes can be divided into those that are even and odd in Hy. Show that the
odd modes are represented by Eq. 6.10.6. Find the analogous expression for the even modes, representing
the graphical solution by a sketch similar to that of Fig. 6.10.2.

Prob. 6.10.2 A uniformly conducting circular cylindrical shell has outer radius a and inner radius b
and spins about the z axis with angular velocity 0. The regions outside and inside the shell are filled
by infinitely permeable material. The system is long in the z direction compared to the outer radius a.
However, the distance a-b is not small compared to the outer radius a.

(a) Find eigenfrequency equations from which the frequencies of the temporal modes can be determined.
(The expression can be factored into two somewhat simpler expressions that define two classes of
modes.)

(b) Define as a parameter the ratio b/a, and ya : /japa2(-Q) as another parameter representing the
frequency. Describe how you would solve for the eigenfrequencies.

Prob. 6.10.3 A spherical shell has radius R and spins about the z axis with angular velocity 0. It
has a surface conductivity as and is filled with an insulating material having permeability p.
(a) Starting with the boundary condition, Eq. (d) of Table 6.3.1, find the temporal modes.

(b) Find the decay time resulting if a uniform external field directed along the z axis is suddenly
turned off.

(c) What is the frequency .of the temporal transient if a uniform field perpendicular to the z axis is
suddenly turned off?

Prob. 6.10.4 For the configuration described in Prob. 6.6.2, the excitation is suddenly turned on or
off. The resulting transient is initiated with the same k as imposed by the excitation.

(a) Find the transcendental equation that determined the eigenfrequencies of the temporal modes.

(b) Outline a procedure for numerically determining the eigenfrequencies. (Hint: Is it plausible that
an infinite number of roots exist where the frequency measured in the frame of reference of the rod
is purely imaginary?)

Prob. 6.10.5 In a configuration that generalizes that of Fig. 6.6.1, the entire region 0< x< a+d is
filled by a nonuniform conductor having conductivity o(x) and velocity I=U(x)ly. Note that the uniformly
conducting material partially filling the air gap and suffering rigid-body motion is a special case.
Start with Eq. 6.2.6, keeping the x dependence of a and U so that the expression is valid over the
entire range of x. Show that the amplitudes n of the vector potential modes satisfy an orthogonality
condition which is Eq. 6.10.12 with Jn -/(3) An.
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7.1 Introduction

The following. chapters carry the subject of continuum electromechanics to its third level. Not
only do the field sources assume distributions consistent with deformations of the support medium, the
medium is itself free to respond to the associated electromagnetic forces. For gases and liquids, as
well as fluid-like continua such as certain plasma models and electron beams, this response must be con-
sistent with the mechanical laws and relations now derived. The role of this chapter is the mechanical
analogue of the electromagnetic one played by Chap. 2.

The chapter is organized so that Secs. 7.2-7.9 are sufficient background in incompressible inviscid
fluid mechanics to proceed directly with related electromechanical studies. An even wider range of elec-
tromechanical coupling mechanisms than might be imagined at this point are tied to fluid interfaces.
This makes fluid interfaces (Sec. 7.5), surface tension (Sec. 7.6) and jump conditions (Sec. 7.7) ap-
propriate for early discussion.

Compressibility and related acoustic phenomena are taken up in Secs. 7.10-7.12. Then, contribu-
tions of fluid friction, the consequence of fluid viscosity, are taken up in Secs. 7.13-7.17. The
resulting Navier-Stokes's equations are summarized in Sec. 7.16.

Overlaying the derivation of the laws of fluid mechanics is the development of relations that play
a role in the following chapters for describing the continuum mechanics that is analogous to that for
the electric and magnetic transfer relations in the preceding chapters. Transfer relations describing
an incompressible and inviscid inertial continuum (Sec. 7.9) will be used many times. Also for future
reference are the relations of Sec. 7.11, which embody the acoustic phenomena associated with compres-
sibility, those of Sec. 7.19, which establish the interplay between viscous and inertial effects, and
of Sec. 7.20, which describe "creep flow," in which fluid friction overwhelms inertia.

Viscous diffusion, the diffusion of vorticity, has considerable analogy to magnetic diffusion.
Thus, the studies of Chap. 6 are a useful background for understanding the interplay of inertia and fluid
friction.

This chapter is largely concerned with general laws and relations. The chapters which follow make
extensive use of these results in specific case studies.

Chapter 2 begins with a discussion of the two quasistatic limits of the general laws of electro-
dynamics, identifying rate processes brought in by electrical dissipation in each of these approxima-
tions. This chapter ends with a similar discussion.

7.2 Conservation of Mass

With the mass per unit volume of a continuous medium defined as p, a statement of mass conservation
for a volume V of fixed identity is

d f pdV = 0 (1)

Here, the volume V is defined such that it always encloses the same material. The surface S enclosing
the materials therefore moves with the material, and the velocity v is the velocity of surface and mate-
rial alike.

With the integral theorem of Eq. 2.6.5, it is possible to express Eq. 1 as the integral form of
mass conservation:

t (2)dV + pv.nda = 0 
V S

Written in this form, the law applies for V and S either fixed or enclosing material of fixed identity.
Using Gauss' theorem, the surface integral can again be expressed as a volume integral, so that the equa-
tion involves one integral over the volume, V. Because V is arbitrary, it follows that the integrand
must vanish:

pV.~= Vp+ 0 (3)
Dt

This is the required differential law of mass conservation.

Incompressibility: If fluid motions are typified by times that are long compared to the transit
time of an acoustic wave through a length typifying the system, for important classes of flows the mass
density in the vicinity of a given fluid particle remains constant. In view of the definition of the

J
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convection derivative, Sec. 2.4, this means that

0

Dt

For incompressible motions, the mass density evolves much as the free charge density in an insulating

fluid (Sec. 5.10). If fluid particles of interest originate where the mass density is uniform, it

density in the region occupied by this same fluid at a later time is also uniform.follows that the mass 

case.or "uniform" density 
4, p constant, is a special "homogeneous" 

= the solution to Eq. Thus, 

of From Eqs. 3 and 4 it follows from conservation mass that for an incompressible fluid

V*. = 0 (5)

whether the fluid is homogeneous or not.

The quasistatic nature of the incompressible model is investigated in Secs. 7.12 and 7.22.

7.3 Conservation of Momentum

Because momentum is a vector field, rather than a scalar one, it is convenient to deal with its
individual components in Cartesian coordinates. Of course, this in no way restricts the validity of
the resulting equation of motion.

Again, with the understanding that the volume V always encloses the same material, and hence that
its surface deforms with the local velocity of the material, conservation of momentum for the ith com-
ponent is

d vidV = FidV (1)

The integral on the right represents contributions to the total force acting on the volume that
come from the surrounding material (viscous and pressure forces) and from "external" sources, such as
gravity and electromagnetic fields.

Use of the integral theorem, Eq. 2.6.5, gives the integral law for conservation of momentum:

dV + pv.
at 1vnda = FidV (2)S

Gauss' theorem, Eq. 2.6.2, makes possible a conversion of the surface integral to a volume integral:

Jv(- + V.pvi4)dV = FidV 
V at fV I (3)

i

Expansion of terms on the left gives

v[ + + p .vi dV = vFidV (4)

Again, the integrand of the volume integrations collected together must vanish, but note that conservation

of mass, Eq. 7.2.3, requires that the first term in brackets vanish. Thus, the differential law repre-
senting conservation of momentum is

av 4.
p [ + v V =Vv] F (5)

On the left is the time-rate of change of v for an observer moving with the fluid, the convective deriva-
tive as discussed in Sec. 2.4. Even though the mass density appears "outside" the convective derivative,
this equation is valid even if p is a function of space and time.

7.4 Equations of Motion for an Inviscid Fluid

To complete the integral or differential force laws, Eqs. 7.3.2 and 7.3.5, it is necessary to take
account of how the surrounding fluid exerts a force-on the element of interest. This is naturally done
by considering the associated traction exerted on the surface S that encloses the fluid volume V.

In an inviscid (frictionless) fluid, this traction acts normal to the surface and is of the same
magnitude regardless of the local surface orientation. With ii .the local normal vector to the surface,
the traction due to the surrounding fluid is

Secs. 7.2, 7.3 & 7.4



= -pn (1)

where the minus sign is introduced so that the pressure, p, will be a positive quantity. That this
traction is consistent with a stress

Tij = -P6ij

can be seen by substituting Eq. 2 into the relation between stress and traction, Eq. 3.9.5.

The force density associated with this stress is found by taking the tensor divergence of Eq. 2
(Eq. 3.15.1),

F.P= (p6 ) = -
i - x ij xi

With forces such as due to gravity and of electric or magnetic origin represented by the external
force density Pex, the force equation, Eq. 7.3.5, becomes

-+

By DV =
p[-+ + v*~Vv] - + + Vp = Fxe

By way of discussing what is required to complete the formulation of the fluid mechanics, suppose
that Fex is a given driving function. Then, the dependent variables are 4, p and p. For incompressible
fluid, Eqs. 7.2.4 and 7.2.5 are the two additional scalar laws required to describe the fluid mechanics.
Constitutive laws for compressible flows are introduced in Sec. 7.10. Contributions of viscosity to the
stress are taken up in Secs. 7.13-7.16.

7.5 Eulerian Description of the Fluid Interface

In electromagnetic theory, the boundary and the field are easily distinguished. In fluid mechan-
ics, the boundary of a given fluid region may be the interface between two fluids. Then, the boundary
is in fact a part of the fluid and flow is intrinsically linked to a deformation of the interface.

An interface can be represented analytically by

F(x,y,z,t) = 0

That is, of all possible spatial coordinates (x,y,z), at some time, t, only those that make F = 0 com-
prise an interface. Figure 7.5.1 illustrates a particular case where it is convenient to denote the
surface elevation above the y-z plane as C(y,z,t), and

F = - x= 0

In the language of electrostatics, F could be regarded as a surface of zero potential. This observa-
tion is useful, because it is a reminder that the normal vector n to the interface is given by the
geometry of the interface alone, and is

+ VFn =
SVFJ

Fig. 7.5.1. Fluid interface.
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The geometric relation between F and n is the same as that between the electric potential D and the

electric field intensity t. The normal to the interface is the gradient of F normalized to ensure unit
magnitude.

What is the relationship between the interface geometry and the velocity v of the fluid adjacent
to the interface? The interface is presumed to be a surface cut from the total fluid volume and always
composed of the same material particles. Thus, the interface could be distinguished from the remainder
of the fluid by dye markers. As the fluid deforms, it is presumed that the surface remains contiguous.
Dyed particles always have adjacent dyed neighbors within the plane of the interface, and undyed neigh-
bors in the adjacent regions of fluid bulk.

By definition, the convective derivative of Sec. 2.4 is the rate of change with respect to time
for an observer moving with a particle of fluid. By the definition of what is meant by the "interface,"
the rate of change of F for an observer on the interface must be zero. Hence, the required relationship
between the surface geometry and the fluid velocity is

DF DF 
D- 

+
= + v.VF = 0 (4)

on F = 0.

For the particular case illustrated by Eq. 2 and Fig. 7.5.1, this condition requires that on the
surface,

v + v + v (5)
x 9t y yy z 3z

The relation is seen to be physically reasonable by considering limiting situations such as: (a) a flat
interface that moves in the x direction in a time-varying fashion, = E ((t); (b) an interface that is
stationary but deformed, C = E(y,z).

7.6 Surface Tension Surface Force Density

If viewed on a millimeter scale, a liquid can take on many of the appearances of an elastic solid.

As if enclosed by an elastic "skin," drops of water suffer oscillations and capillary ripples have the

appearance of a liquid surface covered by an elastic membrane. Although similar in effect to a membrane

under tension, these attributes of the interface are a consequence of the difference between forces on a

molecule deep within the bulk of a fluid and near an interface. Because of this difference, energy is

required to make an interface between two fluids.

Energy Constitutive Law for a Clean Interface: A clean interface is one made up of molecules from

one or the other of the bulk phases. Thus, there are no molecules attributable to the interface itself

(as for example there are when an interface between water and air is covered by a film of oil). Because

the nature of the interface is therefore completely determined by the bulk phases, it follows that in-

creasing the interfacial area by the increment 6A results in a proportionate increase in the energy Ws
associated with the interface,

6W = y6A (1)

For a given pair of fluids, the surface tension is a constant physical property having the same units as

for the tension of a membrane, newton/m. Typical values are given in Table 7.6.1.

Table 7.6.1. Illustrative values of surface tension.1

Substances Temperature Surface tension
(o C )  (newton/m)

Water/air 18 7.30 x 10- 2

Acetone/air 20 2.37 x 10-2

Nitrobenzene/air 20 4.39 x 10- 2

- 2
Water/Carbon tetrachloride 20 4.5 x 10

Water/mercury 20 3.75 x 10-1

1. Values taken from Handbook of Chemistry and Physics, College Edition, 49th ed., Robert C. West, ed.,

The Chemical Rubber Co., Cleveland, Ohio, pp. F-30-32.
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Surface Energy Conservation: With the objective a relationship between the geometry of an inter-
face and an effective force per unit area Ts acting on the interface, the procedure is now analogous to
that followed in Chap. 3. Instead of an electric or magnetic energy subsystem, energy conservation is
now written for the "surface subsystem." Some external agent used to put an increment of energy into
this system will either increase its stored energy by 6W,, or do work on the external mechanical sub-
system through the agent of a force per unit area Ts displacing an area A of the interface by an amount
6E. Thus,

incremental input of energy = 6Ws + T sA6 (2)

Inputs on the left might come from changing the chemical nature of the bulk fluids. For interfaces of
interest here, there are no such inputs of energy, and Eq. 2 is set equal to zero. The only way in which
W. can be altered is through the mechanical work done by displacing the interface. Thus for a clean
interface, 6Ws is given by Eq. 1,

y6A + Ts A6 = 0 (3)

To deduce Ts from this expression, dA must be related to the surface geometry and hence to 6E.

Surface Force Density Related to Interfacial Curvature: In the
geometric construction of Fig. 7.6.1, the local curvature of the
elemental area A is represented by radii of curvature R1 and R2 , de-
fined for orthogonal directions within the local plane of the inter-
face. To find the change in area 6A, caused by the displacement
6&, note that

A + 6A = (x + 6x)(y + 6y) = xy + y6x + x6y (4)

In addition, the similarity of triangles requires that A

x+ 6x x y+ 6y (5)
R1 + 6E R1 F R2 + 6 R2

which shows that

6x = X 6c; 6y = -L 6 (6)
1 2

From Eqs. 4 and 6, it follows that because xy = A

6A = y6x + x6y = A(6)[ -+ -] (7)
R1 R2

In turn, this result can be substituted into Eq. 3 to give

1 1
[Y + -) + Ts]A = 0 (8) Fig. 7.6.1. Section of interface

1 R2 that suffers perpendicular
displacement 6ý to make new

Because 65 is arbitrary surface 6A.

S R1 2

This surface force density of Young and Laplace2 has been written as a vector which, if positive, acts
in the direction of the normal n. A radius of curvature has a sign that is positive if the associated
center of curvature is in the region from which i~ is directed. If the center of curvature is in the
region into which n is directed, the associated radius is taken as negative.

The implications of Eq. 9 for the static equilibrium of a liquid are illustrated in Fig. 7.6.2.
The pair of glass plates are wetted by the liquid so that the radius of curvature of the interface is
essentially equal to half the local distance between the plates. Thus, where the plates are closest
together the radius of curvature is least and the surfage force density is accordingly largest. Note
that the radius of curvature is also negative, so that Ts acts from liquid to air with a net effect of
making the interface rise between the plates. The height of rise is greatest to the right, where the
plates are closest together. The height of rise, Q(r), is found in Sec. 7.8.

2. A. W. Adamson, Physical Chemistry of Surfaces, Interscience, New York, 1960, pp. 4-6.
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Fig. 7.6.2. Because of surface tension,
fluid wetting pair of glass plates
rises to a height ~(r) determined

.' . by the surface tension y and local

::... ' : ::.~: :',':' .. distance between plates •. Experi~

.: .: :', :.:' ",: :'... :. ~. ., ment from film "Surface Tension in
.' :.: :.: ':',' . Fluid Mechanics" (Reference 9,

Appendix C).

Surface Force Density Related to Interfacial Deformation: Three commonly encountered interfacial
configurations are shown in Table 7.6.2. In "equilibrium," these are respectively planar, circular
cylindrical and spherical in shape. To describe the dynamics of the interface, the surface force density
due to surface tension must be expressed in terms of the perturbation ~ from these equilibria. This
could be done by evaluating Eq. 9, but is more easily accomplished by returning to Eq. 3.

Consider the volume, shown in Fig. 7.6.3, that is "cut out" by the surface segment A as it dis.:;
places an amount c~. For this volume V, enclosed by the surface S having the outward normal vector n 's
Gauss' theorem states that

(10)

The vector Cis arbitrary, and now chosen to be the vector ~
~ ~

normal to the
~

interface (not to the surface. +
S enclosing the volume element). Thus, n =

~
ns
~

on the upper surface but n = -ns on the lower surface.
On the remaining sides, n is perpendicular to ns ' ·It follows that the right-hand side of Eq. 10 is the
re~uired change in area, cA. Because the area A is itself elemental, the left-hand side of Eq. 10 is
V'nAC~ and Eq. 10 becomes

cA
~

= V'nAC~ (11)

n

...
. .: . ~ ... ' :

Fig. 7.6.3

Elemental volume V enclosed
by surface S intersecting
interface between fluids.
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Substitution of Eq. 11 into Eq. 3 gives an alternative expression for the surface tension surface
force density:

+ +4.
T = -y(V.n)n (12)

The use of this expression for relating Is to interfacial deformations, as summarized in
Table 7.6.2, is now illustrated for the cylindrical coordinate configuration. The interface is then
described by

F = r - R - ((6,z,t) = 0

If terms that are quadratic in the perturbation amplitude E are ignored, it follows from Eq. 7.5.3 that
1 is given by Eq. (e) of Table 7.6.2. In turn,

+ 1 1 a• a2 (1)
V.n - - - (13)r r2 82 8z2

Consistent with the small amplitude is the approximation r 1  R - E/R2 . Thus, I is as given by
Eq. (f) of Table 7.6.2. For E = 0, there is an equilibrium surface force density acting radially in-
ward, tending to compress what is inside the surface much as if it were enclosed by a membrane under
tension.

Also summarized in Table 7.6.2 are the complex amplitudes of %s. In the Cartesian and circular
cylindrical geometries these are found by straightforward substitution. However, in the spherical
case, Eq. (k) is obtained by using the fact that Pn is a solution to Eq. 2.16.31a.

7.7 Boundary and Jump Conditions

It can be taken as phenomenologically based fact that there is neither tangential nor normal ve-
locity of a fluid adjacent to a fixed rigid impermeable wall. Thus, boundary conditions for such a wall
are

n.v = 0 (1)

nxv - 0 (2)

where n is the normal to the boundary.

The condition on the tangential component of v results because of the friction between wall and
fluid, i.e., because of the fluid viscosity. If the fluid is modeled as inviscid, it is consistent to
ignore the tangential velocity boundary condition. An inviscid model pictures the fluid as slipping
adjacent to a fixed boundary. The extent of the error is investigated in Sec. 7.18.

The Jump conditions at an interface between fluids are deduced from the integral laws, much as in
Sec. 2.10 for the electromagnetic fields. But, before this can be done, it is necessary to specify the
order of the singularity in mass density, pressure and velocity that is included in the interfacial
model. It is assumed here that there is no surface mass density, that the density takes at most a step
discontinuity. So also does the pressure, and in fact mechanical stresses including viscosity (Sec. 7.15)
are assumed to be at most a step singularity. Because the viscous stresses depend on the spatial rates
of change of the velocity (the strain rates), a self-consistent model for the interface requires that
the velocity be continuous. But, in the inviscid limit, only the normal velocity must be continuous.
That this is all required if the fluids are to have a common surface of demarcation can be seen from the
relation between fluid velocity at the interface and interfacial geometry, Eq. 7.5.4. At a given loca-
tion on the interface, VF has a normal direction. Hence, Eq. 7.5.4 involves only the velocity normal to
the interface. Because the expression must hold whether v is evaluated on one or the other side of the
interface, it is clear that the normal component of v must be continuous:

n. 0 = 0 (3)

Conditions implied by the integral laws f9llow by using the same incremental volume of fixed iden-
tity used for some of the jump conditions in Skc. 2.10 and shown in Fig. 2.10.1. Because there is no
surface mass density, mass conservation, Eq. 7.2.1, is automatically satisfied. Formally, this is seen
from Eqs. 2;10.14 and 2.10.15 by replacing' the free charge density with the mass density.

It is perhaps tempting to require that the mass flux p normal to the interface be continuous.
But, the interface considered here is composed of given fluid particles and deforms with the fluid.

The integral momentum-conservation law, expressed as Eq. 7.3.1, makes it clear that for similar
reasons there is no contribution of the inertia (represented by the left-hand side) to the interfacial
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boundary condition. On the right, those force densities that are spatial impulses (surface force den-
sities) make contributions in the limit A + 0. It is convenient to represent the mechanical and elec-
trical surface force densities by writing them as the divergence of stress tensors, T.j and Te. For
an inviscid fluid, Ti . is -p6ij given by Eq. 7.4.2 while Tý. is one of the tensors summarized n
Table 3.10.1. The coitribution of surface tension has already been written as a surface force density,
Eq. 7.6.9 or Eq. 7.6.12. With the use of the tensor form of Gauss' theorem, Eq. 3.9.4, the integral
momentum law therefore becomes

(Tmj + Te (in) da + (Ts)da = 0 (4)

In the limit where A is incremental, the force (or stress) jump condition results:

STj + Ti 0 nj + (Ts)i = 0 (5)

This expression will be used with viscous fluids as well, but consider its special form for inviscid
fluids and a clean interface so that TTj is given by Eq. 7.4.2 and T5 is given by Eq. 7.6.12:

U e +
Po ni = 0 Tii j nj - y(V.n)n i  (6)

This vector jump condition has three components. Note that the pressure and surface tension contribu-
tions are normal to the interface. This makes it clear that to be consistent with the inviscid and
clean interface model, the first term on the right, the surface force density of electric or magnetic
origin, must also have no shearing components. Electromagnetic properties of interfaces meeting this
requirement are taken up in Sec. 8.2.

7.8 Bernoulli's Equation and Irrotational Flow of Homogeneous Inviscid Fluids

In this section, external force densities take the form of the gradient of a scalar. Examples in-
clude the gravitational force density on a fluid having uniform density p. With g defined as the di-
rected gravitational acceleration and r xlx + yiy + Zz, this force density is

F = pg = V(pgr.) (1)

Note that p must be uniform, or the last equality does not hold.

In general, electric and magnetic force densities do not take the form of the gradient of a scalar
However, in many important situations, they are approximated by such a form. In fact, as illustrated in
Chap. 8, it is often desirable to design a system so that this is the case. Thus, looking forward to
such examples, the force densities of electric and magnetic origin are written as

Fe = -VC (2)

With these contributions to Fex , the force equation, Eq. 7.4.4, becomes

p(- + vV7)~ + Vp = V(pgr - ) (3)

A vector identity* makes it possible to rewrite Eq. 3 in a form that makes evident the contribu-
tion of vorticity V x v, to the dynamics:

av + + 1 ÷ ÷÷
p(-t + W X v) + V(p + I pv'v - pg.r + ) = 0 (4)

Bernoulli's equation is a statement of invariance for a combination of dynamical quantities that represent
the total energy. It is important to recognize that there are two essentially different circumstances
under which similar equations apply. b

(b)

First, consider points (a) and (b) in the flow, as sketched in
Fig. 7.8.1, that can be joined by a streamline (not a particle line C
but rather a line always tangent to the instantaneous velocity vector v). dt
Then, integration of Eq. 4 along the line C gives no contribution from
the second term, which must be perpendicular to the velocity V, and (a)
hence the direction of integration. Further, in view of Eq. 2.6.1,
the remaining terms integrate to Fig. 7.8.1. Points (a) and (b)

are joined by a streamline.

*v.V) +x + + 1) v 
(v)v = (V x v) xv +2 (vv)

Secs. 7.7 & 7.8



b
p d + [p + 1 p*v - Pgr + ]ba = 0 (5)

a

This form of Bernoulli's equation applies to any two points joined by a streamline, regardless of the
flow. Reference 8 of Appendix C gives experimental demonstrations of Bernoulli's law.

Second, consider irrotational flows, defined as having no vorticity, w = 0. Then, it is appropriate
to define a velocity potential 0

v = -V7 (6)

and integration of Eq. 4 between fixed points a and b gives

a0 1 + + t b
[-P + p + 2 pv - pg.r +Ea (7)

This expression is restricted- to irrotational flows, but applies to arbitrary fixed points a and b.

The importance of irrotational flows stems from the theorem on vorticity of Helmholtz and Kelvin.
If at some instant fluid of fixed identity sustains an irrotational flow, then .for this same material the
irrotational condition prevails at a later instant. For example, if the flow was initiated from a static
(and hence irrotational) condition, it must be irrotational.

Proof of this theorem follows by taking the curl of Eq. 4 and observing that the curl of a gradient
is identically zero:

- + V x (wx v) = 0 (8)
4 4

If the vorticity, w, is replaced by the magnetic flux density, B, this expression is the same as that
governing the magnetic field in a deforming perfect conductor, Eq. 6.2.3 in the limit a + -. Thus, the
theorem on flux conservation for a perfectly conducting surface of fixed identity, Eq. 6.2.4, with
a + m, becomes the theorem

d f nda = 0 (9)

The vorticity linking a material surface S as it deforms with the flow is conserved. If there is no
initial vorticity in a given region, the same material will have no vorticity in whatever region it
occupies at a later time.

Conservation of mass requires that the flow be solenoidal (Eq. 7.2.5); this combines with the con-
dition for irrotational flow (Eq. 6) to show that the velocity potential is governed by Laplace's
equation

V20 = 0 (10)

If boundary conditions involve only v (and hence 0), this equation defines the flow distribution. With R.

defined as a function of time alone set by flow conditions at a reference point, the associated pressure
distribution follows from Eq. 7,

aO 1 4+ +-+
p = p -t 2 pv*v + pg*r - G + 1 (11)

Although p is a nonlinear function of the velocity, it can be determined in such a problem "after
the fact," once v has been found by solving a linear problem. That is, Laplace's equation is linear, in
that superimposed solutions are also solutions. But, note that the pressure must be evaluated using the
total velocity. Because Eq. 11 is a nonlinear function of V, the pressure does not satisfy the condi-'
tions for superposition.

The flux potential relations derived in Sec. 2.16 for electric and magnetic cases are equally ap-
plicable here. With the identification Dn/E - vn and 1 - 0, the transfer relations and associated
bulk distributions of Sec. 2.16 summarize solutions to Eq. 10 in Cartesian, cylindrical and spherical
coordinates.

A Capillary Static Equilibrium: The static equilibrium illustrated in Fig. 7.6.2 is described by
combining Bernoulli's equation with the capillary surface force density discussed in Sec. 7.6. The
object is to find the interfacial profile, ý(r), of the water-air interface. Points (b) and (c) are
related by Eq. 7, evaluated with a/at = 0, ÷ = 0,g S=za= -g and = 0:

Sec. 7.8 7.10



= + (12)
PC Pb pgc

3 
where P is the mass density of water. The mass density of the air is 10 times less than that of the

water, so its contribution is ignored in connecting points (a) and (d) via Eq. 7 through the air:

Pa = Pd (13)

These two bulk relations are augmented by boundary conditions that relate the pressures on opposite sides
of the interface. At the bottom of the meniscois, the z component of Eq. 7.7.6 is evaluated. It is as-
sumed that the glass plates are perfectly wetted by the water and that the meniscus curvature is dominated
by variations of the interface in the azimuthal direction. With the shape of the meniscus over the gap
between plates approximated as being essentially circular, the local radius of curvature is approximately
ar/2 and Eq. 7.7.6 becomes

-(P - Pb ) = () (14)

The balance of surface force densities at (c-d), where the interface is flat, shows that

(15)
Pd - Pc = 0 

The pressures can be eliminated by adding Eqs. 12-15 and the result solved for C:

S= ( 1) 1 (16)
apg r

This is essentially the interfacial radial profile shown in Fig. 7.6.2.

7.9 Pressure-Velocity Relations for Inviscid, Incompressible Fluid

Just as the electrical transfer relations introduced in Sec. 2.16 are a convenient building block
for modeling complex systems, the mechanical relations derived in this section are useful in a variety
of mechanical and electromechanical situations. They are restricted to perturbations described by the
inviscid model of Sec. 7.8. The fluid is homogeneous and incompressible so that p is a constant. The
transfer relations relate dynamical perturbations from a stationary equilibrium. In making use of the
relations in a specific problem, it is important to first establish that the stationary (in special
cases, static) conditions are satisfied.

Streaming Planar Layer: Consider first the planar layer of fluid shown in Table 7.9.1, having as
a stationary state a uniform velocity in the z direction. Gravity acts in the -x direction, so g = -g x .The velocity takes the form

v = Ui - VO' (1)z

The equilibrium part has the velocity potential -Uz, which satisfies Laplace's equation, Eq. 7.8.10.
By superposition, the perturbation 0' must also satisfy this equation. Thus 0' is dpscribed by the
same derivation given in Sec. 2.16, Eqs. 2.16.11-2.16.16. With the identification Dx/ - vx and D + 0,
the transfer relations of Table 2.16.1, Eq. (b), become

1 -coth YA v0 sinh yA x
-= I (2)

sinh ya x

Here it is understood that the complex amplitudes represent the perturbation. Because the next
step brings in a time-rate of change, the time dependence has been specified in Eq. 2, as indicated by
replacing - with -. That is,

j(wt-k y-k z) j( t-k y-kzz)
0' = Re O(x)e = Re (x)e + Ue (3)

To linear terms in the perturbations, Bernoulli's equation (Eq. 7.8.11) gives the pressure

p = - U2 - + - pgx + + U )' (4)

In terms of complex amplitudes, this expression becomes

1 2 ^ j(wt-k y-kzz)
p = . - U2 _ f + - pgx + 2 Re p(x)e (5)(5)
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where

p(x) j( - kzU) pe(x) (6)

Note that the first four terms in Eq. 5, the "equilibrium" pressure, are independent of time; but, because
of the gravitational force, this pressure is a linearly decreasing function of altitude, x.

With the understanding that it is only the part of the pressure that is a function of time at a
fixed location (x,y,z) that is being described (the last term in Eq. 5), Eq. 6 is used to write Eq. 2 as
the pressure-velocity relations summarized in Table 7.9.1.

Streaming Cylindrical Annulus: In the cylindrical configuration of Table 7.9.1, the fluid again
assumes a stationary state of streaming in the z direction with the uniform velocity U. However, it is
assumed that the effects of gravity are negligible. The relations summarized in Table 7.9.1 follow by
exploiting the flux-potential relations of Table 2.16.2. The reasoning is identical to that for the
planar relations.

Static Spherical Shell: In the spherical configuration, it is assumed that the fluid equilibrium
is static, so that the perturbation velocity is the total velocity. Also, the effects of gravity are
ignored. Then, the relations summerized in Table 7.9.1 follow from those of Table 2.16.3 using the
reasoning already described.

7.10 Weak Compressibility

To specify the relationship between mass density and the other dynamical variables, it is helpful
to distinguish between those tied to the material and to a given position in space. Thus, a constitutive
law relating mass density to extensive variables, ai, and pressure, p, takes the form

P = P(cal'',am,p) (1)

One of the a's might be a concentration (perhaps of salt in water) or might be the entropy density. In
general, these variables are themselves described by still other laws that bring in additional rate
processes. For example, the molecular diffusion in the face of material convection governs the con-
centrations, while heat conduction and convection determines the distribution of entropy. Coupling to ad-
ditional subsystems is avoided (and hence closure of the laws needed to describe the dynamics obtained) by
taking the ai's as being conserved by fluid of fixed identity. Just as Eq. 7.2.1 then implies Eq. 3, it
follows that

8i . (2)
7-+ V.ai = 0

The pressure is not carried in this fashion by the material. Its role is simplified by confining the
discussion to excursions of pressure that can be described as linear perturbations from a reference
pressure Pr. Thus, Eq. 1 is specialized to

P - P(al,...,,Pr) + (p - pr )  (3)
a

where a, defined by

-1 - = ( P 's - constant (4)

is taken as being independent of p, and is identified in the next section as the velocity of an acoustic
wave.

If coupling to the thermodynamic subsystem were self-consistently included in the model (Sec. 7.23),
it would be found that for processes having rates typical of acoustic applications, it is the entropy
density that is held fixed (possibly along with other a i's) in Eq. 4.

7.11 Acoustic Waves and Transfer Relations

Compressibility gives rise to time delays associated with the propagation of acoustic waves. For
many purposes, acoustic phenomena can be represented in terms of small perturbations from an equilibrium
of uniform density po and pressure po. In most acoustic applications, the equilibrium is also static,
but to be able to represent doppler-related phenomena, included in this section is the possibility that
the fluid streams with a uniform z-directed velocity, U.

The equations of motion that relate perturbations v', p', and p' in the velocity, density, and

7.13 Secs. 7.9, 7.10 & 7.11



pressure, respectively, are conservation of mass and momentum, Eqs. 7.2.3 and 7.4.4 0. with P Written=e
to linear terms in the perturbation quantities, these are

p- + U -)V' + Vp' = 0

(- + U 3z -- )p' + p V-v' = 0tt 0

The equation of state, Eq. 7.10.3, provides the third relation. It follows that

2 ,
p' = a

Typical values of the acoustic velocity, a, as well as the mass density and the acoustic impedance
(to be defined in Sec. 7.13) are given in Table 7.11.1.

Table 7.11.1. Sound velocity, mass density and acoustic impedance for common fluids. 1

The operators in Eqs. 1 and 2 are linear, and have constant coefficients. Thus, the velocity
can be eliminated as a variable between the divergence of Eq. 1 and the convective derivative of
Eq. 2, to obtain

(- + U -)2 ' = a2V2p'
(tt zt

The second convective derivative on the left is the second derivative with respect to time for an ob-
server moving with the velocity U in the z direction. Hence, in that moving frame, Eq. 4 is the wave
equation and shows that waves have the velocity, a, relative to the fluid.

Pressure-Velocity Relations for Planar Layer: In the prototype configuration of Fig. 7.11.1, a
layer of compressible but inviscid fluid fills the planar region between the a and 8 planes.

a 
a)

Fig. 7.11.1.
P^ V \ - - 7

A layer of compressible fluid is bounded
* . .. .. ..... from above and below by surfaces having

... . . . . . the perturbation deflections (a and SB.
The pressures just inside the fluids d-

-b jacent to these surfaces are pa and pP,
respectively.

7 7 7- 7 77 7 7 7 7.7.7·:;~:·:6::
-- --- - -

P1 x,,8
1. L. L. Beranek, Acoustic Measurements, John Wiley & Sons, New York, 1949, pp. 40-46.
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j(ct-k y-kzz)
Solutions to Eqs. 1-4 take the form p' - Re ^(x)e From Eq. 4, it follows that

d _ 2 =
2dx

where
k zU )2

2  2 ( -
Y + ka

y a 2a

pressures at x = a and x = denoted by
is now the same as in Sec. 2.16. With perturbation B 

The p ogram 
(p ,p ), the solution to Eq. 5 is

(x) = sinh yA • a sinh y(x - 8) - p -The copnn x > ofE.1tengvsPa sinh y(x a)] (7)

The x component of Eq. 1 then gives Vx as

x Po ( - kzU) dx

S( - kU) sin cosh y(x - 8) - # cosh y(x - a)}
p o( - kzU) sinh Yd

Evaluation of this expression at x = a gives vx(p ,p ) and at x = B gives v (p p ). This pair of equa-
tions is then inverted to give transfer relations (c) of Table 7.9.1, but wfth y as defined by Eq. 6.

Pressure-Velocity Relations for Cylindrical Annulus: The same arguments as just outlined extend
the cylindrical relations of Table 7.9.1 to include acoustic phenomena. With the substitution
p' = Re A(r) exp j(wt - me - kz), Eq. 4 reduces to Bessel's equation, Eq. 2.16.19, with $-÷P and k2 -Wy2
where

2
2 . k2 (W- kz)

2
a

Thus, solutions for p(r) take the form of Eq. 2.16.25. From the radial component of Eq. 1, ^r is then
evaluated at the a and 8 surfaces. The resulting transfer relations are the same as Eq. (f) of
Table 7.9.1 if the functions Fm and Gm are evaluated replacing k - Y. Because y depends on the layer
properties, these functions are now designated by three arguments. For example Fm(x,y,y) is Fm as sum-
marized in Table 2.16.2 with k + Y.

7.12 Acoustic Waves, Guides and Transmission Lines

In the configuration shown in Fig. 7.12.1, fluid having a static equilibrium is confined between
a rigid wall at x = 0 and a deformable one at x = d + 5. In addition to this transverse drive, a
longitudinal excitation can be imposed at z = 0 and an acoustic load attached at z = £. In this section
it is assumed that all excitations have the same real frequency W and that sinusoidal steady-state con-
ditions are established.

In specific terms, the acoustic response
to the transverse drive demonstrates effects
of compressibility on interactions across a
layer of fluid. The compressible and inertial
quasistatic limits discussed in general terms
in Sec. 7.22, are exemplified by this response.

The eigenmodes of the response to the
transverse drive represent fluid motions •-Z - . R0. . . . . . .
between rigid plates.' The structure is then
a planar acoustic waveguide. In a typical
guide, a source having the frequency w excites
the system at one longitudinal boundary (z = 0)
and a load exists at another (z = £). Both
source and load are often electromechanical. Fig. 7.12.1. Planar region is excited from trans-
If the frequency is lower than cutoff fre- verse boundary at x = d + C. Longitudinal
quency determined in the following, inter-

boundary conditions typically represent a
actions between longitudinal boundaries load at z = £ and a source at z = 0.
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k_2  k., ko  k, k2 k3
kz

Fig. 7.12.2. Regions of w-kz plane characterize x dependence of response to
transverse drive of each Fourier mode as driving frequency is raised.

can be represented in terms of the principal mode. This section carries the associated subject of
acoustic transmission lines far enough to make clear the analogy with electromagnetic transmission
lines.

Response to Transverse Drive: It follows from Eq. 7.5.5 that to linear terms the deformation of
the upper boundary stipulates the velocity in the plane x = d. So, transverse boundary conditions are

a = jA , b = 0 (1)X X
A A

Here, ý is any one of the Fourier amplitudes, ým, specified in Fig. 7.12.1. It follows from Eq. (c) of
Table 7.9.1 (with Y defined by Eq. 7.11.6) that the pressure amplitudes at the upper and lower boundaries
are

Aa 2 1
a] 2po cosh Yd

bJ= y sinh yd I (2)

These in turn are substituted into Eq. 7.11.7 to show that the pressure distribution over the duct cross
section is

S 2 cosh y x (wt-kmz)
p = Re E 2 m e (3)

m=-  m 0 sinh ymd m

where
2

W2ym=Vk2 
Ym =m -m 2

a

For the moment, consider that the system extends to "infinity" in the z direction, or alternatively
that it closes on itself, so that the additional response from the longitudinal boundary conditions is
absent. With the expression for Ym given with Eq. 3 in view, the x dependence of each Fourier component
can be pictured with the help of Fig. 7.12.2. At very low frequency, and for Fourier components other
than m = 0, Ym - k. Thus, the x distribution is the decaying function familiar from the incompressible
case. These low-frequency m 0 0 components are termed the inertial (or incompressible) quasistatic
(IQS) response. Note that they are the result of the part of the excitation that automatically conserves
volume. The m = 0 part results from the "d-c" component of the surface displacement and so does not con-
serve volume. Nevertheless, at low frequencies the m = 0 component has a quasistatic nature. For this
component, Eq. 3 takes the limiting form

A

Po 2  +-a
(4)

At low frequencies, this compressible quasistatic (CQS) response has a pressure that is uniformly dis-
tributed over the layer cross section. It is just what would be expeqted as the pressure distribution
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Fig. 7.12.3. Dispersion relation showing complex kz for real W. At the fre-
quency shown, all but the n=O modes are evanescent (cutoff).

in a fluid region slowly driven by vertical displacement of a horizontal piston.

As the frequency is raised, each m 0 0 component takes on a uniform distribution at the frequency
I = al km (and hence y = 0). For higher frequencies, Ym is purely imaginary and the distribution
becomes oscillatory. The curves shown in Fig. 7.12.2 are for ymd = jnw, where the frequency follows
from Eq. 3 as

W= a k+ (-) (5)
m d

and the transverse pressure distribution is n half-wavelengths. These curves also denote resonances in
the driven response, as is evident from the fact that the denominator of Eq. 2 vanishes as the fre-
quency meets the condition of Eq. 5, so that Ymd = jnr.

Spatial Eigenmodes: Longitudinal conditions are satisfied by adding to the transverse driven
response the eigenmodes consistent with both transverse boundaries being rigid (with ý = 0). From Eq. 2,

yd = jn'I

where now kz is a complex eigenvalue determined by combining Eq. 6 with the definition of Yi

2
k -+ nr- 2
n - 2 d

a

Thus, the spatial transient response to the longitudinal boundary conditions is composed of two or more
propagating modes (real longitudinal wavenumbers) and an infinite number of evanescent modes. These
wavenumbers are shown graphically in Fig. 7.12.3, where complex values of kz are drawn for real values
of w. The nth mode is evanescent or cut off below the frequency.

= a(•)
WC =5 a 0 d

These spatial evanescent plus propagating eigenmodes form an orthogonal set that can be used to satisfy
longitudinal boundary conditions having an arbitrary dependence on x.

Acoustic Transmission Lines: The n - 0 mode has no cutoff frequency and propagates without disper-
sion at the velocity a, regardless of frequency. Such a mode is termed the "principal" mode. It is dis-
tinguished by having a pressure and velocity independent of x and y, and hence no transverse components
of velocity anywhere. The principal mode is independent of the tube cross section. It exists in tubes
of arbitrary geometry and is comprised of the same fluid motion as for a plane wave in free space. These
principal modes are the most common in acoustic systems, and are conveniently pictured in terms of trans-

1
mission line theory analogous to that used for TEM waves on electromagnetic transmission lines.

1. P. C. Magnusson, Transmission Lines and Wave Propagation, Allyn and Bacon, Boston, Mass., 1970,
pp. 57-111.
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A few further steps show how impedance concepts apply to the principal mode. With the under-

$o standing that k1 = k,

p = RePeJ t = Re[ e- jk +-ejkZ]e W j t (9)

From Eq. 7.11.1 it follows that

vz = ReVejt = Re 1 [e -jkz p -eJkZ ejt (10)
o

where the characteristic acoustic impedance is defined as

Zo apo  (11)

The (specific) acoustic impedance is defined as the ratio P/V, and is given by taking the ratio of compl
amplitudes given by Eqs. 9 and 10, and then dividing through by $+:

Z = = Zo 2jkz (12)
V - . z

The reflection coefficient r has been defined as the ratio of reflected to forward wave amplitudes

A+
f = (13)

In terms of the impedance function, the analysis of a system proceeds by specifying the load im-
pedance at z = k. For example, if thpry is a rigid wall at z = £, vz = 0 and the impedance is infinite.
Or, if the load is an absorber, then P/V is a real Rumber. Given the load impedance at z = £, Eq. 12
can be inverted to find the reflection coefficient r. Then, the impedance at any other point on the lin
can be determined by using Eq. 12 evaluated using the appropriate values of z and the previously deter-
mined value of reflection coefficient. The Smith chart, familiar in the theory of electromagnetic trans-
mission lines,, is a graphical representation of the calculation outlined here.

From Eq. 12, it is clear that if the reflection coefficient is to vanish, so that there is only a
forward wave, then the load impedance must be Zo . This live is then "matched." If there is no re-
flected wave, Zo has the physical significance of being P/V at any position z. Typical values of the
characteristic (specific) acoustic impedance are given in Table 7.11.1. For a given velocity response,
Zo typifies the required pressure excursion. Values of Zo in liquids are typically 3000 times greater
than in gases.

7.13 Experimental Motivation for Viscous Stress Dependence on Strain Rate

Shear stress is exhibited by common fluids in motion, but not at rest. For most static fluids,
the isotropic pressure of Sec. 7.4 is all that remains of the mechanical stress exerted on an element
of fluid by its surroundings.

AX

(b)
Fig. 7.13.1. (a) Cross section of viscometer. The

outer cylinder rotates relative to the inner
one. (b) Element of fluid subject to shear
stresPse in nplne flonw Fnr d << R~ the flot

"~ / (a), (a), isapproximately is' approximately as as sketched sketched in in (b).(b).
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Typical of experiments that establish how a shear stress is transmitted across fluid layers
suffering finite rate deformations is the Couette viscometer shown in Fig. 7.13.1a. The pair of con-
centric cylinders is arranged with the inside cylinder fixed and the outside one rotating at a constant
peripheral velocity U. With the inner cylinder mounted on a torsion spring, static azimuthal deflec-
tions are a measure of the torque, and hence the shear stress, exerted by the surrounding fluid.

If the spacing d is small compared to the radius, a section of the annular region filled by fluid
and bounded by the cylinders assumes the planar appearance of Fig. 7.13.1b. For common fluids, it is
experimentally observed that the force per unit area, T,, transmitted to the fixed inner plate by the
moving outer one has the dependence on U and d,

Tz = 1 (t

with n a constant defined as the absolute viscosity or the first coefficient of viscosity. Typical
values of n and the kinematic viscosity V 2 n/p are given in Table 7.13.1.

Table 7.13.1. Typical viscosities of liquids and gases at 20 C and atmospheric pressure.

Absolute viscosity Mass density Kinematic viscosity
n (kg/sec m) p (kg/m3 ) v(m 2/sec)

Water 1.002 x 10- 3  1.00 x 103 1.002 x 10- 6

Mercury 1.55 x 10- 3  13.6 x 103 1.14 x 10- 7

Heptane 0.409 x 10- 3  0.684 x 103 5.99 x 10-7

-3
1.49 1.26 x 103 1.18 x 10Glycerin 

Carbon tetrachloride 0.969 x 10- 3  1.59 x 103 6.09 x 10- 7

Corn oil 5.5 x 10- 2 0.914 x 103 6.02 x 10- 5

- 8
Cerelow-117 alloy N 5 x 10" 4  8.8 x 103 e 6 x 10

Olive oil 0.138 0.918 x 103 1.51 x 10- 4

- 3  103  1.71 x 10- 6Turpentine 1.487 x 10 0.87 x 

Air 1.83 x 10- 5  1.20 1.53 x 10- 5
67.47 x 10-

dioxide 1.48 x 10- 5  1.98 Carbon 

Hydrogen 0.87 x 10- 5  0.09 9.67 x 10- 5

- 5
Oxygen 2.02 x 10- 5  1.43 1.41 x 10

Conversion: nmks (kg/sec m) = 0.1 ncgs (Poise); Poise E gm/sec cm
2 -4 2

mk (m /sec) = 10- 4 cgs (Stoke); Stoke R cm /sec
mks cgs

Even with common fluids, at sufficiently large rotational velocities, Eq. 1 no longer holds. The
planar motions are replaced by two- and three-dimensional ones, and eventually turbulence (motions that
are never steady). The postulated viscometer flow is unstable at high velocities. The result is a
complex flow, not the one postulated here.

The inverse dependence of Tz on d in Eq. 1 suggests that any pair of planes in the fluid are equi-
valent to the plates. Instead of d, the spacing is Ax, and instead of U, the relative velocity is the
difference vz(x + Ax) - v,(x). With Tzx the shear stress transmitted to the layer from the fluid above,
Eq. 1 suggests that

Vz(x + Ax) - vz (x)

Tzx = x

The incremental layer must itself be in force equilibrium. For the incremental volume shown in
Fig. 7.13.1b this means that the shear stress exerted on the layer by the fluid below is equal in mag-
nitude to that given by Eq. 2 and that normal stresses acting in the z direction on the right and left
surfaces cancel. In the viscometer, this is assured by the rotational symmetry of the flow, which
excludes variations in the z direction.
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In the limit Ax - 0, Eq. 2 becomes

av
T zx --x" 

This simple but important example supports the postulate that viscous stresses are linear functions 
spatial velocity derivatives.

It also illustrates the steps involved in finding the stresses on an arbitrary volume of fluid
First, the particular spatial derivatives that can reasonably give rise to mechanical stresses are
defined as the components of the strain-rate tensor. Then, appeal is made to conditions of isotropy
experiments like the Couette viscometer to relate the strain-rate tensor to the stress. To carry th
derivation one step further, the divergence of the viscous stress tensor finally gives the required
viscous force density. These three steps are carried out in the next three sections.

7.14 Strain-Rate Tensor

Consider the difference in fluid velocity at two points separated by the incremental distance 
as shown in Fig. 7.14.1. The ith component, expanded in a Taylor expansion about the position r, is

av
v i(+Af ,t)-vi(,t ) = vi (,t ) + a x ,t)x - vi(f,t)  (1)

As Ax + 0, all that remains in this expression is the second term, which can be written identicallyJ

rav av 1
vi( +A",t) - vi(~,t) = I - i Ax + eijAx

i 1 2 Lax ax - j ijij

0
where eij is the strain-rate tensor, defined as

ij a2 xx axi

Just as translational fluid motions cannot
give rise to a viscous stress, neither can combina-
tions of the spatial velocity derivatives that re-
present a pure rotation. Note that the first term r(r + r,t)
in Eq. 2 is composed of a sum on products of Axj and
components of the curl v. Thus, it represents
relative fluid motion in the neighborhood of r that
is circulating about the point. This combination of
spatial derivatives is not expected to be propor-
tional to the viscous stress. Thus the strain rate,
Eq. 3, is identified as that combination of the
spatial derivatives that should be proportional to
the stress components. Fig. 7.14.1. Positions in the flow sepa

rated by an incremental distance 

The components of the strain rate take on physical
significance if associated with the types of flow shown
in Fig. 7.14.2. The diagonal components i = j represent dilatational motion, while the components i
stand for relative motions such that fluid particles located on initially perpendicular lines are fo
an instant later on lines at an acute angle.

S0 4 (V kI 9VY)
xey , 5y ax

6~YY
V

normal
II "shear"

Fig. 7.14.2. Illustration of the geometric significance of "normal" and "shear" strain rates.
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The viscous force density is a mechanism for introducing vorticity and hence local circulation to
a flow. This point is developed in Sec. 7.18. That the viscous stress is here postulated to be in-
dependent of local rotation is a seeming contradiction. The stress tensor must be distinguished from
its tensor divergence, the force density. Even though the vorticity is not linked to the local viscous
stress by linear constitutive laws, its spatial rates of change are an essential part of the force
density.

Fluid Deformation Example: The plane flow shown in Fig. 7.13.1b is v = U(x/d)iz . That the flow
has translational, rotational and strain-rate parts is illustrated by following the same procedure of
adding and subtracting equal parts used in going from Eq. 1 to Eq. 2:

U Ut U = +  2x ( 2z -+ U[ 2x + 2zi 1)iz - =)[i + )i + (4)i (4)
The respective terms have the physical d significance 1 shown in Fig. 7.14.3.

The respective terms have the physical significance shown in Fig. 7.14.3.

j

U U/2 U/4 U/4
-. t

---

- +

*,l-
S-------

,4II.---

Fig. 7.14.3. Plane shear flow divided into translation, rotation and strain-rate flow.

Strain Rate as a Tensor: A discussion of the tensor character of the stress is given in Sec. 3.9.
To similarly prove that eij transforms from one coordinate system to another in accordance with

eij =aikajk (5)

the vector nature of v is exploited:

v' = a v (6)

It follows from this relation and the definition of the direction cosines aij (Eq. 3.9.7 and discussion
following Eq. 3.9.11) that

av vk avk ax xv k
i = = k = ka k 7)ax ik 8x ik ax ax' j nax

From this expression, the definition of eij , Eq. 3 written in the primed frame of reference, becomes

S= +  = aik \ +  (8)
x, ax2 j 2 L( 3x I axk

and Eq. 5 follows. The tensor nature of 2ij is exploited in the next section.

7.15 Stress-Strain-Rate Relations

It is a postulate that the fluids of interest can be described by a linear relationship between
viscous stress and strain rate. With cijkt coefficients defined as properties of the fluid, the most
general linear constitutive relation is

T = k (1)ij ' Cijk.ek£(

Even though these properties must be deduced in the laboratory, the number that must actually be measured
can be greatly reduced by exploiting the isotropy of the fluid.
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All arguments in this section pertain to relations at a given fixed location in the fluid. The
coordinate systems (primed and unprimed) have a common origin at this point, as suggested by Fig. 3.9.3.
The fluid is in general not necessarily homogeneous. The properties cijkk can be functions of position.

At any given point in an isotropic material, the properties do not depend on the coordinates.
Hence, in a primed frame of reference, the constitutive law of Eq. 1 is

T' = Cijk• (2)

and isotropy requires that the properties are the same:

cijk2 =R jkC (3)

For example, if shear stress and shear strain rate (Ti1,ei ) are related by a viscosity coefficient in
one coordinate system, the same components (Tjj,81 ) w ll e related by the same coefficient in the
primed frame of reference.

Principal Axes: For any tensor there is a coordinate system in which it has only normal components.
To see this first observe that the stress, having components Tij in the unprimed frame of reference,
gives rise to the traction Ti = Ti nj on a surface having the normal vector ýi (Eq. 3.9.5). Suppose that
a plane is defined such that the traction is in the normal direction, and has magnitude T. Then

Tijnj = Tni = Tnj ij (4)

With the components of i regarded as the unknowns, by setting i = 1,2 and 3, this expression is three
equations:

11- T T12 T13 n1

21 T22 - T T23 n2  0 (5)

31 T32 T33 - T n

These homogeneous relations have a solution if the determinant of the coefficients vanishes. This con-
dition gives three eigenvalues, T = T1 ,T2 ,T3, which are the normal components of stress in three direc-
tions.

To actually find one of these directions, the associated eigenvalue T is inserted into Eqs. 5, a
value of n1 is assumed and any pair of the expressions then.solved for n2 and n3. The magnitudes of
these components of it are then adjusted so that Jif = i.

That the three directions found in this way are orthogonal follows from Eq. 4, which gives the
traction associated with each of the eigenvalues. Suppose that the eigenvalues Ta and Tb, respectively,
give the normal vectors n = a and t = h. Then, from Eq. 4

T ijaj =Ta i  (6)

Tijb =Tbb (7)i  

Multiplication of Eq. 6 by bi and of Eq. 7 by ai and subtraction gives

b Tija j - aiTijb = (Ta - Tb)aibi  (8)

Each of the indices is summed, so they are dummy variables which can be relabeled. In the first term on

the left, i and j can be interchanged. Then, so long as Tij is symmetric, it is clear that the terms on
the left cancel. Provided that the eigenvalues Ta and Ti are distinct, it follows that aibi = Aa = 0.
These axes, shown here to be orthogonal, are called the principal axes.

Strain-Rate Principal Axes the Saie as for Stress: The strain rate, like the stress, is a sym-
metric tensor. This is shown in Sec. 7.14. Suppose that the unprimed coordinates are the principal
axes for the strain rate. Then, according to Eq. 1, the shear stress Tyz is

T yzxc + c + c eyzzz (9)
yz yzxx xx yzyy yy yzzz zz
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The axes in a primed coordinate system gotten from this one by rotating it 1800 about the z axis must
also be principal axes. Hence, hence Eq. 2 becomes

T' = c' o' + c' ' + c 8z• (10)
yz yzxx xx yzyy yy yzzz zz

Formally, the transformation of the stress and strain rate tensors between these coordinates is T' =
aikajTkT (Eq. 3.9.11) and oij a aika yky (Eq. 7.14.6), whereeij = aikajek (Eq. 7.14.6),k

-1 0 0

aij = 0 -1 0 (11)

0 0 1

so with the use of the isotropy cofdition, Eq. 3, Eq. 10 becomes

-T =c e + c e +c e (12)
yz yzxx-xx yzyy yy yzzz zz

Comparison of this expression with Eq. 9 shows that T = 0. Similar arguments show that the other
shear stress components are zero.

It is concluded that in a coordinate system where the strain rate has only normal components, the
stress must also be normal.

Principal Coordinate Relations: That the stress and strain rate have the same principal axes
effectively reduces the number of independent coefficients to nine, because in such a coordinate system

(now the primed system) Eq. 1 reduces to

T' = c c c [oiJ (13)
yy y y x x  YYYY yyzz yy

T' c c c e
Lzz zzxx zzyy zzzz zz

But, the isotropy requires a further reduction in this number. For the x axis, it is clear that either

eyy or ezz must have the same effect on Txx. Hence, the first of Eqs. 13 reduces to the first of the

following relations

T' k k k exx
xx 1  2  2 xx

T;J = k k k e (14)

zz 2 2 1 zz
Because of the isotropy there is no distinction between the x axis and the other two. The same coef-

ficient relates T' to e, as relates Txx to ex, for example. To complete the last step in the deduc-

tion of the stres Ystrain rate relations, observe that Eq. 14 can also be written as

T' =k k2 + (k - k )elxx 2nn 1 2xx

T' = k2 n + (k I - k+2 ) (15)
yy 2 nn 1 2 yy

S k nn + (k - k )zz

where n V.-v is the same number regardless of the coordinates used in the evaluation.nn

Isotropic Relations: The constitutive laws expressed in the form of Eq. 15 are now transformed to
the arbitrary unprimed frame by using the transformation law Tij = akiagjTk (Eq. 3.9.11 and subsequent
discussion):

Tij axiaxj[k2 On + (k - k21 2

ayiy j [k2 nn + (k1 - k2 )ey] (16)

ziazj [k2 °S + (k1 - k2)ezz]
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Because akiakj = 6 ij (Eq. 3.9.14 and discussion following Eq. 3.9.11) and eij = akiaj kV. it follows
from Eq. 16 that

Tij = k 2 enn6j + (k1 - k 2 ).ij (17)

To be consistent with the coefficient of viscosity defined with Eq. 7.13.3, it is observed that for that
plane flow situation, all components of = 0, exceptx)/2. Thus, Eq. 7.13.3 is
Tzx = 2nex, and Eq. 17 reduces to this exiression if

k1 - k2 = 2n (18)

By convention, a second coefficient of viscosity, X, is defined such that

k 2 = X (19)

Thus, the viscous stress-strain-rate relations for an isotropic fluid are

2 o
ij X )6ijkk + 2rij (20)

In general, the viscosities n and X are functions of position.

7.16 Viscous Force Density and the Navier-Stokes Equation

The total mechanical stress, , is the sum of the viscous stress given by Eq. 7.15.20 and
the isotropic pressure stress remainfig with strain rate absent (Eq. 7.4.2). In terms of the
strain rate

Sj = -P6ij + 2nlj + (X -)6ij ekk (1)

while substitution for eij from Eq. 7.14.3 gives

Si( -pij + n( + ) + (X 2 n) 6ij (2)Sij -X-i xj x( -1-J) 3 Txi

The tensor divergence of this expression (Eq. 3.9.1) is the force density required for writing the
force balance equation. In taking this divergence, n and X are for'the first time taken as constants.
The ith component is

Fi = 3 ix - + rl +  (X + ) (3)
i ax 3 xi 8ax ax3 Tx i k(

and translated into vector notation

-vpo + 2•+)(V V + 22++ ( v.) (4)
With the use of a vector identity (p2v = V(V.) - V x V x ), the essential role of vorticity becomes
apparent:

F = -Vp - nV x (v x ) + (x + n)V(vBv) (5)

Note that in an incompressible fluid, the last term in both Eqs. 4 and 5 vanishes.

With Fex denoting the sum of all force densities other than the internal ones due to pressure
and viscosity, the force equation, Eq. 7.4.4, becomes

Dv + 2+ 1(6
p T + Vp = F e + nV v + (Xa + - n)V(Vlv) (6)

This form of the momentum conservation law is termed the Navier-Stokes equation.
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7.17 Kinetic Energy Storage, Power Flow and Viscous Dissipation

A statement of kinetic energy conservation is made by starting with the ith component of the force
equation, written using a vector identity

avi 4- a 1 a
p{-- + [(Vx• Yv]i +  " vjj} = (Fex)i + (Sl) (1)

Dot multiplication of this expression by i eliminates the second term on the left, and mass conserva-
tion, Eq. 7.2.3, makes it possible to manipulate the remaining inertial terms so that they take the
form required for a conservation statement (for example, the form of Eq. 3.13.13):

8v
1 va a (i 1 a - i (2)

7t 2 1 1 _9X-i 2 1 J i ex ivi + ax (iSij) - Sij ax(2)

The viscous stress and pressure term on the right has also been written as a perfect divergence minus
what is required to make it agree with the original expression. Integration of Eq. 2 over an arbitrary
volume V then results in perfect divergence terms on the left and right that, by virtue of the tensor
form of Gauss' theorem, Eq. 9.6.2, can be converted to surface integrals:

1 +V F (3)
S2 IF F= vdV • + S viSijnjda - Si dV (3)

t1 p-'vdV + p.)v.da 

The volume V can either be fixed in space, or be one of fixed identity. In the latter case,
where the surface S moves with the material itself, what is on the left in Eq. 3 will be recognized
as the rate of change with respect to time of the volume integral of the kinetic energy density
p.4-/2 (see the scalar form of the generalized Leibnitz rule, Eq. 2.6.5).

According to Eq. 3, the rate of increase of the total kinetic energy in V is equal to the rate
at which the external force density does work through the volume, plus the rate at which stresses
(that balance the viscous and pressure stresses) do work on the volume through the surface S, minus
the last term. That this last term apparently represents a part of the input power that does not go
into kinetic energy suggests that it is power leaving the kinetic energy subsystem in the form of heat

(viscous dissipation) to be stored in the internal energy of the fluid. To support this interpreta-

tion, note that reindexing and then exploiting the symmetry of Sij gives

avv v
IV, v S j (4)

ij ax ji ixi ij axi

Thus,
avi av ai v

S - - + L) = S e (5)
ij ax ij2 x xi ijeij

With use made of Eq. 7.16.1 to write S in terms of the strain rate, it follows from some algebraic

manipulation that

Sijej = -pV.v + (6)

where the positive definite quantity
2

o2 2 o2 o2 2 0 2 o2 ]( )
-(ek) + 4n(e + e + e ) +-n[(e e 0 ) + (e - ez ) + (e - ex)2](7)7

v kk xy yz zz 3 xx yy yy zz zz xx

is identified as the viscous dissipation density. In terms of this density, the integral statement of

kinetic power flow (Eq. 3) becomes the statement that the rate of doing work on the fluid is equal to

the rate of increase of kinetic energy (the first two terms on the right), plus the rate of increase of

energy stored internally by compressing the fluid (the third term on the right), plus the viscous dis-

sipation:

V ex S iV S V V

In general, by mechanisms such as heat conduction, some of the internal energy can be dissipated. But
according to the "weak compressibility" model introduced in Sec. 7.10, dilatations result in energy

* + . 1 ) +_+
v.Vv= (V x v) x + 2-VvvV(vV)
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storage. This is clarified by first using mass conservation, Eq. 7.2.3, and then using Eqs. 7.10.2
and 7.10.3 to write the compressibility energy storage term as

p Dt p ap Dt

Given the constitutive law of Eq. 7.10.3, an energy density WC can be defined:

dp = (ppr) - [a2p(al,.am 2 Pr)_Pr]ln  + 2 -prW S r p - (10)[a p( r a2p(a 1 ,*.*mp r

such that Eq. 9 is

DW

Dtc (11)

Hence, what is added up by the volume integration of Eq. 11, called for in Eq. 8, is the time-rate of
change of an energy density Wc as measured by a fluid particle of fixed identity.

7.18 Viscous Diffusion

The theme of this section is the interplay between inertial and viscous forces. Approximations
underlying relations derived in Secs. 7.19 - 7.21 are established here.

Throughout, the fluid is presumed incompressible, so that

V.v = 0 (1)

Even more, the mass density is uniform, as is also the viscosity.

External forces are represented by scalar and vector potentials:

F = -V +Vx G
ex

and the Navier-Stokes's equation, Eq. 7.t.6 (written using 7.ý.5 rather than 716.4), becomes

p.a~T+ 3 '+ (V x v) x v] + V(2 1 pv-v + + + p + 8) +
= -nV x (Vx v) + x G

Convective Diffusion of Vorticity: It is shown in Sec. 7.8 that in an inviscid fluid, the net
vorticity linking a surface of fixed identity is conserved. The basis for proving that this is so,
the force equation written in terms of the vorticity Z E V x I (Eq. 7.8.3), is now examined to identify
viscous stresses and other rotational forces (represented by t) as generators of vorticity. The curl
of Eq. 3 is

a- + V x (x v) - - X (Vx -) + 4Vx (Vxp G)
at P P

Without the external force, comparison of this expression to that governing magnetic diffusion in a
deforming conductor (Eq. 6.2.6) shows a complete analogy. The role of the vorticity, 1, is played by
the magnetic flux density. Just as the magnetic flux linking a surface of fixed identity is dis-
sipated by joule heating, viscous losses tend to dissipate the net vorticity. This is stated
formally by integrating Eq. 4 over a surface of fixed identity and exploiting the generalized Leibnitz
rule for surface integrals, Eq. 2.6.4:

w.nda = - . (V xGd
P C PC

In the neighborhood of a fixed wall, for example, an inviscid fluid can slip. In a real fluid, the
tangential velocity must vanish. The modification of velocity in the neighborhood of the boundary
enters through the viscosity term on the right in Eq. 5 to generate vorticity.

In Chap. 6, the material deformation represented by v is given, and so the magnetic analogue to
Eq. 4 is linear. In the vorticity equati6n, w really represents the unknown 4, and so Eq. 4 is not
linear. But, two important approximations are now identified in which linear differential equations
do describe flows. Because v is solenoidal, it is first convenient to represent it in terms of a vector
potential, familiar from Sec. 2.18,

v x A; V-A= o
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Substitution into Eq. 3 then gives

VTr + V x C + pV x (V x ) x (V x ) = 0 (7)

where
1 +

S= p + pvv ++

3A
C p V2 A G-

Perturbations from Static Equilibria: In the equilibrium state, 1 = 0. For incremental flows,
the third term in Eq. 7, which is proportional to the product of perturbation quantities, can be ig-
nored. The curl of the remaining terms gives a fourth order expression for "I:

VxVx [ n--=0(
Stv

Given A , and hence C, fr is determined by integrating the first two terms of Eq. 7 between some refer-
ence poYnt 1o and the position 2 of interest,

Vwr.d = (,r) - T(ro = - Vx *.d. (9)

r r
o o

Thus, the relation between pressure and the vector potential is

p = p(r ) + (r ) - 9(r) - V x C.id (10)

r
o

where the dynamic pressure term, pv•·/2, is dropped from T because it is the square of a perturbatio,.

Equations 8 and 10 are used in Sec. 7.19 to derive general relations that are used extensively
in the following chapters.. Further physical insights are the objective of Sec. 7.20.

Low Reynolds Number Flows: The terms that make Eq. 7 nonlinear arise because of the inertial force
density. For flows that are slow enough that viscous diffusion is complete, this force density has a
negligible effect. The third term in Eq. 7 is then ignorable for a reason other than its nonlinearity.
Indeed, the terms in I and C involving the mass density are also negligible.

To clarify what is meant by this "creep-flow" approximation, external forces are not considered.
The Navier-Stokes's equation, Eq. 7.16.6, is written in terms of normalized variables:

(xy,z) = (x, ,z)£, t = t_, v = vu, p = p (11)

Tv v + R y*Vv = -Vp + V2 (12)
r at y

where 2

T '-- = viscous diffusion time
v fl

R . put = Reynolds number
y fn

Shear stresses set a fluid into motion in spite of its inertia at a rate typified by the viscous dif-
fusion time. If processes of interest occur on a time scale T that is long compared to this time,
then the effect of the first inertial term in Eq. 12 is ignorable. The Reynolds number, which is the
ratio of Tv to a residence time R/u, represents the importance of inertia relative to viscosity for
processes that are typified by a velocity rather than a time. Examples are flows in the steady state.
Alternatively, R typifies the ratio of an inertial force density to a viscous force density.

In the "low Reynolds number approximation," the terms on the left in Eq. 12 are neglected. This
expression is equivalent to the curl of Eq. 7 without its inertial terms:

Vx V x (nV 2  + 
W

G) - 0 (13)
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The pressure then follows from Eq. 10 with the inertial terms omitted:

P = p(r ) + 9( o + (r) (14v
r

o

Without compromise concerning the amplitude of the flow, these linear expressions are used to predict
flows that are extremely viscous, that involve extremely small dimensions or that occur over long
periods of time. They are applied in Secs. 7.20 and 7.21.

7.19 Perturbation Viscous Diffusion Transfer Relations

Co sider small-amplitude motions in the x-y plane of a viscous fluid with no external rotational
forces (G - 0). Then, in Cartesian coordinates, the vector potential reduces to just the z component,
with amplitude Av, and Eq. 7.18.8 reduces to the single scalar equation

2 A
2  v A ) 0V0 (1)at v

Here, a vector identity and the solenoidal character of Av have been used (Eq. 7.18.6). This is the
first of the four symmetric configurations summarized by Table 2.18.1 that are represented by a single
component of the vector potential. The others are handled as illustrated by the Cartesian case con-
sidered now.

With the objective of obtaining relations that can be adapted to a variety of physical situations,
consider the motions within a planar region having thickness A, as shown in Fig. 7.19.1.

a a

Fig. 7.19.1

.S . Planar region filled by
Ai<ý viscous fluid with stress

components (Sxx,Syx) and
velocity components (vx,vy)
in the a and 8 planes re-
lated by Eq. 13.

For perturbations having the form Re Av(x) exp j(wt - ky), Eq. 1 requires that the complex ampli-

tude, Av(x), satisfy a fourth-order differential equation that has two solutions familiar from the in-
compressible inviscid fluid model of Sec. 7.9,

2  2 d 2
( - k2)(- - y2)A = 0 (2)
dx dx

where

y2 = k
2 + j n

The other two are solutions to the diffusion equation, familiar from magnetic diffusion as discussed in
Sec. 6.5. Thus,

Av A sinh kx + s12 inh k(x - A) + A3 sinh yx + ;4 sinh y(x -A) (3)

The two lengths that typify the interactions between a and 0 surfaces are evident in this equation.
For the first two solutions, which represent pressure attenuation across the layer, the length is
27/k. Identification of these components in Eq. 3 with the pressure follows from taking the gradient
and then the divergence of Eq. 7.18.10 to show that p satisfies Laplace's equation. The last two
terms bring in the second length scale, 27//yl, which is at most 2w/k and at least the viscous skin
depth defined (analogous to the magnetic skin depth, Eq. 6.2.10) as

V = 2( (4)

V x V x = V(V.ý) - V2 F; V'• E 0

Secs. 7.18 & 7.19 7.28



This length, which represents the transmission of shear stress across the layer through the action
of viscosity inhibited by the fluid inertia, is shown as a function of frequency for some typical fluids
in Fig. 7.19.2. The viscosity and mass density are taken from Table 7.13.1. Even with relatively
modest frequencies, the viscous skin depth can be quite short.

Fig. 7.19.2

Viscous skin depth as func-
tion of frequency.

f(Hz)

In the remainder of this section, the relationships between the velocities in the a and 0 planes
and the stress components in these planes are determined. First, this is done without further approxi-
mations. Then, the interaction between boundary layers is illustrated by taking the limit 6 << A, so
that the transmission of stresses across the layer is through the pressure modes alone. Finally, use-
ful relations are derived between stress and velocity with not only 6 << A, but kA << 1, so that the
surfaces are uncoupled.

Layer of Arbitrary Thickness: The velocity components are written in terms of the coefficients
Ai by taking the curl of 1, Eq. 3 (Eq. (b), Table 2.18.1). Evaluated at the respective planes x = A
and x = 0, these are

-jk sinh kA 0 -jk sinh yA 0

0 jk sinh kA jk sinh yA

-k cosh kA Xosh yA -Y

-k -k cosh kA -Y -y cosh yA

Inversion of these equations is the first chore in determining the transfer relations. Cramer's rule

gives

1 = --[M Il
where [ii and V9] are the column matrices and [M] is the inverse of the 4 x 4 matrix appearing in Eq. 5.
Even though it is the velocity and stress amplitudes that are usually used when the transfer functions

represent a piece of a more complex system, the entries in M are worth saving so that the distribu-

tion with x can be reconstructed from the velocity amplitudes:
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M11 = 22 = jky sinh YA[Y sinh kA sinh YA + k(1 - cosh kA cosh yA)]/D

2M12 = -M21 = jk2y sinh yA(cosh kA - cosh YA)/D
M13 = M24 = k2 sinh yA(y sinh kA cosh YA - k cosh kA sinh yA)/D

M14 23 = k2 sinh yA(k sinh yA - y sinh kA)/D (7)

M31 = -M42 = jk2 sinh kA[y(1l - cosh yA cosh kA) + k sinh yA sinh kA]/D

M32 = -M41 = jk2Y sinh kA(cosh yA - cosh kA)/D

M33 = M44 = k2 sinh kA(k cosh kA sinh yA - y sinh kA cosh yA)/D

M43 = M34 =ksinh kA(k sinh A - 7 sinh kA)/D

whereD k4 sinh kA sinh YA (1 - cosh YA cosh kA) + sinh kA sinh A +k2+

The stress components are written in terms of the velocity components and the pressure using Eq. 2
(with the last term omitted because V.4 = 0):

Sxx = -p + 2n x (8)
(dO

S =x -- - jk~ (9)(
yx dx 

With the objective of evaluating these in terms of the A's, (v 0, ), found earlier from Eq. 3, are sub-
stituted into these expressions. But, the pressure must also be Xxpressed in terms of the A's by using
Eq. 3 to evaluate Eq. 7.18.10. With p defined as Ho at (x,y) = (0,0), the line integration results in

p = 1 + Re wp(AI + A2 cosh kA)e j wt + jRe p(x)e (Wt - k y )  (10)

where the complex amplitude representing the part of p that depends on (x,y,t) is

p =-wp[A 1 cosh kx + A2 cosh k(x - A)] (11)

Note that the definition of 6, Eq. 7.18.7, insures that the Laplacian solutions contribute to p, to the
exclusion of the diffusion solutions.

With the stress components expressed as functions of x in terms of the A's, they are evaluated at
the respective planes, to obtain

Sxx -j(k 2 + y2)cosh kA -j(k2 + 2) -2jyk cosh yA -2j yk A1

SB -j(k + ) -j(k + Y )cosh kA -2j Yk -2j yk cosh yA A2
a = 2 2 (12)
S -2k sinh kA 0 -(y + k2)sinh yA 0 3

S 0 2k sinh kA 0 ( + k )sinh yA A
yx 4

In compact notation, this expression is equivalent to [(] N] (A]. [ inally, the transfer relations
are obtained by substituting Eq. 6 for the column matrix EA] in Eq. 12 and performing the multiplication
[N] [M] Er D[P:

A a
S v
xx x

S v
xx x (13)

yx Vy

S v
yx y
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where

F =T (1 - cosh yA cosh kA) + sinh yA sinh kA +1]

P11  -P 22 = k[1 - ( )2] cosh YA sinh kA - ()2 cosh kA sinh yA]/F

P12 -P 21 = - () sinh YA - sinh kA] /F

These transfer relations are used to describe a variety of problems, not only of a fluid-mechanical
nature, but involving electromechanical coupling that can be relegated to deformable interfaces.
Examples are given in Chaps. 8 and 9.

Short Skin-Depth Limit: By way of illustrating the two lengths typifying the dynamics of the
viscous layer, suppose that the viscous skin depth is small so that 6 << A and hence yA! >> i, but that
kA is arbitrary. Then, viscous diffusion is confined to boundary layers adjacent to the a and 8 planes.
Instead of Eq. 3, solutions exploiting the approximation would conveniently take the form

A = A5 sinh kx + A6 sinh k(x - A) + 7e-  + e (  (14)

where it is understood that y is defined such that Rey > 0. The diffusion terms are respectively negli-
gible when evaluated in the a and 8 planes. This could be exploited in simplifying a derivation of the
transfer relations for this limiting case, one that parallels that begun with Eq. 3. Because the result
is easily found by taking the appropriate limit of Eq. 13, it suffices to draw attention to the apparent
role of the pressure in coupling one viscous boundary layer to the other. Even though the viscous skin
depth is short compared to the layer thickness, the coupling between planes afforded by the pressure
results in diffusion motions at one plane caused by exci~tions at the other. For example, the shear
stress S in the a plane caused by a shearing velocity v~ in the 8 plane is proportional to lP34. From
Eq. 13, even in the limit AI>> i, but kA c 1,

P3 4 = nk/sinh kA (15)

It is only in the limit kA >> i, so that the pressure perturbations cannot penetrate the layer, that the
shearing interactions across the layer cease.

Infviite Half-Space of Fluid: With both YA >> 1 and kA >> 1, motions in one plane are uncoupled
from those in the other. With the understanding that Rey > 0, and that upper signs refer to a lower
half space bounded from above by the a plane while lower signs are for an upper half space bounded from
below by the 8 plane, appropriate solutions to Eq. 2 are

+kx _+yx
A = A5e + A2e (16)

Transfer relations are determined following the same steps just outlined. First, the velocity amplitudes
are written in terms of (A1,A2) and then these relations are inverted to obtain

Ai

1
-j ± +1 (17)

k-y

A2 j +_1 v
y

In terms of the potential amplitudes, the respective stress components are
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n,

f

i a
^8S +jn(k2 + y 2 ) +2jJnyk A
xx

(18)a

S -2Ik 2 -n( 2 + k ) A
yx 2

Finally, the transfer relations follow by combining Eqs. 17 and 18:

S + 2 (y + k) -jn(y-k) v
xx k x

(19)

jS ln( - k) +n(y + k) v
yx y

Remember that k has been assumed positive. If a wave propagating in the -y direction is to be
represented, the derivation can be repeated with k + -k. For this negative traveling wave, Eq. 19 is
altered by a sign reversal of the two off-diagonal terms.

7.20 Low Reynolds Number Transfer Relations

In terms defined with Eq. 7.18.12, the inertial force density is negligible compared to that due
to viscosity if the viscous diffusion time is short compared to times of interest, or equivalently, if
the Reynolds number is small:

T = 2p /n <<1; R = pua/n <<l (1)

In this extreme, the dynamic response is a sequence of stationary states. The governing volume equatio
Eq. 7.18.13, is written as the biharmonic equation using a vector identity,*

Vm2 (v2 + G) = 0 (2)

It involves no time rates of change. The flow is therefore an arbitrary function of time determined by
boundary conditions and the external rotational force density. The flow at any instant can adjust itsel
throughout the volume without the time delays associated with viscous diffusion. A consequence is flow
reversibility. For a graphic demonstration, see Reference 6, Appendix C. Moreover, so long as the con-
ditions of Eq. 1 prevail, the amplitude of the response is also arbitrary. There is no implied linear-
ization. Finally, because Eq. 2 is linear, a superposition of solutions is also a solution.

The vector potential reduces to a single scalar component for the configurations of Table 2.18.1.
In the following subsections, two of these are considered. First, the dynamics of a planar layer is
revisited and then the transfer relations for axisymmetric flows in spherical geometry are derived.

Planar Layer: With = 0 0 and A = ReA (x,t)e-jky1, Eq. 2 requires that the x dependence satisfy

d 2  k2  = 0 (3)

Formally, this is the limit wp/n << k 2 and hence y - k of Eq. 7.19.2 (but of course the underlying
approximations do not limit the solution to small amplitudes). Because the viscous and Laplacian roots
of Eq. 3 have now degenerated into the same roots, two solutions are linear combinations of exp(+kx)
and the other two are combinations of x exp(+kx):

Av = Al sinh kx ± A2 (t) sinh kx + A3 sinh k(x-A) + A 4 () sinh k(x-A) (4)

By contrast with the amplitudes of Sec. 7.19, the Ai's are arbitrary functions of time.

The outline for finding the transfer relations for the planar layer shown in Fig. 7.19.1 is now
the same as illustrated in Sec. 7.19. With the caveat that the result does not have the same limita-
tions as the viscous diffusion relations, it is possible to obtain the transfer relations as a limit of

* -- VxVxF = V(V.F) - V 2-F; V.F 0
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the results of Sec. 7.19 in which wp/n + 0. As a practical matter, it is perhaps easier to repeat the
derivation.

For reference, the potential amplitudes of Eq. 4 are related to the velocity amplitudes by

= [Qj ]

where

H = [sinh 2 (kA) - (kA) 2]/4k

= Q11 j[sinh(kA) + kA cosh(kA)]/4k2H

= = -jA[cosh(kA)sinh(kA) + kA]/4k sinh(kA)HQ21 42 

=Q41 -Q cosh(kA)]/4k 
2 =22 = jA[sinh(kA) + kA 

sinh(kA)H
1

j[(kA) 2 - sinh2(kA)]/4k 2 sinh(kA)H
Q3 2 =

= -Q23 = Q44 = A sinh kA/4kHQ13 

= Q14 = Q24 Q43 = A 2/4H

= = = Q 3 1 Q33 Q34 0

The stress-velocity transfer relations are then

S
xx

xx
= n[Pij ]

S
yx

S
yx

where

1 kA
P1 = -P = [1 sinh(2kA) + k- /H

11 22 4 2

P33 = -P44  [I sinh(2kA) - /H

P = 
221 1 

=-P [ cosh(kA) + 1 sinh(kA)]/H
12 2 2

(kA) 2/2H
P31 = 1-P3 = -P24 = 42 =

P14 23 32 41 -j(- )sinh kA/H

P4 3 = -P34 = -[sinh(kA) - kA cosh(kA)]/H

Application of these relations is illustrated in Chap. 9

Axisymmetric Spherical Flows: To describe motions around small particles, bubbles and the like,
creep flows are now considered in spherical coordinates. The relations developed are limiting forms
of those for a spherical shell. First, stress-velocity relations are obtained relating variables on
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a spherical surface of radius a enclosing the region of interest. (The shell's inner radius 8 + 0.)
Then, they are found for an infinite region exterior to a surface of radius 0 (a + co).

In spherical coordinates, flows with no azimuthal dependence are described by the vector potential
of Table 2.18.1:

A A(r,O) +(
A v r sin 6 e (7)

In substituting this form into Eq. 2 (with G = 0), observe that

S1 [22A sin 1 ()2 a(s 2 36]71 (8)r sin 2  2  r sin 6 a6 sin 6 J 

To evaluate Eq. 2, the vector Laplacian is now taken of this expression. Because it takes the same form
as Eq. 7, with the quantity in [,] playing the role of A, it follows that Eq. 2 reduces to

1 2 sin6 1 A (9)
r sin 8 2 2 D86 Tin( 8e

r

That variable separable solutions to Eq. 9 take the form

A - sin e P (cos e)A(r,t) (10)n

can be seen by observing from Eqs. 2.16.31a and 2.16.34 that the Legendre polynomial Pl satisfies
n

d sin -- -nn+)Pn (11)-i 1 - (Pl sin e)] -- -L ( sin n) -n(n+l)P (11)
sin- 6

Hence, substitution of Eq. 10 into Eq. 9 results in a fourth-order differential equation determining the
radial dependence:

d2  n(n + 1)
L 2 ] A - (12)0 

Further substitution shows that two solutions to Eq. 12 are of the form rq , where q - 1 + n and -n. Two
more solutions follow as r2rq, so that the radial dependence is expressed in terms of four time-dependent
amplitudes, A ,

A l n+1 + -n -n n+3 = (13).+ A2() + 3 + A4(13)

The radius R will be identified with either a or 8.

The velocity components are evaluated from Eq. 13 by using Eq. (k) of Table 2.18.1:

L 1 1 d d [sin 6 f0146 1 0) ; ; -A(14) (14)Vr r sin G dO n r 2

Ve cos e); ve - dA (15)

The e dependences of the two components differ. For convenience, these are summarized in Table 7.20.1.
The amplitudes %8 and Vr are multiplied by the respective functions from Table 7.20.1 to recover the 6
dependence.

Flow within a volume enclosed by a spherical surface having radius a includes the origin. Because
the velocity implied by the second and third terms in Eq. 13 is singular at the origin, these terms are
excluded. Evaluation of Eqs. 14 and 15 at r = a then gives a pair of expressions in (Al,A4) which can
be inverted to obtain

2 2

S(16)

-(n+l)a 2  -2 _A4 2 2
7.34J

ec 7.2 
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Table 7.20.1. Angular dependence of velocity and stress functions.

v 0 and S0r vr and Srr

Pl(cos 6) 1 d [sin 6 PI(cos )]n sin dO n

1 sin 6 2cos 6

2 3sin 0 cos e 3(3cos 2 0 - 1)

3 3 sin 0(5cos 2 6 - 1) 15cos 6(1 - 2sin 2 8) - 3cos 0

4 sin (7cos3 8 - 3cos 6) 5cos 6(7cos 3 0 - 3cos 6) + sin 2 8(3 - 21cos 2 
2 8)

4 2 s 

For the flow in the region exterior to the surface having radius r - 0, contributions to Eq. 13
that are singular as r - - are excluded. The n-i mode is special, in that it represents flow that is
uniform in the z direction far from r = 8. Thus, the second and third terms in Eq. 13 contribute for
all values of n, but the first term also contributes when n=l. For a uniform parallel flow, 4 - UTz
at infinity, and it follows that for n=l, A1 = 002/2. Two equations for (12,13) are then written by
evaluating Eqs. 14 and 15 at r = 0. These are inverted to obtain

(2-n) 02 1 U61
2

(17)
+ ln

+ 1161n

In spherical coordinates, the stress components are

av
Srr = -p + 2 arr (18)

SOr D r (r (19)

To evaluate the pressure in terms of the Ai's, Eq. 7.18.14 is evaluated using Eq. 8. The line integra-
tion can be carried out along the ,06 and finally r directions. Because the integration is only a func-
tion of the end points, it is clear that the 8-dependent part comes from the last integration. Thus,

2~
_ 1dA _n(n + 1) (20)
r 2 dr 2 r 2 .ý

with the 0 dependence the same as for vr . Equations 18 and 19 are now evaluated, first at r = R - a (the
region r < R, where A2 and A3 = 0):

Srri
A

[.aI A4 J
(21)

2
and then at r = R [n+1 = B (the region r > R, where Al = UB /2, A = 0):

[ ] -2(n+2) -2(n2+3n-1) A
rr 2

L i 
(22)

-2n(n+2) 2(1-n2) A3
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Note that the term in A1 does not contribute to Eq. 22 because its coefficient is zero for n = 1.

To recover the 0 dependence, the amplitudes Srr and Sgr are respectively multiplied by the func-
tions summarized in Table 7.20.1. That the 8 dependence of SOr is indeed simply Pn(cos e) is shown by
making use of Eq. 11.

The stress-velocity transfer relations now follow by substituting Eqs. 16 and 17 respectively into
Eqs. 21 and 22:

3v
rr1 n r

(23)

SOr (2n+l) v•e

S(2n2+3n+4) 3 1 sB 
rr n+1 n+l r 2 ln-rl

S 3n (2n+l) ] + U(

The stress and velocity components in these relations are multiplied by the functions of 6 given in
Table 7.20.1 to recover the 0 dependence. Application of these relations is illustrated in
Sec. 7.21.

7.21 Stokes's Drag on a Rigid Sphere

Certainly the most celebrated low Reynolds number flow is that around a rigid sphere placed in wha
would otherwise be a uniform flow. Of particular interest is the total drag force on the sphere, found
by integrating the z component of the traction, Srr cos 0 - SOr sin 6, over its surface,

f = [Srr cos 0 - Ser sin 0]27R 2 sin OdO (1)

The exterior n=l flow of Sec. 7.20 is now identified with that around the sphere. The uniform
z-directed velocity far from the sphere is U. Because the sphere surface at r = R is rigid, both
velocity components vanish there. In Eq. 7.20.24,

9B= 0, 0  = 0 (2)

and the stress components are

= 3U (3)
2R

Using these amplitudes, as well as the 6 dependence given in Table 7.20.1, Eq. 1 becomes

fz = 67rnRU (4)

For a particle falling through a static fluid, U is the particle velocity. This "Stokes's drag" force
is a good approximation, provided the Reynolds number based on the particle diameter is small compared

to unity.

7.22 Lumped Parameter Thermodynamics of Highly Compressible Fluids

That additional laws are required to model highly compressible fluids is evident from the appear-
ance of additional dependent variables in the constitutive law for the mass density. In this section,
certain constitutive laws and thermodynamic relations are introduced. In Sec. 7.23 these are used to
formulate integral and differential statements of energy conservation for the internal energy subsystem.
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These laws are used extensively in Secs. 9.15-9.19.

Mechanical Equations of State: For a weakly compressible fluid, as defined in Sec. 7.10, the mass

density is a function of pressure and parameters reflecting either the fluid composition or state. That
air is buoyant when heated at constant pressure makes it evident that the mass density also depends on
temperature. A commonly used mechanical constitutive law, representing a single-component perfect gas,
is

p = pRT (1)

The temperature, T, is measured in degrees Kelvin (TKelvin = Tcentigrade + 273.15). The gas constant,
R, is R = RgY/M, where Rg = 8.31 x 103 is the universal gas constant and M is the molecular weight of the-Z 
fluid. Using N2 as an example, the molecular weight is 28, R = 297 and it follows from Eq. 1 that at

5 2 0
atmospheric pressure (p=1.013x10 n/m ) and 20 C the mass density in mks units is p=p/RT=1.16 kg/m3.

Energy Equation of State for a Perfect Gas: The specific internal energy, Wt, is defined as the
energy per unit mass stored in the thermal motions of the molecules. In a perfect gas, it depends only
on the temperature. Incremental changes in internal energy and temperature are related by

6WT = c 6T (2)

and a simple constitutive law takes the specific heat at constant volume, cv, as being constant over
the temperature range of interest.

Conservation of Internal Energy in CQS Systems: There is a formal correspondence between conserva-
tion of energy statements exploited in describing lumped-parameter electromechanical coupling in Sec. 3.5
and used now for thermal-mechanical coupling in a fluid. As a reminder, suppose an EQS electromechanical
subsystem having single electrical and mechanical degrees of freedom is represented electrically by a
charge q at the potential v and mechanically by the displacement E of material subject to the force of
electrical origin f. Energy conservation for a subsystem defined as being free of dissipation is ex-
pressed by

v6q = 6w + f6c (3)

where w is the electrical energy stored.

7.22.1. The first law ofby Fig. lumped-parameter system exemplified 
Now, consider the thermal 

thermodynamics, conservation of energy for this subsystem, states that an increment of heat, 4qT

(measured in joules) goes either into increasing the energy stored, or into doing mechanical work on an

external system

6q = SwT + p6v (4)

Here, wT plays the role of w and is energy stored in kinetic (thermal) motions at the molecular level.
The mechanical work done is expressed in terms of the change inthe total volume,v, and the pressure, p.
That this term plays the role of the last term in Eq. 3 is seen by considering the work done by the dis-

placement of p pistons in Fig. 7.22.1. With Ai the area of the ith piston, the net change in volume is

p
6v= E Ai i- (5) C . " 

Because the gas is quasistatic (in the CQS sense of •ec. 7.25j the pressure exerted on each of the
pistons is the same. Thus,

p p
E PiAi 6i = p E Ai i = p6v (6)
i=l i=l

so that p6v is indeed the mechanical work resulting from the net motions of the pisttns.

Comparison of Eqs. 3 and 4 makes it natural to represent the incremental heat addition in terms of
two variables. One of these, the potential, v, in the electrical analogue represented the intensity
through which the heat addition is made and is the temperature, T. The other variable, defined as the
entropy s, is analogous to the charge. It expresses the quantity or extent of the heat addition in
units of joules/OK. With the understanding that the incremental heat addition is indeed to a "con-
servative system" (that the thermal input can be recovered), the statement of energy conservation, Eq. 4,
becomes

T6s = 6wT + p6v (7)
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In working with a continuum, it is convenient to use extensive vari-
ables that are normalized to the mass density. This is accomplished
in the lumped-parameter system now being considered by dividing Eq. 7
by the (constant) total mass of the system. Thus, Eq, 7 becomes

TaS = 6WT + pdV
A

where the entropy per unit mass or specific entropy is S, and the
specific volume V = 1/p will be recognized as the reciprocal mass
density.

.... . I
Just as it is natural to think of (q,5) as independent vari-

ables in Eq. 1, (S,V) are independent variables in Eq. 8. Thus, the
specific thermal energy is a state function WT(S,V). The cbenergy,
W'(v,Q), is introduced in the electromechanical system if it is more (p,pT)
convenient to use the potential iather than the charge as an in-
dependent variable. With a similar motivation, energy-function _-- : . ( . :
alternatives to WT are often introduced.

Where p is a natural independent variable, the identity :F"T
pdV = 6(pV)-V6p converts Eq. 8 to

T6S = 6HT - V6p

where the specific enthalpy, HT - WT + pV, is the convenient energy Fig. 7.22.1. Schematic view
function. The specific enthalpy, like Wt, is a state function. But of lumped-parameter
even more, for a perfect gas it is a function only of T. This is thermodynamic subsystem.
clear from the definition of HT, the fact that for a perfect gas,
WT = WT(T) and because (from Eq. 1) pV = (p/P) = RT.

An energy equation of state equivalent to Eq. 2 can be stated in terms of the specific enthalpy

6HT = c 6T (10)
Tp

and since the specific enthalpy is a defined function, it is not surprising that specific heat at con-
stant pressure, cp, is related to cv and R. To determine this relationship, write Eq. 9 using Eq. 10:

T6S = cp&T - V6p (11)

Subtract Eq. 8 evaluated using Eq. 2 from this relation and it follows that

(cp - cv)6T = 6(pV) = R6T (12)

where the second equality comes from Eq. 1. Thus,

c -c - R (13)p V

7.23 Internal Energy Conservation in a Highly Compressible Fluid

In a moving fluid, the thermodynamic variables are generally functions of position and time.
Strictly, neither the equations of state nor the thermodynamic statement of energy conservation from
Sec. 7.22 applies to media in motion. The approach now taken in regard to the state equations is similar
to that used in the latter part of Sec. 3.3 to broaden the application of Ohm's law to conductors in
motion.

First, the laws must hold with the thermodynamic variables evaluated in the primed or moving frame
of reference, at least for a fluid element undergoing uniform and constant translation. Equations of
state are expressed in the laboratory frame of reference by transforming variables from the primed to
the unprimed frame. The thermodynamic variables of temperature, specific entropy, etc., are scalars.
They are the same in both reference frames, and hence the mechanical and energy equations of state,
Eqs. 7.22.1 and 7.22.2, are used even if the fluid they describe is in motion.

The seeming ubiquity of these state equations should not obscure the underlying assumption that
accelerations and relative deformations of the material have negligible effect on the mechanical and
energy equations of state. The notion that the fluid can be described in terms of state functions rests
on there being a local equilibrium condition for the internal energy subsystem. Because processes occur
at a finite rate and in an accelerating frame of reference, extension of the first law to continuum
systems rests on the assumption that each element of the medium reaches this equilibrium state at each
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stage of the process.

A further assumption in what follows is that it is meaningful to separate the thermal and electric
or magnetic subsystems. If the constitutive laws, Eqs. 7.22.1 and 7.22.2 for example, are modified by
the electromagnetic fields, then this is not possible.

In this section, three subsystems are distinguished, each including dissipations. Two are the
electric or magnetic and the mechanical subsystems. Each of these couples to the third, the internal
energy subsystem. Given fluid of fixed identity filling a volume V enclosed by a surface S, the ob-
jective now is to write a continuum statement of internal energy conservation that makes the same
physical statement as Eq. 7.22.8.

Power Conversion from Electromagnetic to Internal Form: To begin with, consider the inputs of
heat to the volume. Whether the system is EQS or MQS, the electrical input of heat per unit volume is

V1 -. To see this, observe from the conservation of energy statement for the elecqric (Eq. 2.13.16) or
magnetic (Eq. 2.14.16) subsystem that the power density leaving that system is Jf.E. This density either
goes into the mechanical subsystem (into moving the fluid) or into the internal subsystem (into heating
the fluid). Given the force densities, it is now possible to isolate the dissipation density. For an
EQS system where polarization effects are negligible, the electrical dissipation must therefore be

(1)1 - p4 4v = ( + Pf ). - Pf 'v = 'l 
Here, the EQS transformation laws (Eqs. 2.5.9a, 2.5.11a and 2.5.12a) have been used. For an MQS system
without magnetization, the electrical dissipation density is

JfE - Jf x o1 = J(E' - Vx Io) -'J xxo = JH *E (2)

where the MQS transformation laws (Eqs. 2.5.9b, 2.5.11b and 2.5.12b) and an identity* have been used.
Hence, the electrical dissipation density makes the same appearance for EQS and MQS systems.

Power Flow Between Mechanical and Internal Subsystems: Just as the statement of energy conservation
is the basis for identifying the electrical dissipation density (Eqs. 1 and 2), the kinetic energy con-
servation statement, Eq. 7.17.8, makes it possible to identify the last two terms in that expression as
power flowing from the mechanical system into the internal energy subsystem. Because the first of these
two terms has been interpreted as heat generated by mechanical dissipation, it is now written on the
left of the internal energy equation. However, the second of these terms represents mechanical power
input in the form of a compression of the gas, and is therefore moved to the other side of the expression
(with its sign of course reversed).

Integral Internal Energy Law: The continuum version of Eq. 7.22.8 is now written as

E VE'fdV d + + dV -- rd ' ~ nda f d V = t IvWT + IVpVvdV (3)

In addition to the first two heat input terms on the left, there has been added one representinf the con-
duction of heat across the surface S and into the volume V. Typically, the thermal heat flux, 7T, is
represented by a thermal conduction constitutive law, to be introduced in Sec. 10.2. On the right is the
time rate of change of energy stored within the volume (which is one of fixed identity) plus the work
done on the mechanical system through the expansion of the fluid.

Differential Internal Energy Law: To convert Eq. 3 to a differential statement, Gauss' theorem,
Eq. 2.6.2, is used to write the surface integral as a volume integral. In addition, the generalized
Leibnitz rule, Eq. 2.6.5, is used to take the time derivative inside the integral on the right. Then,
conservation of mass, Eq. 7.2.3, is used to simplify that integrand. Because the volume V is arbitrary,
it follows that

DWT
S+ + pVv (4)
f v T Dt

Combined Internal and Mechanical Energy Laws: Especially in dealing with steady flows, it is often
convenient to add the mechanical energy equation, Eq. 7.17.8, to the internal energy equation, Eq. 3:

E dV + Vis ijn jda P- Tfnda= +(WT -- )dV (5)

Here, Eqs. 1 or 2 have been used in reverse, with $ex taken as being of electric or magnetic origin. The
surface integral is converted to a volume integral and the Leibnitz rule used on the right. Then, the

AB x C Ax BC
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integrands are equated to give

- If 8+ 1 ) +4 1 +a
Sa ( ) - V = t + P(WT 2 vv) + V.pv(W T + vv) (6)

Now, if the flow is steady so that a( )/at = 0, substitution of Sij = - 6ij + Ti gives

- +Jf (vi i)- . (H+ - vv)] (7)

where the pressure part of Sij has been moved to the right and absorbed in the specific enthalpy,
HT  T + p/p (Eq. 7.22.9).

Entropy Flow: That the energy equation, Eq. 4, is the continuum version of Eq. 7.22.8 is made
evident if it is recognized from mass conservation, Eq. 7.2.3, that

Remember that the specific volume V 1/p. Thus, the right-hand side of Eq. 7.22.8 multiplied by p is
the same as Eq. 4, provided that the variations 6WT and 6V are replaced by convective derivatives of
these functions. This suggests that the left side of Eq. 5 can be identified with T6S, so that Eq. 4
becomes

DW 1pT = p + Pp ) (9)

For an ideal gas, it follows from the mechanical and energy equations of state, Eqs. 7.22.1 and 7.22.2,
that

DS Cv DT D 1 p D 11D 
+ pR ()= -) - ()+pR () Dt T Dt D p p Dt p Dt p (10)

Because R = c -c (Eq. 7.22.13), with y E c /C, this expression becomes

DS (.1 DR D p Do)

= e p L_- = -D [c In(pp-)] (11)Dt v p Dt p Dt Dt v

It follows that along a particle line passing through a point where the properties are S = So, = Poand p = po, the specific entropy of a perfect gas is

p0
S = So + c ln[-P- (-)- ] (12)

If in particular there are no heat additions to the element of fluid, so that the left side of Eq. 4 is
zero, then the element of fluid sustains isentropic dynamics: S = SO and the pressure and density are
related by the isentropic equation of.state,

P
P- () = 1 == = (2 o )Y (13)
pO p PO PO

For isentropic flow, Eq. 13 represents an invariant along the trajectory of a given fluid element. If
the volume of gas of interest originates where the properties are.uniform, then Eq. 13 is equivalent to
a constitutive law relating pressure and density throughout that volume. Thus, isentropic dynamics fall
within the framework of the weakly compressible dynamics considered in Secs. 7.10 - 7.12. With the
understanding that it is the specific entropy that is being held constant, the acoustic velocity follows
from Eqs. 7.10.4 and Eq. 13 as

a = (P =y-1 Y- = ZM (14)

o

For a perfect gas, the acoustic velocity depends only on the temperature and ratio of specific heats.
Note that if the dynamics were isothermal (constant temperature) rather than isentropic, the acoustic
velocity would be a = RRff. Because y ranges between unity and two, such a velocity would always be
less than that for an isentropic process.
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7.24 Overview

The fluid continuum developed in this chapter is capable of storing energy in two forms, the
kinetic energy associated with the fluids having inertia and internal energy associated with its com-
pressibility. Dissipation has been represented by the Newtonian model, in which stress is linearly
related to strain rate. In summary, the differential laws are the equation of state, Eq. 7.10.3,

P - p
p = p(al',"',m,ps) + 2

a

conservation statements for the properties ai' Eq. 7.10.4,

ia
conservation of mass, Eq. 7.2.3, which=

conservation of mass, Eq. 7.2.3, which can be combined with Eqs. 1 and 2 to give

1 apa
2 (1 + *.Vp) = -(p-a -V*2 at i aa

a i

and conservation of momentum, Eq. 7.16.6,

S-+ V + Vp + nx + (C + V(

The relations and approximations which have been developed are now placed in perspective by identi-
fying the characteristic times underlying these laws and recognizing the hierarchy of these times im-
plicit to the various models. The discussion is to the laws of fluid mechanics what that of Sec. 2.3
is to the laws of electrodynamics.

The laws are normalized by introducing dimensionless variables,

(x,y,z) = £(x,yz), t = Tt, ' = fi(k/T), p = RP

With the objective a time-rate parameter expansion for the dependent variables, the pressure is given
two different normalizations designed to make the zero order approximation all that is required in a
wide range of physical situations. Thus, p is normalized to

reflect the dependence of density on pressure as reflect the dynamic pressure (inertia) appearing
represented by Eq. 1 in Bernoulli's equation

R2
p = a2Rp (6a) p =•2 (6b)

and Eqs. 1-4 become

P = P(l.''',***msPs) (7a) p = p(als,-.,m p s)+ (P- ps ) (7b)+ P - P

+ V-(aiv) = 0at 1

( + v.Vp) = -(P-ai -- )v. 8t + v•Vp) = -(p-a i a-)V• (9b)
at i (9a)

at
p q + v*V + Vp Pt + v.Vv +p

(10a) (10b)

SF + - [2v+ + -)V(V-v)] F +-[V- v + + -)V(Vv)]
ex T TI 3 ex T fl 3

v

where

2
+ F + T
F = F F -F

ex 2 -ex ex R. -ex
Ra

i•2

(11a) Tv r (llb)c 2 v flRa
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; T A/a (12)

The time-rate parameter 8 is the ratio of an acoustic wave transit time, Ta, to characteristic
times of interest. The viscous dissipation brings in a second characteristic time, either Tc or Tv.
The viscous diffusion time, Tv, is familiar from Sec. 7.18 (Eq. 7.18.12), where its analogy to the mag-
netic diffusion time is discussed. The viscous relaxation time, Tc, is analogous to the charge relaxa-
tion time. For example, both Tc and Te are independent of the characteristic length. Moreover, as can
be seen by substitution from Eqs. 11 and 12, the geometric mean of Tc and Tv is the acoustic transit
time

vTC = (13)

The analogy to the electrodynamic relation between Tm, Te and Tem, Eq. 2.3.11, points to there being two
quasistatic limits, each resulting because 8 << 1.

These can be identified by expanding the normalized dependent variables in power series in B. For
example,

p = P + p1 + + 2 "' (14)

To zero order in 8, Eqs. 7-10 become the quasistatic laws. In un-normalized form these are

Compressible quaaistatic Incompressible (inertial) quasistatic
(CQS) (IQS)

P-ps
P = P(al'''t , sp) + (15a) P = P(al...,m'Ps) (15b)

+ V. (civ) = 0 (16)

P + V.(p) = 0 (17a) V.· = 0 (17b)at

+ 2- ( 1 4+ av + + + 2+
Vp F + V + + )(V) (18a) + vv) + Vp =F + V v (18b)

where the ordering of characteristic times is respectively as indicated in Fig. 7.22.1.

I I' I I -
TV TO r. T a TV,

Fig. 7.22.1. Ordering of T a, Tv and Tc and domain of mechanical quasistatics.

Which of the normalized laws, Eqs. 7-10, is used is arbitrary. However, if for example the left
normalization were used for a configuration in which the quasistatic motions were incompressible, the
zero-order approximation would be zero, and the appropriate solution would be first-order in 8. Examples
in which boundary conditions clearly require the CQS limit are those where the total volume of the fluid
must change, as in the slow compression of a gas in a rigid-walled vessel by a piston. The IQS and
CQS limits are identified for a specific problem, without viscous dissipation, in Sec. 7.12.

Usually, it is the IQS limit that is considered when 0 << 1. Note that with the exception of
Secs. 7.10-7.12, Eqs. 15b - 18b have received most of the attention in this chapter. The inviscid in-
compressible model pertains to Ta << T << Tv. The low Reynolds number limit is one in which not only
is T, << T, but Tv << T as well.

Nature makes unlikely the CQS ordering of characteristic times. For T /T < 1, it is necessary
that the harancteristic length 2 < n/Ra. In air under standard conditions this iength is a fractinon of
a micrometer. Because this is about the molecular mean free path, the continuum fluid model is of doubt-
ful validity on a length scale small enough to make viscous relaxation important.
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Problems for Chapter 7

For Section 7.2:

Prob. 7.2.1 In Sec. 3.7, ci is defined such that in the conservative subsystem, Eq. 3.7.3 holds.
Show that ai satisfies Eq. 7.2.3 with p+ai. Further, show that if a "specific" property Si is defined
such that Bi pai, then by virture of conservation of mass, the convective derivative of Si is zero.

For Section 7.6:

Prob. 7.6.1 Show that Eq (hb of Tah1P 7_6_2 is correct

Prob. 7.6.2 Show that Eqs. (j) and (2) from
Table 7.6.2 are correct.

Prob. 7.6.3 A pair of bubbles are formed with the
tube-valve system shown in the figure. Bubble 1 is
blown by closing valve V2 and opening Vl. Then, Vl
is closed and V2 opened so that the second bubble is
filled. Each bubble can be regarded as having a con-
stant surface tension y. With the bubbles having the
same initial radius Eo, when t = 0, both valves are
opened (with the upper inlet closed off). The object
of the following steps is to describe the resulting
dynamics.

(a) Flow through the tube that connects the bubbles
is modeled as being fully developed and viscous
dominated. Hence, for a length of tube k having
inner radius R and with a viscosity of the gas , Fig. P7.6.3
the volume rate of flow is related to the pressure difference by

R4 (Pa-Pb) 3
Qv = 8 . m /sec

The inertia of the gas and bubble is ignored, as is that of the surrounding air. Find an equation
of motion for the bubble radius E1 .

(b) With the bubbles initially of equal radius Eo , there is a slight departure of the radius of one
of the bubbles from eauilibrium. What hapDens?

(c) In physical terms, explain the result of (b).

For Section 7.8:

Prob. 7.8.1 A conduit forming a closed loop consists of a pair of
tubes having cross-sections with areas Ar and Ay . These are arranged
as shown with a fluid having density pb filling the lower half and a
second fluid having density Pa filling the upper half. The object of
the following steps is to determine the dynamics of the fluid, speci-
fically the time dependence of the interfacial positions Er and E .
(a) Use mass conservation to relate the displacements (Er', E ) to

each other and to the fluid velocities (vr, vk) on the right
and left respectively. Assume that the fluid is inviscid
and has a uniform profile over the cross-section of a tube.

(b) Use Bernoulli's equation, Eq. 7.8.5 to relate quantities
evaluated at the interfaces in the lower fluid, and in the
upper fluid.

(c) Write the boundary conditions that relate quantities across
the interfaces.

(d) Show that these laws combine to give an equation of motion
for the right interface having the form

d2r i dr 2  d 2 Fig.P7.
m 2 +2 (Pb Pa) - (-) + Kr = 0 Fig. P7.

uc
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Prob. 7.8.1 (continued)

What are the effective mass per unit length, m, and "spring-constant" K?

(e) Now, assume that the departures from equilibrium are small (linearize) and determine the
natural frequencies of the system. Under what conditions will the system be unstable?

(f) A U tube is filled with water and open to the air. With a length of water in the tube (of uniform
cross-section), Z, what are the natural frequencies?

Prob. 7.8.2 A hemispherical object rests on a flat plate.
Fluid passes over and around the sphere with a velocity that
is to be determined. The flow is uniform but a function of g1
time far from the hemisphere. 1rV= r
(a) Note Eq. 7.8.11 and subsequent discussion. Find the

inviscid velocity and velocity potential on the hemi-
spherical surface. Z

(b) Find the pressure distribution on the hemisphere.

(c) What is the lift force on the hemisphere? (Assume Fig. P7.8.2
that the pressure inside the sphere is the same as
that at the stagnation point r = R, 9 = i just outside the sphere, as would be the case if there
were a small hole through the shell at this point.)

Prob. 7.8.3 An electromagnetic rocket constrained by a test stand is shown in the figure. In the
interior region there is a space occupied by an apparatus that produces a normal surface force density
Tn on the surface Si . A tube connects this space to the outside, and hence equalizes the pressures
inside Si and outside the rocket. The fluid inside Si and outside the rocket has negligible mass
density. There are no external forces in the fluid bulk. Thus the pressure in the surrounding
homogeneous fluid is p=Tn. The volume is large
enough that the fluid inside the rocket has
negligible velocity and an essentially steady A
flow condition prevails. It is expelled through .
the throat and reaches a point where its veloc- :. n .J "
ity U is essentially uniform and x directed; .
the pressure is equal to that of the surround- ." P=
ings (say p=0O) and the cross-sectional area is
A. Gravitational effects are negligible. Use
Eqs. 7.8.5, 7.3.2 and 7.4.3 to find the total Fig. 7.8.3
force on the rocket in terms of Tn and A.

For Section 7.9:

Prob. 7.9.1 In Sec. 2.17, conservation of electric energy is used to derive reciprocity conditions for
the flux-potential transfer relations. The object here is a similar derivation for the transfer rela-
tions of Table 7.9.1 based on conservation of kinetic energy. Start with the assumption that for an
inviscid incompressible fluid having uniform mass density, the change in kinetic energy is the result
of displacements at the a and 8 planes.

S(Wkin) - p6. nda z
Derive reciprocity conditions similar to Eq. 2.17.10.

Prob. 7.9.2 An annular region of incompressible
'

inviscid fluid is bounded by outer and inner coaxial
K~d

boundaries of radius a and 8 respectively, as
In

shown in the figure. Hence, the configuration
is similar to the circular cylindrical case of
Table 7.9.1. However, rather than being in a
state of uniform axial motion when in equilibrium,
the fluid here is rotating. This equilibrium
rotation is rigid body and could be established
by spinning a cylinder of fluid for a long enough
time that viscous shear stresses could transmit
the motion to the fluid volume. Ignore gravita-
tional effects.

`FýOýr
Fig. P7.9.2
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Prob. 7.9.2 (continued)

(a) What is the vorticity of the equilibrium-motion?

(b) Show that the equilibrium pressure distribution is

1 22
P Pr +11o 2

(c) Write the perturbation continuity and force equations. Transform these expressions from
the laboratory frame (primed) to a rotating frame (unprimed)'where

r = r V = V 1

r r

S= =Ot8' - v0 = v-
z = Z' p = p'

.t = t'

and show that the perturbation equations are

1 a(rv ) +1 av•8 av
r+ r + z
r ar r ae az

K

av
(-af r - 2•fv) 6 + 3 = 0

av 6
S+ 2~v r ) r =0

av 
= 0

(d) Show that the pressure complex amplitude satisfies the equation

2

2 d2 -[2 2 2 4n2
r 2 + r - p [m + rk2l--2 - )] = 0

dr

where w is the frequency in the rotating frame of reference.

(e) Show that transfer relations are

S f (ca,0,y)+ ]
2 - -gma,0BY) 

p(49 2) m Vr

ja
jwD

p -gC(B,a,,) [f(B,,) [fM + WaI M] lABLvrij

where

2 2 40 2

D - [fm(B,y) - fm(aB,)) - -gm(B,cY) gm(a,Ily)
Maj Tai
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For Section 7.11:

Prob. 7.11.1 Determine the transfer relations for the spherical shell of Table 7.9.1. Define
functions Fn and Gn such that these relations take the form of Eq. (i) of that table. Describe the
temporal modes of a gas surrounded at a radius r = R by a rigid boundary.

For Section 7.12:

Prob. 7.12.1 Gas flows with a uniform velocity U in the z direction through a rigid tube having inner
radius R.

(a) Determine the dispersion equation for acoustic waves propagating in the z direction with pressure
dependence of the form p = Re^(r)expj( t-me-kz).

(b) What are the wavenumbers of the spatial modes? Sketch the dispersion equation for a < U and for
a > U.

Prob. 7.12.2 An acoustic waveguide consists of rigid plane parallel walls in y-z planes having the
spacing (a+b) bounding planar layers of fluid respectively having the thicknesses (a) and (b), mass
densities Pa and pb and acoustic velocities aa and ab . Ignore gravity and surface tension effects
at the interface. Determine the dispersion equation for waves propagating in the z direction between
the walls. This expression is transcendental, and hence requires numerical solution. Consider two
limits in which explicit expressions can be derived.

(a) The waves are very long, so that Yaa<<l and Ybb<<l. What is the wave velocity for the resulting
"principal" mode?

(b) Here, aa<< ab (for example, air and water) and k2>>w 2/a. Use a graphical solution to find the
wavenumbers of the approximate spatial modes.

For Section 7.13:

Prob. 7.13.1 The equations describing the incremental motions of a perfectly elastic isotropic solid
can be developed in steps that follow those for a Newtonian fluid. The first problem following each of
Secs. 7.13.1 through 7.16.1 is a step in developing these equations, which are summarized for reference
in the table of Prob. 7.16.1.

(a) It is natural to use the displacement C(ro,t), rather than the velocity v(r,t), as a variable.
By contrast with the Eulerian variable, the displacement is a Lagrangian variable in that a material
particle originally at r is found at the position ro + S(ro,t) (see Sec. 2.4). Show that to linear
terms &(ro,t) z t(o+ ,t), so that for incremental displacements t can be regarded as either an
Eulerian or Lagrangian variable.

(b) The annulus of Fig. 7.13.1 is filled with an elastic solid rigidly attached to the walls. Instead
of being given a steady velocity U, the boundary is given a steady displacement Ez. It is found
that Tz = Gs(Ez/d), where the coefficient Gs is the shear modulus. What is the elasticity version
of Eq. 7.13.3?

(c) A thin rod of initial length £ is fixed at x=0 and subjected to a surface force density Tx at its
end (where x=Z originally). Because the rod is "thin," the transverse stresses are negligible
compared to Txx. It is found that Tx = E Ex/i, where the coefficient Es is the elastic modulus.
Write an equation expressing force equilibrium for an incremental length Ax of the rod, and obtain
the analogue of Eq. 7.13.3 for dilatational deformations.

Typical values of G and E are given in Table P7.13.1.
s s

Table P7.13.1. Elastic properties of various materials.

Shear Modulus Elastic Modulus Poisson's Ratio Mass Density
Material Gs (N/m2) Es (N/m2) V kg/m 3

Aluminum 2.6x101 0  7.3x101 0  0.33 2.8x10 3

Steel 7.8x10 10  2.1x101 1  0.27 7.8x10 3

Rubber 4.6x106 '2x10 6 L 0.50 1.1x103
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For Section 7.14:

Prob. 7.14.1 Define the strain tensor eij for incremental deformations, using arguments paralleling
those from Eq. 7.14.1 to 7.14.3. The result should be Eq. (a) of Table P7.16.1. Geometrically inter-
pret the shear and normal components of eij.

For Section 7.15:

Prob. 7.15.1 Starting with the assumption that the stress-strain constitutive laws for an isotropic
perfectly elastic solid take the form

Tij = Cijk2ek2

show that Eq. (b) of Table P7.16.1 is the desired relation with G, as defined in Prob. 7.13.1 and As,
a second property of the material. Remember that in the thin-rod experiment of Prob. 7.13.1, the trans-
verse stress components were essentially zero. Use this fact to show that Gs and Es are related to X
by Eq. f sof Table P7.16.1. In terms of the thin-rod experiment, Poisson's ratio Vs is defined as the
negative of the strain ratio eyy/exx or ezz/exx. Show that this property is related to G, and Eg by
Eq. (g) of the table.

Prob. 7.15.2 Following Eq. 7.15.15, it is argued that 8nn is invariant under a transformation between
coordinate systems. Confirm this by using the transformation properties of eij (note Eq. 3.9.14).

Prob. 7.15.3 For the velocity distribution of Eq. 7.14.4

(a) What is S i

(b) Use Eq. 7.15.5 to find the principal axes and the associated normal stresses.

For Section 7.16:

Prob. 7.16.1 The relations required to write the force equation representing an isotropic perfectly
elastic solid, as derived in Probs. 7.13.1, 7.14.1 and 7.15.1 are summarized in Table P7.16.1. Show
that the force equation can be written as Eq. (d) and, hence, as Eq. (e). (Note the discussion in
Sec. 2.4.)

Table P7.16.1. Definitions, relations and equations of motion for
an isotropic perfectly elastic solid.

Strain-displacement ei = + (a)
xj i

= Stress-strain Tij 2Gseij + ijekk (b)

V
1 s

ij 2Gs i E ijTkk (c)

Force equations pa= + (F (d)
Bt2  ax ex i

P = (2G +X )V(V C) - G Vx (VxC)+i (e)
8 8 s ex

at2 

Constitutive relations X = (Es-2G )/[3-(Es/Gs)] (f)

Vs s = (E /2Gs ) - 1 (g)
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For Section 7.18:

Prob. 7.18.1 The equation of motion for a perfectly elastic isotropic solid is Eq. (e) of
Table P7.16.1. The external force density is represented by Eq. 7.18.2, while the displacement is
represented in terms of vector and scaler potentials

C = VxA - Vi ; V'A = 0

4-

Show that A s and ,s respectively represent rotational and dilational deformations. Show that As and 
respectively satisfy wave equations with the wave velocities vs = GsIP and vc = /(2Gs+Xs)/P.

Prob. 7.18.2 In Sec. 7.21, it is shown that the viscous drag force on a rigid sphere having radius 
moving through a fluid with velocity U is 6WrRU. A spherical particle has mass density p much great
than that of the surrounding fluid so that the mass of the fluid can be ignored (the Reynolds number 
low, as it must be for the Stokes drag force to be correct). Write the force equation for the slowin
of the particle from some initial velocity. Show that the velocity decreases exponentially, with a
time constant 2/9 of the viscous "diffusion" time based on the particle radius and density and the
fluid viscosity.

For Section 7.19:

Prob. 7.19.1 An incompressible elastic solid is one in which deformations are solenoidal. It can b
pictured as having V*+0 and 2Gs+?s -+ in such a way that the product (2Gs+Xs)V*.--p, where the pressu
p is finite. It is an appropriate model if the transit time of compressional waves having velocity v
as found in Prob. 7.18.1 is very short compared to times of interest but that of shear waves is arbi-
trary. Equations (f) and (g) of Table P7.16.1 combine to show that (2Gs+Xs)40 as v•s 0.5, so the
incompressible model is especially appropriate in working with materials such as Jello or rubber.
The force equation, Eq. e of Table 7.16.1, becomes

p t -Vp + G V2 + Fex
at 2  s ex

(a) Show that the associated stress tensor is

ac. aD*
ij = - + G s(•x + aLx.

j x

(b) Show that the transfer relations derived in this section, Eqs. 7.19.13 and 7.19.19, can be adapte
to an incompressible solid by making the identification of variables

v + jwý ; jwn l G ; p+p, S..+S..
s 13 13

Prob. 7.19.2 Show that an infinite half-space of elastic material is described by the transfer rela
tions

YvY (Y -0k) jk[k (v -2v ) -v Y2+2Y Y V
xx

P

Syx Yc L;:;.ii::ii2 c; 2
±v~y (y -k2) cs lj

22 2 2 a are thevelocitiesof shear and o-22
where yc2 k - 2/vc and y k -2_/v s and vs and v are the velocities of shear and compressional

waves as defined in Prob. 7.18.1.

Prob. 7.19.3 Rayleigh waves propagate on the free surface of an elastic material without dispersion

these wavesBecause the associated deformations are readily accessible from the adjacent free space, 
ahave been made the basis for surface acoustic wave (SAW) devices. The Rayleigh wave is neither 

shear wave nor a dilatational wave, but rather a combination of these.
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Prob. 7.19.3 (continued)

(a) Using the transfer relations for the lower half space derived in Prob. 7.19.2, show that the
dispersion equation for this wave is

22 + k 2 22
(Ys ) = 4y y k

(b) Use the definition of ys and ye to show that the dispersion equation can be expressed as

2 2
v

w6 - 8 + _0 3 s
2

- 16 ( 1- s 0

v 2

c c

where w E /kv .

(c) Note that the coefficients of this expression do not depend on k. Extraneous roots have been
generated in deriving this expression. One root represents the Rayleigh wave. Argue that the
surface wave propagates without dispersion.

2 2
(d) Show that v /v = (1-2v)/2(1-v ), so that w is determined by v.

Prob. 7.19.4 The transfer relations, Eq. 7.19.3, are to be extended to describe the fluid response not
only because of external interactions which have their effect on the layer through the surfaces, but
also because of an imposed force density

F ex= V x G; G = Re G(x) exp j(Wt -ky)i z

The extension follows lines similar to those taken in Sec. 4.5 for the flux-potential relations.

(a) Write Eq. 7.19.1 including the effect of the force density.

(b) Given any particular solution to this equation, A(x) with associated velocity and stress functions
denoted by subscripts P, show that the transfer functions are;

S V
xx (xx P x P

Bs v (S )p (v )
xx x xx P

= n[Pij - n[Pij
ij x ) P

v
yx y (Syx P

yB (v 
yx y )

yx P yP

(c) For a y directed force density F that is independent of x, G(x) = F x. Evaluate Eq. 2 in
this case.

Prob. 7.19.5 The fluid layer shown in Fig. 7.19.1 is bounded in the x=0 and x=d planes by rigid
walls. Find the frequencies of the temporal modes. To do this use y/k as a parameter representing
the frequency w, and write a transcendental equation of the form D(y/k,kd)=0 which (given kd) can'be
solved for y/k and hence w. Illustrate how a graphical construction can be used to find roots of this
expression, wherein y/k is imaginary.

For Section 7.20:

Prob. 7.20.1 The equations of motion for an elastic solid are summarized in Prob. 7.19.1.

(a) Show that the transfer relations developed in this section can be used to describe an incompressible
"inertia-less" elastic material by making the substitution

v ~ , s.. + .. , - G .
13 13 s

(b) Argue that the relations hold for deformation that are quasistatic with respect to the transit
times of both the compressional and shear waves.

7.49 Problems for Chap. 7



Prob. 7.21.1 Use Eqs. 7.21.17 and 7.21.13 to show that the Stoke's flow around a sphere is represented
by Eq. 5.5.5.

Prob. 7.21.2 A rigid sphere having radius R is subject to an externally applied slowly varying z
directed force fz. Show that the resulting displacement E in the z direction is related to this force
by fz = 6rGs RE. (See Prob. 7.20.1.)z s
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8.1 Introduction

In general, it is not possible for a fluid to be at rest while subject to an electric or magnetic
force density. Yet, when a field is used to levitate, shape or confine a fluid, it is a static equi-
librium that is often desired. The next section begins by identifying the electromechanical conditions
required if a state of static equilibrium is to be achieved. Then, the following three sections
exemplify typical ways in which these conditions are met. From the mathematical viewpoint, the subject
becomes more demanding if the material deformations have a significant effect on the field. These
sections begin with certain cases where the fields are not influenced by the fluid, and end with models
that require numerical solution.

The magnetization and polarization static equilibria of Sec. 8.3 also offer the opportunity to
explore the attributes of the various force densities from Chap. 3, to exemplify how entirely different
distributions of force density can result in the same incompressible fluid response and to emphasize
the necessity for using a consistent force density and stress tensor.

Given a static equilibrium, is it stable? This is one of the questions addressed by the remaining
sections, which concern themselves with the dynamics that result if an equilibrium is disturbed. Some
types of electromechanical coupling take place in regions having uniform properties. These are exem-
plified in Secs. 8.6-8.8. However, most involve inhomogeneities. The piecewise homogeneous models
developed in Secs. 8.9-8.16 are chosen to exemplify the range of electromechanical models that can be
pictured in this way.

The last sections, on smoothly inhomogeneous systems, serve as an introduction to a viewpoint
that could equally well be exemplified by a range of electromechanical models. Once it is realized
that the smoothly inhomogeneous systems can be regarded as a limit of the piecewise inhomogeneous sys-
tems, it becomes clear that all of the models developed in this chapter have counterparts in this domain.

The five electromechanical models that are a recurring theme throughout this chapter are sum-
marized in Table 8.1.1.

Table 8.1.1. Electromechanical models.

Model Approximation

Magnetization (MQS) or polarization (EQS) No free current or charge

Instantaneous magnetization or polarization

Flux conserving (MQS) T << T

Charge conserving (EQS) T << T or Tmig

Instantaneous magnetic diffusion (MQS) T >> Tm
Instantaneous charge relaxation (EQS) T >> Te or Tmig

Magnetization and polarization models for incompressible motions require an inhomogeneity in mag-
netic or electric properties. The remaining interactions involve free currents or charges which gener-
ally bring in some form of magnetic diffusion or charge relaxation (or migration). How such rate
processes come into the electromechanics is explicitly illustrated in the sections on homogeneous sys-
tems, Secs. 8.6 and 8.7. However, in the more complex inhomogeneous systems, the last four models of
Table 8.1.1 not only result in analytical simplifications, but give insights that would be difficult
to glean from a more general but complicated description. "Constant potential" continua fall in the
category of instantaneous charge relaxation models.

STATIC EQUILIBRIA

8.2 Conditions for Static Equilibria

Often overlooked as an essential part of fluid mechanics is the subject of fluid statics. A re-
minder of the significance of the subject is the equilibrium between the gravitational force density
and the hydrostatic fluid pressure involved in the design of a large dam. On the scale of the earth's
surface, where g is essentially constant, the gravitational force acting on a homogeneous fluid
obviously is of a type that can result in a static equilibrium.

Except for scale, electric and magnetic forces might well have been the basis for Moses' parting
of the Red Sea. Fields offer alternatives to gravity in the orientation, levitation, shaping or

Secs. 8.1 & 8.2



Fig. 8.2.1. (a) Electric field used to shape a "lens" of conducting liquid resting on a pool of
liquid metal. Molten plastics and glass are sufficiently conducting that they can be re­

~l

(0)

(b)

«[9
I

(c)

(d)

garded as "perfect" conductors. (b) Polarization forces used to orient a highly insulating
liquid in the top of a tank regardless of gravity. The scheme might be used for providing
an artificial bottom in cryogenic fuel storage tanks under the zero-gravity conditions of
space. (c) Liquid metal levitator that makes used of forces induced by a time-varying mag­
netic field. At high frequencies, the flux is excluded from the metal, and hence the fields
tend toward a condition of zero shearing surface force density. (d) Cross-sectional view
of axisymmetric magnetic circuit and magnetizable shaft with magnetizable fluid used to seal
penetration of rotating shaft through vacuum containment.

1-3
otherwise controlling of static fluid configurations. Examples are shown in Fig. 8.2.1.

For what force distributions can each element of a fluid be in static equilibrium? If the ex­
ternal electric or magnetic force density is Fe, then the force equation reduces to

++
-V'(p - pg·r) (1)

This expression is a limiting form of Eq. 7.4.4 with the velocity zero. Even if effects of viscosity

1. J. R. Melcher, D. S. Guttman and M. Hurwitz, "Die1ectrophoretic Orientation," J. Spacecraft and
Rockets i, 25 (1969).

2. E. C. Okress et al., "Electromagnetic Levitation of Solid and Molten Metals," J. Appl. Phys. Q,
545 (1952).

3. R. E. Rosensweig, G. Misko1czy and F. D. Ezekiel, "Magnetic-Fluid Seals," Machine Design March 28
1968. ' ,
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are included in the model, because v = 0, Eq. 1 still represents the static equilibrium. Thus, it is
also the static limit oZ Eq. 7.4.4. The curl of a gradient is zero. So, the curl of Eq. 1 gives a
necessary condition on Fe for static equilibrium:

V x Fe = 0 (2)

To achieve a static equilibrium, the force density must be the gradient of a scalar, -VS. Then Eq. 1
becomes

V(p - pg'r + S) = 0 (3)

which will be recognized as Eq. 7.8.4 in the limit v = 0.

More often than not, in an electromagnetic field a fluid does not reach a static equilibrium.
Electromagnetic forces do not generally satisfy Eq. 2. Fields designed to achieve an irrotational force
density are exemplified by Secs. 8.3-8.5.

These sections also illustrate that stress balance at interfaces is similarly restricted. A clean
static interface is incapable of sustaining a net electrical shearing surface force density. Formally,
this is seen from the interfacial stress balance, Eq. 7.7.6, which states that the normally directed
pressure jump 

f 
and surface tension surface force density must be balanced by the electrical force density.

The last, Te[ 0 nj, is in general not normal to the interface.

To be specific about what types of interfaces do satisfy this requirement, consider an interface
having a normal vector in the x direction. Then, nj = 6jx and for the directions i 0 x the surface
force density is

OTix - E= Dx D = EinDx (EQS)
(4)

Tix f = HIBx  = B Bx (MQS)

In writing the second equalities, advantage is taken of the continuity of tangential E (EQS) and normal

' (MQS). From Eq. 4a, two EQS idealizations are distinguished for having no electrical shearing surface

force density at the interface. First, the tangential electric field intensity can vanish, in which

case (4a) is satisfied. The interface is "perfectly" conducting. Secondly, the jump in electric dis-

placement at the interface can vanish, and again, there is no shear stress at the interface. The inter-

face then supports no free surface charge density. Two MQS circumstances exist for achieving no

shearing surface force density. First, the normal flux density can vanish at the interface. Physically,

this is realized if the interface is perfectly conducting. Alternatively, the jump in tangential f can

vanish, and this means that there is no surface current density on the interface.

The four static equilibria of Fig. 8.2.1 exemplify the four limiting situations in which there is

no electrical shearing force density at an interface. In Fig. 8.2.1a, the lens is pictured as suffi-

ciently highly conducting that it excludes the electric field, and hence behaves as a perfect conductor.

Molten glass is more than conducting enough to satisfy this condition. Polarization forces are used to

orient highly insulating fluids with no free charge density either on the interface or in the bulk, as
illustrated in Fig. 8.2.1b. Metallurgists use high-frequency magnetic fields to make a crucible with

magnetic walls, as shown in Fig. 8.2.1c. Here, because of the high frequency used, the magnetic field

penetrates the liquid metal only slightly, and tends to the limit of no normal flux density. Thus, a

static configuration with the melt levitated in mid-air is in principle possible. Magnetic fluids are

being exploited as the basis for making vacuum seals for shaft penetrations as sketched in Fig. 8.2.1d.

Here, the magnetic field is used to orient the liquid in the region between shaft and walls. Generally,

the magnetizable fluids are highly insulating and so there is not only no surface current to produce a

surface shearing force density, but also no volume force density due to I x A.

In all of the examples in Fig. 8.2.1, the electromechanical forces can be regarded as confined to

interfaces. This is clear for the free charge and free current interactions of parts (a) and (c) of

that figure, because there are no fields inside the material. In the polarization and magnetization

interactions, the properties are essentially uniform in the bulk. Thus, the force density expressed as

Eq. 3.7.19 or 3.8.14 is concentrated at the interfaces.

Some common static configurations involving volume forces are evident from symmetry. For example,

if the force density is in one direction and only depends on that direction, i.e., if

F = F (x) (5)

then it is clear that the force density is the gradient of (- S):

Sec. 8.2



C= -f Fx(x)dx (6)

Similar arguments can be used if the force density is purely in a radial direction.

Other approaches to securing a static equilibrium using bulk force densities are illustrated in
Sec. 8.4.

8.3 Polarization and Magnetization Equilibria: Force Density and Stress Tensor Representations

For an incompressible fluid, the pressure is a dangling variable. It only appears in the force
equation. Its role is to be whatever it must be to insure that the velocity is solenoidal. As a con-
sequence, those external forces which are gradients of "pressures" have no influence on the observable
incompressible dynamics. Any "pressure" can be lumped with p and a new pressure defined. Although
true for dynamic as well as static situations, this observation is now illustrated by two static
equilibria.

The first of these illustrates polarization forces, and is depicted My Fig. 8.3.1. A pair of
diverging conducting electrodes are dipped into a liquid having permittivity E. A potential differ-
ence Vo applied between these plates results in the electric field

SV V o .
E = ie (1)

in the interior region well away from the edges. At any given radius r, the situation is essentially
the dielectric of Fig. 3.6.1, drawn into the region between parallel capacitor plates. Because the
field increases to the left, so also does the liquid height. What is this height of rise, &(r)?

There are two reasons that this experiment is a classic one. The first stems from the lack of
coupling between the fluid geometry and the electric field. The interface tends to remain parallel
with the 6-direction, and as a result the electric field given by Eq. 1 remains valid regardless of the
height of rise. As a result, the description is greatly simplified. The second reason pertains to
its use as a counterexample against any contention that the polarization force density is p p, where
p2 is the polarization charge density. In this example, there is neither polarization charge in the
liquid bulk (in the region between the electrodes and even in the fringing field near the lower edges
of the electrodes in the liquid) nor is there surface polarization charge at the interface (where E is
tangential). If pp9 were the force density, the liquid would not rise!

Illustrated now are two self-consistent approaches to determining the height of rise, the first
using Kelvin's force density and the second exploiting the Korteweg-Helmholtz force density.

Kelvin Polarization Force Density: The force density and associated stress tensor are in this
case (Table 3.10.1)

F = P. VE (2)

Tij = EiDj - ijEoEk (3)

The liquid is modeled as electrically linear with P and I collinear,

P= ( - E )E (4)

Throughout the liquid, E is uniform. Hence, Eqs. 2 and 3 and the fact that E is irrotational combine
to show that the force density is

aE iE
P(.VE) = (E - E)E Eo)E- j • - E) E ( o ) ( EEJ) (5)

So long as the force density is only used where E is constant (in the bulk of the liquid or of the air)
Eq. 6 is in the form of the gradient of a pressure,

4 1 + _)
F = -VC; ~E - E o)E-E (6)

This makes it clear that the polarization force density is irrotational throughout the bulk. In the
bulk, Eq. 8.2.3 applies. With G evaluated using Eq. 1, it follows that in the bulk.regions

( - E)V2

P + pgz - 222 = constant 2 2 (7)
2a r
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Fig. 8.3.1. (a) Diverging conducting plates with potential difference V are immersed ino
dielectric liquid. (b) Interfacial stress balance. (c) From Reference 12, Appen­
dix C; corn oil (E = 3.7 Eo) rises in proportion to local E2. Upper fluid is com­
pressed nitrogen gas (E ~ Eo) so that E can approach 107 Vim required to raise
liquid several cm. To avoid free charge effects, fields are 400 Hz a-c. The fluid
responds to the time-average stress. The interface position is predicted by Eq. 12.

Thus, with the interface elevation, ~, measured relative to the liquid level well removed from the elec­
trodes, positions a and d in the air (where E = Eo and p ~ 0) and positions band c (in the 1iq~id) are
joined by Eq. 7:

(8)
2

(8 - 8 )V
o 0

p (9)c

To complete the formulation, account must be taken of any surface force densities at the interface that
would make the pressure discontinuous at the interface. In general, the boundary condition is
Eq. 7.7.6. As discussed in Sec. 8.2, there is no free surface charge, so there is no shearing component
of the surface force density. If the electrodes are very close together, capillarity will contribute
to the height of rise, as described by the example in Sec. 7.8. Here the electrodes are sufficiently
far apart that the meniscus has a negligible effect.

If the local normal to the interface is in the x direction, the surface force density is 0TO.
Because the electric

0
field is entire1y perpendicular to x and is continuous at the interface, it f~!lows

1from Eq. 3 that TxxO = 0- 2 EoE~O = 0, so that there is no surface force density. Hence, the stress
equilibrium for the interface at lOcations a-b and c-d is simply represented by

o (10)

o (11)

The pressures are eliminated between the last four relations by multiplying Eq. 8 by (-1) and adding

8.S Sec. 8.3
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the four equations. The resulting expression can then be solved for E(r):

(E - 6o)V2
5 (12)

2a pgr2

This dependence is essentially that shown in the photograph of Fig. 8.3.1.

Korteweg-Helmholtz Polarization Force Density: It is shown in Sec. 3.7 that this force density
differs from the Kelvin force density by the gradient of a pressure. Thus, the same height of rise
should be obtained using (from Table 3.10.1) the force density and stress tensor pair

+ 1 2
F - E VE (13)1

Tij = EiEj - 6, EkE (14)

Now, there is no electrical force in the volume and the static force equation, Eq. 8.2.3, simply requires
that

p + pgz = constant (15)

Thus, points a and d and points b and c are joined through the respective bulk regions by Eq. 15 to
obtain

Pa = Pd (16)

Pb + pgE = PC (17)

By contrast with Eqs. 8 and 9 there is no bulk effect of the field. Now, the electromechanical coupling
comes in at the interface where e suffers a step discontinuity and hence a surface force density exists.
At the interface, 0 Txx 0 = o - E)Ee, so that the stress balances at the interface locations a-b and
c-d are respectively

2
(E - E)V

Pa - Pb 2 2 (18)
2a r

P - Pd = 0 (19)

Multiplication of Eq. 16 by (-1) and addition of these last four equations eliminates the pressure and
leads to the same deflection as obtained before, Eq. 12.

Korteweg-Helmholtz Magnetization Force Density: The force density and stress tensor pair
appropriate if the fluid has a nonlinear magnetization are (from Table 3.10.1)

+ m aw
F = E ak- Vak (20)

k=1 k

Tij - HiBj - ijW' (21)

where B and H are collinear:

2 +
B = 1(al ,a2 2 , m,H )H (22)

In the experiment of Fig. 8.3.2, the magnetic field

÷ I *
H =rr i (23)

is imposed by means of the vertical rod, which carries the current I. The ferrofluid in the dish has
essentially uniform properties ai throughout its bulk, but tends to saturate as the field exceeds about
100 gauss.

The Korteweg-Helmholtz force density has the advantage of concentrating the electromechanical
coupling where the properties vary. In this example, this is at the liquid-air interface. Because
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Courtesy of Textron Corporation. Used with permission.
Fig. 8.3.2. A magnetizable liquid is drawn upward around a current-carrying wire in accordance

with Eq. 29. (Courtesy of AVCO Corporation, Space Systems Division.)

Eq. 20 is zero throughout the bulk regions, Eqs. 16 and 17 respectively pertain to these regions.

Stress balance at the interface is represented by evaluating the surface force density acting
normal to the interface, to write

owID (24)

o (25)

for locations a-b and c-d, respectively. The pressures are eliminated between Eqs. 16, 17, 24 and 25
to obtain

n WI n
~ = -~ (26)pg

To complete the evaluation of ~(r), the magnetization characteristic of the liquid must be specified.
As an example, suppose that

(27)

where a and a are properties of the liquid. Then, the coenergy density (Eq. 2.14.13) isl 2
+
H

+ + 1 /2 2 a2 1 2
WI B·oH = ­ la + H - - + -

f
~ H

2 a 2
o al l

0 (28)

and, in view of Eq. 23, Eq. 26 becomes

~ = .1... Ii k2 + <_1_)2_ a~ (29)
pg ~l 2 2~r aJ]

As for the electric-field example considered previously, the relative simplicity of Eq. 26 origi­
nates in the independence of H and the liquid deformation. If there were a normal component of Hat
the interface, the field would in turn depend on the liquid geometry and a self-consistent solution
would be more complicated.

8.7 Sec. 8.3
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8.4 Charge Conserving and Uniform Current Static Equilibria

A pair of examples now illustrate how the free-charge and free-current force densities can be
arranged to give a static equilibrium.

Uniformly Charged Layers: A layer of fluid having uniform charge density qb and mass density pb
rests on a rigid support and has an interface at x = 6. A second fluid above has charge density qa
and mass density Pa. Gravity acts in the -x direction. The objective is control of E(y) by means of
the potential V(z) applied to the electrodes above.

X
Fig. 8.4.1

Sp, (y) a
(e) Uniformly charged aerosols

d.- . .: f entrained in fluids of dif-
fering mass densities assume

. . . .- - - . ;Ph b . . * static equilibrium deter-
. .. b(y) mined by the applied poten-

. .. J . •
tial V(y).

As an example, the upper fluid might be air which is free of charge (qa = 0) and the lower one
a heavier gas such as CO2 with entrained submicron particles previously charged by ion impact. Thus,
the fluids have essentially the permittivity of free space and there is no surface tension.

The time-scales of interest are sufficiently short that migration of the charged particles
relative to the fluids is inconsequential. Thus, the charge is frozen to the gas. Because the gas
is incompressible (V.v = 0), the charge density of a gas element is conserved. Regardless of the
particular shape of the interface, the charge densities above and below remain uniform, qa and qb
respectively. It is for this reason and because t is irrotational that the force density in each fluid
is irrotational:

F = qE = -qV( = -V(q0)

Thus, Eq. 8.2.3 shows that within a given fluid region

p + pgx + qt = constant

Evaluation of the constant at the points (e) and (f) adjacent to the interface where C = C gives

pa+P gx + qa = + ago + qa(); x >

(3)
p + pbgx + qb = p+ Pbgo + oqb(o); x < C

The force density suffers a step discontinuity at the interface. This means that there is no surface
force density, so that the pressure is continuous at the interface. Continuity of p also follows
formally from the stress jump condition, Eq. 7.7.6 with the surface tension Y = 0.

So that stability arguments can be made, an external surface force density Text(y) is pictured
as also acting on the interface. By definition Text = 0 at location (e-f):

c d e f
p - p = Text; p - p = 0

Subtraction of Eqs. 3a and 3b then gives

g(C ~o)(Pb - - Pa) + (qb - qa) [ '(C) o- =I(%)] Text

where (CC) is the potential evaluated at the interface.

Of course, the potential distribution is determined by the presently unknown geometry of the

interface and the field equations. Here, the relation of field and geometry is simplified by con-
sidering long-wave distributions of the interface. The electric field is approximated as being
dominantly in the x direction. Thus, Poisson's equation reduces to simply

-q qfa: x >a20 2- =--;
x2  ax o q = b: 0 x <
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V(qb-q),''

V_0 C Fig. 8.4.2

V 9- P-P)
- / Graphical representation

S , of Eq. 9.

With the boundary conditions that 4(d) = V(y), that 0 c0 = 0 and ] 81/a8xU = 0 at the interface and that
N(0) = 0, it follows that

() = -V+ qa (d - 2 qb 2(d - ) (7)
d 2c d 2e d

o o

Thus, with Tex t = 0, Eq. 5 becomes a cubic expression that can be solved for C(y) given V(y)

) 
g(ý- o)(P- Pa + (qb q (- d -- V _

(8)

+ ( qa (d-2 2 b [2(d)-(do)] Text
+(qb-qa) 2e d 0 0 2E d

o o

Given a desired E(y), Eq. 8 can also be solved for the required V(y). If the field imposed by the elec-

trode potential V(y) is large compared to the space charge field, the last term in Eq. 8 can be ignored:
Then, the equilibrium is represented by

) + g(-- E )(Pb P (qb- q )(IT -V )= ext (9)

To picture how the interface responds to V(y), it is helpful to use the graphical solution of Fig. 8.4.2.

The interfacial deflection is given by Text = 0. Increasing V has the effect of decreasing the inter-

cept and increasing the slope of the electrical "force" curve.

In this imposed field limit, Eq. 9 can be solved for the layer thickness as a function of the

imposed potential:

S  + Yo (qb - V() (10)
1 gd(pb V(y)

0 

Illustrated in Fig. 8.4.3 is an example which represents what would happen if the potential shown were

imposed on a light layer over a heavier layer, with the upper one uncharged and the lower one negatively
charged.

Stability of the equilibrium can be argued from the dependence of Text on C. If

(11)- ) +  ) 
g(Pb b - a > 0 

a positive force is required to produce a positive deflection, much as if the interface were equivalent

to a spring with a positive spring constant. Thus, the condition of Eq. 11 is required for stability.

In terms of the normalized voltage used in expressing Eq. 10, the interface is stable where V > -1.

A more complete stability argument that includes the effects of space charge is given in Sec. 8.14.
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3 Imposed field equilibrium
with V = -0.7 sin(y).
Shape of charge layer is
given by Eq. 10.

0

Uniform Current Density: Static equilibrium with the free-current force density Jf x poH dis-
tributed throughout the volume of a fluid is now illustrated. In the MQS system of Fig. 8.4.4, a layer of
liquid metal rests on a rigid plane at x = 0 and has a depth ý(y). The system, including the fields
and currents, is assumed to have a uniform distribution with the z direction, so that the view shown
is any cross section.

The magnetic field is to be used in deforming the liquid interface. A d-c electromagnet produces
a magnetic flux density with components in the x-y plane. In addition, a voltage source drives a uni-
form current density Jo in the z direction throughout the fluid volume. This current density interacts
with the imposed flux density to produce a vertical component of magnetic force in the liquid, and a
resultant deformation of the interface. Note that because the fields are static, there are no surface
currents. Also, the liquid metal is not magnetizable, so there are no magnetization forces to consider.
Finally, effects of surface tension are ignored. Therefore, the interface is in stress equilibrium,
provided the pressure there is continuous.

The essential approximation in obtaining the irrotational force density throughout the volume
is that the imposed magnetic flux density is very large compared to the flux density induced by the
imposed current density Jo. Thus, the force density takes the approximate form

+4 t 
F = J i x [Bi + Bi ] (12)

The vector potential is convenient for dealing with B, because if the substitution is made B = V x A,
then Eq. 12 becomes ? = -VC, wherein

9= -JoA(x,y) (13)

The imposed field approximation and the uniform imposed current result in the irrotational force density
required for static equilibrium. Given the particular field structure and the magnitude of the field
excitation, A(x,y) is known.

In an engineering application, the liquid metal might serve as a base for the casting of plastic
or glass products.l The magnetic field can be controlled so that there is a ready means of altering
the shape of the mold without a need for replacing the casting material. If a quiescent fluid state is
desirable, conditions for a static equilibrium are essential. From Eq. 8.2.3 and Eq. 13

p + pgx - J A = constant (14)

There is no current density in the gas above the interface, and hence no force density. The depth
as y + -- is defined as E, and A (x = 5, y + -~o) is defined as A,. Then, Eq. 14 shows that for points

1. See U.S. Patent #3,496,736, "Sheet Glass Thickness Control Method and Apparatus," February 24,
1970, M. Hurwitz and J. R. Melcher.
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Fig. 8.4.4. Layer of liquid- metal has the depth C(y) which is controlled by the
interaction of a uniform z-directed current density Jo and a magnetic flux
density induced by means of the magnetic structure.

(a) and (a') of Fig. 8.4.4

Pa' + P ag = Pa + P ag (15)

and for points (b) and (b')

(16)Pb' + bg - + J oA  = P Pbgb - JoA  

Because the hydrostatic pressures are the same at the primed and unprimed positions, subtraction of
Eq. 15 from Eq. 16 gives a relation that can be solved for the height ý(y):

ý = ý6- Jo(A, - A)/g(p b - Pa )  (17)

The vector potential has the physical significance of being a flux linkage per unit length in the
z direction. To see this, define X(y) as the flux linked by a loop having one edge outside the field
region to the right, the other edge at the position y and height C of the interface and unit depth in
the z direction. Then the flux linked per unit length is

S= Bnda = A.dk = Am - A(ý,y) (18)

and in terms of this flux, Eq. 18 becomes

o
(19)g(m -b Pa)  

The flux passing through the interface to the right of a given point determines the depression at that
point. Proceeding from right to left, the flux is at first increasing, and hence the depression is
increasing. But near the middle, additions to the total flux reverse, and the net flux tends toward
zero. Hence, ý returns to m?, as sketched in Fig. 8.4.4. Even if used only qualitatively, Eq. 19
gives a picture of the interfacial deformation that is useful for engineering design. Measurements
can be used to determine X(x,y).

8.5 Potential and Flux Conserving Equilibria

Typical of EQS systems in which an electric pressure is used to shape the interface of a somewhat
conducting liquid is that shown in Fig. 8.5.1a. Provided that the region between the cylindrical elec-
trode and the liquid is highly insulating compared to the liquid, the interface is an equipotential.
Because the applied voliage is constant and the equilibrium is static, this is true even for what might
be regarded as relatively insulating liquids. Certainly water, molten glass, plasticizers and even

used transformer Oil will behave as equipotentials with air insulation between electrodes and interface.
The liquid is in a reservoir. By virtue of its surface tension, the interface attaches to the reser-
voir's edges at y = +4. Thus, continuity requires that the upward deflection of the interface under
the electrode be compensated by a downward deflection to either side. To be considered in this section
is how the static laws make it possible to account for such requirements of mass conservation.
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In the MQS system of Fig. 8.5.1b, the liquid is probably a metal. To achieve the conditions for
a static equilibrium, the driving flux source Fo is sinusoidally varying with a sufficiently high
frequency that the skin depth is small compared to dimensions of interest. Thus, the normal flux den-
sity at the interface approaches zero. The liquid responds to the time average of the normal magnetic
stress.

IV•.

0'2 N i 

Fig. 8.5.1. (a) EQS system; liquid interface stressed by d-c field is equipotential. (b) MQS
system; driving current has sufficiently high frequency that currents are on surfaces of
liquid and electrode. Liquid responds to time average of magnetic pressure.

This pair of case Ptudies exemplifies the free charge and free current static equilibria, from
Sec. 8.2, involving electromagnetic surface force densities. The EQS static equilibrium is possible
because there is no electric field tangential to the interface, while the MQS equilibrium results
because there is essentially no normal magnetic flux density.

Antiduals: The two-dimensional fields in the two systems have an interesting relationship. For
the moment, suppose that the geometry of the interfaces is known. Then, the electric field is repre-
sented by the potential, while the magnetic flux density is represented in terms of the z component
of the vector potential, as summarized by Eqs. (a)-(c) of Table 2.18.1. Thus, in the regions between
electrodes and interfaces,

V2 4 = 0 V2A = 0

Boundary conditions on the respective systems are

A = F= Vo on S ° on S1

O f 0 on A = S 0 on 2 S2

where S1 is the surface of the electrode or bus above the interface and S2 is the interface and ad-
jacent surface of 1he container. By definition, Fo is the flux per unit length (in the z direction)
passing between the bus and the interface. Note that to make the magnetic field tangential to these
surfaces, A is constant on the interface and on the surface of the bus.

With the understanding that n denotes the direction normal to the local interface, the electric
and magnetic stresses on the interfaces are

2
1 E2 1 e 2i€2 1 2 1 1 A)

nn 2 on 2 E T = - pH = - Po n
n nn 2 0t 2 oU 3n

o

Thus, if the interface had the same geometry in the two configurations, the magnetic stress would "push"
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on the interface to the same degree that the electric stress would "pull." The magnetic stress is the
negative of the electric stress and can be formally found by replacing Co 4 Po and ac/In + (@A/Dn)/Vo.

Although limited to two-dimensional fields, the antiduality makes it possible to extend the elec-
tromechanical description of one class of configurations to another by simply changing the sign of the
electromechanical coupling term. Provided that charge can relax sufficiently rapidly on the EQS inter-
face to render it an equipotential even under dynamic conditions, and provided that motions remain slow
compared to the period of the sinusoidal excitation for the MQS system (so that the interface responds
primarily to the time-average magnetic stress), the antiduality is valid for dynamic as well as static
interactions.

Bulk Relations: Bernoulli's equation, Eq. 7.8.7, applied to the air and liquid bulk regions, show
that

Ila x >
P i b - pgx x < (5)

where Ha and H
1b are constants. The mass density of the air is ignored compared to that of the liquid.

Stress Equilibrium: The normal component of the stress balance, Eq. 7.7.6, requires that

p = Tnn- yV.n (6)

Evaluation of the pressure jump using Eqs. 5 and of V.n with n given by Eq. 7.5.3 gives

2] 2
(IIH - ) + pgr = T + Y1+ d(i [1+ )1 (7)
a b nn dy dy dyj

Evaluation of Surface Deflection: Suppose that in the absence of a field, the interface is flat.
Then, as the excitation Vo or Fo is raised, ý(y) increasingly departs from this initial state, C = 0.
One way to compute ý(y) at a given excitation is to find the deflections as the excitation is raised,
in stages, to this final value. Thus, Tnn(y) in Eq. 7 is approximated by solving Eq. 1 with E(y) ap-
proximated by its shape at the previous somewhat lower level of excitation. Thus, Tnn is a known func-
tion of y and the new Q(y) is approximated by integrating Eq. 7. Once this is done, the new E(y) can
be used to refine the determination of the fields. This interaction can be repeated until a desired
accuracy is achieved. Then, the excitation can be incrementally raised and the process repeated.

For a system that is symmetric about the x axis boundary conditions appropriate to the solution
of the second-order differential equation, Eq. 7, are

d- (0) = 0 (8)
dy

(-E ) = 0 (9)

In addition, mass conservation requires that

jo dy (10)=0 

-P

This condition translates into a determination of the pressure jump. In view of Eqs. 8 and 10, integra-

tion of Eq. 7 between y = -k and y = 0 shows that

H- = Td1ny ( u (1)
-a1 an y W /+u y=-1

where normalized variables and dimensionless parameters are

y = y; a - b = (a - 4() 2oVo/ 2) =(
(12)

T = (1 E V2 / 2 ) T W - V2 /y; G -pga2/

and u is the slope of the interface, defined as

dy ~ 
dy (13)

(
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In terms of u, Eq. 7 is normalized and written as a first-order differential equation

du (1 u2)3/2
S(1 + u ) [(a - lb)W + Gý - WTnn] (14)

This last pair of relations, equivalent to Eq. 7, take a form that is convenient for numerical incegra-
tion. (The integration of systems of first-order nonlinear equations, given "initial conditions," is
carried out using standard computer library subroutines. For example, in Fortran IV, see IMSL Integra-
tion Package DEVREK.) With Tnn(y) given from the solution of Eqs. 1-3 (to be discussed shortly), the
integration begins at = -1 where Eq. 9 provides one boundary condition. To make a trial integration
of Eqs. 12 and 13, a trial value of u(-l) is assumed. Thus, from Eq. 11, the value of Ha-Hb that in-
sures conservation of mass is determined. Integration of Eqs. 12 and 13 is then carried out and evalu-
-ated at y=0. Using u(-l) as a parameter, this process is repeated until the condition u(O) = 0 (bound-
ary condition, Eq. 8) is satisfied. One way to close in on the appropriate value of u(-l) is by halving
the separation of two u(-l)'s yielding opposite-signed slopes at y = 0.

Evaluation of Stress Distribution: To provide Tnn(y) at each step in the determination of the
surface deflection which has just been described, it is necessary to solve Eq. 1 using the boundary con-
ditions of Eqs. 2 and 3. A numerical technique that is well suited to this task results in the direct
evaluation of the surface charge density af on the interface. Because Tnn = 2CoE /2 = a2/2c , this is
tantamount to a direct determination of the desired stress distribution.

In the two-dimensional configuration of Fig. 8.5.2, the solution of Laplace's equation can be
represented by a potential (at the location t) that is the superposition of potentials due to incremen-
tal line charges per unit length afds':

( -1 af o ') Inj - t' ds' (15)

This expression is normalized such that

EV
4 = V 4; a = ; s =  (s

o- f Y f, (16)

Although in 1 - fl = in - ( + In £, so long as the net charge in the system is zero, integration

of the In 1 term gives no contribution and so is omitted from Eq. 15. The desired (normalized) surface

charve 
y

charge 

is 
is 

a 
o 

and 
and 

ds'is-r 
dg' is 

the 
the (normalized) 

noralied)incemenal 
incrementa 

e of

The integral equation is solved numerically by approximating the
integral by a sum over segments of the boundaries. These are denoted
by the index n, as shown in Fig. 8.5.3. The first N segments are on
the zero potential interface, the next 2M are on the surrounding zero
potential plane and the remaining P segments are on the cylindrical
electrode, and hence have the potential 4 = 1. Thus, the potential at
the mth segment is the superposition of integrations over each of the
charge segments. Because the latter have a length As that is small, Fig. 8.5.2. Potential given
the surface charge on each segment can be approximated as constant by Eq. 15 at r is su-
and the integration carried out analytically. For example, the con- perposition of poten-
tribution to the potential of the mth segment from the surface tials due to line
charge ao on at n the nth segment is (see Fig. 8.5.4), charges P'.

a s n+As
SE n ns In 2+ s2 dsm 27 n (17)

n

Thus, Eq. 15 becomes

N+2M+P
= = a a (18)

m n= mn n
n=1

where
2 2a 21 (As + s )In[(A s + sn) + d - As

an 'n 2 n n n

- 1 In[s 2 + d2 ] + d tan-l(As +  ) - tan-1 sn (19)
2 n n n n d t

Now, Eq. 18 can be written for each of the N+2M+P segments. Thus, it represents a set of N+2M+P
equations, linear in as many unknowns an. These equations are then inverted to obtain the desired an's.
(Matrix inversion is carried out using standard computer library subroutines. For example, in Fortran IV,
see IMSL Matrix Inversion Routine LINVlF.)
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2
Because T = a /2, the normalized stress distribution on each segment follows. So that the

-nn -n
numerical integration of the surface equations, Eqs. 13 and 14, can be carried out with an arbitrary
step size, the discrete representation of Tnn on the interface is conveniently converted to a smooth
function by fitting a polynomial to the values of Tnn. (Polynomial fit can be carried out using a Least
Square Polynomial Fit Routine such as the Math Library Routine LSFIT.)

m th segment
n th segment s

dn\\ -A-

Fig. 8.5.3. Definition of segments and geometry for Fig. 8.5.4. Typical segment on inter-
numerical solution. face.

Typical results of the combined numerical integration to determine Tnn(y) and the interfacial de-
formation are shown in Fig. 8.5.5. (These computations were carried out by Mr. Kent R. Davey.) The
procedure begins with a modest value of W and a flat interface and starts with a determination of Tnn.
Then, Eqs. 13 and 14 are integrated and this integration repeated until the boundary condition u(0) = 0
is satisfied. Using this revised distribution of C(y), the distribution of Tnn is recalculated, followed
by a recalculation of the interface shape. This process is repeated until a desired accuracy is achieved.

Fig. 8.5.5

Shape of interface with
G = 3, r = 0.5 and h = 1.
Broken Brokn culrves crve areforsu-are for suc~-

cessive iterations 
0.02

l1) witn
W fixed. (a) EQS system
with W = 0.5. (b) MQS sys-
tem with W = -0.5. Note
that electric case conver-
ges monotonically, while
magnetic one oscillates.

0

-0.02

With W raised to a somewhat higher value, the previously determined shape is used as a starting
point in repeating the iteration described.
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HOMOGENEOUS BULK INTERACTIONS

8.6 Flux Conserving Continua and Propagation of Magnetic Shear Stress

Alfvyn waves that propagate along magnetic field lines in the bulk of a highly conducting fluid
result from the tendency for arbitrary fluid surfaces of fixed identity to conserve their flux linkage.
The physical mechanisms involved are apparent in the one-dimensional motions of a uniformly conducting
incompressible fluid permeated by an initially uniform magnetic field intensity Hoi , as in Fig. 8.6.1a.
By assumption, each fluid particle in a y-z plane executes the same motion.

Y

(a) (b) (c)
Fig. 8.6.1. (a)Perfectly conducting fluid initially at rest in uniform magnetic field.

(b) For flux conservation of loops of fixed identity initially lying in x-z planes,
translation of layer in y-z plane requires induced currents shown. (c) Force den-
sities associated with currents induced by initial motion. (d) Translation of
layers resolves into wave fronts propagating along magnetic field lines.

Consider the consequences of using an external force density Fexiy (Fig. 8.6.1b) to give a
y-directed translation to a layer of fluid in one of these y-z planes. Because of the translation,
fluid elements initially in any x-z plane form a surface that would be pierced twice by the initial
field Ho . It is shown in Sec. 6.2 that if the fluid is perfectly conducting, the total flux linked
by such a surface of fixed identity must be conserved. As a result of material deformation, a current
density (sketched in Fig. 8.6.1b) is induced in just such a way as to create the y component of mag-
netic field required to maintain the net field tangential to each material surface initially in an
x-y plane.

Note that because charge accumulation is inconsequential, the current density is solenoidal, so
that current in the z direction must be returned in the -z direction in adjacent planes. The force
density associated with these return currents is also shown in Fig. 8.6.1b. Because these currents are
proportional to the displacement of a layer, the external force is retarded by a "spring-like" force
proportional to the magnitude of the displacement. Similarly, the returning currents in adjacent y-z
layers cause magnetic forces above and below, but here tending to carry these layers in the same direc-
tion as the original displacement. Thus, fluid layers to either side tend to move in the same direc-
tion as the layer subjected to the external force. Adjacent layers in the y-z planes are coupled by
a magnetic shear stress representing the force associated with currents induced to preserve the con-
stant flux condition.

In the absence of viscosity, the magnetic shear stress on adjacent layers is only retarded by
inertia. There is some analogy to the viscous diffusion (Sec. 7.19), with the interplay between
viscosity and inertia now replaced by one between magnetic field and inertia. The viscous shear stress
of Sec. 7.19 is proportional to the shear-strain rate. By contrast, the magnetic shear stress in the
perfect conductor is proportional to the shear strain (the spatial rate of change of the material dis-
placement rather than velocity). Thus, rather than being diffusive in nature, the motion resulting
from the magnetic shear stress in a perfect conductor is wave-like. As suggested by Fig. 8.6 .1c, the
motion propagates along the lines of magnetic field intensity as a transverse electromechanical wave.
Just how perfectly the fluid must conduct and how free of viscosity it must be to observe these waves
is now determined by a model that includes magnetic and viscous diffusion.
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A layer of fluid having conductivity 0, vis-
osity n and thickness A is shown in Fig. 8.6.2.
n static equilibrium, it is permeated by a uni-
orm x directed magnetic field intensity Ho . (Av,)\
ecause the magnetic flux density is solenoidal,
t is written in the form I = PHoIx + V x X, where
 is governed by the magnetic diffusion equation,
q. 6.5.3. Fluid deformations that are now con-
idered are independent of z and confined to x-y i 
lanes, and so only the z component of A exists;

.. .H--.
= AiZ . Moreover, motions are taken as inde- ----- -- L------ -

endent of y, so v = vy(x,t)iy and A = A(x,t).
hus, Y

KVYV)

Fig. 8.6.2. Layer of liquid metal or plasma
1 D2A 3A

with ambient magnetic field H
Po x2 = T + iHo y o .

[Eq. xwhere (b) of Table 2.18.1

here [Eq. (b) of Table 2.18.1]

1 aA
y Iax

he fact that motions are independent of y and that I is solenoidal combine to show that Bx is inde-
endent of x, and hence Bx = ýHo even as the motion occurs. There is no linearization implied by the
ast term of Eq. 1.

For the one-dimensional incompressible motions, conservation of mass is identically satisfied and
nly the y component of the force equation is pertinent. With the magnetic stress substituted into
q. 7.16.1, it follows from Eq. 2 that

2
yv 2 A  v

here the magnetic shear stress is T = pH H and the viscous shear stress is

vyx
Sy =TDx

The self-consistent coupling between field and fluid is expressed by Eqs. 1 and 3. Thesý repre-
ent the one-dimensional response of the layer shown in Fig. 8.6.2. Given the amplitudes [la,A,v^ ,v]
 the boundaries, what are the transfer relations for the amplitudes [ H,HS x, S x] in these same
lanes? (Note that these relations are the limit k + 0 of more general transfer relations for traveling
ave dependences on y. For the two-dimensional motions implied by such a dependence, vx becomes an
dditional variable, and the normal stress Sxx is its complement. Thus, the more general two-dimensional
ransfer relations relate two potentials and four velocity components to two tangential fields and four
tress components, evaluated at the a and 8 surfaces.)

For complex amplitude solutions of the form A = Re A(x) exp(jwt), Eqs. 1 and 3 become differential
ws for the x dependence:

2^
1d v

S---• - jpy - H dA = 0
2

2 y 0 dx

hese constant coefficient expressions admit solutions A c exp(yx) and vy 0 exp(yx). Substitution shows
hat y must satisfy the relation (yA = y):

(y 2  
- Jm (  ) v (7)

WC (Y m(Y _j _j WC V M=I

hus, the spatial distribution with x is determined by the magnetic diffusion time, Tm, the viscous
iffusion time, Tv, and the magneto-inertial time, TMI:

m v MI o
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In the absence of the equilibrium magnetic field (Ho = 0), Eq. 7 shows that what remains is vis-
cous diffusion (Secs. 7.18 and 7.19) and magnetic diffusion (Secs. 6.5 and 6.6). The parameter ex-
pressing the coupling in Eq. 7, the ratio of the geometric mean of the magnetic and viscous diffusion
times to the magneto-inertial time is defined as the Magnetic Hartmann number Hm = TmTv/TMI
ApHo0/O7. With the coupling, there are three characteristic times that determine the dynamics.

Even so, the biquartic form of Eq. 7 shows that there are still only four solutions to Eqs. 5
and 6, y = ±71 and y = +y2 , where

[21 1/2

±~Y[H -- ) 2- + 2jW(T + Tv)H2
(9)

21

Thus, in terms of coefficients A1.* 4A, the solution is

A = A1 sinh Y1x + A2 sinh Y1 (x - A) + A3 sinh Y2x + A4 sinh Y 2 (x - A) (10)

Equation 5 shows how to find vy in terms of these same four coefficients:

^ 1 /d2
v = 2- jal- (11)

y 2H 0 \dx
o

Given the potential and velocity in the a and planes, R Eqs. 10 and 11 become four expressions that can
be inverted to determine A1 ... 4 . Fortunately, Al and A3 are determined by the a variables alone, and
A2 and A4 by the 8 variables alone, so this task is not all that difficult. In fact, with a bit of hind-
sight, the desired linear combination of solutions can be written by inspection:

{[ J •]~l 2 sinh lx 2 2jw )A 2 -] sinh Y1 (x-A)

2 oy sinh 1 2 ov y sinh y1A
(12)

1 + ywc ,V U2Hasnhl Y2x + + F _sinh Jw 2  ^+ sinh y2(x-A) 2

1 1 )A sinh Y 2 1 oHy sinh y 22

Now, by use of Eqs. 11 and 12 in 2 and 4, the transfer relations follow:

= [Mij] (13)

where with -k -YkA and qk = k - jW OA k = 1 or 2:

cosh Y2sinh1(2
cosh

1Y2
jsinh -

- 2 -1 Y2 Y2q 1 sinh-1 7I-/F
Ml(1) w -M2(2 

2 1 l

y ,,osh cosh Y 2 Bi h Y
FM1 (3) = -M (4 = - P H/ 0 2 2 -1 2

2  2 2 (-cosh Y) sixh -cosh Y]F
/F

m M2H o d2 2 1q1 2 1 sinh Y2 -/ 2• sinh Y1 1
M2 3(l p22 H AA 2 Y

2(cosh 3(3) m -M (4) lq2 -1q-1 sinh 71 - Y1 
4 sinh Y /F

2  2F = A(1 - Y2)sinh y1 sinh 72
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Temporal Modes: Suppose that the layer is excited in the a and 1 planes by perfectly conducting
rigid boundaries that (perhaps by dint of a displacement in the y direction) provide excitations
( ,). The perfect conductivity assures Aa = 0 and k = 0 (Eq. 6.7.6). Thus, the electrical and
mechanical variables on the right in Eq. 13 are determined. The temporal modes for this system (that
represent the homogeneous response to initial conditions and underlie the driven response) are then
given by F = 0. The roots of this equation are simply

Y1 = jnT; Y2 = jnT, n = 1,2,*.* (14)

With these values of y, Eq. 7 can be solved for the eigenfrequencies

S (n7 1 +_ 1 (n - (15)
n 2 T Tv 2 4

m v T m v

In the extreme where Tm and Tv are.long compared to TMI ,

nT
n= +  (16)
- TMI

This oscillatory natural frequency is the result of an Alfven wave resonating between the boundaries.
The wave transit time is TMI = A/va, so va = VJHi/p is the velocity of this Alfv6n wave.

Typical of an experiment using a sodium-based liquid metal are the parameters

a = 106 mhos/m A = 0.1 m = 104 sec

= 3 3 3 -2
S 103 kg/m3H o = 1 tesla T = 1.25 x 10 sec (17)

n = 10-3 
2 -3

newton-sec/m2  M = 3.53 x 10- 3 sec

Thus, the characteristic times have the ordering TMI < Tm < Tv with the magnetic diffusion time far
shorter than the viscous diffusion time. (The ratio of these times is sometimes defined as the mag-
netic Prandtl number Pm = Tm/Tv = nrp/p. For the numbers given by Eq. 17, Pm = 1.25 x 10-6.) Thus,
in Eq. 15, 1/Tv can be neglected compared to 1/Tm and it is seen that the natural frequency will dis-
play an oscillatory part if

T
m nW> (18)
TMI 2

That the transit time for the Alfvyn wave be short compared to the time for appreciable magnetic dif-
fusion underscores the flux-conserving nature of the wave dynamics. For the numbers of Eq. 17,
Tm/TMI = 3.54. As a practical matter, Alfv6n waves observed in the laboratory are relatively damped.
Note that as A increases, the inequality of Eq. 18 is better satisfied. The dependence of the natural
frequency on the mode number n reflects how damping increases with the wave number jy in the x direction.
Near the origin in Fig. 8.6.3, the linear relation of frequency and mode number is typical of nondis-
persive wave phenomena. As the mode number increases, magnetic (and possibly viscous) diffusion damps
the oscillations, which then give way to totally damped modes. The oscillatory modes would of course
appear as resonances in the sinusoidal steady-state driven response.

Spatial Structure of Sinusoidal Steady-State Response: The penetration of a sinusoidal excitation
from the surfaces into the bulk is determined by Y1 and Y2 , Eq. 9. As the magnetic field is raised,
the viscous and magnetic skin effect are taken over by the electromechanical coupling. In Fig. 8.6.4,
the transition of these complex wave numbers is shown, with the magnetic Hartmann number Hm representing
the magnetic field. In terms of characteristic times, Hm is increased until the magneto-inertial time
becomes sufficiently short that the Alfvyn wave can penetrate the layer before the flux diffuses to its
original uniform distribution. The magnetic shear stress is then able to penetrate the layer (tending
to set the whole of it into motion) to a greater extent than would be possible via the magnetic or
viscous diffusion alone. This is indicated by the lower of the roots shown, which has an imaginary
part Y + +,/mTv/AHn = +(TMI/A as Hm becomes large. In this same limit of large Hm, the other branch
becomes strongly decaying, with value y = +Hm/A. The physical nature of the dynamics represented by

observing Hm Tthis mode is recognized by that -Tim/TMV, where MV is the magneto-viscous time. The
electrical analogue of this time, which expresses the rate at which a process occurs involving a compe-
tion of viscous and magnetic stresses, will play an essential role in the next section. An experiment
demonstrating Alfvyn waves is sketched in Fig. 8.6.5.1

1. See also J. R. Melcher and E. P. Warren, "Demonstration of Magnetic Flux Constraints and a Lumped
Parameter Alfvyn Wave," IEEE Transactions on Education, Vol. E-8, Nos. 2 and 3, June-September,
1965, pp. 41-47.
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Fig. 8.6.3. Eigenfrequencies of temporal Fig. 8.6.4. Real ( - ) and imaginary ( --- ) parts of
modes as a function of mode number 71 and y2 (Eq. 9) as functions of Hm -- AIHoIV7i.
for TMI = 0.0 1, Tm = 0.1, and Low- and high-Hm approximations are shown. Note
TV = 1. wr - , i ------. m=31.6. that the Alfvyn wave branch is represented by

jwrt-m'Tvm/v = jwrMI.

Fig. 8.6.5

Alfvyn wave, as demonstrated by Shercliff
in film "Magnetohydrodynamics" (Reference 7,
Appendix C). Liquid NaK (sodium-potassium
eutectic) fills conducting circular metal
container having coaxial inner and outer
walls. .Wave is excited at bottom by radial
driving current and detected at middle by
coil that senses the change in magnetic
field accompanying the passage of the up-
ward-propagating electromechanical wave.
As viewed radially inward, layers of liquid
metal undergo shearing motions depicted by
Fig. 8.6.1.

8.7 Potential Conserving Continua and Electric Shear Stress Instability

In an electric counterpart to the magnetic flux conserving fluid introduced in Sec. 8.6, a fluid
element having fixed identity tends to retain its potential even as it moves. Under what physical
circumstances could a homogeneous continuum tend to conserve its potential in this way? Figure 8.7.1
gives a schematic illustration (see Prob. 5.12.1 for charge relaxation in anisotropic conductors).

Initially, the volume is filled with static layers of miscible fluid having the same mechanical

properties. Alternate layers are rendered conducting, perhaps by doping the same fluid as used for the
other layers. At the upper and lower extremities, the conducting layers make electrical contact with
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Fig. 8.7.1. (a) Example of potential conserving fluid made from numerous conducting layers

buffered by relatively insulating layers. On a macroscale, a given fluid region tends
to retain its potential as it deforms. (b) Shearing displacement causing elevation of
potential in plane (i) relative to that at the same position y in planes (ii) and (iii).
(c) Charge density implied by potential conservation, showing electrical force in-
duced by the motion in adjacent layers.

surfaces having a linear potential distribution in the y direction. Thus, there is an initial
ambient electric field I = Eo y throughout the volume. What would be termed an isotropic inhomo-
geneous system on a microscale typified by the interlayer dimensions, is an anisotropic homogeneous
system on the macroscale considered here. On this macroscale, a material element tends to retain its
initial potential. In the model considered here, the conducting layers are of finite conductivity,
but the layers between are considered perfect insulators. Just how faithfully the potential is con-
served therefore depends on the electrical relaxation time of the composite.

By way of forming an intuitive impression of why the electric field induces instability, consider
motions that are purely y-directed but depend on x. Suppose that the external force density Fexttv is
used to translate a fluid layer in the y-z plane, denoted by (i) in Fig. 8.7.1b. To begin with, the
potential of this and the adjacent layers decreases linearly in the y direction. So, at a given posi-
tion along the y axis, the translation results in the potential in the plane (i) becoming elevated with
respect to that of the adjacent layers (ii) and (iii). The adjacent layers form capacitor plates with
the (i) layer which, in accordance with the relative potentials, are charged as sketched in Fig. 8.7.1c.

The field- and deformation-induced charge of the initially displaced layer, (i), are such that it

is subject to an electrical force tending to further encourage the deformation. Thus, with the adjacent

layer fixed, the external force would act against a negative spring constant. However, the adjacent

layers are not fixed and experience electrical forces tending to carry them in a direction opposite

that of the original displacement. There is an electrical shear stress acting between adjacent layers

that is proportional to the negative of the strain. By contrast with the magnetic shear stress that
gives rise to Alfv6n waves, the electric stress tends to cause instability.

The laws needed to formulate a model begin with a constitutive law for the conduction. With n

defined as a unit normal to a material surface of fixed identity that is initially in an x-z plane,
as shown in Fig. 8.7.1b, the component of the electric field that is tangential to this surface is

-x x t. Thus, if the average conductivity in the plane of the conducting layer is a, the current
density in a stationary sample of the anisotropic material is

J' = -ai x x (1)f

Because Jf = J~ + Pfv, it follows that the statement of charge conservation, Eq. 2.3.25a, is

x x + +p~f ] ] + t2 = 0 
(2)
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The normal vector can be eliminated from this expression by first expressing it in terms of the surface
y = f(x,t)

1

n - = i][l + [i ( )(3)

and then recognizing that because this surface is of fixed identity, the function F = y - 5 must have a
convective derivative that is zero (Sec. 7.5):

v =K-- + V (4)
y =ft x ax

In Eq. 2, n can be replaced by Eq. 3, where E is in turn related to v by Eq. 4.

Before carrying out this elimination for the case at hand, note that because the electric field is
irrotational and the perturbation quantities only depend on x, the electric field in the y direction is
not a function of x. Pinned at Eo in any y-z plane, Ey remains this value even as the fluid deforms:
- = Eoty - (80/8x)x. As a result, Gauss' Law becomes

•- a2• -f- pf
(5)2 Eax

The motions considered are only in the y direction: V = v (x,t). With this understanding,

Eqs. 2, 3 and 4 are linearized and combined to eliminate E, and Eq. 5 s substituted for pf, to obtain

2

- (6) -
2 [Ev --- (0 + -)] = 0 

ax

This statement of the effect of the motion on the fields reduces to the linearized version of DO/Dt = 0

in the limit where the charge relaxation time, /a0, is short compared to times of interest. If the
charge can relax instantaneously, the potential of an element of fluid is conserved even as it deforms.

The y component of the force equation, Eq. 7.16.6 with V.' = 0 and Pex represented by the diver-
gence of the stress tensor (given with Eq. 3.7.22 of Table 3.10.1), is

av 2 2v

p = -EE L + n -  (7)
at o 2  ax ax2

The x-component simply determines the pressure distribution required to equilibrate the x component of
the electrical force density. Equations 6 and 7 represent the electromechanical coupling.

The quantity in brackets in Eq. 6 is zero throughout the volume when the fluid is in static equi-

librium. Hence, the two constants resulting from integrating Eq. 6 twice on x are zero. Then, with
the substitutions vy = Re y(x)ejwt and # = Re^(x)ejwt, Eqs. 6 and 7 become

E o = j[1l + 1]$ = 0 (8)
oy 0

2 2
d d 0

(jwp - n 2 )v + CEo  2 = 0 (9)
dx2)y dx

By contrast with the magnetohydrodynamic system represented by Eqs. 8.6.5 and 8.6.6, the system is only

second order in x, so that there are only two boundary conditions that can be imposed on a layer having

the thickness A (Fig. 8.6.2). Imposing a boundary condition on 0 is (through Eq. 8) tantamount to a

condition on vy. Substitution into Eqs. 8 and 9 of solutions having the form v = exp(yx) and 0 = exp(yx)
gives a pair of homogeneous relations y

= 0 (10)
2 2

jWp - ny SE oY

and the requirement that the determinant of the coefficients vanish gives an expression for the allowed
values of y:
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Y = _Y1 Y1 2(11)

Tjn +
w(l + a )

The situation is now no different than in dealing with Laplace's equation, where solutions take the
form of Eq. 2.16.15 with y - y1. Thus, the transfer relation for the layer is (Table 2.16.1):

DB] -cosh(y 1A) 1

= l e (1 2 )
Ssinh(Y 1 A) (12)

In terms of these variables, the mechanical variables follow from Eq. 8 as

v = [1 + _j (13)
y E 1

o

dA
A JITI [1 + q (14)

yx dx E 0 dx(
o

Temporal Modes: Because the system is unstable, the temporal modes are of most interest. For a
system bounded by planes maintaining the linear equilibrium distribution in potential (constraigedA o
zero pfrturbation potential), the condition on w resulting from there being a finite solution (Da,DO)
with (Oa,$B) = 0 is sinh(y1A) = 0. Thus, the eigenvalues are

y1A jn'r, n = 1,2,3... (15)

The eigenfrequencies follow by substituting Y1 from this expression into Eq. 11. The result is a cubic
equation which determines the allowed frequencies w:

3 2 [ (nr) 1 ( ] S- + (2-(n2 (n2 )- = 0 (16)

2 T T T o' T TTVv EV v E2e 

As a function of the mode number niT, the solutions sn = jW of this expression are illustrated in
Fig. 8.7.2. For each sinusoidal distribution represented by a given n, there are three temporal
modes, one unstable and two decaying.

Typical of a 2-cm liquid layer having 50 times the viscosity of water, the density of water,
an electrical relaxation time of 10-2 sec and Eo = 2 x 10+5 V/m are the times given in the caption.
Note that Te < TEV < TV .

The roots to Eq. 16 in the limit Te - 0 give a good idea of what is happening on time scales
long compared to Te . The quadratic limit of Eq. 16 can then be solved to give

2 4Tv
s = (w [-1 + + (17)

v EV(n )2

Thus, there are roots asn > 0 representing an exponentially growing instability. The fastest growing
modes are those having the largest number of wavelengths in the x direction. In the limit ni + m,
this mode has a growth rate TEV. (In fact, there would be a finite mode exhibiting the maximum rate
of growth, since wavelengths in the x direction shorter than the distance between layers are not de-
scribed by the model.) By contrast with the electro-viscous nature of the short-wavelength insta-
bility, the long wavelengths (small mode numbers) are electro-inertial in nature. In the limit nfr - 0,
Eq. 17 reduces to sn = 1/TEI, where TEI = vTVEV = A/pEE2. Until its rate of decay becomes comparable
to Te, the decaying mode can also be approximated using Eq. 17. At short wavelengths, the basically
viscous diffusion mode and charge relaxation mode couple to produce a pair of modes that are damped in
a sinusoidal fashion.
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S,

Fig. 8.7.2. Frequencies of temporal eigenmodes, sn = jw; --- (Sn)r, -- (sn)i.
For each n there are three modes. Te = 10- 2 see, TEV = 0.1 sec, Tv = 10 sec.

The instability is fundamental to many situations where electric fields are used to augment mass
heat and momentum transfer. Usually a more complicated model is required even to recognize the linear
stages of instability. Shown in Fig. 8.7.3 is an example for which the illustration given in this sec
tion is itself a useful model. The Couette mixer exploits a rotating inner cylinder to promote large
scale mixing. Two liquids entering at the bottom are typically the highly viscous components of a
polymer. Because of the rotation, these form laminae of relatively insulating and conducting liquids
that work their way upward to the exit. With the application of a radial electric field, instability
leads to mixing. The electrohydrodynamic instability provides mixing on a length scale that bridges t
gap between what can be efficiently produced by the mechanical stirring and what is required to insure

Fig. 8.7.3

Couette mixer exploiting in-
stability of components
stressed by electric field.

i ng

,

-

he
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genuine molecular scale mixing. 1 For successful operation the residence time of the liquids must at
least exceed TEV = n/cE2 . Even in its nonlinear stages and on length scales shorter than the distance
between layers, TEV is found to scale the rate at which mixing processes occur." 3  In practical appli-
cations, the "insulating" component actually is itself semi-insulating so the growth rate for instability
is reduced by a factor reflecting the ratio of the component conductivities.

8.8 Magneto-Acoustic and Electro-Acoustic Waves

Electromechanical coupling through dilatational deformation is illustrated in this section.
First considered as one-dimensional examples are perfectly conducting limits of the MQS and EQS
continua of Secs. 8.6 and 8.7, respectively. Then, the incremental motions of a system of magnet-
izable particles randomly suspended in a uniform magnetic field are modeled.

Both the MQS and EQS configurations are shown in Fig. 8.8.1. Also shown in each case are the dis-
tributed elements that embody the same physical phenomena as represented by the continuum models. With-
out electromechanical coupling, the one-dimensional acoustic wave propagates through a continuum of
masses (represented by the perfedtly conducting plates) interconnected by layers of fluid comprising
the springs.

Eg ex(x,t)

x• t) fVx(x,t)
H +h (Xt)

OIzr~ l

/V Z

Fig. 8.8.1. One-dimensional compressional motions. (a) Magneto-acoustic waves in
perfectly conducting liquid across uniform magnetic field. (b) electro-
acoustic waves in potential conserving continuum along uniform electric field.
Lumped models emphasize salient features of dynamics.

In the magnetohydrodynamic case, the fluid is uniform and perfectly conducting. When at rest,
it is permeated by a uniform magnetic field Ho directed transverse to the direction of propagation.
Compression of the fluid results in a decrease in enclosed area for a contour such as C which is
attached to the fluid. To retain the same flux linkage, a current is induced around this contour.
The associated force density tends to counteract the dilatation, thus having the effect of a magnetic
spring between elements. It is not surprising that the magnetic field tends to increase the velocity
of propagation of waves.

1. G. A. Rotz, "A Generalized Approach to Increased Mixing Efficiency for Viscous Liquids,"
S.M. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Mass., 1976.

2. J. H. Lang, J. F. Hoburg and J. R. Melcher, "Field Induced Mixing Across a Diaphragm," Phys.
Fluids 19, 917 (1976).

3. J. F. Hoburg and J. R. Melcher, "Electrohydrodynamic Mixing and Instability Induced by Collinear
Fields and Conductivity Gradients," Phys. Fluids 20, 903 (1977).
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In the electrohydrodynamic case, a given element of fluid conserves its potential, as described
in Sec. 8.7. Either the fluid is a stratification of insulating and conducting components, or it
actually consists of thin conducting sheets dispersed through the fluid. Because the motions are com-
pressional, such sheets would not inhibit the motions. The equivalent distributed lumped parameter
system, shown in Fig. 8.7.1b, consists of perfectly conducting layers constrained to have the same
potential difference even as their relative spacing changes. As a "plate" approaches one of its
neighbors, the intervening electric field increases. So also does the electric force associated with
the charge on that side of the plate. Thus, the electric field is equivalent in its effect to a spring
with a negative spring constant. It has the effect of diminishing the stiffness of the "spring"
separating a pair of plates. The field is expected to reduce the velocity of a wave propagating in the
x direction.

Now, consider the interactions in analytical terms. In both cases, the linearized longitudinal
force equation is simply

av a T
x v + xx

Po at ax ax

where po is the equilibrium mass density, p' is the perturbation pressure, and Txx is the Maxwell stress
With the assumption that pressure is only a function of density, Eq. 7.11.3 can be used to replace the
perturbation pressure with the perturbation density,

'
p' = a2p

where a is the acoustic velocity. The permeability and permittivity in the respective situations are
taken as constant. Thus, with f and e the perturbations in A and t respectively, to linear terms,
Txx becomes simply (Table 3.10.1, Eqs. 3.7.22 and 3.8.14)

S1 2 1 2
T = (H +h )2 1 2H•2-_oho z Txx -E(E +e ) i CE oeoE xx 2 o z f o0 xx 2 0 x 0 0 ox x

These last three equations combine to become

av ah
x 2 2L z avx 2 ex

o -t ax = o ax o -t- + a2 ax- Eo 

To linear terms, conservation of mass, Eq. 7.2.3, requires that

ap' Vx
at + Po ax

These last two statements represent the mechanics, including the effect of the fields.

The reciprocal effects of the deformation on the fields follow from

the requirement that the flux linked the requirement that the potential,0, of
by a surface of fixed identity be an element of fixed identity be constant,
constant, Eq. 8.6.1. To linear terms Eq. 8.7.1. To linear terms

av ah
H - x = z ,

-Ev = 0
oE 8xt at ox

where e = -VO'
x

To combine these last three statements, take the time derivative of Eq. 4 and the space derivative of

Eqs. 5 and 6 and eliminate p and hz or ex:

2 2a2v 2
Sav avx

xa 2 x x 2 x
at2

= a
m ax2 2 e ax2

at

These wave equations make it clear that the effect of the fields is to replace the acoustic velocity
with a pagneto-acoustic velocity:

S H2 CE2 o 2 o
a = a +- a =Na -
m PO e PO
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Acoustic velocities, given in Table .11.1, are typically 300 m/sec in gases and 1500 m/sec in
liquids. In gases, the Alfvyn velocity, I/H~/po , can be made to dominate in its contribution to the
magneto-acoustic velocity. In liquid metals the magnetic contribution to am is greatly reduced by the
increased mass density, although it is still possible for it to be significant. But in the electro-
acoustic wave, electrical breakdown limits the effect of the electric field to a level that would make
it difficult to even measure the effect.

Magnetization Dilatational Waves: Although electromechanical effects on dilatational motions in
natural materials are likely to be small, continua formed from "molecules" that are actually macro-
scopic in their dimensions can give rise to significant electromechanical effects. As an example, mag-
netizable spheres are suspended in a random array, with the voidage a gas or even vacuum. Interest is
confined to deformations characterized by lengths that are large compared to the distance between par-
ticles. Unperturbed, the system is uniform on the macroscopic scale, and is subjected to a uniform
z-directed magnetic field intensity Ho . Because the spheres can interact with each other only through
the magnetic field, the pressure is taken as zero.

Perhaps determined experimentally, the effective permeability of the continuum has been related
to the mass density through a constitutive law, i = 1(p). Thus, the force density of Eq. 3.8.17 from

Table 3.10.1 is applicable. With perturbations from the equilibrium mass density and magnetic field,

Po and Holz, denoted by p' and i, respectively, this force density is linearized to become

2
=PoV[Ho(h)ohz + H 2 ) (9)

Because there are no free currents, It is irrotational and hence H = H 1 - Vi. Thus, the force equation,
Eq. 7.4.4 written with p = 0, is

÷ Po 2
'  p Po at -=opH -o 0 0 ()oV(- o z ) + 2 H( )oVP (10)o=2 o

Mass conservation is represented by a linearized version of Eq. 7.2.3:

50 + poV. = 0 (11)
t o

In terms of the scalar potential, 4, the linearized statement that pH is solenoidal is

)-P(po V2 ý + Ho o = 0 (12)

To obtain an expression for p' alone, the divergence of Eq. 10 is taken. Then Eq. 11 eliminates V-v,
while the D( )/Dz of Eq. 12 can be used to eliminate P. Thus, the expressions combine to give

22p po H2 2 P, 2 (13)

2  (13)2 t 2  2 H2(- 3)VH t (po o z o 20 p' 
)  

A possible relation between permeability and mass density is the Clausius-Mossotti law:1

(--- (P- - 1)) P 2 2p
= C 3 + 2)( 1 ) p- 1 _ = ( 1) 2)p - 2  (14)

(-~ 2) 0o o p2 9 o

where C is determined by the nature of the spheres.

It follows from Eqs. 13 and 14 that compressional motions across the field lines (in the x direc-
tion) are unstable, while those in the direction of the field propagate with the velocity

H 2 P P 1 2 Lo
aM =( + 2)( - 1) (15)

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, New York, 1941, p. 140.
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PIECEWISE HOMOGENEOUS SYSTEMS

8.9 Gravity-Capillary Dynamics

The incompressible dynamics of fluids that are inhomogeneous in mass density are as commonplace
as wave motions in a teacup or at the interface between sea and atmosphere. At the interface, the
mass density suffers a step discontinuity. Fundamentally, the pertinent laws express the fact that
the mass density in the neighborhood of a particle of fixed identity remains constant, Eq. 7.2.4, that
mass is conserved, Eq. 7.2.5, and that inertial and pressure forces balance. For the present purposes
the fluid is represented as being inviscid, and hence the pertinent force law is Eq. 7.4.4 with the
external force density that due to gravity, f = p1.

ex

Because inhomogeneities in electrical properties are often accompanied by variations in mass den-
sity, electromechanical interactions with inhomogeneous systems are commonly interwoven with the fluid
mechanics resulting from effects of gravity. In this section, the mechanics of a fluid interface
illustrates effects of gravity in systems that are inhomogeneous in mass density. If the interface is
between immiscible fluids, effects of capillarity are also important.

In the configuration shown in Fig. 8.9.1, planar layers of fluid each have uniform properties
designated by the subscripts "a" (above) and "b" (below), respectively, and a common interface at
x = C(y,z,t). The lower fluid rests on a rigid boundary while the upper one consists of a deformable
structure. The system is driven from this structure by the traveling-wave excitation shown in the
figure. What is the response of the fluids, and in particular of their interface?

X

(C)R
a k,z)

(d)-
-(e)r_7 ..

Fig. 8.9.1. Fluids of differing mass densities have interface at 5
and are driven by structure at E.

In the absence of the excitation, the fluids are in static equilibrium with the gravitational
force density. Thus, the fluid velocity v = 0 and the pressure balances the gravitational force den-

sity. From the force equation, Eq. 7.8.3, applied to each region:

p = -Pagx + Ha; x > 0
p = (1)

g x -pb + Hb; x < 0

Perturbations from this static equilibrium are represented in terms of complex amplitudes. To
linear terms the pressure and velocity are

p = -pgx + H + p'(x,y,z,t); p' = Rep(x)exp j(wt-k y - kzz) (2)

= Rev(x)exp j(wt - kyy - kzz) (3)

Within a given fluid region the mass density is uniform. Thus, the complex amplitudes in the respective

planes designated in Fig. 8.9.1 are related by the transfer relations for an inviscid fluid given by

Eq. (c) of Table 7.9.1:

^C-coth(ka) 1 c ^ep -coth(ka) sinh(ka) x p -coth(kb) 1 ^e
Jap a JwPb sinh(kb) x

k k (4)
^d -1 cd ^f

sinh(ka) coth(ka) P -i c
sinh(ka) sinh(kb) coth(kb) vJ
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Complex amplitudes are evaluated in the equilibrium planes. But, the jump conditions apply wherever the
interface is actually located and that location is in fact yet to be determined! This difficulty is
sidestepped by linearizing the jump conditions in such a way that they are expressed in terms of per-
turbation variables evaluated at the equilibrium positions of the boundaries.

Taking boundary and jump conditions from top to bottom, observe first that the position of the
deformable upper structure is related to the velocity of the adjacent fluid by Eq. 7.5.5, which to linear
terms is

vc = j~ (5)
X

where it is appropriate to use the complex amplitude evaluated at the equilibrium position because the
difference between that and A (x = a + E) is second order in the perturbation amplitude, E.

Similarly, at the interface the velocities are related to the interfacial deformation by

^d ^ Ae

vx = JW; v = jW (6)

Again, this jump condition, which expresses mass conservation for the interface, has been written in
terms of amplitudes evaluated at the equilibrium interfacial position. Stress balance for the inter-
face is represented by Eq. 7.7.6, which has only a normal component. To linear terms, this is repre-
sented by the i = x component

[-a + a Pd(x=)]-[-Pb +b e(x=)] =  2 + ) (72

where the surface tension force density is given by Eq. (c) of Table 7.6.1. For static equilibrium,

Ha-Hb = 0. Also, to linear terms the perturbation pressures evaluated at the perturbed position E are
equal to these pressures evaluated at the equilibrium position of the interface. Thus, Eq. 7 reduces
to

Ad A 2A
d e (Pa - Pb) - yk E (8)

It is because the fluid is inviscid that the other two components of the interfacial stress balance
equation are, to linear terms, identically satisfied. Finally, on the rigid lower boundary

v = 0 (9)

The boundary and jump conditions, Eqs. 5, 6, 8 and 9, are now used to "splice" together the bulk
solutions reýresented by Eqs. 4. Of the four equations summarized by these relations, the expressions
for Dc and F simply serve to determine these pressures once the fluid motions have been determined.
The other two, Eqs. 4b and 4d, are evaluated using the boundary conditions, Eqs. 6, 7 and 10, and sub-
stituted into the stress balance condition, Eq. 9, to obtain

2 2
W2 A 2 A W 2

- - [pa coth(ka) + pb coth(kb)]+ + [yk+ g(P - a ) = k sinh(ka) (10)

This relation has the same form as would be used to describe the deflections of a spring attached
to a mass at one end and to a displacement source at the other. The "mass" reflects the inertia of the
fluids to either side of the interface while the "spring" results from the combined gravitational and
capillary forces.

From Eq. 10, it follows that the complex amplitude of the interfacial response is

22 2
5 - a (11)

k sinh(ka) D(w,k)

where the dispersion equation, D(w,k), is

D(W,k) [P= coth(ka) + p coth(kb)] + [k 2 g(Pb - Pa)] (12)

Driven Response: The response having the same wave number and frequency as the drive would repre-
sent all of the motions if the system were reentrant in the direction of the traveling wave and suf-
ficient time had elapsed for a temporal sinusoidal state to be established. (This presumes that the
temporal natural modes are stable.) Under the assumption that yk2+g(pb - Pa) > 0 (which is assured
regardless of wavelength if the lower fluid is the heavier), the frequency response of the interface is
as shown in Fig. 8.9.2. Because there are no dissipation mechanisms included in the model, the inter-
face is either in phase or 1800 out of phase with the excitation.

8.29 Sec. 8.9



Gravity-Capillary Waves: The resonance comes

at that frequency that gives synchronism between

and hase
the drive /k of velocit the hase 

velocity of a gravity-capillary wave propagating
on the interface. Solution for w/k of Eq. 13
set equal to zero identifies the phase velocity
of these waves as

yk + g(pb - Pa)/k
v (13)p Pa coth(ka) + pb coth(kb)

Long waves are dominated by gravity while
short ones are of a capillary nature. Often,
the waves are short enough that effects of the
transverse boundaries are not significant,
laki >> IbkI >> 1. Then, Eq. 13 reduces to

vk g(Pb- Pa+
P = Pa + + b + 

k(pb + 
(14)_

Pa
This makes it evident that there is a wave
number for minimum phase velocity, found by
setting the derivative with respect to k of
Eq. 14 equal to zero. The wavelength, 2W/k,
of this minimum will be termed the Taylor
wavelength, AT:

I m 2., (1 ;)
T - "g(pb - Pa)  -

At wavelengths longer than AT, gravity waves
prevail, while shorter wavelengths represent Fig. 8.9.2. Driven response of gravity-
capillary ripples. For an air-water interface, capillary wave system.

AT = 1.7 cm.

In the opposite limit of long waves, Ikal << 1 and Ikbl << 1, the phase velocity becomes

2
Yk + g(Pb - Pa)

v = • a ( (16)
p [(Pa/a) + (pb/b)

and the gravity wave (which is likely to dominate in a long-wave situation) propagates without dis-
persion. A quasi-one-dimensional model for long gravity waves results in the wave equation with a
velocity given by Eq. 16 without the capillary term.

Temporal Eigenmodes and Rayleigh-Taylor Instability: Temporal transients, initiated from conditions
that are periodic in the horizontal plane, are described by D(w,k) = 0 with k real and jw the eigenfre-

quencies sn . The role of the temporal modes in this chapter is very much as introduced in Sec. 5.15.

The roots of D(sn,k) = 0 are either purely real or imaginary. Resonance in the driven response results

from the coincidence of the natural frequency and the driving frequency. Of most interest is the in-

stability resulting from having the heavier fluid on top and sufficiently long wavelengths that

yk2 < g(Pa -b) (17)

Note that this condition prevails for wavelengths longer than the Taylor wavelength defined with Eq. 15.

The eigenfrequencies can be pictured as poles in the complex s plane, with the density difference Pb-Pa
a variable parameter. For Pb > Pa, the poles are conjugates on the imaginary axis. With decreasing
density difference and long enough wavelength, the poles migrate to the origin, and as the condition of
Eq. 17 prevails, the poles separate on the real axis. The instability is incipient at zero frequency.
In general, there might be an infinite set of eigenfrequencies. If all pass into the right-half s plane

through the origin, the principle of exchange of stabilities applies. That is, the incipient condition
could be identified by setting w = 0 at the outset and asking for the condition on pb - P that makes
it possible for all of the fluid mechanics laws to be satisfied. Here, as in Sec. 5.15 where the
charge relaxation eigenfrequencies for a step discontinuity in electrical properties is considered, there
are a finite number of eigenfrequencies (two). There it is shown that a smooth distribution of elec-
trical properties leads to an infinite set of temporal modes. It should come as no surprise that a
smoothly distributed density distribution similarly leads to an infinite set of eigenmodes. In that case
taken up in Sec. 8.18, the principle of exchange of stabilities also applies.
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Fig. 8.9.3a. Heavy liquid is stabilized on top
of lighter fluid by means of polarization
forces induced by applying potential dif­
ference to the diverging glass plates.
These plates have a thin transparent
coating that renders them conducting.

The inviscid model is especially justified for predicting the incipience, because there are then
no temporal rates involved. Thus the effects of viscosity vanish.

1
In the example of this Rayleigh-Taylor instability shown in Fig. 8.9.3, polarization forces are

used to stabilize a static equilibrium with a heavy liquid on top of a lighter one. (The electro­
mechanics is developed in Sec. 8.11.) When the field is removed, the unstable temporal eigenmode is
evident. Some fluid rises so that some can fall. The sinusoidal deflection predicted by the linear
theory gives way to a plume extending into the lighter liquid. It is characteristic of this purely
mechanical instability that the nonlinear "process" initiated by the instability becomes blunted in its
advanced stages. The bulbous plume can itself be unstable if the viscosity is low. This characteristic
appearance, which is cOUDllonly seen "upside down" as warm air rises into the atmosphere, is in sharp
contrast with the electromechanical forms of Rayleigh-Taylor instability considered in the following
sections.

Spatial Eigenmodes: Spatial modes are introduced in Sec. 5.17. With longitudinal boundary condi­
tions, the sinusoidal steady-state response consists not only of a part having the same wave number as
the transverse drive, but an infinite set of eigenmodes having the same frequency as the drive, each
with its own wave number. These are in general complex, k = k + jki' and found by solving the disper­
sion equation D(w,k) = 0 for k, given that W is the same as fo? the drive. In general this expression
is transcendental, so that it must be solved numerically. Here, an infinite set of eigenvalues can be
identified by a simple graphical solution. First, there are the two propagating modes in which k = k
and the dispersion equation becomes r

(18)

A graphical solution is obtained by finding the intersection of curves representing the right and left
sides of this expression as a function of (a~). This is shown in Fig. 8.9.4a. An infinite set of
modes are evanescent, k = jk • With k purely imaginary, the dispersion equation is again purely reali
(coth jx = -j cot x):

2
[yk - g(P - Pa)]ki b iw2 = (19)

P cot(kia) + P cot(kib)a b
so that graphical solution gives rise to an infinite set of kits, as illustrated in Fig. 8.9.4b. The
functions on the right in these last two expressions are even in the wave number, so for each positive
root there is a negative one as well. The two propagating modes have an exponential dependence on depth,
while the evanescent modes are sinusoidal in their depth dependence, with a number of zero crossings in
the x direction that increases with the mode number.

1. See J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Liq­
uids," J. Spacecraft and Rockets~, 864-881 (1967).
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(Figure 8.9.3 continued)

(a)

(b)

(c)

Fig. 8.9.3b. Side view of apparatus shown
in Fig. 8.9.3a. (a) Equilibrium
with field on. (b)-(e) Sequential
view of developing instability.
(From Complex Waves II, Reference 11,
Appendix C.)

(d)

(e)
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Fig. 8.9.4

Graphical solution for spatial
eigenmodes. (a) Equation 18
for propagating modes.
(b) Equation 19 for evanescent
modes. For case shown, Pa = 0

2and Y/pbga = 1.

(a) (b)
As an example, a gravity-capillary resonator might be constructed with rigid walls in the planes

y = 0 and y = )y and z = 0 and z = Zz. These propagating and evanescent modes would in general also be
excited by the transverse drive. In general, the evanescent modes are required to insure there being
no normal velocity on the longitudinal boundaries. With the surface tension comes still another bound-
ary condition. For example, by virtue of the surface tension, the interface can cling to a sharp edge.
Note that for Pb > Pa the lowest evanescent mode in fact exists because of the surface tension. It
represents the effect of the surface tension reaching out into the interfacial region from the longi-
tudinal boundary. The higher order modes are more closely connected with the inertia and mass conserva-
tion represented by Laplace's equation in the fluid bulk.

8.10 Self-Field Interfacial Instabilities

If a magnet is held over or under the free surface of a ferrofluid so that the field is normal to

the interface, sprouts of liquid will be seen to extend into the air. With the magnet fixed, the sprouts

are fixed. Even if stressed by an initially perfectly uniform magnetic field (so that hydrostatic pres-

sure can balance the magnetic forces to maintain a static equilibrium with the interface flat), the

sprouts represent a new static equilibrium preferred by the fluid. The electromechanical form of

Rayleigh-Taylor instability that takes place as the planar interface, stressed by a uniform magnetic

field, gives way to the new configuration, is one of the results from the model now developed. The con-

figuration, shown in Fig. 8.10.1a, consists of planar layers having different permeabilities (Ia,Pb),
mass densities (Pa,Pb) and equilibrium thicknesses (a,b). The common interface is at x = ý, while rigid

boundaries (infinitely permeable pole faces) bound the layers from above and below. The liquids are

water based or even hydrocarbon based ferrofluids. Hence, in MQS terms, the materials are essentially
insulating. Only the magnetization force density, Eq. 3.8.14 with if = 0, is responsible for the elec-

tromechanical coupling.
Av

- -ReiFe j(wt- kyy - k z )z -V-ReVeiJ(wt-kyy-kzz )
)opoo on0 ooro)nooono'

S(c)

a [LaP Pa a B 0 Sa, Do

~___~l_'M

- .. (f): :. .Eb :Pb

(a) (b)
Fig. 8.10.1. (a) Layers of magnetizable fluid are stressed by a uniform normal

magnetic flux density, Bo . Polarizable liquid layers are stressed by a
normal electric displacement, Do .
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The time and space-varying drive is taken as imposed on the upper transverse boundary by means o
a coil structure. Thus, the magnetic potential in this surface is an equilibrium value -Co(relativ
to the lower surface) representing the magnet field plus a traveling wave having the complex amplitud

The EQS system, consisting of layers of insulating polarizable fluid as shown in Fig. 8.10.1b, i
described with the same model by simply identifying 1 + e, Bo 4 Do andý /r. There is an important
physical difference between the two systems. To obtain a purely polarization coupling, it is necessar
to use an alternating electric field having a high enough frequency to guarantee that free charge does
not enter into the electromechanics. This field can be considered as being essentially static provide
the frequency is also high enough to insure that the fluid responds to its rms value. In the respecti
regions the magnetic field is taken as having the form of an equilibrium plus a perturbation:

= x  -VT (1)

The equilibrium magnetic flux density in each region is related to the equilibrium magnetic potential
difference between the pole faces by

B =1IH = 0-/o (2)
o a a =bHb A [(a/ua) + (b/jb)]

The magnetization force density is confined to the interface, where it acts on the equilibrium
interface as a normal surface force density. The equilibrium pressure difference Ha - Eb then holds
the interface in static equilibrium. In the bulk regions, the magnetic field is uncoupled from the
fluid nechanics. Thus, the perturbation mechanics of each layer is described by the inviscid pressure
velocity relations from Table 7.9.1, Eqs. 8.9.4. Similarly, the perturbation magnetic field is de-
scribed by the flux-potential transfer relations, Eqs. (a) of Table 2.16.1 (k ' k+ k2)

c
-coth(ka) 1 Ac he 1 Ae

h -coth(kb) sinh(b)
x sinh(ka) x sinh(kb)

= k =k (3)
Ad^d -1 ^f -1 ^f

h sinh(ka) T4 hx coth(ka) T
sinh(ka) x coth(kb)

sinh(kb)

The essence of the electromechanics is in the boundary conditions, which must be consistent with
the electromagnetic and mechanical laws used in the model. Proceeding from top to bottom in
Fig. 8.10.1a, the magnetic potential must be that of the drive at the upper boundary. The boundary i
rigid, so

T =• (4)

v = 0 (5)
x

At the interface, continuity requires that

^d ^e
v = v = j (6)x x

The x component of the stress balance jump condition, Eq. 7.7.3, is to linear terms equivalent to the
normal component of the stress balance. With i = x, that jump condition is evaluated using the stress
tensor with Eq. 3.8.14 in Table 3.10.1:

[-Pagx + H a d,d - [-Pbgx + Rb + Pe]x= (7)

[1i (Ha + d T 1i 22 +2+
1 dh) 14b(Hb 2 x= +Y( 2 4 a 2) 
2 a (Ha + hd) 11b (Hb + hx+ 2 x=

where, remember, all quantities are evaluated at the actual position of the interface. The normal

vector is written in terms of 5 by means of Eq. (a) from Table 7.6.1. Terms from the stress that are

nonlinear in the perturbation amplitudes have already been dropped in writing Eq. 7. To linear terms,
the perturbation quantities evaluated at x = ý are the same as if evaluated at the equilibrium inter-

facial position x = 0. Also, the equilibrium magnetic field is uniform (not a function of x like the

equilibrium pressure), so these terms are the same at x = 0 as at x = 5. The equilibrium part of

Eq. 7 expresses the condition for static equilibrium,

Ea - Hb =(aH - H = B (Ha -
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and the perturbation part becomes the required jump condition representing stress balance at the inter-
face:

(d _ e) g(0b P = 
a ) Bo x - h - k(9)

The conditions of Eqs. 6 and 9 guarantee that the mechanical laws are satisfied through the interface.
Similarly, on the magnetic side, ý is irrotational and ý is solenoidal, so * x = 0 and *. El P = 0
(Eqs. 21 and 22 of Table 2.10.1). With n again given by Eq. (a) of Table 7.6.1, either the y or z com-
ponents of the condition that tangential ý be continuous reduces to

•d- e = (Ha - Hb) (10)

while the continuity of normal flux density is to linear terms given by

^d = ^e
Iah = bh ax b (11)x

Finally, there are the mechanical and magnetic conditions at the lower rigid and infinitely permeable
boundary:

^f
v = 0 (12)

Y = 0 (13)

With the objective of finding the driven response and in the process deducing the dispersion
equation, the stress and field continuity conditions, Eqs. 9, 10 and ll,are now written with the p's
and hx's substituted from the bulk equations, Eqs. 8.9.4 and 3. These latter relations are themselves
first written using the remaining simple boundary conditions. Thus, Eqs. 9, 10 and 11 respectively
become

^ k
2

k [pacoth(ka) + Pbcoth(kb) - g(pb-P)-k2y kB coth(ka) kB coth(kb) sinh(ka)

Ad
Ha - Hb - +1 0 (14)

Ae sinh(ka)
0 a kcoth(ka) Vbkcoth(kb)

(ka)Lsinh 

Solution for Z gives

kBo(N - Pa)coth(kb)~ 1

sinh(ka)[ýbcoth(kb) + iacoth(ka)] D(w,k) (15)

where
2

D(w,k) =- [Pacoth(ka) + pbcoth(kb)] + [Yk 2 + g(b a
kBa(bb - aa)

-- (16)
allb ibtanh(ka) + Vatanh(kb)]

The many types of information that can be gleened from Eq. 15 are illustrated in Sec. 8.9. Con-

cerning the driven response, it is here simply observed that its frequency dependence is similar to

that illustrated by Fig. 8.9.2, with the frequency of the resonance occurring as the excitation phase
velocity coincides with that of a field coupled surface wave having the phase velocity

yk + g(b-Pba)/k - B(b-2a)2 /ab[ btanh(ka) + tanh(kb)] (17)

v pacoth(ka) + pbcoth(kb)

The -effect of the field is to reduce the gravity-capillary phase velocity and hence the frequency. This

phenomenon is a "self-field" effect, in the sense that a deformation of the interface distorts the mag-

netic field and this in turn creates a magnetization perturbation surface force density that tends to
1

further increase the deflection.

1. For experimental documentation of resonance frequency shift with magnetic field, see R. E. Zelazo

and J. R. Melcher, "Dynamics and Stability of Ferrofluids: Surface Interactions," J. Fluid Mech.

39, 1 (1969).
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The tendency for this self-field coupling to precipitate instability makes the temporal modes of
K particular interest. In the short-wave limit ka << 1 and kb << 1, solution of the dispersion equation

D(w,k) = 0 for w2 results in

2 gk(Pb - Pa )  2k3 k B2(b - a)
Pa + b + (Pa + (18)
P, + Pb Pa + Pb ýalb(pa + Pb)(Pa + Pb)

Even with the lighter fluid on top (say air over a ferroliquid) so Pb > Pa, the magnetic field can make
2 -+ 0 and hence one of the eigenmodes unstable. Figure 8.10.2 shows W 2 as givenby Eq. 18 as a func-

2 tion of k. As Bo is raised, there is a critical value at which the curve just kisses the w = 0 axis.
Under this condition, instability impends at the wave number k . For greater values of Bo, wave numbers

between the roots of Eq. 18 with W2 = 0, ku and kk, are unstable. These roots coalesce as the dis-
criminant of the quadratic formula vanishes. Thus, the incipient condition is

r • •7

- )
o (b a) 4g(p b a

(19)
P a 1 b ta bb)y Y

The critical wave number is what remains from the quadratic formula, which in view of Eq. 19 is

Sg(- a (20)
k = (20)

I

Fig. 8.10.2

Dependence of w (k) as given by
Eq. 18 with B2 as a parameter.

0

Note that the first perturbations to become unstable as the field reaches the level predicted by Eq. 19
have the Taylor wavelength given by Eq. 15.2

What happens if the field is raised above the value consistent with Eq. 19? The initial rate of
growth is given by the linear theory, although because a rate process is now involved, this may be
strongly influenced by the viscosity. But, the ultimate state will depend on the nature of the electro-
mechanical coupling. In the magnetization example at hand, the interface typically reaches a new state
of static equilibrium. The protrusions shown in Fig. 8.10.3 are typical. Consistent with the fact
that the interface is always free of a shearing surface force density, they are perfectly static.

As discussed in the introduction to this section, to obtain a similar instability in the EQS polari-
zation configuration of Fig. 8.10.1b, it is usually necessary to use an alternating field.3 If the fre-
quency of this field is low enough that the natural modes can interact with its pulsating component, para-
metric instabilities can also result. By contrast with the coupling described here, these instabilities

2. Conditions for instability are studied by M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30,
721 (1969).

3. E. B. Devitt and J. R. Melcher, "Surface Electrohydrodynamics with High-Frequency Fields," Phys.
Fluids 8, 1193 (1965).
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Courtesy of Ferrotec USA Corp., Bedford, NH. Used with permission.
Fig. 8.10.3. System of static fluid sprouts repre­ Fig. 8.10.4. Rigid plane-parallel electrodes

sents a new static equilibrium formed once bound liquids having common interface.
planar interface in perpendicular field The upper liquid is insulating relative
becomes unstable. (Courtesy of Ferrofluidics to the lower one.
Corp., Burlington, Mass.)

4are dynamic in character and can result in splattering or atomization of the interface.

1

To appreciate the perfectly static equilibrium of the polarization sprouts resulting from the in­
stability of the flat interface, consider by contrast some of the possibilities resulting when the inter­
face of a conducting fluid bounded by a relatively insulating one is stressed by a normal electric field
Eo' The configuration is shown in Fig. 8.10.4. For example, the upper fluid might be air and the lower
one water (or any other liquid having a charge relaxation time E/cr short compared to times of interest).5

The boundary condition at the interface is that
it sustains no tangential electric field. This is
formally equivalent to the (analogous) magnetic field
situation in the limit where the lower fluid is infini­
tely permeable. That is, in the limit ~b + 00, the
interfacial tangential magnetic field just above the
interface of Fig. 8.l0.la must vanish. The magnetic
field above this infinitely permeable fluid then
satisfies the same boundary conditions as the elec­
tric field does in the physically very different
situation of Fig. 8.10.4.

It follows from Eq. 19 with the substitution
~~ + E, ~b + 00 and B + Eo/E =~a that the volt­o
age required to just induce instability of the
interface is

4_g 4_(_Pb-'-=----'Pa;:..)-YJ 1/
~= (21)a [ 2

E

The danger in exploiting the formal equivalence of
the infinitely permeable and the "infinitely" con­
ducting lower fluid is that the physics of the two
situations will be confused. In the case now con­
sidered, the surface force density acting upward on
the interface is due to free surface charges. That
these are free to conduct accounts for the diverse Fig. 8.10.5. Nonlinear stages of surface
processes that can be triggered by the instability. instability caused by applying

30 kV d-c between electrode above
A typical appearance shortly after incipience is and glycerine interface below.

shown in Fig. 8.10.5. An extremely sharp spike has Insulation is mixture of air and
formed. In the neighborhood of this point, the non­ gaseous Freon.
linear stages of instability are generally dynamic, and
often involve dielectric breakdown in some region of the insulating fluid. Depending on properties and
breakdown strength, it is very likely that simultaneous spraying and corona discharge will be observed.

4. T. B. Jones, "Interfacial Parametric Electrohydrodynamics of Insulating Dielectric Liquids," J. Appl.
Phys. ~, 4400 (1972).

5. For experiments and a more general treatment of stability conditions, see J. R. Melcher, Field­
Coupled Surface Waves, The M.I.T. Press, Cambridge, Mass., 1963, Chaps. 3 and 4.
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8.11 Surface Waves with Imposed Gradients

The electromechanical coupling exemplified in Sec. 8.10 is entirely caused by the distortion of the
initially uniform field that results from a deformation of the interface. It is this perturbation field
that creates the change in surface force density tending to destabilize the interface. The "self-field"
origin of the coupling is reflected in the dependence of the coupling on the square of the jump in elec-
trical properties [(a - Pb)2 in the last term of Eq. 8.10.16]. The perturbation self-field is propor-
tional to Pa - Pb and the surface force density is proportional to this field multiplied by (ua - Vb).
The net effect is proportional to the product of these and hence to (~, - pb)2.

The surface force density can also vary simply because the interface moves in a nonuniform equi-
librium field. Because the change in field experienced by the deforming interface is independent of the
jump in property, it can be expected that this imposed field type of coupling is linearly proportional
to the property jump.

To exemplify imposed field effects and at the same time highlight electromechanical surface waves
that propagate along field lines, the electromechanics of the configuration shown in Fig. 8.9.3 is now
considered. Both fluids can be regarded as perfectly insulating so that the relevant force density is
given by Eq. 3.7.22 of Table 3.10.1. How is it that the polarization interaction can stabilize the
initial equilibrium with the heavier liquid on top? What is the role of self-field effects when the
equilibrium electric field is tangential to the interface?

The cross section of the system is shown in Fig. 8.11.1. Di-
verging transparent electrodes (which are tin oxide coated glass in
Fig. 8.9.3a) are used to impose the field

o

on fluids with an interface essentially at r = R. Note that Eq. 1

gives the exact solution, provided that the interface approximately

has this equilibrium radius.

Because gravity does not act exactly in the radial direction,
the equilibrium geometry of the interface is in fact somewhat field

dependent. The essential physics are retained in a Cartesian model

that pictures the interface as flat, but subject to a nonuniform

imposed field. In static equilibrium the x-directed polarization

surface force density is balanced by the jump in equilibrium pressure
I HE. In terms of the coordinates defined in Fig. 8.11.1, r = R - x.

The equilibrium electric field in the neighborhood of the interface

(which is the only seat of electromechanical coupling) is therefore

approximated by

S (i+x
E = E (1 Eo o Fig. 8.11.1. -Cross section

o oR of experiment shown
in Fig. 8.9.3a with

Because of the quasi-Cartesian approximation, this equilibrium field is Cartesian coordinates
not irrotational. for planar model.

Bulk Relations: Perturbations in the electric field are both irrota-
transfer tional and solenoidal in the uniform bulk of the fluids. In applying the flux-potential rela-

tions representing Laplace's equation above and below the interface (Eqs. (a) of Table 2.16.1), perturba-

tions on the interface having wave number k EHk2 + k2 are assumed short enough that boundaries above
and below the interface can be considered as being at x = + -. Thus, with the understanding that Rek > 0,

perturbation fields evaluated at the equilibrium interfacial position are related by

ýa AA

e = k a

x

Ab ^b
e = -kx
x

region theIn the bulk regions, the pressure balances the gravitational force density. Hence, in each 

pressure takes the form

p = I - pgx + p' (x,y,z,t)

From the inviscid pressure-velocity transfer relations (Eqs. (c) of Table 7.9.1) the perturbation part

of Eq. 5 evaluated at the equilibrium interfacial position is related to the velocity there by
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^a p = jWPa ^avx (6)
p = k x

^b jp b ^b
P = - x  (7)

Jump Conditions: To assure that the laws defining the model prevail through the interface, there
are two electrical boundary conditions. First, n x i =,0 is evaluated at the interface using I ex-
pressed in terms of ý (Eq. (a) of Table 7.6.1) and y = jk 0or z = jkzO to obtain

a ID = Lv••, . .0 (8)

Second, by assumption there is no free surface charge so i. EA = 0, which to linear terms requires
that

ra 
Ee - Ebe 

Ab
+ jkyEo(Ea - E) ax x y = 0 o a b (9)(9)

In addition, two mechanical conditions are required, the first representing continuity

a = j = b (10)
x x

and the second force equilibrium. To linear terms, the normal force balance is the x component of
Eq. 7.7.6 with the surface tension contribution given by Eq. (b) of Table 7.6.1,

- 1 -[1a - agE + pa(x = 0)] b pb + pb(x = 0)]

= [Eo(1 +i) + e (x=0)]2 + b[E (1 + L 2 (11)
) + eb (x=0)] _ y + 

The balance of the equilibrium surface force density by the equilibrium pressure is represented by the
equilibrium part of Eq. 11:

a -b = -(E - EbC)E (12)

so that in terms of complex amplitudes evaluated at the equilibrium position of the interface, the per-
turbation stress balance requires that

2
,^a ^b oa ^b 2^
pa p + b  a) = (Eb  a) -p- - jk E b~ ) -yk2• (13)

Dispersion Equation: Of the possible types of information about the dynamics that can be gleaned
from this model, it is the temporal modes that are of interest here. One way that they can be identi-
fied is to find the response to a transverse drive in the form of Eq. 8.9.11 for example. Then the con-
dition is D(w,k) = 0. Here, there is no drive and the temporal modes are identified by asking for the
relation between w and k that makes it possible for surface distortions to exist, consistent with all
the laws, but with homogeneous boundary conditions. To this end, Eqs. 3 and 4, 6 and 7 and 9 are sub-
stitutgd into Eq.,13 using Eqs. 8 and 10 in the process. The resulting expression is of the form
D(w,k)E = 0. If E is to be finite, it follows that D(w,k) = 0. This relation,

2 E 2
kE (C - Cb

(2 (+Pb) = gk(b-Pa) + yk3 + (aEb) + k2E2 a  b) (14)

is an expression of the fact that the inertia of the fluid above and below the interface is equi-
librated by forces due to gravity, surface tension, imposed fields and self-fields.

Temporal Modes: In addition to the now familiar gravity and capillary contributions to the phase
velocity, w/k, there are now the polarization contributions. In the absence of an imposed gradient the
effect of the field is to stabilize perturbations with peaks and valleys running perpendicular to the
electric-field. To see why, consider the perturbation fields resulting from the deformation of the
interface shown in Fig. 8.11.2a. With Ea < %C, the equilibrium field, Eo induces polarization surface
charges. As shown, these in turn give rise to the perturbation fields. Remember that the polarization
surface force density on an interface stressed by a tangential field acts in the direction of decreasing
permitivity. Thus, at the downward peaks where the perturbation field reinforces the applied field
there is an increase in the upward directed surface force density, and this tends to restore the inter-
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E,
Fig. 8.11.2. (a) Perturbation fields for waves propagating along lines of electric field.

(b) Perturbation fields are absent for waves propagating across d lines.

face to its equilibrium position. That perturbations propagating in the z direction are not influenced
by the self-fields is evident from the fact that the equilibrium field remains unaltered by such deforma-
tions of the interface.

Note that the self-field stiffening cannot stabilize the interface with the heavy fluid on top;
modes appearing as in Fig. 8.11.2b, sometimes called exchange modes because the fluid can be displaced
without an associated change in stored electric energy, are unstable despite a uniform imposed field.

However, the imposed gradient can be used to stabilize all wavelengths. Regardless of wave
number, the interface is stable provided that

2
E

(a - --  (15)b) > g(Pa - )  Pb

So, by making the upper fluid have the greater permittivity, the equilibrium can be made stable even
with the heavier fluid on top.

In the experiment of Fig. 8.9.3, the region between the electrodes is sealed. Thus, hydrostatic
pressure maintains the equilibrium, while the electric field stabilizes it. If too much of the upper
fluid is run into the region between the electrodes, it simply breaks through the interface until enough
is lost to satisfy Eq. 15.1

Considerations of stability are essential to the design of systems for orienting liquids. An
example is the use of polarization forces for orienting liquid fuels in the zero gravity environments
of space. 2 3Magnetization interactions with ferrofluids are analogous to those described here.

8.12 Flux Conserving Dynamics of the Surface Coupled z-8 Pinch

The magnetic field levitation of a liquid metal, sketched in Fig. 8.2.1c, is based on time-average
forces caused by currents induced because the field is oscillating with a period short compared to a mag-
netic diffusion time. Transient, rather than steady-state forces, are similarly induced if the field
is abruptly switched on. The confinement of a highly ionized gas in many fusion experimentsl is based
on this tendency for the plasma to behave as a "perfect conductor" over several magnetic diffusion times.
Not only does the magnetic field "bottle up" the plasma, but it can also be the means of compressing the
gas. The stability of the pinch configuration shown in Fig. 8.12.1 is examined in this section.

An axial current on the surface of the cylindrical conductor gives an azimuthal magnetic field, Ha,

and hence a sur ace force density that compresses the conductor radially inward. An example is shown

in Fig. 8.12.2. If the conductor is an ionized gas, this pressure will evidence itself in the con-

striction of the conducting volume, thereby producing an increase in the plasma density and local con-
ductivity. In turn, because the magnetic field intensity in the neighborhood of the conducting path is
inversely proportional to the radius of the conductor, the magnetic pressure is itself increased. As

a scheme for heating of plasmas for thermonuclear experiments, the magnetic field serves the dual

purpose of compressing and confining the plasma column.

1. J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Liquids,"

J. Spacecraft and Rockets 4, 864 (1967).

2. J. R. Melcher, D. S. Guttman and M. Hurwitz, "Dielectrophoretic Orientation," ibid., 6, 25 (1969).

3. R. E. Zelazo and J. R. Melcher, "Dynamics and stability of ferrofluids: surface interactions,"
J. Fluid Mech. 39, 1-24 (1969).

1. See, for example, D. J. Rose and M. Clarke, Jr., Plasmas and Controlled Fusion, The MIT Press and
John Wiley & Sons, New York, 1961, p. 336.

2. See F. C. Jahoda. E. M. Little, W. E. Quinn, F. L. Ribe and G. A. Sawyer,"Plasma Experiments with a
570-kJ Theta-Pinch," J. Appl. Phys. 35, 2351-2363 (1964).
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Four images taken at 2.4 sec., 3.6 sec., 4.9 sec. and 6.1 sec. 
As the plasma cross-section compresses, the number of dark and light rings decreases 

4.9 sec.
Fig. 8.12.1. Plasma column showing

equilibrium radius Rand
equilibrium magnetic fields.

compression
6.1 sec.

Fig. 8.12.2

Theta-pinch experiment showingTheta-pinch experiment showing magnetic compression of plasma 
magnetic compression of plasma

cross section as viewed by means of interferometer. Peak mag-cross section as viewed by means
netic field is about 100 kgauss. (Courtesy of Los Alamos Scienof interferometer. Peak mag­
-tificLaboratory.)netic field is about 100 kgauss.

(Courtesy of Los Alamos Scien­
tific Laboratory.)direction of interferograms
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The axial or z pinch, with the current in the direction of the columnar axis and the induced mag-
netic field azimuthally directed, is inherently unstable: a fact that emphasized early in the fusion
effort that the stability of confinement schemes was of primary importance. The theta pinch of
Fig. 8.12.2 avoids the inherent tendency toward instability by using currents that flow azimuthally
around the column. These are induced by a magnetic field applied suddenly in the axial direction. The
applied magnetic field has the virtue of being uniform in the region around the plasma, and thus the
magnetic stress at the surface of the column is independent of the radial position of the interface. As
will be seen, it is the 1/r dependence of the equilibrium magnetic field that makes the axial pinch
naturally unstable. The imposed field gradient is destabilizing. The combined axial and theta pinch
configuration, shown in Fig. 8.12.1, is sometimes termed the "screw pinch" because of the helical shape
of the magnetic field lines.

Equilibrium: The plasma column is modeled as a perfectly conducting cylinder of incompressible and
inviscid fluid. Although the equilibrium is pictured as static, the fields are nevertheless applied and
the column motion of interest completed in times that are short compared to the time for the field to
diffuse into the column. Thus, surface currents are just those required to shield the applied fields
from the column:

S= Ht + Hi, (1)
r t az

where Ha and Ht are, respectively, the axial and theta fields at the equilibrium surface of the column.
The equilibrium surface current on the column is therefore

K=- + (
K , -Hai a+ Hti (2)

Stress equilibrium requires that the equilibrium pressure jump balance the magnetic surface force density:

I• -]I =- I (H + H (3)

Bulk Relations: With the column surface represented in the complex amplitude form ( = Regexpj(wt -
m0 - kz), perturbations in the magnetic field around the column, t = -VT, where Y satisfies Laplace's
equation. Thus, the flux potential relations, Eq. (c) of Table 2.16.2, pertain to the region between
column and wall:

[ Mb (R,a) Gm(a,R)I (4)

There is no perturbation magnetic field inside the column.

The perturbation mechanics of the column are represented by the inviscid model of Sec. 7.9. The
pressure-velocity relations, Eq. (f) of Table 7.9.1 in the limit where +- 0, show that

(5)^d (5)
p = jwpF(O,R)v 

That the region surrounding the column is essentially vacuum means that it is filled with fluid of
negligible density and hence zero perturbation pressure: ^c 2 0.

Boundary and Jump Conditions: Because the equilibrium H is nonuniform, the field evaluated at the
perturbed position of the interface is to linear terms

R R +
H = y Htie + Hi + h(r = R + E)

(6)

-Hti + H HIT + t(r = R)
t + Haiz R t6

The effect of the mechanics on the magnetic field is represented by the condition that there be
no magnetic flux linked by contours lying in the deforming perfectly conducting interface. With the
normal vector related to ý by Eq. (e) of Table 7.6.1, it follows that to linear terms
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c mH

hr = -j(-- 
t

+ kHa)t (7)
where hc is evaluated at the unperturbed position of the interface.r

The physical nature of the outer wall will be left open. For noy, it is presumed that there is some
normal magnetic field at the outer wall having the complex amplitude ':

hr (8)

To express the effect of the fields on the mechanics, continuity requires that

^d ^
v.V= jwý (9)

Then, stress equilibrium is represented by Eq. 7.7.6. As applied to plasmas, the model need not include
the surface tension. Of the three components of the stress condition, only the normal component is
appropriate. Fundamentally, this is because a perfectly conducting interface sustains no magnetic shear
stress (see Sec. 8.2). To linear terms, it is the radial component og the stress condition that repre-
sents the normal stresses. Thus, in view of Eq. 6 (ýz = jkV, f8 = jm'/R)

d 0oHt-Pd o - Ht + kHa)eC (10)

where c = 0.

Dispersion Equation: Equations 4b and 5 are evaluated using Eqs. 7, 8 and 9 and substituted into
Eq. 10 to obtain

2 A OHt m 2 A m
(0,R)i = SpF t -1 (Ht + kHa)2Fm(a,R) - jJ(Ht +kH)G(Ra) (11)

In particular, if the outer wall is perfectly conducting, Eq. 11 shows that the appropriate dis-
persion equation is

2• 2  a ) 2F m, (1
-_WpFm(0,R) = - + •(i -Ht + F (a,R) (12)

It is shown in Sec. 2.17 that Fm(O,R) = 1/fm(O,R) < 0 (see Fig. 2.16.2b for typical behavior) and
Fm(a,R) > 0.

The first term on the right in Eq. 12 arises from the imposed gradient in azimuthal magnetic field.
That it tends to make the equilibrium unstable is not surprising because the inward directed magnetic
surface force density associated with the imposed 8 field decreases as the interface moves outward. The
question of stability hinges on whether or not the self-field coupling represented by the last term in
Eq. 12 "saves the day."

Certainly, the self-fields stiffen the interface. However, for deformations having azimuthal and
axial wave numbers related by (m/R)/k = -Ha/Ht, this stiffening is absent. To appreciate the origins
of this result, observe that a vector perpendicular to crests and valleys of the surface perturbation
is $ = (m/R)T + kA, as shown in Fig. 8.12.3. Also, as a vector in the (SR,z) plane, the equilibrium

= magnetic field is given by Eq. 1. The perturbations that produce no self-field effect have p.1 0 in
the surface of the column. Thus the modes that cause no perturbation in ý propagate across the lines
of equilibrium field. If the equilibrium field circles the z axis in the clockwise direction shown in
Fig. 8.12.3, the perturbations that produce no self-fields have crests and valleys that also follow
these helical lines, as shown in Fig. 8.12.3b. Note that for the z pinch, where Ha = 0, these are the
sausage modes m = 0. These modes that have no self-fields, sometimes called exchange modes, are similar
to the polarization and magnetization modes of Sec. 8.11.

From another point of view, it is Alfvyn surface waves propagating along the lines of magnetic
field intensity that are described by Eq. 12. The flux conserving dynamics is similar to that for the
bulk interactions. However, the phase velocity of waves is now dependent on k, the surface waves are
dispersive.

The theta pinch (Ht = 0) is at worst neutrally stable. Only the self-field remains on the right
in Eq. 12. However, for "exchange" perturbations with crests running in the axial direction, this term
is zero, so that the frequency is zero, and the system is on the verge of instability. In fact, the
theta pinch has been found to be a useful approach to obtaining confinement for extremely short periods
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Fig. 8.12.3

(a) Equilibrium i and propaga-
tion vector in (RO,z) plane
at r = R. (b) Exchange modes
showing $1i = 0 and hence lines
of constant phase parallel to
equilibrium H.

(a) (b)

of time. Experiments are illustrated by Fig. 8.12.2, From the hydromagnetic viewpoint, the stability
of the theta pinch depends on effects not included here, such as the necessary curvature of the imposed
fields if the column is closed on itself. Internal modes associated with volume distributions of
current are thought to come into play in pinch devices and especially in the tokamaks. Such modes are
taken up in Secs. 8.17-8.18. In any case, there are many other forms of instability associated with a
highly ionized gas that are not described by a hydromagnetic theory.

One approach to stabilizing the equilibrium is to sense the position of the interface and feed-
back fields to a structure located on the outer wall. For example, in the limit of a continuum of
samples and feedback stations, the normal magnetic field t the wall might be made proportional to the
deflection of the interface at the same (e,z) location,V= AE. With this expression introduced into
Eq. 11, the revised dispersion equation follows. But, note that no matter what the nature of the feed-
back scheme, the last term in Eq. 11 has a factor [(m/R)Ht + kHal. No matter what the feedback, in
the framework of this linear model, it will not couple to the exchange modes. The origins of this dif-
ficulty are clear from the stress balance, Eq. 10, which shows that field perturbations perpendicular
to the imposed field result in no perturbation stress. This is true whether Tc (Eq. 4b) is the result
of the self-field (Eq. 7) or caused by the feedback at the outer wall.

8.13 Potential Conserving Stability of a Charged Drop: Rayleigh's Limit

Charged drops and droplets are exploited in devices such as ink jet printers that use electric
fields to deflect and direct the ink, charged droplet scrubbers for air pollution control and electro-
static paint sprayers. Of possible importance in these applications is the limiting amount of charge

It is this Rayleigh's limit,1that can be placed on a drop without producing mechanical rupture. 
determined as it is by considerations of stability, that is an objective in this section. The example
gives the opportunity to put to work relations derived in Chaps. 2 and 7 in spherical coordinates.

The drop, perhaps of water, is assumed to be perfectly conducting and to have the equilibrium
radius R and surface tension y. Its interface has the radial position r = R + E(8,0,t), as sketched
in Fig. 8.13.1. The drop is initially in static equilibrium with a total charge, q, evenly distributed

over its surface. Thus, an equilibrium electric field

E = E R; q = 4e R2E (1)

surrounds the drop with the radial electric surface force density EE2/2 balanced by the jump in equi-
librium pressure Hc - ld and the surface tension force density -2y/R.

Surface deformations take the form

S= Re P (cos 6)eJ(  - (2)

1. Lord Rayleigh, "On the Equilibrium of Liquid Conducting Masses Charged with Electricity," Phil.
Mag. 14, 184-186 (1882).
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with normal vector and surface tension force den-
sity summarized in Table 7.6.2.

Bulk Relations: With the perturbation in
electric field from that given by Eq. 1 repre-
sented by a = -VO, the Laplacian nature of the
fields surrounding the drop is represented by
the flux-potential transfer relation, Eq. (d) of
Table 2.16.3:

ec . (n+l) Rc
r R

Similarly, the inviscid fluid within is repre-
sented by the pressure-velocity relation,
Eq. (i) of Table 7.9.1 in the limit 8 + 0,

Ad Ad R Ad
pd= j PF (O,R)vd = -jwp - vn: r n r

Boundary Conditions: The electrical boundary
condition at the drop interface requires that there
be no tangential electric field: n x I = 0. This ,- - - -

condition prevails if frequencies of interest are
low compared to the reciprocal charge relaxation Fig. 8.13.1. Spherically symmetric equilibrium
time of the drop. With the objective of evaluating for a drop having total charge q uni-
the electric field at the perturbed position of the formly distributed over its surface.
interface, note that to linear terms Eq. 1 is evalu-
ated at the interface as

SE(1 -
S r=R+E 0o 2-)

Then, Eq. M of Table 7.6. is used to represent 'n and, to linear terms in 5 and hence e, the boundary
condition is written in terms of amplitudes evaluated at the unperturbed interfaces I-c (

c^
C = EO

Continuity requires that (Eq. 7.5.5 to linear terms)

yr =

Stress equilibrium for the interface, in general given by Eq. 7.7.3, is written with the perturba-

tion pressure outside the drop ignored because the density there is negligible compared to that of the

drop. Thus,

28 E c 
c - d - (pd 1 2 o E e + (T)
H- - (p') = Trj n j + (Ts) = •-•E 

+  r0 Ee + (T)
c d rj sr 2 oo R oor r

The equilibrium terms balance out, so that with the complex amplitude of (Ts)r given by Eq. (M)
of Table 7.6.2,

2C E
2

-d oo + E E 8c (n - 1)(n + 2)•R -- 
oor R2

R

Dispersion Relation and Rayleigh's Limit: All terms in the stress balance, Eq. 9, are written in
terms of 5 by using Eq. 6 in Eq. 3 for $, and Eq. 7 in Eq. 4 for Ad. The factor multiplying A in the
resulting homogeneous equation is the dispersion equation:

w pR2 = (n - l)n[- (n + 2) - e E• ] (10)
R oo

The surface deflections are pictured with the help of Tabld 2.16.3. Conservation of mass excludes the
n = 0 mode. From Eq. 10, the two n = 1 modes are neutrally stable. These are pure translations,
either along or transverse to the z axis.

The first modes to become unstable as Eo is increased are the three n = 2 modes. This is seen
by solving Eq. 10 for the Eo that makes the term in brackets vanish and recognizing that this is first
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true for the lowest allowed value of n, n = 2. Thus, because Eo = q/4?r% 2 , it follows that Rayleigh's
limit on the total drop charge consistent with a stable equilibrium is

q =8 (11)

From this result, slowly increasing the net charge causes the drop to burst by fissioning into two dro
In most situations, the instability is dominated by the most rapidly growing of a spectrum of unstable
modes with growth rates predicted by Eq. 10.

8.14 Charge Conserving Dynamics of Stratified Aerosols

If charge can relax instantaneously on the time scale of interest, an interface and even bulk
material of fixed identity can preserve its potential. Examples are given in Secs. 8.13 and 8.7. In
the opposite extreme are motions that conserve the charge density in the neighborhood of material of
fixed identity. A physical example is the transport of submicron charged particles entrained in air.
By virtue of applied or self-fields, these particles migrate according to the laws investigated in
Sec. 5.6. But there, the gas flow was assumed to be known. What if the force transmitted to the gas
by the charged particles results in a gas motion that dominates the migration of the particles relativ
to the gas? In fact, because of .their extremely low mobilities, fine particles of high density can
result in a sufficient force on the gas that the resulting fluid motions dominate over migration in
determining the transport of the particles. Typically, what is observed is transport of particles by
turbulent mixing with its origins in the electrohydrodynamic instability examplified in this section.

If fluid convection dominates over migration (or relaxation) in the transport of charged particl
by an incompressible fluid, then the charge density is related to the fluid flow by

Dpf
-- =0 (1)
Dt

In Sec. 7.2, this same statement was made for the mass density of an incompressible fluid. The genera
laws and relations subsequently developed in Secs. 7.8 and 7.9 bear on the motions of a mass density
stratified fluid in a gravitational field much as does this section on motions of a charged fluid in a
electric field. The discussion of gravity-capillary dynamics, Sec. 8.9, exemplifies the dynamics of
fluids stratified in mass density, and is an example of how piecewise continuous models represent sys-

tems that are inhomogeneous in mass density.

At least as discussed here, where effects of self-gravitation are ignored, 9 in the gravitationa

force density is constant, whereas the electric field t in the electric force density is a function of

the distribution of the field source, in this case pf. But, in regions where the charge density is co

stant, say pf = q, the force density transmitted to the fluid by the charged particles nevertheless
takes the form of the gradient of a pressure:

SpfE p = -pfV =-V; E q4 (2)

Note that this statement prevails only where pf is constant. It cannot be used to deduce a stre

tensor at a boundary where pf is discontinuous, for example.

That the force density in regions of uniform charge density is the gradient of a pressure effec-

tively uncouples the bulk fluid mechanics from the electromagnetics. The inviscid equations of motion

are as given in Sec. 7.8, with C as defined by Eq. 2. Thus, in the bulk, vorticity is conserved by a

surface of fixed identity, and Eqs. 7.8.10 and 7.8.11 determine the velocity and pressure of motions

initiated from a state of zero vorticity.1

Planar Layer: Suppose that a planar layer is embedded in a system in such a way that the equi-

librium fields generated by the space charge are x-directed, as shown in Fig. 8.14.1. Because the
uniformfollowing comments are general, for the moment consider the layer to have an equilibrium 

translation in the z direction with velocity U. With G defined by Eq. 2, the pressure follows from

Bernoulli's equation, .Eq. 7.9.4, as

p (x) =- pU 2 - q + -pgx

p' = p(-- + U a-),' - q'

1. The piecewise uniform approximation used here is developed in various geometries by M. Zahn,

"Space Charge Coupled Interfacial Waves," Phys. Fluids 17, 343 (1974).
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where primes indicate the time varying perturbation. A hybrid
perturbation pressure is now defined,

7r' p' + q0' (4) 1\

It follows from Eq. 3 that w is related to the velocity potential .. " " .

S= jp( - kzU)O (5)

Thus, 7r now has the same relationship to the velocity potential .----'.. -. .. -- . .

as did $ 
.- 

in Sec. 7.9 (Eq. 7.9.6). Here, as in Sec. 7.9, 0
satisfies Laplace's equation. Thus, the pressure-velocity
relations of Table 7.9.1 apply with . Fig. 8.14.1. Uniformly charged planar

Fig. 8.14.1. Uniformly charged planar

On the electrical side, Poisson's equation must be layer of charge conserving fluid.

satisfied at every point in the bulks However, because pf is
constant, the equilibrium field equilibrates the charge density in Poisson's equation and perturbations
in the potential must satisfy Laplace's equation. Thus, fields take the form

A j (t-k y-k z) dE d#0  (6)
= 0 o (x) + Re e -~ dx = ; Eo dx

0

where the flux-potential transfer relations of Table 2.16.1 apply to the perturbation, Q.

Boundary Conditions: The electromechanical coupling occurs in the regions of singularity between
layers of uniformly charged fluid. Interfacial boundary conditions representing the mechanical equa-
tions come from continuity, which requires that

= j
Ax 4 (7)

and stress equilibrium. The charge density has a step discontinuity at the interface, but there is no
surface charge. Further, there is no discontinuity in the permittivity at the interface. Thus, the
surface force density, represented by the first term on the right side of Eq. 7.9.6, is zero. For

layers of charged aerosol, it is appropriate to ignore the surface tension, so the boundary condition is

simply

a9p =0 (8)

In view of Eq. 3, this condition is represented by its x-component evaluated to linear terms on the inter-

face at x (say) to give

qEo - pgj Z + JRI - Jq4) = 0 (9)

where Eo is now the equilibrium electrical field evaluated at the unperturbed interface.

The potential must be continuous at the perturbed interface. Because there is no surface charge

and no discontinuity in permittivity, it is also true that a Eo1 = 0, so this condition requires that

A = 0 (10)

Because there is no surface charge even on the perturbed interface, a further boundary condition reflect-

ing Poisson's equations is that t~iE E = 0, so this condition requires that

E qj Z + C o0 ex = 0 , (11)

where Eq. 6 is used to replace deoEo/dx by (q). The four boundary conditions, Eqs. 7, 9, 10 and 11, are
evaluated at the unperturbed position of the interface.

Stability of Two Charge Layers: As a specific example, consider the motions of the layers shown
in Fig. 8.14.2. In the bulk, the mechanics in each layer is represented by Eqs. (c) of Table 7.9.1
with ý + ft:

Rc -coth(ka) s1nh(a) c
sinh(ka) x

=k--- (12)
d I -1 coth(ka) d

sinh(ka) x
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1 .,Re Ae
-coth (kb)

sinh(kb) x
JWP b (13) 1.k

-1Lf1 cf
coth(kb) vs inh (kb) a q5

(d),E - -7 4.,-. 7. 
9*

7 
Similarly, the fields follow from Eqs. (a) of Table. 2.16.1:

F , b :. ." b'Pb
-coth ka) (e).

sinh(ka) c)
±.LVo=k (14)

-1
e coth(ka) dj.dx sinh(ka) Fig. 8.14.2. Fluid layers of different

uniform charge and mass densities

1 have an interface, d-e, and are
e bounded-coth(kb) by rigid electrodes.

sinh(kb)'

=k (15)

^f -1
coth(kb)

sinh(kb) JL J

Boundary conditions at the top electrode are

v = 0 (16)
x

4c =0 (17)

at the interface are Eqs. 5, 7, 8 and 9:

Ad _e = jA (18)
x x

[Eo(qaqb) - g(paPb)] + (de) (qad a e 0
(19)

^d _ e = 0 (20)

(q - q b )  + E ( ed _ e ) = 0 (21)

and at the bottom electrodes are

^f
v =0 (22)

v= 0 (23)

It is a simple matter to substitute Eqs. 16-18,20,22, and 23 into the bulk relations. Substitution of
the resulting Eqs. 14b and 15a into Eq. 21 then shows that

)
Ad Ae -(qa- q b

(24)
Sk[coth(ka)+ coth(kb)]

o

The force-equilibrium boundary condition, Eq. 19, is finally evaluated using Eqs. 12b and 13a and Eq. 24
to obtain the dispersion equation

W2 (qa - qb)2

-. (25)[a coth(ka) + pb coth(kb)] = g( b-Pa)+Eo(a-b) coth(a)+ coth(kbk akcoth(ka) 
o + coth(kb)]

Remember that Eo is the equilibrium electric field evaluated at the unperturbed position of the inter-
face. The equilibrium fields imply that the voltage Vo is related to Eo and the charge densities by
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Vo  qbb 2 - qaa 2E + (26)
o b+" 2e (a+b)

The last "self-field" term in Eq. 25 is positive regardless of the relative charge densities, and
hence tends to stabilize all wavelengths. However, for short waveA (ka >> 1 and kb >> 1) its contribu-
tion is negligible compared to the gravitational and "imposed field" term. Thus, a necessary and suf-
ficient condition for all wavelengths to be stable is that the first two terms on the right in Eq. 25
be positive,

g(Pb - Pa) + Eo(qa qb) > 0 (27)

The static arguments used in Sec. 8.4 lead to a similar condition, Eq. 8.4.11, because instability is
incipient at zero frequency.

If the inequality of Eq. 27 is not satisfied, Eq. 25 shows that the growth rate of instabilities
increases linearly with the wave number. Actually, there is a wavelength for maximum rate of growth
that would be predicted if the model included effects of viscosity (which come into play at short
wavelengths) or recognized the finite structure of the discontinuity in charge density.

The model of a charge density that is frozen to the fluid is of course relevant only if the
processes described take place on a time scale short compared to the migration time of the charged
particles. To what physical situations might the model apply?

Suppose that the electromechanical waves are of interest and Vo is adjusted to make E0 = 0. For
a fluid of uniform mass density (Pa = Pb = p ), according to Eq. 25, short waves have the frequency

S a= (28)

(Note that this is a reciprocal electro-inertial time.) For particles having charge q, number density n
and mobility b, the self-precipitation time due to migration is Te = co/nqb) (Eq. 5.6.6). The frozen
charge model is valid if the electro-inertial frequency given by Eq. 28 is high compared to the recipro-
cal of the self-precipitation time. That is, for Iqa-qb| = nq, it is valid if

WT = >> 1 (29)
e 2 b

The summary of typical mobilities given by Table 5.2.1 makes it clear that the model does not apply to
ions in a gas. However, it could apply to charged macroscopic particles in air2 and to ions in
liquids.3,4 In fact, as a consequence of the electrohydrodynamic instability that prevails when Eq. 27
is not satisfied, the electrically induced convection can be a dominant charge transport mechanism.

The effect of the instability on transport of an aerosol is demonstrated by the experiment shown
in Fig. 8.14.3.5 Generated by dry ice immersed in water, the aerosol passes from left to right as a
layer, bounded from below by an electrode and from above by clear air. Thus, the configuration is
essentially that of Fig. 8.14.2 with the upper region uncharged. The aerosol is negatively charged
by ion impact at the left. From the picture center to the right, the layer is subjected to a vertically
applied electric field. In Fig. 8.14.3a, the applied field is upward and hence the configuration is
stable. Some migration is observed, but little convection. In Fig. 8.14.3b, the field is reversed.
Electrohydrodynamic instability is a arent in its contribution to the transport of charge out of the
gas stream. For this experiment, eo/p/2b > 10, so effects of convection are expected to be important.

2. R. S. Withers, J. R. Melcher and J. W. Richmann, "Charging, Migration and Electrohydrodynamic
Transport of Aerosols," J. Electrostatics 5, 225-239 (1978)

3. P. K. Watson, J. M. Schneider and H. R. Till, "Electrohydrodynamic Stability of Space-Charge-
Limited Currents in Dielectric Liquids," Phys. Fluids 13, 1955 (1970).

4. E. J. Hopfinger and J. P. Gosse, "Charge Transport by Self-Generated Turbulence in Insulating
Liquids Submitted to Unipolar Injection," Phys. Fluids 14, 1671 (1971).

5. R. S. Colby, "Electrohydrodynamics of Charged Aerosol Flows," B.S. Thesis, Department of Electrical
Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Mass., 1978.

8.49 Sec. 8.14



(a)

(b)

Fig. 8.14.3. Aerosol passed through ion-impact charging re.gion at left and
into region of applied electric field from the center to the right.
The aerosol is charged negativep'. (a) Staole configuration with
applied field directed upward. (b) Unstable configuration with ap-
plied field reversed.

8.15. The z Pinch with Instantaneous Magnetic Diffusion

The model exemplified in this section pertains to the MQS dynamics of electrical conduction in the
opposite extreme of that considered in Sec. 8.12. There time scales of interest were short compared to
the magnetic diffusion time, so that the magnetic flux linked by a surface of fixed identity was con­
served. In the opposite extreme considered here, the diffusion of magnetic field on the time scales of
interest is instantaneous. In the magnetic diffusion equation, Eq. 6.2.2, the induction and "speed­
voltagen terms are now negligible. That is, the magnetic diffusion time Tm = ~at2 is short compared to
times of interest and the magnetic Reynolds number R = ~atv is small (Eq. 6.3.9).m

In this limit of instantaneous magnetic diffusion, the effect of the material deformation on the
+ +

magnetic field comes from the heterogeneity of the conductor. The distribution of J and hence H is
determined by the geometry of the conductors. This is best emphasized by dealing with the current
density rather than the magnetic field. Because R «1, the effect of motion on the current densitym
is ignorable. Thus

+ +
J = aE (1)

It follows from the law of induction, Eq. b.2.3 with T IT « 1 and R «1, thatm m

(2)
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In the MQS approximation, the current density is also solenoidal:

V*J= 0 (3)

This is insured by Ampere's law, which represents J in terms of a "vector
potential" which happens to be the magnetic field intensity:

+ +
J = Vx H (4)

In regions where a and P are uniform, it follows from Eqs. 2 and 4 and
the solenoidal nature of A that

V = 0 (5)

which is of course the limit Tm/T << 1 and Rm << 1 of Eq. 6.2.6.

Liquid Metal z Pinch: The column of liquid metal shown in
Fig. 8.15.1 initially has a uniform circular cross section and
carries a longitudinal current density, Jo, that is uniform over this
cross section,

= Jo z  (6)

Thus, by contrast with the perfectly conducting pinch of Sec. 8.12
where the current is on the surface, the equilibrium magnetic field
has completely diffused into the conductor. It assumes the linear
distribution consistent with Amp're's law and Eq. 6: Fig. 8.15.1. Column of liquid

metal has static equi-
or librium with 5 = 0 and

{ r2 r < R uniform axial current
H = (7) density.

oR 2
r > R2r 

Static equilibrium prevails because the radial pressure distribution, p(r), just balances the associated
radial magnetic force density and surface tension surface force density. With p defined as zero in the
air surrounding the column,

p = - 1 J 2 (r 2 - R24 ) + R (8)Odo 

An experiment demonstrating the dynamics to be described (Ref. 2, Appendix C) makes use of a
liquid jet of mercury. In the model now developed, the longitudinal streaming of the jet is ignored.
Instabilities exhibiting a temporal growth here can be displayed as a spatial growth as a result of the
streaming. Such effects of streaming are taken up in Chap. 11.

Bulk Relations: With the vector potential A 4 H and B - J, the situation is formally the same as
described by Table 2.18.1. Axisymmetric perturbations from this static equilibrium now considered can
be described in terms of one component of the magnetic field, fl = 1(r,z,t)t. Here, = A A/r and in
terms of A(r,z,t), the perturbation current density is

J = 1 DA - +l 1 DA -+i r -5 r + rr ar (9)

The axisymmetric solutions of Eq. 5 in cylindrical coordinates are discussed in Sec. 2.19. Solu-
tions are of the form of Eq. 2.19.10 with 8 O0:

^ A rJ1 (Jkr)
A = H , (10)

That is, the perturbation current density in the bulk is uncoupled fgom the mechanics and determined by
the geometry of the interface, which will determine the coefficient Hf.

By contrasc, the mechanics is bulk coupled to the field distribution. The strategy in Sec. 8.14
was to represent the electromechanical bulk coupling in terms of a force density that was the gradient
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of a pressure. Essentially, this attributes the coupling to interfaces. Here, part of the force density
is rotational, so that matters are not so simple. It follows from Eqs. 6 and 7 that

2
+ + ~o Jdr o 0 Jor
F =J x H =-i + J'x ie + oiz x H' (11)

o 9 2 r 2 i o

Thus, in view of Eq. 9, the force equation for the fluid becomes

Jo A
p L- + V = r- o i ; 7T - p' + (12)

at r r 2

where the part of the force density that is the gradient of a pressure is lumped with the perturbation
p'. Effects of gravity and viscosity are not included in Eq. 12. What is on the right in the force of
Eq. 12 is the rotational part of the magnetic force density.

Because of this "one-way" coupling of the field to the fluid, it is necessary to rederive what
amounts to the transfer relations,for the fluid. The r and z components of Eq. 12, as well as the con-
tinuity condition V.v = 0, give three relations for the mechanical perturbations:

jwp + (13)
r dr r

jWp• z - jk* = 0 (14)

1 d (r r) - jk- = 0 (15)
r dr r z

Elimination of Vz Z between Eqs. 14 and 15 gives an expression that can be solved for 9,

wp 
2 

= 
d
d (re) (16)

r ur r

Substitution of this expression into Eq. 13 gives

d2,dv
r 1 dOr r 2oo 2^ jk2J A

+ k v = (17)
2 r dr 2 r wp r

dr r

In the absence of-the bulk coupling, these last two expressions could be used to derive the pressure-
velocity transfer relations of Table 7.9.1. Added to the homogeneous solutions of Eq. 17 (that comprise
these transfer relations) is now a particular solution satisfying the equation with Eq. 10 substituted
on the right. Substitution and recognition that Jo(jkr) satisfies Eq. 2.16.19 with m = 0 shows that a
particular solution is

j(jkR)rJ (jkr) (18)
o2wpJ1(jkR) 

where Eq. 2.16.26c has been used. Of the two homogeneous solutions, the one that is not singular at the
origin is Jl(jkr). The linear combination of particular and homogeneous solutions that makes r (R)=vr
is

1d , PokHa RJo (jkR)J (jkr)Jl(jkr)v r vr Jl(jkR) 2wpJl(jkR) Ji kR - rJ (jkr (19)
2mpJ 1 (jkR) JjkR) o

Thus, in view of Eqs. 12-and 16, the amplitude of the perturbation pressure is

= J (j k r ) kR
2jkJ(jkR)o jJ (jkR) -2(r 1 ( jI o (jJ k r ) - 2J (jkr) + 2jkrJ1(jkr (20)

k Jl(jkR) r 2jkJ 1(QkR) 0aLJ1 (j kR) 0 

Boundary Conditions: The effect of the boundary condition on the distribution of current density,
and hence magnetic field, is represented by the condition that at the interface, *.J = 0. To linear
terms, with A written in terms of C(z,t) (Eq. (e) of Table 7.6.2),

r + jk = 0 (21)
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The radial current density, Jr, is substituted into this expression using Eqs. 9 and 10 to show that

This condition represents the effect of the mechanics (geometry) on the field.

The return effect of the field on the fluid is taken into account in writing stress equilibrium for
the interface. Note that there is no singularity in the magnetic force density at the interface. That
is, there is no surface current and no discontinuity in magnetizability of the material. Hence, the mag-
netic surface force density, i Te J n , makes no contribution to the stress equilibrium, Eq. 7.7.6.
Because the fluid surrounding thecoldmn is of considerably lesser density than the column, the perturba-
tion pressure, ^c, is ignored. Thus, the jump in total pressure evaluated at the perturbed position of
the interface is balanced by the surface tension surface force density, Eq. (f) of Table 7.6.2:

-{-p [(R + ) 2 - R2  d =[-+ + 5] (23)
4 0 RR R 2 z

By design, the equilibrium part of this balance cancels out. In terms of complex amplitudes, the perturba-
tion part is

1 2' d (24)
(24)o/ Rý - d = [1 - (kR)2 

^d
Evaluated using Eqs. 20, 22 and the continuity condition vr = jw~, this expression becomes the dispersion
equation

2 pR3 kRI1(kR) j0 2OR 3 2(kR) 21o(kR) 22pR kR= 1  12 21- 2(kR) 1 + [(kR) - 1] (25)
Y I(kR) 1 2 kRI(kR)

Rayleigh-Plateau Instability: The normalized frequency given by Eq. 25 is shown as a function of
wave number by Fig. 8.15.2 with the magnetic pressure o (daR)2/2 normalized to the surface tension pres-
sure y/R as a parameter. Negatives of the quantities shown are also solutions. Note that even in the
absence of an axial current, perturbations kR < 1 (wavelengths longer than 27TR) are unstable. Any per-
turbation results in major radii of curvature that differ in sign. For a region that is necking off,
the curvature associated with the axial dependence tends to restore the equilibrium whereas that caused
by the circular cross section of the column tends to further neck off the column. For perturbations
having wavelength X > 2wR, the latter wins and the equilibrium is unstable. The wavelength for maximum
rate of growth, given by kR = 0.7, can be used to give a rough prediction of the size of drops formed
from a liquid jet. According to the linear theory, a drop having radius ro would have a volume equal to
that of one wavelength of the jet, 7rR2 = 4/3(rr3).

'S
t

Fig. 8.15.2

Normalized frequency
S= W/pR3/y as a

function of wave num-
ber. --- Wi, -- r.
The parameter is

3J~o2R /2y.

KI N
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z-Pinch Instability: The general nature of the pinch instability is qualitatively similar to that
found with the flux conserving pinch of Sec. 8.12. Because the current through the column must be con-
served, both the current density and the magnetic field intensity in the fluid adjacent to the inter-
face go up wherever the column tends to neck off. The result is an inward magnetic force density that
tends to further encourage the necking off. Unless wavelengths are sufficiently short to be stabilized
by surface tension, they are unstable. According to the model, it is only the inertia of the column
that limits the rate of growth of the instability.

Finally, is the instantaneous magnetic diffusion model appropriate for the description of a mercury
column having a radius of 1 cm or less? From Eq. 25 and Fig. 8.15.2 the frequency can be taken as of
the order of /y/pR3. For the approximation to be justified, the product of this frequency (or growth
rate) and the magnetic diffusion time (based here on the column radius) must be small:

22m
(26)

m P

-3
Typically, this number is less than 10- 3

The major electromechanical effect that would be experimentally observed but not accounted for by
this model is magnetic damping.

8.16 Dynamic Shear Stress Surface Coupling

It is a straightforward process to include the effects of viscosity in the piecewise homogeneous
models developed in Secs. 8.9-8.15. The fluid mechanics is represented by the viscous diffusion
transfer relations of Sec. 7.19 rather than the inviscid pressure-velocity relations of Sec. 7.11. With
the viscosity come additional boundary conditions. At an interface, not only is the normal velocity
continuous, but so also is the tangential velocity (Eq. 7.7.3). Also, the shearing stresses acting at
an interface, Eq. 7.7.6, are not automatically balanced. In Secs. 8.9-8.15, the interfacial stress
balance is for interfaces free of shearing surface force densities. Thus, any of these examples have
stress balance equations in directions tangential to the equilibrium interface that are identically
satisfied.

In this section, the example treated not only illustrates how viscosity is taken into account in

piecewise homogeneous systems, but also involves an electric shearing surface force density. Hence, the

viscous shear stresses are necessary for the formulation of a self-consistent model.

A highly insulating liquid, such as hexane, has a free surface which is bounded from above by a
gas, as shown in Fig. 8.16.1. Perhaps by means of a very small radioactive source, some ion pairs

are provided in the bulk of the liquid. By means of a potential applied between the planar electrodes,
half of this charge is swept to the interface where it forms a monolayer of surface charge that shields

the electric field from the liquid; thus, Go = EEo. Subjected to a tangential electric field, common

interfacial ions migrate relative to the liquid at a rate that is negligible compared to that due to

convection. A good model pictures the charge as frozen to the liquid interface. What are the modes
of motion characterizing the adjustment of the inter-
face to a perturbation field?

Because the fluids to either side of the inter-
face have uniform permittivities and no free charge
density, the electromechanical coupling is confined
to the interface. In the following, it is assumed 1E. +
that the depth of the liquid and the distance to the

upper electrode from the interface are large compared ------ . - -- 9-

to typical perturbation wavelengths on the interface.

Static Equilibrium: With *the interface flat and Fig. 8.16.1. Cross section of liquid-air inter-
v = 0, the electric field is face supporting surface charge density

oo . Charges are modeled as frozen to
= Eoix x; x > 0 the liquid.

=E 0o (1)
0 "; x < 0

and the pressure balances the gravitational force density in the liquid with a jump at the interface to
equilibrate the surface force density coE2/2:

00

x> 0
= 1-xx 

1 2
pgPx + - E E - ; x< 0

2 oo
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Bulk Perturbations: With the perturbation electric field represented by 4 = -VO, the flux-potential
relations describe the fields in the bulk regions. Application of Eqs. (a) from Table 2.16.1 in the
limit (kA) - O gives

ed = kOd; e = e-ke (3)
x x

for the regions above and below the interface respectively. Because the system is invariant to rotation
about the x axis, there is no loss in generality if perturbations are taken as independent of z; ' =
Re exp j(wt - ky).

For the half-space of liguid. the mechanical perturbation stress-velocity relations are given by
Eq. 7.19.19, where yV E kZ + jwp/n,

A YV ^e

ie Ae
Se 'e '(Yv j n ( +k) v - k) n (y + k) vxvY

Jump Conditions: Each of the laws prevailing in the bulk must be consistently represented in the
highly singular neighborhood of the interface. The charge forms a monolayer, but not a double layer,
and hence consistent with the irrotational nature of E is thg condition that its tangential component
is continuous. In writing this condition, note that x = jmC where ' is given in terms of E by Eq. (a)
of Table 7.6.2:

Ad Ae jEo e'd - =--- v (5)W x

The remaining electrical laws are charge conservation, Eq. 23 of Table 2.10.1, and Gauss' law. Together,
these require that

a•- (f) = 0; af = . (6)

To linear terms, Gauss' law and conservation of charge are then represented by

-d Ae) - k ° e = (7)

For the mechanical jump conditions, continuity of the velocity components does not enter because
the contributions of the upper fluid to the stress equilibrium is negligible. Stress equilibrium,
represented by Eq. 7.7.5, includes the normal surface force density due to surface tension, y (given
by Eq. (d) of Table 7.6.2):

Sij n + Te nj - y(V*.)ni = 0 (8)

Physically, the x component of this expression represents (to linear terms) the balance of stresses
normal to the distorted interface. Note that the total normal stress, Sxx , is the .sum of an equilibrium
part and the perturbation:

S = + EEE 2 + pgx + Re SS (x) exp j(Jt - ky) (9)xx 2 0o xx

Thus, because E = Ox/jw, the x component of Eq. 8 is

^e ^e

x ,d 2 x
-S - pg + EoEoe - k2y -= 0 (10)xx j oox

What is new is the shearing component, the y component, of Eq. 8. In linearizing this expression,
remember that S also has an equilibrium part. Above the interface, it is -TI, while below the inter-
face it is -TI + £ oE0 2 + pgx (Eq. 2). Thus, to linear terms, I Syy ny [-TI - (-TI + ½ £oE 2 ) (-'a/y)
an -hi-. oAAa -p ne nAf the +wa terms resultin from the elecri,. str•ss conntributio-n Abl. = 1

so the shearing component of the stress equilibrium reduces to Y

Se- E2 x + jEo E kd = 0 (11)
yx oo W 00
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Dispersion Equation: By using Eqs. 3, the components (e ,ex) can be eliminated from the electric
jump conditions, Eqs. 5 and 7, and these solved for ýd

-jE Eo +e ve
sd= o x o y (12)

SX= 
W(Eo + ) (12)

E

This expresses the effect of the mechanics on the fields.

The self-consistent electromechanics is now represented by the two stress conditions, Eqs. 10 and
11, written in terms of the velocity amplitudes ( ). The strs amplitudes are elimited in favor
of these variables using Eqs. 4, while eis written in terms of 4 by using Eq. 3a, and $ in turn
eliminated using Eq. 12. Thus, the two expressions are

jEkE
2

o o e
0

E
W U + )E:

w8 +
W (1 + v

0v- 0-
l1 (13)

0jn (y V - k) -(V j + k) + l~e
L(l + -)(1 + 7-- )

- 1 0- 0-

Physical insights are more easily obtained by adding j times Eq. 13b to Eq. 13a, and writing both equa-
tions (each multiplied by w) in terms of the variables ex and (-_x + jz). Use is made of the defini-
tions ao = EEn and y; E k2~' v v

+ jwp/n:

e
+ 4akw - j(pg + k2y) + je kE2 [-2rikW] 0

x
(14)

kE E2
-e _e

[2jnkw] jn (YV + k)w + - -vx 0+jvySy1+ 6-
F_

0

The dispersion equation is obtained by setting either the determinant of the coefficients from Eq. 13

or from Eq. 14 equal to zero. But, written in the second form, it is clear that as the viscosity

approaches zero, two modes can be distinguished. These have limiting dispersion equations given by

setting the diagonal terms to zero. The frequencies resulting from the upper left and lower right

terms, respectively, are then

(= 2nk 2 ± w aJ k (pg + k2y ke E2  - 2nk2 2 (15)W =J + ) 0 ; o+ k (- 1 )

.r. 12/3
U c +  (16)

The modes can be distinguished in this way only if the frequencies given by Eqs. 15 and 16 are dis-

parate. In general, the higher order dispersion equation must be solved.

^e ^e
When Eq. 15 is satisfied, Eq. 14 shows that v jv , and similarly, if Eq. 16 holds, then the

vertical motions are dominated by the horizontal ones, Ox  0. Thus, the dispersion equation (Eq. 15)

is identified with gravity-capillary like waves coupled to an electric field in much the same way as

discussed in the latter part of Sec. 8.10.

The main effect of viscosity on the gravity-capillary modes is damping, represented by the imagi-

nary term in Eq. 15. Perhaps a surprising feature of these modes in this low-viscosity limit is that

the electric field has the same destabilizing effect as if the interface were perfectly conducting. For

example, the condition for incipient instability is the same as given by Eq. 8.10.21, even though that

result was derived for an equipotential interface. In this low-viscosity limit, the surface charge on

the insulating interface is convected sufficiently rapidly to maintain the interfacial potential con-

stant.

The electromechanical oscillations or shear waves, represented by Eq. 16, involve interfacial

dilatations. If an interfacial region is horizontally compressed, self-fields give rise to horizontal
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electric repulsion forces, much as if there were an elastic film on the interface. Because this elec-
trical "film" is coupled to the inertia of the liquid below through the viscous shear stress, an initial
horizontal dilatation of the interface results in oscillations. The oscillations are highly damped
because the electrical "spring" is coupled to the "mass" only through the viscous "damper." The fre-
quency Wc typifies how rapidly nonuniformities in a charged interface can adjust, so that the interface
is free of electrical shear stress. The motion stops when the interface is an equipotential.

SMOOTHLY INHOMOGENEOUS SYSTEMS AND THEIR INTERNAL MODES

8.17 Frozen Mass and Charge Density Transfer Relations

A static EQS equilibrium with mass density Po(x) and charge density qo(x) continuously varying with
vertical position is shown in Fig. 8.17.1. The equilibrium vertical gravitational and electrical force
densities are balanced by a vertical gradient in pressure. It is the objective in this section to
describe small amplitude perturbations from this equilibrium.

The mass density and charge density are conserved by a fluid element of fixed identity,

Dp
D Dt 0; Dt = 0D

The fluid has uniform permittivity e and it is inviscid.

'''; ·.. :::.:.; : · : .
Fig. 8.17.1

Planar layer of fluid with vertical

q(x) E (x) x) inhomogeneities in mass and charge
. densities.

q---/100).0..... ..

~-~3C(

It will be recognized that this system is a generalization of the piecewise homogeneous systems

considered in Secs. 8.9 and 8.14. In principle, any distribution of po(x) and go(x) could be approxi-

mated by "stair-steps" representing stratified layers, with uniform densities, as illustrated in

layers might then be used to represent the
the homogeneous 

Fig. 8.17.2. The transfer relations for 

approximated system. With each interface goes a pair of modes, so

that the piecewise homogeneous approximation represents the dynam-

ics in terms of twice as many modes as interfaces. In the limit
of a smooth distribution, an infinite number of modes are brought
into play. Hence, it should come as no surprise that associated
with the smoothly distributed inhomogeneities are an infinite
number of "internal" modes. The objective in this and the next
sections is to explore an approach that is an alternative to the
piecewise homogeneous models.

In manipulations ......-----------
that follow, remember that Po, qo and Eo

are functions of x. By Gauss' law, DEO = qo/e, Where d( )/dx E
D( ). Thus, in terms of complex amplitudes and E Qx/jw, Eqs. 1 Fig. 8.17.2. Stair-step approxi-
relate perturbations in mass and charge density to the deformation mation to smooth inhomo-

geneity in po(x) or q0 (x).
S-(Dp o ) ; A = -(q

The additional statements represent force balance, mass conservation, that the electric field is irrota-
tionalAand Gauss' law. These are unraveled so as to obtain four first-order differential equations in

The z-component of the force equation can be solved for Oz to obtain

a ~k
z wp0

where the perturbation electric field A = -VO and # E p + qo0. Thus, the continuity equation, V.- = 0,

7
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requires that

kgk 2

W z 2po

In view of Eqs. 2, the x component of the force equation requires that

Dl= (w2 po - EoDq 0 + gDpo)t + (Dq 0) (5)

where x is replaced by -DO and p represented in terms of ft. That 1 is irrotational is also explicitly
stated,

DO =- I (6)

Finally, Gauss' law, together with Eq. 2b, gives

D(EAxx ) = + jkee z =-Dqog - k 2EO (7)

Given the amplitudes ( •,p ,B,e) at the lower extremity of the layer (say x = 0), these last four
equations can be numerically integrated and the amplitudes evaluated at the upper extremity. Thus the
relations

*ce = Bij I (8)

xe XIx

are obtained. For example, to compute the Bij's, the equations are integrated with ( ,p ,' ,e•) =
(1,0,0,0). Then, (B11 ,B1 2 ,B1 3 ,B14) are the computed values of (Xfa, O,Eea), respectively. x

Transfer relations in the form

~ftc

= Icij I (9)
ActCe C$a
x

Ce
xX

follow by manipulating Eqs. 8. With the 4x4 matrix Cij divided into four 2x2 submatrices, transduction
between electrical and mechanical surface variables is represented by the upper right and lower left
submatrices. In the absence of coupling (say, with qo = 0), these entries should vanish. In this same
limit, the upper left submatrix relates the pressure to the velocity amplitudes and these relations play
the role of those derived in Sec. 7.9. Of course, here the layer has a nonuniform equilibrium mass den-
sity. Also in this limit, the lower right matrix relates the electric perturbation flux to the poten-
tials. Because the layer has uniform electrical properties, these should become the same as the 2x2
entries in relations given by Eq. (a) of Table 2.16.1.

An alternative way of expressing Eqs. 4-7 results from combining the first three of these ex-
pressions to obtain

A 2 N kDqo
D(poD0) + k2 - Po2 2 0 (10)

where N/ EoDqo - gDpo and the last two to obtain

2 2 Dqo&
(D - k )= E (11)

This pair of second-order expressions can be used to determine (E,O) and the remaining pair of vari-
ables (9,eFx) then evaluated using Eqs. 4 and 6. The first of these expressions represents force equi-
librium between the inertial force density and the gravitational and electric force densities. The
"imposed-field" electric force density is on the right. The second expression is Poisson's equation.
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On the right is the perturbation space charge generated by the convection of the nonuniform equilibrium
charge density.

The driven response, spatial modes and temporal modes are illustrated in Sec. 8.18.

Weak-Gradient Imposed Field Model: Two approximations make it possible to obtain analytical ex-
pressions for the Cij. First, the mass and charge densities are taken as being linear functions of x.
Hence,

Po = m + (Dpm)x; qo = qe + (Dqe)x (12)

where pm,Dp ,qe and Dq, are constants and neither po nor qo departs greatly from a mean value. Then,
Eqs. 10 and 11 are approximated by

D2+ 2 2- 2 2 
A =; - ( - 1)k2 (13)

0 m m W
2 2 Dq e

(D ) (14)

Secondly, the field E0 is regarded as largely imposed by means of external sources. Then, not
only is E0 approximated by a constant, but the coupling between fluid and field, represented by the
terms on the right in Eqs. 13 and 14, is relatively weak. This breaks the electromechanical feedback
loop.

First, to determine the mechanical response, the effect of the motion on the charge distribution
is ignored in determining the potential distribution. With the term on the right in Eq. 14 set to
zero,

S• sinh(kx) _ ~ sinh k(x-6) (15)
sinh(kA) sinh(kA)

This potential is used as a "drive" to evaluate the right-hand side of Eq. 13. By inspection, the
solution satisfying the boundary conditions that C is Co and V at the respective planes is

a 2 ^"a F 2  1

[ 
k2qa D e sin(yx) + k Dq• sin y(x-A)

2Pm(k2+y )J sin(A) +  + 2 2 sin(yA)

(16)
k2Dqe a sinh(kx) _ $B sinh k(x - tA)

S2 +(k2 2 sinh(kA) sinh(kA)

To find the approximate electrical response, the procedure is reversed. Given that ( is ( and 5
at the respective planes, solution of Eq. 13 with the term on the right ignored gives

=a sin(yx) _ - sin y(x - ) (17)
sin(yA) sin(yA)

In turn, the solution of Eq. 14 is

a Dqe sinh(kx) Dqe 1 sin k(x - A)
+ S y k2 - L-+kkj+s sin(yA)sinh(kA) 2+ + k2 + 

Dqe a sin(yx) _ sin y(x - (18)

2 + k2  
(18)

sin(yA) sin(yA) 

where coefficients are determined by inspection so that the boundary conditions on 0 are satisfied at
the respective planes. The covariables (*,Eg ) follow from Eqs. 4 and 6 and are evaluated at the
respective boundaries to give the transfer refations, Eqs. 9, with
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C1 = -C22 2  cot(yA)

m2Pm

C = -C =
21 12 2

k sin(yA)

Dq
C e
1 3 = -C24 = -C31 42 2 2 [k coth(kA) - y cot(yA)]

k +y
Dq [ yk ] (19)

14 23 32 41 k2  2  sin(yA) sinh(kA)

C33 = -C = -sk coth(kA)'

Ek
C = - = k
34 43 sinh(kA)

Although the weak coupling approximation is sufficient to give the mechanical response to an elec-
trical drive or the electrical response to a mechanical drive, the electrical-to-electrical response,
represented by C3 3 , C3 4 , C4 3 and C4 4 is devoid of any of the electromechanics. Electromechanical
effects on the transfer between electrical signals depend on there being a "two-way" interaction.

Reciprocity and Energy Conservation: That some coefficients, Cj, in the transfer matrix have
equal magnitudes suggests that basic relations exist between off-diagonal coefficients even with arbi-
trary gradients and fields. The frozen charge model is free of dissipation and allows for energy

storage in electrical, kinetic and gravitational forms. With variables as defined in Eq. 9, this re-
quires that the submatrix representing the hybrid pressure responses to electrical excitations is the

negative of that representing the electrical flux responses to mechanical deformations. It also re-
quires that mutual electrical and mutual mechanical coefficients are respectively negatives. The proof
is a generalization of that developed in Sec. 2.17 for a region storing only electric energy.

Incremental changes in the total electrical, kinetic and gravitational energy stored by a system

having volume V enclosed by a surface S are respectively

w = p dV - 6Dnda (20)
e S

6sk = IfVf.6tdV - fsp6-*.da + fvpg.6ýdV (21)

6w = f (---)6pdV (22)

The electrical contribution is familiar from Sec. 2.13 (Eq. 2.13.4). The kinetic statement exploits

Newton's law and the incompressibility condition to state that all work done by the electrical, mechan-

ical and gravitational subsystems goes into the creation of kinetic energy (Eq. 7.17.3). The gravita-

tional energy storage is familiar as a specialized analogue of the electric one. The scale is small

enough that gravitational self-fields are neglected and g is constant. Thus, by contrast with the

potential 4 for the electrical system, the gravitational potential is "imposed" and is simply -g.r.

Charge migration is negligible, so the charge carried by fluid of fixed identity is conserved.

Because V.6r = 0, it follows (from Eq. 3.7.5 with ci - q) that

6q = -Vq.-6 (23)

Similarly, the mass density of fluid of fixed identity is conserved,

6p = -Vp.~ (24)

These expressions are now used in writing the sum of Eqs. 20-22 as

6 (we + wk + wg) = - f da - p6*da - J(Vq + qVb), 6dV

S S (25)

-S JV[pV(-.) + (-e..)Vp].6dV
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The where use has also been made of the relations E = -VD and = V(J-2). volume integrals are con-

verted to surface integrals by first using a vector identity to contract the integrands [OV+YV4=•=V(TYb)]

and then exploiting the fact that V.6 = 0 to make the integrands take the form of perfect divergences

(VT.- = V.A - A.lY). From Gauss' theorem, it follows that

6 (we +wk +wg) = - 6 da - [p + cq + (-j.?)p]6 .Ada (26)

S S

The desired reciprocity relations are between perturbation quantities, now designated by primes to
distinguish them from the zero-subscripted equilibrium variables. Thus, incremental changes 6M*$ and
6V*A on S lead to changes in the total energy given by Eq. 26 expressed up to quadratic terms in the
perturbations as

6 (we +wk + wg) = - 0 6 0  da - (0 6•' + V'60 + V'D')*.da

(27)

S[p + + o + (- p o]6t'da - o (- )p']6'da- [po + 

The surface S is now made one enclosing a section of the planar layer shown in Fig. 8.17.1 that
has the wavelengths 2r/ky and 2T/kz in the y and z-directions, respectively. Because ýo is x-directed,
the first term makes contributions only on the a and B surfaces. Perturbations are assumed to take the
complex-amplitude form E = Reý exp(-jky - jkzz), where ky and kz are real. The spatial periodicity in

the y and z dir&ctions insures that contributions to the surface integrations from the second and third

terms only come from the a and 8 surfaces. Moreover, because the integrands of these terms are linear
in the perturbation quantities, they "average out" and make no contribution. The quadratic perturbation
terms from the last intergral, which are also periodic and hence make contributions only on tfe a and 8
surfaces, can be represented using the space-average theorem, Eq. 2.15.14:

6(w + wk + w ) = -(O6DO - - 1 Re(c 6(D)- 6(D ) ]
e k g o xo o xo 2 x x

- -a- - Re q 1 B*] (28)

_ _ -, _~B,," 1 Re(--.)[ p(* - 6 (
- Re[q 6(i )* q- • B( *] - *Re(- r)[ ( -6 

With the understanding that the incremental variations are made with the equilibrium potentials o0
held fixed on the transverse boundaries, the first terms on the right become perfect differentials,

60o0Dxo + (4oDxo), so these equilibrium terms are moved to the left side of the equation.

In the remaining terms, it is now assumed that all complex amplitudes are real. It is entirely

possible to ~rogeed w thout making this assumption by treating the real and imaginary parts of the

variables (ý P, j,,P ) as independent. However, there is little to be learned from this generalization
2 because it is obvious from Eqs. 4-7 (which, provided w is real, have real coefficients) that the co-

efficients Cii are real. Hence, given that the amplitudes ( O,,VJcOi,) are real, the amplitudes of the

conjugate variables are clearly real.

In the forth and sixth terms of Eq. 28, Eqs. 2 are used to substitute

5  = -0 Sj6Dq 6 2 )  z 6( o•Dqo (29)

2(-_=-)i 6 -_(-_ )Dpo - 16(-_.1))Dp Z ] (30)

respectively. The second equalities are based on recognition that if variations in the Z's and Dx's

result in variations of Dqo or DPo, the latter can be neglected, because the terms in which they appear

are already quadratic in the perturbations. With the substitution of Eqs. 29 and 30, the fourth and

sixth terms also become perfect differentials and are therefgre moved to the left side of Eq. 28.
Finally, in the second term on the right the 06Dx = 6(Dx) - Dxf 6transformation is made and the perfect
differential moved to the left-hand side. Thus, the energy statement becomes

8.61 Sec. 8.17



6w' -l I= (-a ) + I.(B6ai_ B061B) (31)

where

e k g 2 x X 4 0 0 0w' ~ we k g e ( a g - - q ( )2

1- (- [Dp a2 - Dp B()2] + -a )
4 o xo o xo

and

Now, with the assumption that w' is a state function w'I(X,c,',aa8), the incremental change 6w'
can also be written as

6w' = w. 6 + -w' 6 + w. ia + w' 60 (32)

Because the variables (Z ,Z ,a,8) are independent, it follows from Eqs. 31 and 32 that corresponding
coefficients must be equal:

T = -2 --- ; IT = 2 a(33)

b = 2 ; = -2Ž (34)x ail x 810

The reciprocity relations follow by taking cross-derivatives of these relations. For example, in view
of Eqs. 33a and 34b together with Eq. 9,

3ia aDb
- C14 = C41 (35)

Thus, if Cij is broken into four 2x2 matrices K, L, M and N such that

C =[K M L] N(36)

where K and N are each antisymmetric and L is the negative of M.

The next section exemplifies the implications of the transfer relations, both found by numerical
integration and approximated by the weak-gradient imposed-field model.

8.18 Internal Waves and Instabilities

The frozen charge and mass density transfer relations derived in Sec. 8.17 are now applied to the
study of space-charge gravity waves excited in the sinusoidal steady state from transverse boundaries.
Also discussed are the temporal and spatial modes. Instability conditions are exemplified and a general
proof given that the principle of exchange of stabilities is satisfied. With the objective of both
gaining physical insight for this type of dynamics and for ways in which it can be represented, two
models are developed and compared. First, the weak-gradient imposed-field approximation of Sec. 8.17
is used to obtain an analytical representation of the response. Then, as a recourse that is applicable
for an arbitrary distribution of charge and mass density, numerical integration is used to determine
the response. Because one of these representations depends on numerical procedures, it is convenient
to normalize variables "at the outset.

Configuration: The stratified layer shown in Fig. 8.18.1 is bounded from above by fixed excita-

tion electrodes upon which a spatially and temporally periodic potential is imposed. From below, it
is bounded by a conducting rigid electrode, essentially constrained in potential to the constant equi-
librium value Vo .

Normalization: To be specific about the distributions in charge and mass density, they are taken
as linear and written in terms of the constants defined in Fig. 8.18.1:
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,,=Redej(t-kz)

d ... .. i g ..:: E" x).
I

I Fig. 8.18.1

Cross section of system in

Dq, which internal space-charge
I gravity waves are excited.

-4

Pm 9m gq
SVO

qo(x) Dq P Po
= P o 1+ Dpmo q 1 + e x;

so -e- 1 qe - P
-PM

p 1 m

In terms of these quantities, variables are normalized such that

x = xd

k = k/d = ;IDqell 0vld
S= (dIV

2 2 VolDqel
pdm

ii - lo d = •x = d lDqId
x x -x e

For other equilibrium distributions, the same normalization could be used with the quantities Pm and

IDqel defined as mean values.

From the one-dimensional form of Gauss' law and the equilibrium potential boundary conditions, the
equilibrium distribution of electric field is written in terms of the normalized variables as

Vo Vo e 1 1 Dqe 2 1
0o d TV0o 2j7 - 3

where SE .qel d2/ElVo represents the influence of the space charge on the imposed field.

Driven Response: Boundary conditions reflect electrode constraints on the normal motion of the

fluid and on the potential:

a ,b ,a ,b = [0,0,V,0]

Given the electrical excitation at the upper boundary, what is the mechanical and electrical
response of the fluid, and in particular, what perturbation pressure and normal electric field would
be expected on instruments embedded in the lower electrode? These follow from Eq. 8.17.9 as

^b
fb dx
^ C23; ^ 43

V V

In the weak-gradient imposed-field approximation, it is possible to evaluate the C 's by using
Eqs. 8.17.19. Thus normalized, Eq. 3 becomes

^b C- 2 3  -1 k
C

S 23 dDq k2 + y2 sin y sinh kV

^b
d C4 3 1Vo_ -1 kC43- Dqe d2 sinh k
9
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I

^b:

Tvd

Fig. 8.18.2. Driven response of charged layer showing prediction of weak-gradient
imposed-field model (broken line) for comparison with numerically determined
response (solid line). The response below w = 0.08 is not shown because it dis-
plays an infinite number of resonances crowded toward the origin. In both cases,
k = 1 and Yo and kqe are both positive or both negative so that equilibrium is
stable. The solid numerically predicted curves are for Dqe/qe = 1 and S = 1.
(a) Hybrid pressure response at lower electrode as a function of frequency for
electrical excitation at upper electrode. (b) Electric flux at lower electrode.
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where

YE k +-] 1-1 -d (8)

The upper sign applies if Vo and Dqe are both positive or both negative. The lower sign is to be
used if Vo and Dqe have opposite signs.

The weak-gradient imposed-field driven responses are illustrated as a function of frequency in
Fig. 8.18.2. Because of approximations inherent to this model, the electrical-to-electrical response
is no more than that of the layer without the charged fluid. This result will be refined to include
the electromechanical effects shortly. The resonances in the hybred pressure response that dominate
the picture reflect the electromechanical coupling. In this loss-free system, they serve notice that
the natural frequencies of the stable temporal modes are real and that there are an infinite number
of spatial modes having real wave numbers. The conditions for the resonances follow from Eq. 6:

sin y = 0 = y = nrr,n = 1,2,..* (9)

Thus, the resonance frequencies are found by evaluating y in Eq. 8 and solving for w,

V

2 k 2 /V Dq - gDPm
W 2 ; N= Voe m (10)

k + (nr) IDq
d Dqe

The associated distributions, E(x), in the neighborhood of a resonance follow from Eq. 8.17.17 as
being sin(nrx). These are pictured by the broken curves of Fig. 8.18.3. Implicit to the discussion
thus far is the presumption that N> a.

Fig. 8.18.3

Ix Vertical displacement of fluid as
a function of vertical position.
Response is shown in the neighbor-
hood of first and second resonances,
and hence represents first and sec-
ond temporal eigenmodes. Solid
curves are predicted numerically
using parameters of Fig. 8.18.2,
while broken curves are weak-
gradient imposed-field approxi-
mation.

Consider now the more general approach of numerically integrating Eqs. 8.17.4-7 to find the
transfer relations. Normalized, these equations are

k2
DC = k2 (11)W P0

2  = (w Dqo
D = (p -N) +_ 

o }EDq (12)(2
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nD = -. d
x (13)

Dqo 1 2
Dd = - Dq - 1 (14)Jx DqeI e 5

These expressions are applicable with arbitrary charge and mass distributions. For the specific line
distributions, po is given by Eq. 2, Dqo = Dqe and

o 
f 

Dqe Sre 1 1 2 11 Dqe gdDpm
+ IDq S l (x-2) + (x -3) q - o (15)

The coefficients required to evaluate the responses, Eqs. 3, follow by converting the transfer
relations of Eq. 8.17.8 to those of Eq. 8.17.9. The coefficients needed here are

C23 = -B14 /D; C43 = B12/D; 2 D B12B34  B1 4B32 (16)

Coefficients in the transfer relations have been normalized so that Sij and Bij relate normalized ver
ables. The Bi 's are determined by numerical integration of Eqs. 11-1i following the procedure indic
following Eq. A.17.8. (Numerical integration of systems of first-order differential equations writte
in the form of Eqs. 11-14 is conveniently carried out using standard library subroutines. Used here 
the IMSLIB Routine DVERK.)

For purposes of comparison, the numerically determined frequency responses are shown with those
predicted by the weak-gradient imposed-field model in Fig. 8.18.2. For the numerical case shown,
Dqe/qe = 1 and S = 1, so both the weak-gradient and the imposed-field approximations are somewhat in-
valid. Note that the electrical-to-electrical response now displays the characteristic resonances of
the internal waves. The numerically determined mechanical displacement and potential distributions w
the frequency in the neighborhood of the first and of the second resonances are shown in Fig. 8.18.3.

Spatial Modes: Still in the sinusoidal steady state, these modes satisfy homogeneous transverse
boundary conditions and are needed to make the total solution obey longitudinal boundary conditions.
(Spatial modes are introduced in Sec. 5.17.) For example, what is the response to a drive at some
z plane with the duct walls free of excitations?

From the weak-gradient imposed-field driven response of Eq. 6, the dispersion equation is
D(w,k) = sin Y = 0. This has roots that are the same as for the resonance conditions, Eq. 10. Here,
however, interest is in complex k for a real driving frequency w,

naw
k =+ nrw (17)

Under the assumption once again that N/V > 0, the dispersion equation is typified by Fig. 8.18.4. Note
that all modes have the same cut-off frequency . = 1. With ) < 1, all modes are propagating, whereas
with w > 1, all modes are evanescent.

The resonances below w = 1 in the driven frequency response, Fig. 8.18.2, result from a coinci-
dence of the imposed wave number and the purely real wave number of the propagating spatial modes.

Temporal Modes: When t = 0, initial conditions are spatially periodic in the z direction, with
wave number k. What modes are to be superimposed in representing the ensuing transient? (Temporal
modes are introduced in Sec. 5.15.)

A mode En(x) has the eigenfrequency jin E sn. Without being specific as to the charge and den-
sity distributions, it can be deduced from Eqs. 8.17.10 and 8.17.11 together with the boundary con-
ditions that these eigenfKequencies are either purely real or purely imaginary so sn is real. Equati
8.17.10 is multiplied by En and integrated over the cross section. The first term is then integrated
by parts to obtain

*^ d d ^
* d2 N /  I

* d Dqon
2  

po nDn o poD nD ndx - k (p + -) n dx = -k 2 dx (18)
0 n n ] o o n o0 o f o s 2n n

Similarly, the complex conjugate of Eq. 8.17.11 is multiplied by k2E0n and integrated over the cross
section. Again, the first term is integrated by parts to obtain

2 ADA* d 2 .d •A )d 4. fd A * 2 
k 

A*^

n Do ] -k28 Dn (DO ) dx - k o dx = k Dq 0 4 dx (19)n no o n o n n 0 o o n n
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n=2

I Fig. 8.18.4
f

Complex normalized frequency as

W function of real longitudinal

n=3 wave number for spatial modes in
weak-gradient imposed-field ap-
proximation. Wr - , wi ....
All modes have common asymptotic
frequency at w = 1, above which
they are evanescent.

O 2 4 6 8
k-----

The point of these manipulations is to obtain positive definite integrands anq to make the right-hand
sides of these expressions negatives. Because of the boundary conditions on En and On, the terms
evaluated on the boundaries vanish. Thus, the last two expressions give

dd 22 d(IPDn2 + pk 2 2 2 2  2
n p- In 2) dx = - a 2 0 / fNjn + Fc(IID• + k )]dx (20)

n
2

This expression can be solved for the square of the eigenfrequency, Sn,

-k2[ d n 2 (D•* " *
A+ - k2 ) ]dx

s2 o (21)Jd[po(IDn I + k n I)dx

2
Terms on the right are real, and it thereforR follows that sn is real. Moreover, because terms in the
denominator are positive definite, as is k21n,12 in the numerator, it is clear that if /N is everywhere
positive, the eigenmodes are all stable:

N- EDq0 - gDp > 0 (22)

Similarly, if /V is everywhere negative, the eigenmodes have an exponential dependence, half of them
decaying and half of them growing in time.

Using the weak inhomogeneity imposed-field approximations, the eigenfrequencies follow from
Eq. 10 where this time k is a given real number. These are shown as a function of k in Fig. 8.18.5.
ccording to this model, in the unstable configuration ( A/< 0) the n = 1 mode is the most rapidly
growing.

It is worthwhile to make a comparative study of the discretely and smoothly stratified charge
layers. The condition of Eq. 22 plays a role relative to the smoothly inhomogeneous system that is
played by Eq. 8.14.25 for the piecewise homogeneous system of Sec. 8.14.
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Fig. 8.18.5

±wn(N>0) Weak-gradient imposed-field eigenfre-
quencies of temporal modes as a func-

± s(N< 0)1 tion of wave number. For N> 0, all
modes are stable and purely oscilla-
tory. For N< 0, they are either
exponentially growing or decaying
with time.

0 2 4. 6
k -
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Problems for Chapter 8

For Section 8.3:

Prob. 8.3.1 A pair of electrodes is constructed from thin sheets separated by a thin sheet of insula-
tor. This dielectric "sandwich" is dipped into an insulating liquid having the polarization constitu-
tive law

4.
E

+ ED = 2 + E

where a and a are constant parameters. The objective here is to describe the rise of the dielectric
liquid around the outside edges of the electrodes, where there is a strong surrounding fringing field.
Assume that the applied voltage is alternating at a sufficiently high frequency so that free charge
effects are absent and effects of the time-varying part of the electric stress are "ironed out" by
the fluid viscosity and inertia. view
(a( Determine the electric field in the Top Side view

neighborhood of one of the edges under
the assumption that the dielectric rises
in an axisymmetric fashion (E = a(r), with
r as defined in Fig. P8.3.1). The right
and left edges of the electrodes (see
the side view in the figure) are suffi-
ciently far apart so that they can be
considered not to influence each other.

b(~ ) ind ((r)_
Fig. P8.3.1

Prob. 8.3.2 An insulating liquid is represented by the
constitutive law

DI = coNEI + al tanh a2IEI

where D and E are collinear and a1 and a, are properties of the fluid. The liquid is placed in a dish
as shown in Fig. P8.3.2. Shaped electrodes are dipped into the liquid and held at a potential differ-
ence Vo . The variable spacing s(z) between the electrodes is small compared to the electrode dimensions
in the x and z directions, so the electric field can be taken as essentially in the y direction. With
the application of the field, the liquid reaches a static
-. e 41i Ut&f 4 Irfile ((4 ) Fnd& - fan ressin fnr ((z) -

For Section 8.4:

Prob. 8.4.1 The configuration of Fig. 8.4.4 is altered
by replacing the magnet with a periodic distribution of
magnets. These constrain the normal magnetic flux density
in the plane x = d to be Bo cos ky. As in the example
treated, ignore effects of the self fields and of surface
tension. Assume that E = 1 at y = 0.

(a) Show that an implicit expression for E(y) is

JB
k(EC0) e-k(E-o) = ek(d-

)  oJ sin kyg(pbasinky
0,,~ ~~ g-(-,=~~-~ 

(b) Make sketches of the left side of this expression (as
a function of (E=Eo) and the right side of the expression
(as a function of ky) and describe in graphical terms how you would find (5-5o) as a function of y.
What is the significance of there being two solutions for E-Co or none at all? For what value of
JoBo-would you expect the static equilibrium to be unstable?

Prob. 8.4.2 In the configuration of Fig. 8.4.1, the lower fluid is a perfectly conducting liquid
<< while the upper one is an insulating gas (P P ). Surface deformations have a very long character-

istic length in the y direction compared toad-E, so that the electric field normal to the interface in
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Prob. 8.4.2 (continued)

the gas can be approximated as the voltage divided by the spacing d-E.

(a) Show that for a given V(y) static deformations of the interface are described by

dy dy T + 0 (d_-)2 - pg((-b) = 0

where E = b at a location where V=0.

(b) Now consider the application of this equation to the special case shown in Fig. P8.4.2.
The plane horizontal electrode is of
uniform potential V. An infinite
pool of liquid to the left communi-
cates liquid to the region below the
electrode. In the fringing region,
the interface is covered by a flat
electrode. At y=0 the sharp edge
of the electrode constrains the
interface to have depth E=b. The
field elevates the interface to the
height Eo as y-+. For small ampli- :b': :.. . . . - .-
tudes g-b, determine t(y).

(c) Show that for arbitrary deformations,
the interfacial position is given Fig. P8.4.2
implicitly by the integral

e V 2

d( ; P(5) E ½ •Y- 9 (-b) 2

)]2_lo)_p(o /[1+P(a 

b

.For Section 8.6:

Prob. 8.6.1 In Prob. 7.9.2, the transfer relations are found for an annular region of fluid that is
perturbed from an equilibrium in which it suffers a rigid-body rotation of angular velocity 0 about the
z axis. Based upon those results, consider now the dynamics of fluid completely filling a container
having radius R (there is no inner cylindrical region).

(a) Find the eigenfrequencies of the temporal modes having wavenumber k but m = 0.

(b) Rigid walls cap the cylinder at z = 0 and z = k. What are the natural frequencies of the temporal
modes m = 0 for this enclosed system?

For Section 8.7:

Prob. 8.7.1 Show that in the limit where times of interest are long compared to the relaxation time
e/a, Eq. 8.7.6 reduces to the linearized form of DO/Dt = 0.

Prob. 8.7.2 A magnetoquasistatic continuum conserves the free current linking any surface of fixed
identity

J * = nda 0

Show that the appropriate equations for an incompressible fluid are

V v = 0

8J
af -+
t Vx(v x Jf) = 0
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Prob. 8.7.2 (continued)

P + Vp = Jx - + nV v

V x H = Jf ; V Jf = 0

where Faraday's law is used only if the electric field is required.

Prob. 8.7.3 As a particular example of the current-conserving continua from Prob. 8.7.2, the config-
uration shown in Fig. P8.7.3 consists of a layer of fluid having essentially zero conductivity in the
y and z directions compared to that in the x direction.
The walls are composed of segments, each constrained to

t. h L L iU.U illb 40
s

curren cons ant 

a uniform current density J ix throughout and an imposed

magnetic fi~d is Bo

fluid 
induced 

moves, 
by Jf 

the 

inegligible x . Assume compared that the to magnetic Bo. As field
current through any given open 

the
surface

of fixed identity remains constant.

The fluid has the electrical nature of conducting
"wires" insulated from each other and stretched in the
x direction. The "wires" deform with the fluid, and

_.LLL.JJJ LLIr J JJJ.L
might actually consist of conducting fluid columns in
an insulating fluid having the same mechanical properties.

1

Fig. P8.7.3
(a) Assume that motions and field depend only on (x,t) and

show that the equations formed in Prob. 8.7.2 are satisfied by solutions of the form

v = (,t)i + v (x,t)i and J = J i + Jy (x,t)i + J (x,t)iy y v ti J Jiox ztia 

where

aJ av
y j = 0

at o x

aJ 3v
z J- z = 0

at o ax

v a 2
P = B J + n y

t z ax2

2vv zz  
t o y ax2

(b) Describe how you would establish transfer relations for the layer, given that the surface variables
are the velocities and the shear stresses. Show that in the limit where there is no electromechan-
ical coupling, Bo = 0, there is no coupling between the y directed motions and the z directed
motions.

(c) As a specific example, rigid boundaries are imposed at x = 0 and x = Z. Find the eigenfrequencies
of the resulting temporal modes.

Prob. 8.7.4 A spherical particle is impact-charged to saturation so that its mobility is given by
Eq. (a) of Table 5.2.1. It is pulled through a fluid by the same electric field used to achieve this
saturation charging. Show that the electroviscous time based on this field and the fluid viscosity
is the time required for the particle to move a distance equal to its own diameter.

1. For discussion of the related dynamics of a current conserving "string" in a similar configuration,
see H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part II, John Wiley & Sons, New
York, 1968, p. 627.
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For Section 8.10:

Prob. 8.10.1 A planar layer of insulating liquid having a mass density ps has the equilibrium thick-
ness d. The layer separates infinite half-spaces of perfectly conducting liquid, each half-space having
the same mass density p. The interfaces between insulating and conducting liquids each have a surface
tension y, but ps is sufficiently close to p so that gravity effects can be ignored. Voltage applied
between the conducting fluids results in an electric field in the insulating layer. In static equilib-
rium, this field is E0 . Determine the dispersion equations for kinking and sausage modes on the inter-
faces. Show that in the long-wave limit kd << 1, the effect of the field on the kinking motions is
described by a voltage-dependent surface tension. In this long-wave limit, what is the condition for
incipient instability?

For Section 8.11:

Prob. 8.11.1 A vertical wire carries a current I so that there is a surrounding magnetic field

H = i Ho(R/r), Ho 0  I/2?R

(a) In the absence of gravity, a static equilibrium exists in which a ferrofluid having permeability 1
forms a column of radius R coaxial with the wire. (The equilibrium shown in Fig. 8.3.2b approaches
this circular cylindrical geometry.) Show that conditions for a static equilibrium are satisfied.

(b) Assume that the wire is so thin that its presence has a negligible effect on the fluid mechanics
and on the magnetic field. The ferrofluid has a surface tension Y and a mass density much greater
than that of the surrounding medium. Find the dispersion equation for perturbations from this equi-
librium.

(c) Show that the equilibrium is stable provided the magnetic field is large enough to prevent capillary
instability. How large must Ho be made for the equilibrium to be stable?

(d) To generate a significant magnetic field using an isolated wire requires a substantial current. A
configuration that makes it easy to demonstrate the electromechanics takes advantage of the magnet
from a conventional loudspeaker. A cross section
of such a magnet is shown in Fig. P8.11.1. In
the region above the magnet, the fringing field
has the form HoR/r. Ferrofluid placed over the
gap will form an equilibrium figure that is
roughly hemispherical with radius R. Viewed
from the top, each half-cylindrical segment of
the hemisphere closes on itself with a total
length R. For present purposes, the curvature
introduced by this closure is ignored so that
the axial distance is approximated by z with
the understanding that z = 0 and z = k are
the same position. Effects of surface ten-
sion and gravity are ignored. Argue that Fig. P8.11.1
the m = 0 mode represented by the dispersion
equation from (b) is mechanically and magnetically consistent with this revised configuration.

(e) Show that, in the long-wave limit kR << 1, the m = 0 waves that propagate in the z direction
(around the closed loop of ferrofluid) do so without dispersion. What is the dispersion
equation?

(f) One way to observe these waves exploits the fact that the fluid is closed in the z direction, and
therefore displays resonances. Again using the long-wave approximations, what are the resonant
frequencies? How would you excite these modes?

For Section 8.12:

Prob. 8.12.1 The planar analog of the axial pinch is the
sheet pinch shown in Fig. P8.12.1. A layer of perfectly
conducting fluid (which models a plasma as an incompress-
ible inviscid fluid), is in equilibrium with planar
interfaces at x = + d/2. At distances a to the left and
right of the interfaces are perfectly conducting electrodes
that provide a return path for surface currents which pass
vertically through the fluid interfaces. The equilibrium
magnetic field intensity to right and left is Ho, directed I
as shown. Regions a and b are occupied by fluids having
negligible density.

Fig. P8.12.
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Prob. 8.12.1 (continued)

(a) Determine the equilibrium difference in pressure between the regions a and b and the fluid o.

(b) Show that deflections of the interfaces can be divided into kink modes [ a(y,z,t) = bb(y,z,t)],
and sausage modes [ga(y,z,t) = -_b(y,z,t)].

(c) Show that the dispersion equation for the kink modes is ,with k E k + k2
y z

2
2 k
tanh(d oH2 coth(ka)

k tanh) 0 k

while the dispersion equation for the sausage modes is

2
2 k
- coth( ) = oH2 coth(ka)

(d) Is the equilibrium, as modeled, stable? The same conclusion should follow from both the analytical
results and intuitive arguments.

Prob. 8.12.2 At equilibrium, a perfectly conducting fluid (plasma) occupies the annular region
R < r < a (Fig. P8.12.2.) It is bounded on the outside by a rigid wall at r = a and on the inside by
free space. Coaxial with the annulus is a "perfectly" conducting rod of radius b. Current passing
in the z direction on this inner rod is returned on the plasma interface in the -z direction. Hence,

so long as the interface is in equilibrium, the magnetic field in the free-space annulus b < r < R is

+4 R
H = H -i

or

(a) Define the pressure in the region occupied by the magnetic fielc
as zero. What is the equilibrium pressure II in the plasma?

(b) Find the dispersion equation for small-amplitude perturbations

of the fluid interface. (Write the equation in terms of the

functions F(a, ) and G(a,O).)

(c) Show that the equilibrium is stable.

Prob. 8.12.3 A "perfectly" conducting incompressible inviscid

liquid layer rests on a rigid support at x = -b and has a free
surface at x = E. At a distance a above the equilibrium inter-
f ace ý, =0% I s a t hi n con d uc "s i s ee 4 hd. av 

i1.1 4 ngý u 
f co-nductI-vit

" y
as . This sheet is backed by "infinitely" permeable material.
The sheet and backing move in the y direction with the imposed Fig. P8.12.2
velocity U. With the liquid in static equilibrium, there is a
surface current Kz = -Ho in the conducting sheet that is returned on the interface of the liquid. Thus,

= there is an equilibrium magnetic field intensity I Hot in the gap between liquid and sheet. Include
in the model gravity acting in the -x direction and surface tension. Determine the dispersion equation
for temporal or spatial modes.

Prob. 8.12.4 In the pinch configuration of Fig. 8.12.1, the wall at r=a consists of a thin conducting
shell of surface conductivity os (as described in Sec. 6.3) surrounded by free space.

(a) Find the dispersion equation for the plasma column coupled to this lossy wall.

(b) Suppose that the frequencies of modes have been found under the assumption that the wall is
perfectly conducting. Under what condition would these frequencies be valid for the wall of
finite conductivity?

(c) Now suppose that the wall is very lossy. Show that the dispersion equation reduces to a quadratic
expression in (jw) and show that the wall tends to induce damping.

For Section 8.13:

uni-Prob. 8.13.1 A cylindrical column of liquid, perhaps water, of equilibrium radius R, moves with 

form equilibrium velocity U in the z direction, as shown in.Fig. P8.13.1. A coaxial cylindrical elec-

trode is used to impose a radially symmetric electric field intensity

coth kd - sinh kd tanh ( (7 ) ; coth kd + sinh kd E coth (sinh kd sinh kd - coh 7
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Prob. 8.13.1 (contlnued)

+ R
E=E - i

or r

in the region between the electrode and liquid.

Assume that the density of the liquid is large compared to that of
the surrounding gas. Moreover, consider the liquid to have a relaxation
time short compared to any other times of interest, and assume that the
cylindrical electrode is well removed from the surface of the liquid.

(a) Determine the equilibrium pressure jump at the interface.

(b) Show that the dispersion equation is

s E2R

(-kU) 3 [-Rfm (0,R) ] m2 -1+(kR) 2 + E [1-Rf(-,R) ]
pR3  r

by using the transfer relations of Tables 2.16.2 and 7.9.1.

Prob. 8.13.2 A spherical drop of insulating liquid is of radius R and
permittivity S. At its center is a metallic, spherical particle of
radius b < R supporting the charge q. Hence, in equilibrium, the
drop is stressed by a radial electric field.

(a) What is the equilibrium E in the drop (b < r < R) and in the surrounding gas, where the mass
density is considered negligible and E = ?7

(b) Determine the dispersion equation for perturbations from the equilibrium.

(c) What is the maximum q consistent with stability for b << R?

For Section 8.14:

Prob. 8.14.1 For a conducting drop, such as iwater in air, the model of Sec. 8.13, where the drop is
pictured as perfectly condhcting, is appropriate. Here, the drop is pictured as perfectly insulating
with charge distributed uniformly over its volume. The goal is to find the limit on the net drop
charge consistent with stability; i.e., the analogue of Rayleigh's limit. This model is of histor-
ical interest because it was used as a starting point in the formulation of the liquid drop model of
the nucleus.2 In fact, the term in that model from nuclear physics that accounts for fission is moti-
vated by the effect of a uniform charge density. Assume that the drop is uniformly charged, has a net
charge Q but has permittivity equal to that of free space. Find the maximum charge consistent with
stability.

Prob. 8.14.2 Consider the same configuration as developed in this section with the following general
8ization. The fluids in the upper and lower regions have permittivities ea and b respectively.

(a) Write the equilibrium and perturbation bulk and boundary conditions.

(b) Find the dispersion equation and discuss the implications of the terms.

For Section 8.15:

Prob. 8.15.1 This problem is similar to that treated in the section. However, the magnetic field is
imposed and the motions are two-dimensional, so that it is possible to represent the magnetic force
density as the gradient of a scalar. This makes the analysis much simpler. A column of liquid-metal
carries the uniform current density Jo in the z direction but suffers deformations that are independen
of z. A wire at the center of the column also carries a net current I along the z axis. The field
associated with this current is presumed much greater than that due to Jo. Thus, self fields due to

Jo are ignored. Assume that the wire provides a negligible mechanical constraint on the motion and
that the mass density of the gas surrounding the column is much less than that of the column.

(a) Show that the magnetic force density is of the form -VC, where

2. I. Kaplan, Nuclear (Publishing Physics, Addison-esley Company, Reading, Mass., 1955, p. 425.

2. 1. Kaplan, Nuclear Physics, Addison-Wesley Publishing Company, Reading, Mass., 1955, p. 425.

-
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Prob. 8.15.1 (continued)

(b) The column has an equilibrium radius R and surface tension Y. Find the dispersion equation for
perturbations ý = ý(8,t).

(c) Show that the column is unstable in the m = 1 mode if JoI < 0, and is stable in all modes if
JoI > 0. Use physical arguments to explain this result.

For Section 8.16:

Prob. 8.16.1 The fluid of Fig. 8.16.1 is perfectly conducting rather than perfectly insulating. Show
that the dispersion equation is

[k(v-k)2 - yv(v+k) 2
2 2

Spg + Yk - kE
k(yv + k) 00o

Show that in the limit of low viscosity the dispersion equation is Eq. 8.16.15, and that in the opposite
extreme, where Yv t k + jwp/2nk, the dispersion equation is

32p 3 = 2j(nk + pg + Yk 2 -_ kE2
2 k o o

Discuss effects of viscosity on incipience and rates of growth of instability in these two limits.

Prob. 8.16.2 The magnetohydrodynamic counterpart of the interaction studied in this section might be
taken as that shown in Fig. P8.16.2. The interface between a perfectly
insulating liquid in the lower half space and the air above is covered HO
by a layer of perfectly conducting liquid. In static equilibrium, a 7 7, 0--CO
uniform magnetic field H is imposed in the x direction. Instead of
space-charge electroviscous oscillations caused by conservation of
charge and stress equilibrium, there are now magnetoviscous oscilla- (7 7 ).: ..K . I
tions within the plane of the interface caused by conservation of flux . .. . ..... ...
for any loop of fixed identity in the conducting layer. Assume that
the layer has the same mechanical properties as the fluid below. Fig. P8.16.2

Show that the thin perfectly conducting layer can be represented by the boundary condition

aH avy
x

= -H y at x =
at o ay

Determine the dispersion equation for perturbations of the irterface. Show that in the low-viscosity
limit there are shearing modes of oscillation similar to those described by Eq. 8.16.16, except that

[2u H2k 2/3

W 00 0

and that there are transverse modes of oscillation. Discuss the effect of viscosity on the latter in

the limit where the transverse modes have a frequency that is high and that is low compared to Wo"

Prob. 8.16.3 In the configuration of Fig. 8.16.1, the liquid layer has equilibrium thickness b, and
uniform viscosity rn, mass density p, permittivity E and electrical conductivity a. The upper electrode,
at a distance a from the interface, has a potential -V relative to the rigid electrode at x = -b.

Because the region between electrode and interface is highly insulating relative to the liquid, the

equilibrium electric field is V/a = Eo between the interface and the electrode and zero in the liquid
layer. Effects due to the depth b and of the width a of the air gap are to be included.

(a) Write the perturbation boundary conditions and bulk conditions in terms of complex amplitudes.

(b) Show that the normalized dispersion equation is

= 0M1lM22 - M12M21

where in terms of normalized variables

P k 2  kURS(jwr+l)-P jw - p - k2 + kURS(jwr+l)
11 jerC + R
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Prob. 8.16.3 (continued)

oM rUkS
12 -P1 1 3 + J jwrC + R

M - w=- j .kU(Jwr+1)R
21 -P 3 1 j-U jwrC + R

kU-- r
M =-P -
22 33 jtrC + R

The normalizations are

= = cbn/y, p pgb2/y, k = kb, a = a/b, U= bE2 /y, r =.(y/b)(s/o), P.. = bPij (defined by
S0-1ij

Eq. 7.19.13 or 7.33.6), C = ( o/E) coth ka + coth k, S = coth ka

(c) Interpret the characteristic time used to normalize W and form the dimensionless numbers p, r and U.

(d) In the limit of complete viscous diffusion (Wpb2/l<<l) and instantaneous charge relaxation
(ws/a<<l), show that this expression reduces to simply

j = (kUS-p-k2)p3 3/(P1 1 3 +P 2

(e) Again, viscous diffusion is complete but the liquid is sufficiently insulating that charge
relaxation is negligible (r>>l). Show that the dispersion equation becomes

a(jw) 2 + b(jw) + c = 0

where

P 11o kUP S
aE PlP33+P3 ; b = [(p+k 33+Uk( E CC ) -- 3 3 2j C3 ] c kU o (p+k2-UkS)

Prob. 8.16.4 In the configuration of Fig. 8.16.1, the liquid is replaced by a perfectly elastic
incompressible solid that can be regarded as perfectly conducting (perhaps Jello). The interface,
like that in the case of the viscous fluid, must be described by a balance of both normal and shear
stresses. Directly applicable transfer relations are deduced in Prob. 7.19, and in the limit 0 + 0
in Prob. 7.20. The solid layer, which has a thickness b, is rigidly attached to the lower solid plate.
The mass density and viscosity of the gas make negligible contributions to the dynamics.

(a) Determine the dispersion equation for deformations of the solid.

(b) Under the assumption that the principle of exchange of stabilities holds (that instability is
incipient with w=0) and that perturbation wavelengths are very short compared to b, determine
the voltage threshold for instability.

For Section 8.18:

Prob. 8.18.1 An important connection between smoothly inhomo-
geneous systems and the piece-wise uniform ones considered in
Sec. 8.14 is made by considering the temporal modes from another
point of view. As shown in Fig. P8.18.1, the distribution of
charge and mass density is approximated by two layers, each
uniform in its properties.

(a) Show that for layers of equal thickness,
V d'Dq3 1 o  e

q =q +-Dq d qb =
: E

a e 4 e qe +4 Dqed o d 16E
o

Fig. P8.18.1
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Prob. 8.18.1 (continued)

where, consistent with the usage in Section 8.14, Eo is the equilibrium electric field evaluated
at the interface between layers.

(b) Show that the dispersion equation for the layer model, based on the results of Section 8.14,
takes the normalized form

1 1
8k 15

(c) Using k = 1, Dpm = 0, VoJVoJ = i1, Dq /jDqel = 1 and S = 1, compare the prediction of the first
eigenfrequency to the first resonance frequency predicted in the weak-gradient approximation and
to the "exact" result shown in Fig. 8.18.2a. Compare the analytical expression to that for the
weak-gradient imposed field approximation in the long-wave limit. Should it be expected that
the layer approximation would agree with numerical results for very short wavelengths?

(d) How should the model be refined to include the second mode in the prediction?

Prob. 8.18.2 A layer of magnetizable liquid is in static equilibrium, with mass density and perme-
ability having vertical distributions ps(x) and Is(x) (Fig. P18.8.2). The equilibrium magnetic field
Hs(x) is assumed to also have a weak gradient in the x direction, even though such a field is not irro-
tational. (For example, this gradient represents fields in the cylindrical annulus between concentric
pole faces, where the poles have radii large compared to the annulus depth k. The gradient in H is a
quasi-one-dimensional model for the circular geometry.) Assume that the fluid is perfectly insulating
and inviscid.

(a) Show that the perturbation equations can be reduced to

k2

D(PCDhR) -
s s z W s sx)

k2H DM
2 N k ( )v + j sH sD1

D(p Dv ) - h = 0
s x zs2x 

2 2 4+ = + kz , H = Hsi z + and N 1 2
where k2 h = -g Dps + - DsDH

(b) As an example, assume that the profiles are Ps = exp~x, Pm exp8x, ]s = Pm Hs = constant. Show
that solutions are a linear combination of expyx, where

k2k 2 H212 1/22 
-8 ; 2mab + b1 2 PM

YT c+= [ )2+k2+ai k= 

rlvfW,7
a = gSk2/2 2

(c) Assume that boundary conditions are v ( ) = 0, h ( ), and show that the eigenvalue equation is
x 0z

V- 2b 1L-~ioo sinh 
- _ _

cE sinh c i = 0 --- M M--

are
and that eigenfrequencies 

and that eigenfrequencies are

2
k2k2H2 gSk2 2  2

2 z asm n2
Wn 2 ,- ( )

= Kn = 2
4 2 n R 2

H, Ps(x)x)
K +(--8) + kn m n

(d) Discuss the stabilizing effect of the magnetic field on -p ---- ----- ---- ----
----

the bulk Rayleigh-Taylor instability.
P8.18.2Fig. 

Fig. P8.18.2
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Fig. 8.18.2 (continued)

(e) Discuss the analogous electric coupling with ps s and H - E and describe the analogous physical
configuration. s s

Prob. 8.18.3 As a continuation of Problem 8.18.2, prove that the principle of exchange of stabilities
holds, and specifically that the eigenfrequencies are given by

3
~"J~,~41

2 k 2 2 z 1141 2+ 2 I1iZ
e = 11i2

where

91

I1 = 2 (IDh + k2  h )dx ; I2 (ps ID + k 2Pv1 )dx

0 0

£
A* ^2 213 =f k Niv x dx ; 14= H D vx h dx

0 0
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Electromechanical Flows



9.1 Introduction

The dynamics of fluids perturbed from static equilibria, considered in Chap. 8, illustrate mechan-
ical and electromechanical rate processes. Identified with these processes are characteristic times.
Approximations are then motivated by recognizing the hierarchy of these times and the temporal range of
interest. For example, if the response to a sinusoidal steady-state drive having the frequency w is of
interest, the range is in the neighborhood of T = l/w. Even for a temporal transient, where the natural
frequencies are at the outset unknown, approximations are eventually justified by seeing where the re-
ciprocal of a given natural frequency fits into the hierarchy of characteristic times.

In this chapter, it is steady flows and the establishment of such flows that is of interest.
Typically, the characteristic times from Chap. 8 are now to be compared to a transport time, Z/u.
The recognition of simplifying approximations becomes even more important, because nonlinear equa-
tions are likely to be an essential part of a model.

The requirement for a static equilibrium that force densities be irrotational is emphasized in
Sec. 8.2. Taken up in Sec. 9.2 is the question, what types of flow can result from application of such

force densities? This is the first of 11 sections devoted to homogeneous flows, where such properties
as the mass density and electrical conductivity are uniform throughout the flow region.

Some of the most practical interactions between fields and fluids can be represented by a force
density or surface force density that is determined without regard for the fluid motion or geometry.
Such imposed surface and volume force density flows are the subject of Secs. 9.3-9.8. In Sec. 9.3,
fully developed flows are described in such a way that their application to a wide range of problems
should be evident. By way of illustration, surface coupled and volume coupled electric and magnetic

flows are then discussed in Secs. 9.4 and 9.5. Liquid metal magnetohydrodynamic induction pumps
usually fit the model of Sec. 9.5.

To appreciate a fully developed flow, it is necessary to consider the flow development. In

Sec. 9.6, this is done by examining the temporal transient that results as a closed system is suddenly

turned on and the steady flow allowed to establish itself. Then, in terms of boundary layers, the

spatial transient is discussed. In addition to its application to surface coupled flows, illustrated

in Sec. 9.7, the boundary layer model is applied to a self-consistent bulk coupled flow in Sec. 9.12.

In Secs. 9.6 and 9.7, viscous diffusion is of interest, both fluid inertia and viscosity are import-

ant and times of interest are, by definition, on the order of the viscous diffusion time.

Illustrated in Sec. 9.8 are an important class of electromechanical models in which the bulk flow

is described by linear equations. Here, transport times are long compared to the viscous diffusion

time and "creep flow" prevails.

The self-consistent imposed field flows of Secs. 9.9-9.12 give the opportunity to broaden the

range of dynamical processes. In the first two of these sections, magnetohydrodynamic processes are

taken up. The magnetic diffusion time is short compared to the other times of interest, the viscous

diffusion time and the magneto-inertial time. These sections first illustrate how the field alters

fully developed flows and then considers how the electromechanics contributes to temporal flow develop-

ment. The electrohydrodynamic approximation discussed and illustrated in the last two sections of this

part is based on having a self-precipitation time for unipolar charges that is long compared to other

times of interest, for example, an electroviscous time.

With the introduction of inhomogeneity come more characteristic dynamical times. These are

illustrated for systems having a static equilibrium and abrupt discontinuities in properties in

Secs. 8.9-8.16. Typically, the associated characteristic times represent propagation of surface

waves. Smoothly distributed inhomogeneities, Secs. 8.17-8.18, give rise to related internal waves

with their characteristic times. The flow models developed in Sec. 9.13 and illustrated in Sec. 9.14

incorporate wave phenomena similar to those from Chap. 8. The wave phenomena show up in steady flow

situations through critical conditions, often expressed in terms of the ratio of a convective velocity
to a wave velocity, i.e., as a Mach number. In essence these numbers are the ratio of transport times

to wave transit times. Times of interest in these sections, which reflect the existence of waves, are

a capillary time 'T = y/'Pi2 (Sec. 8.9), a gravity time Tg = /g (Pb - 9 Pa)/(Pb + Pa) (Sec. 8.9) and

various magneto- and electro-inertial times (Secs. 8.10-8.15).

In view of Sec. 8.8 on magneto-acoustic and electro-acoustic waves, it should be expected that

additional times introduced in the remaining sections on compressible flow are the transit times for

acoustic and acoustic related waves. Sections 9.15 and 9.17 bring into the discussion the additional

physical laws required to represent interactions with the internal energy subsystem of a gas. Here,

the energy equation is derived and thermodynamic variables needed in subsequent sections defined. These

laws are not only necessary for the description of thermal-to-electrical energy conversion (to be taken

Sec. 9.1



up in Secs. 9.21-9.23), but also can be used to describe convective heat transfer.

The quasi-one-dimensional model introduced in Sec. 9.19 is the basis for the various energy con-
version systems discussed in the remaining sections. Once again, even in steady flows, the role of wave
propagation is unavoidable. As in Sec. 9.14, flow through energy conversion devices is dependent on the
fluid velocity relative to a wave velocity. This time, the waves are acoustic related.

In Secs. 9.21 and 9.23, the energy conversion process is again highlighted. These models, which
include the thermodynamics as well as the electromechanics, hark back to the prototype magnetic and
electric d-c machines introduced in Secs. 4.10 and 4.14. The MHD and EHD energy converters combine

the functions of the turbine and a generator in a conventional power generating plant. Thus, they give
the opportunity to understand the overall thermodynamic limitations of the energy conversion process.

To fully appreciate the steady flows of inhomogeneous fluids, Sec. 9.14, and of compressible fluids,
Secs.9.20-9.22, flow transients predicted by the same quasi-one-dimensional models should be studied.

These are taken up in Chap. 12, where the method of characteristics is applied to nonlinear flows in-

volving propagating wave phenomena. In this chapter, nonlinear processes represented by quasi-one-

dimensional models are represented by systems of ordinary differential equations. Similarity solutions,

introduced in Sec. 6.9, are now extended to nonlinear equations.

9.2 Homogeneous Flows with Irrotational Force Densities

The static equilibria of Secs. 8.1-8.5 illustrate electrical to mechanical coupling approximated

by irrotational magnetic and electric force densities. In this section, yet another field configura-

tion that can be represented by a force density of the form F = -V9 is introduced. But more important,

steady flows are to be illustrated. The point in this section is that now, given boundary conditions

stipulating the fluid velocity, an irrotational force density interacts with the flow of a homogeneous

incompressible fluid to alter the pressure distribution, but not the flow pattern.

Inviscid Flow: Recall that for an irrotational inviscid flow, the velocity potential satisfies

Laplace's equation (Eq. 7.8.10)

V2E = 0; = -VO (1)

With boundary conditions on v specified over the surface enclosing the volume of interest, the flow is

therefore uniquely determined without regard for the force densities. However, through C, the force
density does contribute to the pressure distribution. From Eq. 7.8.11,

(2)p = - 2 pv.v + pg.r - + n 

As an example of an irrotational force density, consider the MQS low magnetic Reynolds number flow in

two dimensions (x,y) through a region where a perpendicular uniform magnetic field, f = Holz, is imposed.

The current density is solenoidal with components in the x-y plane only. It is therefore represented

in terms of the z component of a vector potential (Cartesian coordinates, Table 2.18.1)

3A t 3A t (3)
ay x ax y

Because current induced by the motion is negligible compared to that imposed, throughout a region of uni-

form electrical conductivity, I is also approximately irrotational. Hence, within such a region

v2A = 0 (4)

This expression is justified provided that Rm :-- au << 1, as is evident from a normalization of

Eq. 6.5.3 in the fashion of Eq. 6.2.9. The force density is expressed in terms of A by using Eq. 3

for I and approximating the field intensity as the imposed field:

=  F= x II H z = -VE ; H 0HA (5)

Remember that Ho is by assumption much greater than the field induced by J. From Ampere's law, this

requires that IJ A << Ho, where k is a typical length.

Uniform Inviscid Flow: The channel flow sketched in Fig. 9.2.1a has fluid entering at the left

with a uniform velocity profile and leaving at the right with the same profile. A flow satisfying

Eq. 1 and the additional boundary conditions that there be no normal velocity on the rigid upper and

lower boundaries is simply a uniform velocity everywhere, 0 = -Uy.

Secs. 9.1 & 9.2
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Courtesy of Education Development Center, Inc. Used with permission.
Fig. 9.2.1. (a) Electrolyte is channeled by insulating walls through region of uniform magnetic

field perpendicular to flow (£ositive in the y direction). (b) From Reference 7, Appen­
dix C, sketch of current and J x Bdensities in experiment with H positive and I negative.o
(c) With Ho uniform, extremely nonuniform but irrotational force distribution of (b) leaves
plane flow undisturbed (shown by streamlines) but results in pressure rise (shown by mano­
meter). (d) With Ho nonuniform, strong acceleration caused by rotational force density is
evident in the stirring of the flow.
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Electrodes embedded in the lower and upper walls are used to pass a current through the flow. As
sketched in Fig. 9.2.1b, the resulting force density, which has both vertical and horizontal components,
is complicated and nonuniform. Yet, it has been asserted that the flow pattern observed in the absence
of a current would be the same as seen after the current is applied. In the experiment shown in
Fig. 9.2.1c, the streamlines are in fact not appreciably different after the current is applied. What
does change is the pressure distribution, as suggested by the manometer. This is predicted by Eqs. 2
and 5, which show that for any two points (a) and (8),

Pa - p - v 2 -v) - pg(x - x) - poHo (A a - Ak)  (7)

Note that

B Aa - A = i (8)

where i is the current linked by a surface having unit length in the z direction and edges at (a) and (8)
(see Sec. 2.18). Thus, with a and B the locations c and b respectively in Fig. 9.2.1a, i is the total
current (per unit length perpendicular to the paper) I, and Eq. 7 becomes

1 2 2
P - Pb c b) - pg(Xc - xb - oHo (9)

For the conditions of Fig. 9.2.1c, vc i vb, Ho is positive and I is negative (as sketched in Fig. 9.2.1b)
so the pressure rise given by Eq. 9 is consistent with intuition.

A dramatic illustration that the fluid must accelerate if the magnetic field conditions for an
irrotational force density are not met is shown in Fig. 9.2.1d. The magnet imposes a uniform Ho over
the region to the left, but the region to the right is in the nonuniform fringing field.

Inviscid Pump or Generator with Arbitrary Geometry: The generalization of the configuration to a

channel flow through a duct of arbitrary two-dimensional geometry is shown by Fig. 9.2.2. To insure an

irrotational force density everywhere, the magnetic field need only be uniform over the region where

the current density is appreciable.

The interaction region is described by Eq. 9. To relate the flow conditions at positions (d) and
(a), the "legs" to the left and right are also-described by Bernoulli's equation,

1 2 2
Pd - PC - P(Vd - vc) - pg(xd - Xc) (10)

IdP( 2 2 (11)
.. - Pa = - 2 Q(vb Va) Pg(xb - Xa) (11)

Fig. 9.2.2

Magnetohydrodynamic pump

Xd or generator configura-
d tion with region of cur-

rent density permeated
by uniform H out of

.I
paper.
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Addition of these last three expressions gives the desired pressure-velocity relation for the entire
system:

1 2 2
Pd - Pa - (d - va) - pg(xd - xa) - oHI (12)

Again, note that this simple relation applies regardless of electrode geometry.

Viscous Flow: Finally, observe that if the force density is irrotational, and hence takes the form
= -V9, it can be lumped with the pressure gradient. For an incompressible homogeneous flow, the pres-

sure appears only in the force equation.

With the redefinition of the pressure, p - p + , the equations of motion are no different than in
the absence of the field. Thus, if the boundary conditions do not involve the pressure, it is clear
that the flow pattern must be the same with and without the field. In the experiment of Fig. 9.2.1,
the flow is probably more nearly fully developed (as defined in Sec.9.3) than inviscid and hence has
vorticity. Yet, the only effect of the irrotational magnetic force density is to revise the pressure
distribution.

FLOWS WITH IMPOSED SURFACE AND VOLUME FORCE DENSITIES

9.3 Fully Developed Flows Driven by Imposed Surface and Volume Force Densities

Fully developed flows are stationary equilibria established after either a temporal or a spatial
transient. Flow established by setting the coaxial wall of a Couette viscometer into steady rotation
is an example of the former. Typical of a spatial transient is steady flow through a conduit of uni-
form cross section. As the fluid first enters a pipe, the velocity profile is determined by the
entrance conditions. But, as an element progresses, the viscous shear stresses from the walls pene-
trate into the flow until they are effective over the entire cross section. At this point, the flow
becomes independent of longitudinal position and is said to be fully developed.

For a region of rectangular cross section, with its x dimension much less than the y dimension, the
fully developed flow is a special type of plane flow:

v = v(x)I (1)
y

Note that continuity is automatically satisfied, i.e., 4 is solenoidal.

The objective of this and the next two sections is an illustration of how viscous forces can
balance electric and magnetic forces imposed either at surfaces or throughout the fluid volume. By
"imposed," it is meant that the fluid motion does not play a significant part in determining the elec-
tromagnetic force distribution. Sections 9.4 and 9.5 illustrate the flow itself.

Because 8~/8t = 0 and (from Eq. 1) v.v = 0, there is no acceleration. The Navier-Stokes equa-
tion, Eq. 7.16.6, becomes

÷÷-
Vp = V(pg.r) + f + nV v (2)

The force density is only a function of x, so a scalar 8 can always be found such that Fx = -C (x)/ax.
Thus, the x component of Eq. 2 becomes ,

= 0; p' p - pigr + C(x) (3)

It follows that p' is uniform over the cross section. The x dependence of p is whatever it must be to

balance the transverse gravitational and electromagnetic force components.

In terms of p', the longitudinal component of Eq. 2 becomes

2
!L = F (x) + n v (4)
By 3ax2

Terms on the right are independent of z, so the longitudinal hybrid pressure gradient, ap'/az, must also
be independent of y.

Because the force density F is independent of y, it can be written in terms of a tensor divergence
which reduces to simply Fy a=Tyx/Lx.

Secs. 9.2 & 9.3



Integrated on x, Eq. 4 then represents the balance of electromagnetic and viscous shear stresses:

'- x = T (x) r T (0) + n[-(x) - (0)]
By yx yx ax ax

It is instructive to note the physical origins of this expression. It can also be obtained by
writing the y component of force balance for the fluid within a control volume of incremental length
in the y direction, unit depth in the z direction and with transverse surfaces at x = 0 and x = x,
respectively. In the absence of a hybrid pressure gradient, the fully developed flow is simply a balanc
of viscous and electromagnetic shear stresses.

To determine the velocity profile, Eq. 5 is once again integrated from x = 0 where v = v to x = x
and solved for v(x). The constant Bv/Bx(0) is determined by evaluating v(x) at x = A where it equals
va. The resulting velocity profile is the first of those given in Table 9.3.1.

The circulating flow and axial flow through a circular cylindrical annulus, also shown in the tabl
are other examples where a fully developed flow is found by what amounts to the same stress balance as

exploited in the planar case. Note that for the circulating flow, the pressure gradient in the flow
direction is zero. Determination of the velocity profiles summarized in Table 9.3.1 is left for the

problems.

Table 9.3.1. Three fully developed flows.

a v(x) =v B (1 - ) + vt

vx 2 x l 
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9.4 Surface-Coupled Fully Developed Flows

Fully developed flows are often used in quasi-one-dimensional models. Examples in this section
illustrate by using the results of Sec. 9.3 to describe liquid circulations. They also illustrate how
shearing surface force densities can act in consort with viscous shear stresses to give rise to volume
fluid motions. The example treated in detail is EQS, with the surface force density resulting from the
combination of a monolayer of charge and a tangential electric field at a "free" interterface. If the
magnetic skin depth is short compared to the depth of the fluid, similar flows can result from subjecting
the interface of a liquid metal to a magnetic shear stress, as suggested by Sec. 6.8. Consider first a
specific case study, after which it is appropriate to identify the general nature of the interactions
that it illustrates.

Charge-Monolayer Driven Convection: A semi-insulating liquid fills an insulating container to a
depth b. Electrodes to the right and left have the potential difference Vo . Provided the charge con-
vection at the interface is not appreciable, the resulting current density in the liquid is uniformly
distributed throughout the volume of the liquid. As discussed in Sec. 5.10, at least insofar as it
can be described by an ohmic conduction model, the liquid does not support a volume free charge density.
It also has a uniform permittivity. Hence, there is no volumetric electrical force. However, an elec-
trical force does exist at the interface, where the conductivity is discontinuous. In this "Taylor
Pump" the electrode above the interface is canted in just such a way as to make the resulting electric
shearing surface force density tend to be uniform over most of the interface. To see that this is so,
observe that, if effects of convection can be ignored, in the liquid

(1)+
= V (Y- ) o 

0 k ; E = - y; 0 < x < b (1)

Because a << k, the electric field between interface and slanted plate is essentially in the x direction
and given by the plate-interface potential difference divided by the spacing:

Voy/Y V
E= o i b<x<0 +b (2)R

h(y) ix a x 

Note that, at the interface, the tangential electric field is continuous and there is no normal
electric field on the liquid side. Thus, the interfacial surface force density is

2  + 1 2x 2Ey 1 /oI•\[ a o

T E ) - E i + cEE E i LE + A- (E - e i - o 1 (3)
2 x y x x y y 2 a 0 92 0 x o at y

and, as required for a fully developed model, both the normal and shear components are independent of y.

The normal component of I is equilibrated by the liquid pressure. With the pressure of the air
defined as zero, normal stress balance at the interface, where x = b + 5, requires that

Tx = -p(x = b + E) (4)

In the liquid bulk, where the flow is modeled as fully developed, Eq. 9.3.3 shows that p' is only a func-
tion of y. Here, p' is determined by substituting p' evaluated at x = b + E into Eq. 4. It follows
that

p' = pg(b + E) - + )) 2 ( (5)
5 - ) 

Here, ý(y) is yet to be determined. If this vertical deflection of the interface is much less than the
depth of the liquid layer, insofar as the flow is concerned, the fluid depth can be approximated as
simply b.

Three conditions are required to determine the variables v , v and 3p/3y in Eq. (a) of Table 9.3.1.
Two of these come from the facts that the velocity at the tank bottom is zero and that the net flow
through any x-y plane is zero:

v(x = 0) = 0 (6)

vdx = 0 (7)
o

The third follows from the shear stress equilibrium at the interface, where the electrical shear stress
is balanced by the viscous shear stress,

Sec. 9.4



2
-c V

oo av
a = 3 (x = b) (8)

It follows from Eq. 6 that v = 0. Then, substitution of Eq. (a) of Table 9 .1 into Eq. 7 gives the

longitudinal pressure gradient in terms of the surface velocity:

p' = 6n v 
2 (9)

Dy b

This result and Eq. 8 (evaluated using Eq. (a) of Table 9.3.1) then make it possible to evaluate the
surface velocity:

E V2b
00

v (10)

This velocity results from a competition between electric and viscous stresses, so it is no surpr se

that the transport time b/va is found to be on the order of the electro-viscous time TEV = n/co(Vo/ak).

Evaluated using Eqs. 9 and 10, the velocity profile follows from Eq. (a) of Table 9.3.1 as

E V2b
o0o 3 x 2 x

v= - [ ( ) - i (11)

This is the profile shown in Fig. 9.4.1a.

As a reminder of the vertical pressure equilibrium implied by the model, it is now possible to

evaluate the small variation in the liquid depth caused by the horizontal flow. Integration of Eq. 9

with va from Eq. 11 gives

2

p = a - () + constant (12)

where p' is also given by Eq. 5. The constant is set by equating these expressions and defining the

position where E = 0 as being y = 0. It follows that the depth varies as

3 V 2

= 3 0 0 (13)
2 abpg k

That the liquid depth is greatest at the left reflects the fact that the pressure is greatest at the

left. Thus, in the lower 2/3's of the liquid.(where there is no horizontal force density to propel

the liquid) the pressure propels the liquid to the right.

The field and charge distributions have been computed under the assumption that the effects of

material motion are not important. This is justified only if the fluid conductivity is large enough

that the interfacial convection of charge does not compete appreciably with the volume conduction in

determining the interfacial charge distribution. In retrospect, an estimate of the implied condition

is obtained by considering conservation of charge for a section of the interface near the left end.

Here, the surface velocity falls from its peak value to zero in a horizontal distance on the order of

the depth b. If the current convected at the interface is to be small compared to that conducted to

the electrode from the bulk, then

baV

IOfv l << I- I (14)

According to the approximate theory, the surface charge is given from Eq. 2 and Gauss' law as

of = CoVo/a, so that Eq. 14 is equivalent to

R = 0 << 1 (15)
e aba

Hence, the imposed stress model is valid in the low electric Reynolds number approximation. The

physical significance of Re, here the ratio of the charge relaxation time (Eo/a)(W/a) to the transport

time b/va, is discussed in Sec. 5.10. Too great a velocity or too small a conductivity results in an

electric stress in part determined by the fluid response.

Of course, the velocity in Eq. 15 is actually determined by the fields themselves, so a more

explicit statement can be made. From Eq. 10, v~ is related to the fields so that Re becomes

Sec. 9.4
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Courtesy of Education Development Center, Inc.  Used with permission.

g. 9.4.1. (a) Cross section of liquid layer driven to the left at its interface by surface force
density. Electrodes at the left and above have zero potential relat{ve to the electrode at

Fi

the right, which has potential Vo • The liquid is slightly conducting and contained by an in­
sulating tank. (b) Time exposure of bubbles entrained in liquid show stream lines with experi­
mental configuration essentially that of (a). The liquid is corn oil, with depth of a few cm
and surface velocities at voltages in the range 10-20 kV on the order of 5 cm/sec. (For ex­
perimental correlation, see J. R. Melcher and G. I. Taylor, "Electrohydrodynamics: A Review
of the Role of Interfacial Shear Stresses," in Annual Review of Fluid Mechanics, Vol. 1,
w. R. Sears, Ed., Annual Reviews, Inc., Palo Alto, Calif •• 1969, pp. 111-146. The experi-
ment is ~hown in Reference 12, Appendix C.

b 2
2 -H 0 0 «1=-2- (16)
e 4a ncr

.This more useful expression of the approximation is in terms of what will be termed the electric
Hartmann number, He. As tI:t~ square root of the ratio of the charee relaxation time E: o/cr, to the elec­
tr~-viscous time, n/E(Vo/a) , this number also appears in Sec. 8.6.

If the viscosity is too low, the fully developed flow is not observed. Rather, the shear force at
the interface cannot entrain the fluid near the bottom before an element has passed from one end of the
tank to the other. Then, only a boundary layer is set into motion. A suitable model is discussed in
Sec. 9.7.
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At the ends, the "turn around" also involves accelerations. Under what conditions does the re-
sulting inertial force density, pv.V$, compete significantly with that from viscosity? With the spatial
derivatives characterized by the reciprocal length b- 1 , the ratio of acceleration to viscous force den-
sity is of the order

R = [(V )2/bl = P << 1 (17)
Y nva/b 2 T

Defined as the ratio of the viscous diffusion time, pb2/n, to the transport time, b/va , the Reynolds
number Ry is introduced in Sec. 7.18.

EQS Surface Coupled Systems: Two configurations that are very similar to the "Taylor pump" with
fully developed flows providing quasi-one-dimensional models are shown by Figs..9.4.2a and 9.4.2b. Note
that the experiments to which these models apply are shown in Fig. 5.14.4.

MQS Systems Coupled by Magnetic Shearing Surface Force Densities: In pumping liquid metals with
alternating fields, if the magnetic skin depth is short compared to the depth of the liquid, the surface-
coupled model exemplified in this section again applies. In the configuration of Fig. 9.4.2c, a trav;
eling wave is used to induce circulations in a liquid metal. Such a pump is useful in handling liquid
metals in open conduits, perhaps in metallurgical processing.

The MQS system of Fig. 9.4.2d is in a way the counterpart of the "Taylor pump." In the air gap,
the alternating magnetic field has essentially the same temporal phase throughout the air gap. However,
because this field is nonuniform in the y direction, a time-average shearing surface force density is
induced in the skin region of the liquid metal, with attendant circulations that can be modeled by the
fully developed flow.

m . =

VO exp j(wt-ky)

w--

'
. .00. . . Oy. O I

SC-.... b- . .

00000000 ."~.i 00 . .
· ~ :f

M

-iI

(a) (b)

Fig. 9.4.2. (a) EQS traveling-wave-induced convection model for experiment shown in Fig. 5.14.4a.
(b) Model for experiment of Fig. 5.14.4b. (c) MQS MHD surface pump. Traveling wave of current
imposed above air gap induces currents in liquid metal with magnetic skin depth much less than b.
(d) Surface current in skin layer has the same temporal phase as a function of y, but because the
field is nonuniform there is a time-average surface force density driving liquid circulations.
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9.5 Fully Developed Magnetic Induction Pumping

The magnetic induction motor discussed in Sec. 6.6 is readily adapted to pumping conducting
liquids. The arrangement of driving current, magnetic material and fluid is typically like that of
Fig. 9.5.1 in a class of pumps that has the advantage of not requiring mechanical moving parts or elec-
trical contact with the liquid. The conduit can be insulating. A natural application is to the pumping
of liquid metals such as sodium, which can react violently when exposed.1

In the liquid metal pump, each x-y layer of the fluid is analogous to the conducting sheet of
Sec. 6.4. Induced currents result in both longitudinal and transverse traveling-wave forces. At a given
position, these forces are composed of time-average and second-harmonic parts. With the traveling-wave
frequency in the frame of the moving fluid (w-kvy) sufficiently high, the liquid (limited as it is by its
inertia and viscosity) usually can react only to the time-average part.

First, observe that the components of the magnetic stress have time averages that are independent
of y. For exampleKTyxt = ½ ReuoHx(x)H(x). Hence, the time-average magnetic force density is simply

S d xx>tt + d (p 1 *ReH H ) (1)

and takes the form assumed in Sec. 9.3, where

c+_KTxxt and T 1 p ReH H*
x yx o x y

Ix

L --a- Go

...-..: ' . i. ..". ,\ ...- .. -t
Fig. 9.5.1

Planar magnetohydro-
dynamic induction

'.. . Kz=Re Koexpj(wt-ky): - .a. pump.

At the walls, where x = 0 and x = a, the no-slip condition requires that vy E v vanish, and hence
with the identification of A + a, the velocity profile of Eq. (a) from Table 9.3.1 becomes

v = P(x2 - x) + V(x,w,k) (2ay

where x 1

V(x,w,k) - ReH1 H dx + x o Re H ydxo xy

and variables are normalized such that

H = HK k = k/a

p = 211K w = W/lga

v = (ap K2o/2n)v (x,y) = (ax,ay)

Implicit is the assumption that the magnetic field distribution is not altered by the liquid motion
In fact, to some extent, it must be. But, if the fluid velocity at all points is small compared to the
wave velocity, w/k, theni the fields are not dependent on the motion. This is suggested by the example
of the moving sheet in Sec. 6.4, where the sheet represents a liquid layer. The liquid velocity enters
in determining the time average force of Eq. 6.4.11 through Sm, as expressed by Ei. 6.4.7. Currents -
responsible for the force are induced because a magnetic diffusion time Tm = Vo is on the order of w-
whereas convective effects on this induction are ignorable because the magnetic Reynolds number based on

1. For extensive treatment, see E. S. Pierson and W. D. Jackson, "The MHD Induction Machine," Tech. Rep.
AFAPL-TR-65-107, Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force
Systems Command, Wright-Patterson Air Force Base, Dayton, Ohio, 1966.
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The convection velocity, Rm = poav£, is still small compared to unity. Note that of the two possible
lengths, a and 2w/k, the latter is used here to represent rates of change in the y direction.

In this limit of small Rm, the transfer relations (b) from Table 6.5.1 with U + 0 and A + a give
the magn~tic field distribution. Identification of a + a and 8 + b and use of the boundary conditions
H =-KoH1 = 0 specializes the relations to

A coth ya

Li 0-- (3)

A] [Jssinh ya]

where y• k2 + i. Substituted into Eqs. 6.5.6, these-coefficients give the distribution of A and
hence of Hx and Hy. In normalized form

^ =-'! cot sinh Yx sinh y(x - 1)i (4)
x y sinhy si nh 2

S=coth cosh yx cosh Y(x - 1) y 2 (5)+
y sinh y snh2 2

Substituted into Eq. 2, these expressions determine the velocity profile as a function of the pressure
gradient and the driving current.

Although now reduced to a straightforward integration, the explicit evaluation of the x dependence
is conveniently done numerically. The profiles shown in Fig. 9.5.2 reflect the tendency for the velocity
to peak near the driving windings. This results for two reasons. If the wavelengths are short compared
to the channel width, the fields decay exponentially in the x direction even if the frequency is suf-
ficiently low to give no induced currents. But even more, as the frequency is raised, the induced cur-
rents shield the magnetic field out of the lower fluid regions to further enhance this decay of the force
density. The details of the magnetic field diffusion are represented in Figs. 6.6.3 and 6.6.4. Note
that 6'/a as defined there is V2/1. For a pump having a width w in the z direction, the volume rate of
flow, Qv, is the integral of v over the x-y cross section. The relation between pressure gradient and
volume rate of flow thus follows by integrating Eq. 2,

vdx = - + Q(w,k); Q E VCx,w,k)dx (6)
o o

where

Qv= 9 wa2 poK2/2

1
I

.8

.6 x

.4
(a) ,(b)

.2

O
0-.002 0 .004 0 .01 .02 .03 .04

V

Fig. 9.5.2. (a) Normalized velocity profile with pressure gradient as parameter. w = 50
(6'/a = 0.2) and k = 1. (b).Normalized velocity profile with zero pressure gradient

showing effect of frequency w. For w = 50, the force density is confined to upper
20% of layer so that profile in the region below is the linear one typical of Couette
flow.
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the induction machine developed in Secs. 6.4 and 6.6 and
is illustrated in Fig. 9.5.4.

To achieve pumping over the entire cross section,
the design calls for making the wavelength and skin ap
depth large compared to the channel depth a. Mathemati- 9
cally, this is the limit ya << 1, and the limiting forms
taken by Eqs. 4 and 5 show that x is then uniform over
the cross section, while Hy decays in a linear fashion

from tne current sneet to hne magnetic wall below:

S= x (6) Fig. 9.5.3. Normalized pressure gra-
x 2' y dient as a function of normal- ?

Y ized volume rate of flow.

The integrations in Eqs. 2 and 6 are now carried out to
give

V(x,w,k)= wk (x - x2 (7)
2(k 4 + w 2)

Q(k,k) A (8)
12(k + )

The approximate magnetic force density implied by the
magnetic field of Eq. 6 is uniform over'the channel cross
section. This is why the approximate long-wavelength long-
skin-depth velocity profile has the same parabolic x depend-
ence as if the flow were driven by a negative pressure gra-
dient.

In practice, "end effects" are likely to be important.

Such effects result from the spatial transient needed to es-
tablish the spatial sinusoidal steady state described in this
section. In the imposed force density approximation used here,
this transient is akin to those illustrated in Sec. 9.7, super-
imposed on a magnetic diffusion spatial transient.

Windings that could be used to drive the system are
illustrated in Sec. 4.7. The electrical terminal relations
are then found following the same approach taken in Sec. 6.b. 0 4 8

Fig. 9.5.4. Dependence of normalized
9.6 Temporal Flow Development with Imposed Surface and Volume Q (Fig. 9.5.3 and Eq. 6) on nor-

Force Densities malized frequency with k = 1.

Under what conditions is a flow fully developed? The answer to this question can either be one of
"when?" or "where?" If the configuration is reentrant, as for example in the Couette geometry of
Table 9.3.1, and volume and surface force densities which are uniformly distributed with respect to the
longitudinal directions are suddenly turned on, the question is one of, when? On the other hand, if a
steady state prevails in a system having a finite length and the fluid enters with some velocity profile
other than the fully developed one, the question is one of, where? In either case, the development is
governed by viscous diffusion.

In this section, the temporal transient is considered. The spatial transient is taken up in
Sec. 9.7.

Turn-On Transient of Reentrant Flows: Suppose that the plane flow considered in Sec. 9.3 (first

of the configurations in Table 9.3.1) is reentrant, so that there is no longitudinal pressure gradient,
ap'/ay = 0. Boundaries (or surface stresses) and volume force densities are applied when t = 0. How
long before the fully developed flow described by Eq. (a) of Table 9.3.1 pertains?

The incompressible mass conservation and momentum force equations can be satisfied by a time-
varying plane flow: 3 = v(x,t)ly. The longitudinal force equation is then

2

p = F (X) + - 2 (1)
at y 11-xax 2
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for t > 0. Fully developed flow can be regarded as a particular solution, vfd(x). This solution both
balances the force distribution in the volume and satisfies the boundary conditions v(A) = va and
v(0) = vB . With the understanding that the total solution is v = vfd + vh(x,t), it follows that

2
9vh vh

P at = n 2 (2)
ax

where vh satisfies the boundary conditions v = 0 at x = A and x ='0.

In the terminology introduced in Sec. 5.15, the required solutions to Eq. 2 are the temporal modes
Revn(x)expsnt (with no longitudinal dependence and hence with ky = 0). Substitution converts Eq. 2 to

2
dv n 2 2 Psn

2+ n v = (3)= 0; Yn -
dx n

Solutions to Eq. 3 that satisfy the homogeneous boundary conditions are

v = Vnsin ynx (4)

where because sin YnA = 0,

nn n 2
n = n p n

Thus, the velocity distribution evolves at a rate determined by the sum of modes, each having a time
constant Tn = p(A/nT) 2 /n, the viscous diffusion time based on a length A/nr. The total solution is in
general

0st
v = v d(x) + E V sin (~ x)e n (5)

n=l

The coefficients Vn are determined by the initial conditions on the flow, v(x,0) = 0,

vfd= V sin (nnn x) (6)
n=l n

The temporal modes are orthogonal, in this case simply Fourier modes, so the coefficients are determined
from Eq. 5, much as explained in Sec. 2.15.

As an example, suppose that when t = 0, the upper boundary is set into motion with velocity U,
that the lower one is fixed and that there is no volume force density. Then, vfd = (x/A)U and it fol-
lows that the sum of the fully developed and homogeneous solutions gives

n st
+ 2(_1) n7 nv = x + 7 sin (nx)e n (7)

U A nn=l
n=l

This developing flow is shown in Fig. 9.6.1.

The boundary conditions satisfied by the temporal modes are determined by the way in which the
transverse drive is applied. Suppose that the upper boundary is a "free" surface to which an electric
stress is suddenly applied when t = 0. An example would be the electrically driven flow of Fig. 5.14.4a,
but closed on itself in the longitudinal direction. (It is assumed that the traveling-wave velocity
is much greater than that of the interface, and that, in terms of variables used in that section, the
flow responds to the time-average surface force density To E<Tz, which is suddenly turned on when
t = 0.)

The fully developed flow is again simply (x/A)U. However, the surface velocity is in general a
function of time, U = U(t), and for the fully developed flow is determined by the condition that the
interfacial viscous shear stress balance the applied surface force density: nav/ax(x=A) = Toul(t).
Because the driving condition is balanced by the fully developed part, the homogeneous solution to Eq. 3
must now satisfy homogeneous boundary conditions: avh/3x(x=A) = 0 and vh(O) = 0. Thus, the temporal
modes are determined. The resulting solution is

x 2 -i)n s t

/(T A 1 2 sin[ (n + 21]en (8)
n=0 [7(n + ()]9.1
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n 2 4 6 _R I

Fig. 9.6.1

Temporal transient leading to fully
developed plane Couette flow as
velocity in plane x=A is suddenly
constrained to be U. v,x and t
respectively, normalized to U,
A, pA2 /Tr 2and .

V-

.2 .4 .6 .8

Fig. 9.6.2

Temporal transient leading to fully
developed plane Couette flow initi-
ated by application of constant
surface force density, To, at free

upper interface. v,x and t respec-
tively normalized to AT o/n, A,

2and pA2/2ff .

re
2

s = (n + 1)2
n 2 2

s transient, shown in Fig. 9.6.2, shows how both the interface and the fluid beneath approach the

ly developed plane Couette flow.
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9.7 Viscous Diffusion Boundary Layers

It is clear from the temporal viscous diffusion transients considered in Sec. 9.6 that in the early
stages of development, motions imparted by a boundary are confined to the adjacent fluid. Examples are
shown by Figs. 9.6.1 and 9.6.2. For times short compared to the viscous diffusion time based on the
channel width A, the second boundary is of no influence and the diffusion phenomenon effectively picks
out its own natural length. For the temporal transients considered, this length increases with time un-
til the diffusion reaches another boundary.

With increasing time, the viscous process remains confined to the neighborhood of a boundary in two
important situations. One is encountered in Sec. 7.19. There, bbundary excitations are in the sinusoidal
steady state and motions are confined to within a viscous skin depth of the boundary. In the second situ-
ation, there is a mean flow involved having a transport time through the volume of interest that is short
compared to the viscous diffusion time based on a typical dimension of that volume. Thus, the distance
into the flow that boundary effects can diffuse is limited to a viscous skin depth (based on the recip-
rocal transport time). Thus, there are two spatial scales. One, characterized by t, describes vari-
ations in the longitudinal (dominant flow) direction y. The other scale is typified by the boundary
layer thickness, which represents variations in the transverse direction. What makes the subject of
boundary layers require some foresight is that this characteristic transverse length, d, is at the out-
set unknown.

The approach now taken is akin to that introduced in Sec. 4.12, a space-rate-parameter expansion
is made in the ratio of lengths, y E (d/t)2 . The Navier-Stokes's equations (in two dimensions) and the
continuity equation are written in normalized form as

av av x aaV • 2a 2v
x +v v + ap /av -- -x2

SV y ax ax ay2 + 

at yayx a py ax2  -

at av av av p 2 v 2
Yav +_ v +x ax yay ay y pzUXU 2+Y y2 y

+ Y = o (3)

ax ay

where

v v d F =F pU2

x - xd Vx x "y Fx -x d

y v =yvU -F F oU2 (4)

2 ppU
p = t t(/U) 

Formally, an expansion is now made of the normalized variables in powers of y. However, not only is this
space-rate parameter small, so also is the reciprocal Reynolds number based on the longitudinal length:
n/piU. That is, the viscous diffusion time pj2 /n is long compared to the transport time L/U. Thus, to
zero order, Eq. 1 is simply

x- = F (5)
ax x

This means that the transverse pressure distribution is determined without regard for the inertial and
viscous force densities. The flow outside the boundary layer, which is essentially inviscid, determines
the exterior pressure distribution. Because F, is imposed, from Eq. 13 it is deduced that the pressure
distribution, p(y,t), within the layer is therefore a given function. In ordinary fluid mechanics, p(y,t)
is usually determined by solving for the inviscid fluid motion in the volume subject to boundary condi-

In Eq. 2, it is clear that, d to zero order in , the second term on the right can be dropped com-
pared to the first. But, because both y and n/pLU are small, the parameter (l/poU)/b is of the order of
unity, so that the first term on the right is retained. The continuity equation contains no parameters.

--- =+v F+ Vy +ni-+ (56)

at x ax y ay p ay 2  P ax p y (6)
iSec 9.7ll ovn orteivsi 9.16ndb li oto ntevlm ujett onaycni
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av ýv
x+ = 0

5x 3y

In these last two expressions, p is to be regarded as a predetermined function. If F is known, they com-
prise two equations for determining vy and vx .

Linear Boundary Layer: Suppose that liquid fills the half-space x < 0, has a "free surface" in the
plane x = 0 and, in the absence of electrical excitations, undergoes a uniform translation to the right
with velocity U. An electric or magnetic structure, sketched in Fig. 9.7.1, is used to impose a surface
force density that is turned on when t = 0 and extends from y = 0 to the right. There is no bulk imposed
force density. What is the perturbation in velocity or viscous stress distribution induced in the liquid
by this excitation? Effects of the gas above the liquid will be ignored.

x I ,structure
I [ 0 C) " W U 0" . 1. " " ' Fig. 9.7.1

Y Fluid moving uniformly to right
encounters imposed surface force
density where y > 0. Structure
might induce electric or magnetic
surface force density, as sug-
gested in Secs. 5.14 and 6.8,
respectively.

The imposed pressure is zero. The velocity can be written as v = v'i + (U + v')i , where primes
indicate perturbations. Thus, for small amnlitudes, Eq. J14 reduces to a finear expre si n in vy alone:

v G2,

+U -- Dv' = n 2y
T y/ y P x (8)

-7
and Eq. ~ determines v' once v' is known.

x y

The boundary condition at x = 0 is that nqv /Dx S = T u (t)u (y), so it is convenient to take
the derivative of Eq. 8 and introduce the stress Ls the dxpendent variab e:

aS Syx D a2S

(- + U 
D 
)Syx x

a p 2 x

Here, t' is the rate of change with respect to time for an observer moving with the velocity U. This
expression and the associated initial value and boundary value problem is the viscous analogue of the
magnetic diffusion example treated in Sec. 6.9. Compare Eqs. 6.9.3 for example. Thus, the picture of
temporal and finally spatial boundary layer evolution given there, for example by Fig. 6.9.3 with
Hy - Syx, pertains equally well here.

The notion of an electric or magnetic surface force density implies that the coupling is confined
to a region that is thin compared to that of the viscous boundary layer. In the case of a magnetic skin-
effect coupling, the magnetic skin depth must be short compared to the viscous skin depth if the model
suggested here is to be appropriate.

Stream-Function Form of Boundary Layer Equations: So that the continuity equation, Eq. 7, is auto-
matically satisfied, it is convenient to introduce the stream function (from Table 2.18.1)

@A DA

v =-i -- i (10)
x xy 3x y

Substitution converts the longitudinal force equation, Eq. 6, to

22 ýA 2A 3A
A DA 2A
vt v v v v p v 1P 1 + (11)

atax ay Dx2 Bx axay P x3  p ay p y
ax px

This expression is now applied to two examples in the remainder of this section.
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Irrotational Force Density; Blasius Boundary Layer: Suppose that, as in Sec. 9.2, the imposed force
density is irrotational; f = -Vs. Also, steady conditions prevail, so ý( )/3t = 0. Thus, the boundary
layer describes the first stages of steady-state flow development adjacent to a planar boundary. Perhaps
the fluid makes an entrance with uniform velocity profile (at y = 0) to the region of interest, as shown
in Fig. 9.7.2.

Conditions in the core of the flow are determined fromU

the inviscid laws. Given that the flow enters free of vor-
ticity, Bernoulli's equation, Eq. 7.8.11, shows that

p +g P = l - pv (12) Y

where H is a constant. Fig. 9.7.2. Viscous diffusion boundary
layer near entrance to channel.

The transverse component of the boundary layer equa-
tion, Eq. 9.7.5, requires that across the boundary layer

- (P) = 0 (13)
3x

so it follows that within the boundary layer, P = P(y). From Eq. 12, the particular dependence of P(y)
is determined by the bulk flow velocity distrubtion.

Because it follows from Eq. 10 that p = P -E and F = -Vs, the longitudinal force equation,
Eq. 11, reduces to

DA 92A V A D2A V 3A
v v v v r v 1 dP

= - - (14)
@y x2 Dx axy p 3  p dy

Consider now a flow that enters at y = 0 in Fig. 9.7.2 with a uniform velocity profile v = U1.
In the core, where the inviscid laws apply, the flow remains uniform with this same velocity. Thus,
because v in Eq. 12 is independent of y, it follows that the pressure gradient on the right in Eq. 14
is zero. By introducing a similarity parameter, such as illustrated for magnetic diffusion in Sec. 6.9,
it is then possible to reduce Eq. 14 to an ordinary differential equation.

By way of motivating the similarity parameter, observe that at a location y fluid has had the
transit time T = y/U for viscous diffusion. The rate of this process is typified by the viscous dif-
fusion time, Tv = p(x/2) 2 /n, based on half of the transverse position x of interest. Thus, it is plau-
sible that viscous diffusion will have proceeded to the same degree at locations (x,y) preserving the
ratio

v = _= X (1 5 )

This similarity parameter is the analogue of the magnetic diffusion parameter given by Eq. 6.9.9.

With a function f(Q) defined such that Av = -f(C)J;U'y/, Eq. 14 then reduces to the ordinary dif-
ferential equation

3f + f -- = 0 (16)
dC

d3 

This third 

d[]
order expression is equivalent to the three first-order equations

d~ ] (17)= h] 

f

Appropriate boundary conditions for flow over the flat plate are

vx(O,y) = 0 => f(0) = 0, v y(0,y) = 0 = g(0) = 0, v y(,y) + U => g(-) - 2 (18)

Numerical integration of Eqs. 18 subject to these boundary conditions is conveniently carried out
using standard library subroutines. (Used here was the IMSLIB routine DVERK.) To satisfy the condition
as -- -, h(0) is used as an iteration parameter and found to be 1.328.
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The velocity profile vy = -(U/2)df/dE is shown in Fig. 9.7.3. Note that eighty-five percent of
= the free stream velocity is obtained at E 1.5. (For demonstration of this boundary layer, as well

as exposition of layers with free stream pressure gradients, their transition to turbulence and tur-

bulent boundary layers, see Reference 5, Appendix C.)1

The viscous stress on the flat plate then follows as

Syx (0,y) = U h(O) = 0.332UTn (19)

This y dependence is shown in Fig. 9.7.4a. Stream lines are illustrated by Fig. 9.7.4b. Even though

the boundary layer approximation breaks down at the leading edge, the total viscous force, fy, on a
plate of width w and length L, found by integrating Eq. 19, is well behaved:

fy = w Syx(O,y)dy = 0.664wUVpýUH (20)
oyx

Syx
i-

*L

~`i-__i
I I I I | I !

I

.4 .8 O . .' .... .6 .Ab
g()/2 =vy/U - (b)

Fig. 9.7.3. Velocity profile Fig. 9.7.4. (a) Distribution of viscous stress with longi-
Blasius boundary layer

tudinal position y = y/L. S 2S U pU/fIL.
function of similarity -yx x E(x/
parameter 5, defined by (b) Streamlines with Av A /InUL/p, x-2 (x/2)/pU/Lf.
Eq. 15.

What is there to be learned from this classical similarity solution that can serve as a guide in
attacking the next example? First, observe that the similarity parameter can be thought of as an alter-
native coordinate. Lines of constant ý form a family of parabolas in the x-y plane. One similarity
coordinate is perpendicular to this family. In the x-y plane this similarity coordinate has the shape
of an ellipse, as exemplified. by Fig. 9.7.5. Not only does the boundary layer equation become an
ordinary differential equation in this coordinate, but the boundary conditions are also a function of
E alone.

1. Standard references on boundary layers are: A. Walz, Boundary Layers of Flow and Temperature, The
MIT Press, Cambridge, Mass., 1969; and H. Schlichting, Boundary Layer Theory, McGraw-Hill Book
Company, New York, 1960.
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In Fig. 9.7.5, boundary conditions at-A (the flat plate) and C
(the free stream) are the same as at A' and C'. Otherwise, the
solution found by integrating Eq. 17 along AC and A'C' would
not give the same result at B as at B'. Because f = f(Q), the
value of f must be the same at these two points.

A rational procedure for seeking a similarity parameter
as well as the y dependence of Av would begin by letting
ý = clxyn and Av = c2 f(O)ym, where n and m are to be determined.
It follows from the assumed form for Av that vy = -c2ym+ndf/dE.
If this velocity is to be the same constant, U, in the free t
stream regardless of the trajectory in the x-y plane, it follows X
that m = -n. To make the boundary layer equation reduce to an
ordinary differential equation, it is then necessary that
m = -1/2. Thus, the assumed forms for C and Av are deduced.

Stress-Constrained Boundary Layer: Typical of boundary
layer development with an imposed surface force density is the
system shown in Fig. 9.7.6. The electrode structure imposes a
time-average surface force density To at the interface to the
right of y = 0. Well below the interface, the fluid is essen-
tially quiescent, and so the only motion is the result of the Fig. 9.7.5. Lines of constant

electromechanical drive. A typical electromechanical coupling similarity parameter, 5,
is that of Fig. 5.14.4a, where a time-average surface force den- in (x-y) plane.

sity acts on that part of the interface under the electrode struc-
ture. For the boundary layer model now developed to apply, the
fluid should be doped Freon, which is about 100 times less vis-
cous than the fluid shown (see Reference 12, Appendix C).

First observe that, in terms of the normali-
zation given by Eq. 9.7.4, the viscous stress is

v I ryxav 
yx d y 

(21)
ax

y
Thus, in the boundary layer approximation (y small),
the viscous stress is approximated by the second of
the two derivatives. In terms of the stream func-
tion, the stress then becomes -r

82A
7

Sy = -n (22)
yx x 2

ax

What is desired is a similarity parameter and
stream function defined so that the condition Fig. 9.7.6. A uniform surface force density is
that Syx be constant at x = 0 for all y > 0 is applied to interface for 0 < y. Develop-
met by evaluating f(E) at one value of 5. Thus, ing velocity profile is vy.

Syx must be a function of the similarity parameter
alone. With m and n at the outset unknown and cl and c normalizing parameters, trial forms are

2

,C = lxy ; Av = c2f( m (23)

It follows from Eq. 22 that if Syx is to be a function of the similarity parameter alone, m + 2n = 0
Substitution into Eq. 14 then shows that n = -1/3. Thus, the boundary layer equation, Eq. 14 with
dP/dy = 0, reduces to

f g

g = h (24)

Sg 2  2fh
3 9 3 f
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where Sy~ is normalized to To so that (this similarity solution was identified for the author by /
Mr. Richard M. Ehrlich while a graduate student)

1/3

2=•T-1 xy (25)

1/3

A =- 2 f(O)y2/3 (26)

Boundary conditions consistent with having a constant surface force density To acting in the y direc-
ion, no vertical velocity at the interface and a stagnant-free stream are

vx(O,y) = 0 =!>f(O) = 0, Syx(0,y) = To0 *h(0) = -1, v y(,y) - 0 =g(-) - 0 (27)

To match the boundary conditions as 5-+, g(0) is used as an iteration parameter which is adjusted
to make g+0 as ý-+o with the other two conditions at C=0 satisfied. From this iteration it follows that

g(0) = 1.296. The universal profiles f(C) and g(C) are shown in Fig. 9.7.7. The velocity profile,
3

recovered by using the relation vy = (T2/pf)l/3g(C)yl/ , is as exemplified in Fig. 9.7.6. With in-

creasing longitudinal position y, the interface has increasing velocity and the motion penetrates
further into the bulk.

The velocity of the interface is

simply
1/3

v = - (1.296)y1/3 (28)
=(28)

and is shown in Fig. 9.7.8.

Streamlines help to emphasize that
the fluid is being drawn into the boundary

layer from below. These lines of constant
Av, given by Eq. 26, are illustrated in
Fig. 9.7.9. 0 .4 .8

U
In retrospect, what is the physical

origin of the difference between similarity
parameters for the constant velocity and

the imposed stress boundary layers?
In fact C as defined by Eq. 25 is again

the ratio of a time for viscous diffusion
in the x direction to a transport time

in the y direction. However, with the

stress at the interface constrained, the 2
transport velocity in fact varies as

3yl/ . Based on a transport time con-
sistent with this variation in velocity,
it is again found that C is the square
root of the ratio of the viscous diffu-
sion time to the transport time.

4

Fig. 9.7.7. Universal profiles of f(ý) and g(C)

as function of similarity parameter for

boundary layer with uniform surface force

density.
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Fig. 9.7.8. Interfacial velocity of interface Fig. 9.7.9. Streamlines for stress-constrained

subject to uniform surface force density boundary layer, as would result in configu-

To . vy and y normalized to (T2L/pn)1/3 ration of Fig. 9.7.6. Variables are
and L respectively. normalized.

9.8 Cellular Creep Flow Induced by Nonuniform Fields

Low-Reynolds-number models are often used to describe fluid circulations where, if it were not
for a relatively high viscosity or for a relatively low velocity, the nonlinear acceleration term would
make the mathematical description difficult. The main virtue of this approximation, which is discussed
in Secs. 7.18 and 7.20, is that the flow is then described by linear differential equations. Thus, a
Fourier-type decomposition of surface force densities results in a flow that can be represented by
responses, in a way exemplified by many spatially periodic examples from previous chapters.

Illustrated in this section are such circulating imposed surface density flows. They are of
interest in their own right, but also are useful in developing models where the surface force density
is in fact dependent on the flow.

Magnetic Skin-Effect Induced Convection: The layer of liquid metal shown in Fig. 9.8.1 rests on
a rigid bottom and has a "free" interface. Separated from the interface by an air gap, windings backed
by a perfectly permeable material impose a tangential magnetic field that takes the form of a standing
wave. The frequency w is high enough that the magnetic skin depth 6 in the liquid (Eq. 6.2.10) is much
less than the liquid depth b. Associated with this skin region are both normal and shearing time-
average surface force densities acting on the material within the layer (Eqs. 6.8.8 and 6.8.10). At
relatively low applied fields, gravity maintains an essentially flat interface in spite of the normal
surface force density. However, the shearing component establishes cellular motions, as now derived.

First, the imposed time-average magnetic shearing surface force density is computed. A region
having thickness of the order of 6 near the interface is pictured as subject to a force per unit area
which is the time average of the force density I x poH integrated over the thickness of the layer.
Because the magnetic field below the layer is zero, this shearing surface force density is

S = Sd e BdHd> (1)

Because the excitation is a standing wave, there is no net force on a section of the skin region one
wavelength long in the y direction. Rather, there is a spatially periodic distribution of the time-
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average surface force density that has twice the periodicity of the imposed field.

To exploit the complex-amplitude transfer relations, observe that the excitation surface current
can be written as the sum of two traveling waves:

Kz = ReK cos ye = Re (Ke-jy + ejYy)ejwt; o /2 (2)

The backward wave is gotten from the forward one by replacing 8 1 -0. Using this decomposition, Eq. 1
becomes

f Re ~( d e + d e -e e y +y d
<T · t Re de + dXe )(Hde + Hd*e-J o)

1 Re[1d - +d +d* d* + d -d*j 2 y d -d*e-J 2 By] (3)
2 eBHy+ x-Hy- x-y+ x+y-

The normal and tangential fields above the interface are related by the skin-effect transfer
relations, Eq. 6.8.5. The upper sign is appropriate because it is assumed that the peak interfacial
velocity is still much less than wm/. Thus, substitution for d+ and ~d shows that the space average
part of Eq. 3 cancels out while the remaining terms give

0+ -( (4) kh ••L
Tt Re + j) d id*ej28y + j)B1 J)+oy (1+ Hd* e-j2By 

t Re4 + 6Hd 
4 6

Use can be made of the air-gap transfer relation to represent Hd in terms of the driving current Ko.
For simplicity it is assumed that B << 1, so that the tangential field imposed by the surface current
at (Q is essentially experienced at (A) as well:

(5)
fd . -c o 

Thus, the time-average magnetic surface force density of Eq. 4 is simply

poBsl o12
A T = 8 o (6)sin 2By 

This is the distribution sketched at the interface of Fig. 9.8.1.

Fig. 9.8.1

Cross section of liquid metal layer
set into cellular convection by
spatially periodic a-c magnetic field
inducing magnetic shear stress in skin
layer at interface.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\'\\\\\\\\\\\

Now that the imposed magnetic surface force density has been determined, the flow response can be
computed. In Sec. 7.20, this too is represented in terms of complex amplitudes, so the drive, Eq. 7,
is again decomposed into traveling-wave parts:

Ty>t = Re(e -j2By + Tej2B); + jo6Ko 2 /16 (7)

That the interface,modeled here as having a thickness several times 6,be in shear stress equi-
librium requires that

SYe e -= T+ (8)

With the assumption that gravity holds the interface essentially flat in spite of the normal magnetic
surface force density goes the boundary condition
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-e
v = 0 (9)

x

At the rigid lower boundary, both velocity components are zero:

-.f -f
v O', v y o (10)

x

The stress-velocity relations for the layer, Eq. 7.20.6, can now be used to represent the bulk fl
mechanics. In particular, Eq. 7.20.6c is evaluated using Eq. 8 on the left and Eqs. 9 and 10 on the
right. Solved for the interfacial shear velocity, that expression becomes:

[41 sinh(4Sa) - SQ](8S)
(11)

2 2
[sinh (2Sa) - (2Sa) ]

Note that P33 is an even function of k and hence the same number whether evaluated with ~ 2Sa or
~ = -2Sa.

The last three equations specify all of the velocity amplitudes, so that equations 7.20.4 and
7.20.5 can be used to reconstruct the x-y dependence of the flow field if that is required. At the
interface, it follows from Eq. 11 that the y dependence is

Re ___1__ (T V So
e-2jSy 2jSY Ii 12

+ T_e ) = ov 0 sin 2Sy (12)
y nP + 8nP

33 33

Thus, the flow pattern is as sketched in Fig. 9.8.1.

The hydromagnetic convection modeled here is akin to that obtained in the quasi-one-dimensional
configuration of Fig. 9.4.2d. There the field nonuniformity is obtained by using a shaped bus. Here,
the windings are used to shape the field.

Charge-Monolayer Induced Convection: Surface charge induced convection, akin to that of Fig. 9.4.
takes a cellular form in the EQS experiment of Figs. 9.8.2 and 9.8.3. In the model developed in Prob.
9.8.1, the flow is slow enough that it has ne Ii ible effect on the field.l X

a

(a) b (7J , E b, O"'b)

____ t _J:=_
b

Y9.~~~J?Y:>..

Fig. 9.8.2. Semi-insulating liquid
layers stressed by static
spatially periodic potential.

Fig. 9.8.3

(a) Streak lines of bubbles entrained
in flow induced in configuration shown
in Fig. 9.8.2. Upper fluid has prop­
erties £ = 3.1£0' 0 = 5xlO-ll mhos/m
while lower one has £ = 6.9£0' and

(b) o = 3xlO-9 . (b) Theoretical stream­
lines in limit where upper boundary
is at infinity. In the experiment
shown in (a), the cells in the upper
region actually interact appreciably
with the upper wall.

1. See C. V. Smith and J. R. Melcher, "Electrohydrodynamically Induced Spatially Periodic Cellular
Stokes-Flow," Phys. Fluids 10, No. 11, 2315 (1967).
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SELF-CONSISTENT IMPOSED FIELD

9.9 Magnetic Hartmann Type Approximation and Fully Developed Flows

Approximation: In typical laboratory situations involving the flow of electrolytes, liquid metals
or even some plasmas through a magnetic field, magnetic diffusion times are short compared to times of
interest. Nevertheless currents induced by the motion can make an appreciable contribution to the mag-
netic force density. The magnetic field associated with induced currents is then small compared to the

imposed field.

The appropriate approximations to the magnetohydrodynamic equations are seen by writing those
equations in normalized form:

Vx E = - -- (1)at

Vx• =v( (E x H) (2)

V- 0 (3)

v• +m T+ + + + T 2+(4

7t+ 3 - vv+p t+ . (E+vxt)xH+-Vv 2> (4)
at v vp MI T MI TV

V-v = 0 (5)

It is assumed that the fluid is an ohmic conductor with characteristic conductivity a0 and
essentially the permeability of free space. The normalization used here, summarized by Eqs. 2.3.4b,
takes the electric field as being of the order p iA'/T, 0 as it would be if induced by the motion. The
three characteristic times

= 2 • = o o£2 2;,2 V (6)n ' m o MI = 2 (6)

are the viscous diffusion time, magnetic diffusion time and the magneto-inertial time, respectively,
familiar from Sec. 8.6.

In the imposed field approximation, these times have the order shown in Fig. 9.9.1, and times of
interest, t, are long compared to Tm but arbitrary relative to TMI and TV. Of course, for steady flows
the characteristic time is a transport time 1/u. Then, the approximation requires that the magnetic
Reynolds number be small, but that the Reynolds number TV/T =
p£u/n and the ratio of fluid velocity to Alfv6n velocity

MI/T = u/I/ r be arbitrary.

Because Tm/T is small, the induced currents on the right I I T

in Eq. 2 are negligible. The magnetic field is imposed by Tm TMI M V
means of currents in external windings. (More generally, there
might be contributions from imposed volume currents which would Fig. 9.9.1. Ordering of character-
arise from an electric field greater in order than P £3 /T,, as istic times in magnetic im-
presumed in the normalization of Eq. 2.) posed field approximation.

Note that to zero order in Tm/T, the divergence of Eq. 2 still requires that the divergence of the
induced current density vanish. Thus, Eqs. 2 and 3 reduce to expressions that determine H,

V x l = 0 (7)

V. 0H =0 (8)

and with the understanding that 9 is the imposed field only,

V x = - (9) at X
V*1 = 0; J = a(E + v x P H) (10)

av 
+

+ x + 2+
p(T- + v*Vv) + Ip x H + n V v (11)
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4.
V.v = 0 (12)

The simple dimensional arguments given here presume that there is only one characteristic length R.
In general, more lengths and perhaps more than one characteristic time might be involved, and then ap-
proximations must hinge on a more detailed knowledge of the physical situation. The fully developed
flow now considered involves one characteristic length, the transverse dimension d of the channel.

Fully Developed Flow: The magnetohydrodynamic pumping or generating configuration of Fig. 9.9.2
is an adaptation of the d-c kinematic (rotating machine) interaction from Sec. 4.10 and a refinement
of the model introduced in Sec. 9.2. What is new is the internal redistribution of velocity caused by
the magnetic force density.

Fig. 9.9.2

Configuration for Hart n flow.
The aspect ratio d/w.>--1 so
that the velocity is essentially
a function only of x: thus so
also is the current density Jzz

4w -A

A conducting fluid moves in the y direction through the rectangular channel (Fig. 9.9.2) having
a width w much greater than the depth d. Hence, the viscous shear from the upper and lower walls
dominates that due to the side walls and the velocity profile can be considered a function of x alone.

The side walls are conducting electrodes that make electrical contact with the fluid and are con-
nected to an external load or excitation. With the application of a transverse magnetic field Ho in
the x direction, there is a magnetic force density J x B in the y direction tending to retard or
accelerate the flow. Effects qf gravity are absorbed in the pressure p. In this configuration, external
currents generate the imposed H which is uniform and the constant Ho. Thus, Eqs. 7 and 8 are satisfied
and the right-hand side of Eq. 9 is zero. Even if the flow is time-varying, the electric field is ir-
rotational. If flow and field quantities are to be independent of z, it follows from the y component
of Faraday's law that

E = E (t) = (13)a z w

independent of x.

With tfe objective of finding a plane flow solution, v = v (x,t) , note that the current density
is

J = a(E - v yH ) (14)

so that the y component of Eq. 11 reduces to

2av 82v
p + = po H E - (poHo)2oav + Y (15)

at ay 0 0z 00 y 3x2

Also, Eq. 12 is automatically satisfied. The x component of the force equation, Eq. 11, shows that p
is independent of x. In fully developed flow, the longitudinal pressure gradient, Bp/By, is also
independent of y.

Temporal flow development is considered in the next section. For the remainder of this Section,
consider the flow to be steady, so that Eq. 15 reduces to

2 2
d v a(p H ) v V aH

_2 y 'o= - o Ez + (16)
dxwhere te the n the z rof

where the terms on the right are independent of x.
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Boundary conditions for the configuration of Fig. 9.10.2 require that the velocity vanish at
 = + d/2. Solution of.Eq. 16 then gives

(17)
F = 2 E Fcosh(Hm 2x/d) 

4 y T ay L cosh H
m

1 here the Hartmann number, H m, is defined as

Hm = poHo d (18)

he velocity profile given by Eq. 17 is illustrated in Fig. 9.9.3. In the absence of a magnetic
ield, plane-Poiseuille flow prevails and the profile is
 parabola. The tendency of the magnetic field to
latten the vrofile should have been expected. The cur-

ent density has a direction determined by Ez, the term
n brackets in Eq. 14. Wherever the velocity is so
reat that the "speed" field poHovy exceeds Ez, the force
ensity tends to retard the motion. Thus, there is a
endency for the fluid bulk to suffer a rigid-body motion,
ith the strain rate confined to fully developed boundary
ayers. It follows from Eq. 16 that this "Hartmann layer" X
as an exponential profile with a thickness 6 = d/2Hm.  d P

The Hartmann number indicates the degree to which
he field competes with the viscosity in determining the
ully developed profile. By one definition, the magnetic
artmann number is the square root of the ratio of that
art of the magnetic force density attributable to the

1 U L .3 4 V
ater a mot on to t e v scous orce ens ty. LoUm

q. 14, the motion-dependent part of J Z OpoVyHa, so
hat the magnetic force density is of the order Fig. 9.9.3. Velocity profile of Hart-
(oaovoyHo)(.ioHo). Using as a typical length d/2, the vis- mann flow (Hm = 10) and plane-
ous force density is of the order nv /(d/2) 2 . The square Poiseuille flow (Hm = 0).
root of the ratio of these two quantilies is Hm as defined
y Eq. 18. This dimensionless number is alternatively defined in Sec. 8.6 as the square root of the
atio of a magnetic diffusion time to a magneto-viscous time.

The Hartmann flow was originally studied as a model for a liquid metal pump. The electro-
echanical terminal relations help to emphasize the energy conversion issues.

In practice, it is difficult to make an electrical contact between a liquid metal and a metallic
electrode that does not have an appreciable contact resistance. However, with the understanding that
 is the voltage across the fluid (the contact resistance might then be included in the external
ircuit equations), Ez = v/w. On the mechanical side,the pressure gradient is the pressure rise Ap
ivided by the length of the system in the flow direction, A. Thus, Eq. 17 can be used to deduce the
electromechanical terminal relations for the system by integrating over the x-z cross section to obtain
the volume rate of flow Qv:

d

23 tanh H tanh H
v dx = V m d m v (19)

d y 4nHm m oHo Hm
d m H

2

he electrical counterpart of this relation between the "terminals" of the system is obtained by using
q. 17 in Eq. 14 to evaluate vy and integrating the latter expression over the area of the input elec-
rode:

.Gd poHo ki= V- Qv (20)w w v

ith the volume rate of flow, Qv, and voltage, v, constrained, it is convenient to solve Eq. 19 for the
ressure rise and express the mechanical power output of the flow as

. J. Hartmann and F. Lazarus, Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 15 , Nos. 6 & 7 (1937)
I

9.27 Sec. 9.9

x

w

T
f
a
f
r
i
g
d
t
w
l
h

t
f
H
p

m

E
t

c

b
r

m

v
c
d

T
E
t

W
p

1



4lgl 011 2 H2
m +V

A' 2Hm tanh H - H (21)
wd m m

where V = (v/Qv)d 2 4/n72.

The electrical power input is similarly expressed by using Eq. 20:

vi = 2 .F VQ (V - Hm) (22)

In these last two expressions, Hm represents the magnetic field. It plays the role of the field
current, if, in the d-c machine of Sec. 4.10. The modes of energy conversion obtained by varying the
field are seen from the dependences given by Eqs. 21 and 22 and illustrated by Fig. 9.9.4. The
energy conversion regimes are as would be expected from those for the prototype machine from Sec. 4.10
(Fig. 4.10.5). The new brake regime to the left and the expanded one to the right reflect the new loss
mechanism, the viscous dissipation.

gene

Fig. 9.9.4. Regimes of energy conversion for fully developed Hartmann flow with V = 10.

9.10 Flow Development in the Magnetic Hartmann Approximation

In the absence of electromechanical interactions, the viscous diffusion time determines the time
(or distance) for flow development. With the imposition of a magnetic field come processes character-
ized by the magneto-inertial time (Fig. 9.9.1). Because TMI < TV, there is now a stronger mechanism
than viscous diffusion for establishing a fully developed flow.

To illustrate how induced currents can result in the establishment of fully developed flow at a
rate that can be more rapid than would be expected on the basis of viscous diffusion alone, consider the
configuration shown in Fig. 9.10.1. The system of Fig. 9.9.2 is essentially "wrapped around on itself"
in the y direction. The annulus is thin enough compared to the radius (a - b - d << a) that the planar
model from Sec. 9.9 can be used. The annulus of what amounts to a Couette viscometer is filled with a
liquid metal and subjected to a radial magnetic field,Ho . Motion is imparted by the rotation of the
inner wall, which has a velocity U. Azimuthal fluid motion therefore induces currents in the z direction,

as shown in the figure.

( 

___
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0 U/' U
Fig. 9.10.1. Couette Hartmann flow. Inner Fig. 9.10.2. Fully developed profile in Couette

wall rotates while outer one is fixed. Hartmann flow of Fig. 9.10.1.

A filmed experiment (Reference 7, Appendix C) shows how the liquid responds as the inner wall is
suddenly set into steady motion. Because the upper and lower surfaces of the annular region of liq-
uid metal are bounded by insulators, the current that flows in the z direction over the region of the
annulus well removed from the end circulates through the end regions. Thus, the net current in the
z direction at any instant is zero. Questions to be answered here include, what is the fully de-
veloped velocity profile and what characteristic times govern in its establishment?1

The channel closes on itself in the azimuthal direction, and hence the pressure gradient in that
direction is zero. This is the y direction in the planar model, and hence Eq. 9.9.15 reduces to

2

Dt t--- = po0HoEz l (Ho)2ovy 0 + n Dy 2Y2 (1)
Px

Because the net current in the z direction must be zero, the integral of Jz over the cross section
must be zero. With Jz given by Eq. 9.9.14, it follows that Ez is related to vy by the condition

d

Ez 2v dy (2) X

d d Y

2

Representation of the temporal transient leading to the fully developed flow is carried out as
in Sec. 9.6. The fully developed flow plays the role of a particular solution. It follows from Eq. 1
with avy/Dt - 0 and Eq. 2 together with the boundary conditions that vy(d/2) = 0 and vy(-d/2) = U, that

U v 
y 2 

[ sinh(H 2x/d) (3)
sinh H

where H Ep H (d/2)vo7r. (This expression follows using the same steps as lead to Eq. 9.9.17.) The

profilemis shown in Fig. 9.10.2.

To. satisfy the initial conditions, superimposed on this fully developed flow are the temporal modes.
These are solutions to Eqs. 1 and 2 with the homogeneous boundary conditions vy(+d/2) = 0.

1. For model in circular geometry, see W. H. Heiser and J. A. Shercliff, "A Simple Demonstration of

the Hartmann Layer," J. Fluid Mech. 22, 701-707 (1965).
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The temporal modes are assumed to take the form vy = Re vy(x)exp(st). Thus, Eq. 1 becomes

2-
d v 2. pooHo-Tv E (4)

2  dx y n z

where
22H22

2 = sp 0 0
y -

n n

Solutions to Eq. 4 are the sum of a particular solution and two homogeneous solutions

oHo a
= -i E- + A sinh yx + C cosh yx (5)

nY

This expression is substituted into Eq. 2 to find Ez in terms of the coefficient C:

H  
So sinh(dy/2)

E =C (6)
z 

1 _dy[- H2/(d2]

Thus, Eq. 5 becomes

H2 sinh(dy/2)
S= A Isinh yx + (d/23 - H/(dy 2 + cosh yx (7)

(dy/2)3 1 - H2/(dy/2)2]

The coefficients A and C are now adjusted to insure that vy = 0 at x = + d/2. Because these co-
efficients can respectively be identified with the odd and even temporal modes, it is possible to
determine the eigenvalues and associated eigenmodes by inspection. Odd modes can be made to satisfy
the boundary conditions by having C = 0 and the coefficient of A vanish at either of the boundaries:

sinh ( = 0 (8)

Here, o is used to denote the odd eigenvalues. Similarly, the even modes follow from Eq. 7 as resulting
if A = 0 and the coefficient of C vanishes at either of the boundaries:

2 dYe
H2 sihh (--) yed

-m 2+ cosh (-) = 0 (9)
dye  dY 2 2
( ) - 2 /"(e2
2 m 2

Thus, the total solution, the sum of the fully developed profile from Eq. 3 and the transient solution
given by Eq. 7, is

F sinh(H s-)] st [dcosh( - eoet
.Vy = - md + Re E A sinh(x)e + Re C - cosh e (10)

y 2 sinh Hm o1 0 0  e e e 2

Here, the coefficient of C has been simplified by using Eq. 9. The eigenfrequencies so and se of the
even and odd modes follow from the definition of y given with Eq. 4. Roots of Eq. 8 are simply

yod/2 = jolr, and hence the odd modes have the eigenfrequencies

S= - [H + (or) 2]; o = 1,2,... (11)
o TV m

Twhere v is the viscous diffusion time (p/n)(d/2)2 based on the annulus half-width. These modes are so
simply described because the condition on Ez is automatically satisfied by the odd modes with Ez = 0.
Thus it is that temporal modes found here are a limiting case of those found in Sec. 8.6. That is, in
the limit Tm << TMI, Eq. 8.6.15 reduces to Eq. 11, where H TmTV/MI.

To find the eigenvalues, ye, and eigenfrequencies, s , of the even modes, it is convenient to
replace ye J e e and write Eq. 9 as

Sec. 9.10 9.30



0 2 4 6 8 10 0 1 2
fd/2--- yd/2 -

(a) (b)
Fig. 9.10.3. Graphical solution of Eq. 12 for eigenvalues yed/2 E jBed/2 of even temporal modes.

( d H2 )3/ = [ tan B (12)
m

o that a graphical solution, Fig. 9.10.3a, gives the required modes. For these modes, the eigenvalues
re themselves a function of H. From the definition of y2 (Eq. 4) the even-mode eigenvalues thus
etermined then give the eigenfrequencies:

e- dS = - 1H2 (13)
e T m 2

The even modes, e 0 1, have eigenvalues that are essentially independent of Hm: Bed/2 = 3w/2,
7r/2,*... These even modes therefore have characteristic times having much the same nature as for the
dd modes. With the magnetic field raised to a level such that Hm exceeds several multiples of w, the
ower order modes have decay rates that are of the order TV/Hm = 'MI(TMI/Tm). These modes represent the
elative adjustment of the profile so that the core of the fluid suffers essentially rigid-body transla-
ion. One way to envision the magnetic damping represented by these eigenfrequencies is to select a
ontour of fixed identity as shown in Fig. 9.10.4. Any vorticity results in an increasing flux linkage
or such a loop. The current induced in response to the resulting rate of change of flux linkage results
n a force tending to flatten the profile.

Although the magnetic field has a strong effect on the rate J
t which rigid-body motion is seen in the fluid bulk, the fluid
evertheless comes up to speed at a much slower rate. This proc-
ss is represented by the lowest even mode, e=1. As H2 is raised,
he eigenvalue decreases to zero (at H = 3) and then Vecomes
urely real with a graphical solution gotten by plotting Eq. 12
ith jBe Ye. The graphical solution is illustrated in

Fig. 9.10.4. Contour of fixed
ig. 9.10.3b. As H becomes large, this root can be approximated

2  2 identity in fluid.
y (dy/2) H - m. Then the associated eigenfrequency is

m oHS= - -= - (d/2) (14)
Sp(d/2)

hus, the time required to get the rigid translating core of the fluid up to its steady velocity U/2 is
V/Im , which is longer than the dominant time for the relative motion to establish itself, TV/Hf .

There is a simple picture to go with the transient represented by this lowest even mode. With Hm
arge, the profile consists of Hartmann boundary layers connected by a uniform profile. In the neighbor-
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hood of the boundary, the steady profile is exponential with a decay length

6 = d/2Hm  (15)

The viscous stress imparted to the fluid by the wall is of the order nvwall/6. This stress must accel-
erate the core of the fluid to half of the velocity at the wall, and hence must be equal to spdvwall/2 .
Balancing of the inertial and viscous stresses results in a characteristic frequency consistent with
Eq. 14.

Because currents circulate within the fluid, there is no net magnetic force on the fluid to con-
tribute directly to its acceleration. The magnetic field plays a role in Eq. 14 only because it
determines the thickness of the boundary layer, and hence the shear rate and the viscous stress.

9.11 Electrohydrodynamic Imposed Field Approximation

With the material motion prescribed, the imposed field approximation with unipolar conduction is
as ihtroduced in Sec. 5.3. In the region of interest, the electric field is largely due to external
charges, perhaps on electrodes bounding the volume. The validity of the approximation hinges on the
self-precipitation time Te being longer than the charge migration time Tmig. This characteristic time
interpretation of the approximation is discussed in Sec. 5.6. It can be stated formally by observing
that the pertinent EQS equations of motion (Eqs. 11, 10 and 9 of Sec. 5.2, written for one species and
no diffusion), together with the force and continuity equation for an incompressible fluid, take the
normalized form

V x E = 0; E = -V (1)

T .

V.E = Pf (2)
T
e

ap f T 2

at + 1 (3)
. Vpf Pf 0 

+ 2 --mag (4)
+ v.Vv + (--2) Vp e O( E + I-Pf

at EI TEl V

V-v - 0 (5)

Here, the normalization is as used in connection with Eqs. 4a, p0 and gare typical of the free charge
density and imposed electric field, and the times that have been identified are

T o _ p- £
e po' b mig b ~; V  ' El Po6)

In the imposed field approximation, times of interest, T, are short compared to the self-precipita
tion time T e. If processes involve viscous diffusion, particle migration and electromechanical coupling
to the fluid, then for the imposed approximation to be appropriate, the associated characteristic times
must all be shorter than Te. But, regardless of the ordering of times, Tmig must be shorter than Te if
the approximation is to apply (Fig. 9.11.1). This means that the volume charge density term on the
right in Eq. 2 is also ignorable, as is also the last (self-precipitation) term in Eq. 3.

In summary, the electric field is approximated as
being both irrotational and solenoidal. The charge den-
sity is governed by the same rules as outlined in I
Sec. 5.3. Thus, Pf is constant along characteristic I
lines (Eqs. 5.3.3 and 4.3.4). Unless processes re- TEl Tmig TV Te
presented by the viscous diffusion and electro-inertial
times can be ignored, the mechanical laws are represented Fig. 9.11.1. Ordering of character-
by the Navier-Stokes equation, with the force density istic times in the EQS im-
PfE, and the condition that v be solenoidal. posed field approximation.
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9.12 Electrohydrodynamic "Hartmann" Flow

The competition between viscous and magnetic stresses that establishes the fully developed

Hartmann flow illustrated in Sec. 9.11 has as an EQS analogue the fully developed flow in the
"ion drag" configuration of Fig. 9.12.1. Charged particles, uniformly injected at the inlet where
z = 0, might be ions generated upstream by a corona discharge, or might be charged macroscopic
particles. They are collected by a screen electrode at z = Z. Although it might be used as a pump
in the conventional sense, practical interest in the interaction illustrated would more likely come
from a need to account for fluid-mechanical effects on the transport of macroscopic particles. With-
out a self-consistent representation of the effect of the field on the material motion, the inter-
action is developed in Sec. 5.7. There, space-charge effects are included, whereas here the electric
field is approximated by the imposed field. The objective here is to illustrate the reaction of the
field on the flow.

The conduction law and force density for charge carriers that individually transmit the electrical
force to a neutral medium are discussed in Secs. 3.2, 3.3 and 5.2. In terms of the mobility b, the
current density in the z direction is

Jz = Pf(bE + v ) (1)

where bEz is the particle velocity relative to the air, and the fluid is itself moving at the velocity
vz . There is only one species of particles, and effects of diffusion and generation are negligible.

Because the electric field induced by charges in the fluid is negligible compared to that im-
posed by means of the electrodes,

- V -t
SEEi = - i (2)

oz Z z

and Gauss' law is ignored in further developments, Note that Eq. 2 is consistent with there being no
current density normal to the insulating walls. Fully developed solutions are of the form

v = vz(r)iz; Pf = Pf(r)
(3)

Jf = J(r)i = zf ÷z constant

and hence v and Jf are automatically solenoidal so that mass and charge conservation are insured.
Effects of gravity are lumped with the pressure, and therefore only the z component of the Navier-
Stokes equation remains to be satisfied:

av
S E + (r z(4

ýz Pfo r •-r

The current density, Jf, has a radial
dependence determined at the inlet. Here, z=O z=2
Jf = Jo is taken as uniform over the cross
section so that Eq. 1 is solved for the
charge density and substituted into Eq. 4
to obtain a differential equation for the

velocity profile:

JE dv \
0 oo 0 + r z(5)

ýz (bE + v ) r dr -dr

This nonlinear expression is reduced to a
linear one by restricting attention to
circumstances when bE >> v, so that

-(bEo + vz) 1 -•(bEo) - vz(bEo)- 2 and
Eq. 5 can be written as a linear equation
but with space varying coefficients:

Fig. 9.12.1. Circular cylindrical conduit

dv J J having insulating wall supportingi d z o l o
(r d-) 0E - z ---) (6) screens at z = 0 and z = Z. Charged

rdr bE W v bZ particles are injected at left and
0 pulled through the fluid to provide

Homogeneous solutions to Eq. 6 are zero order electrohydrodynamic pumping. Flow
modified Bessel's functions (introduced in is electric analogue of Hartmann flow.
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Sec. 2.16, Eqs. 2.16.19 and 2.16.25). Because r = 0 is included in the flow, the singular solution is
excluded. The particular plus homogeneous solution to Eq. 6 that makes vz(Ro) = 0 is then

e rR 2 oI(H 
v b I (7)

nH2 Y az Io(He_
e

where the electric Hartmann number is He = AoR2/nb2EO. Note the analogy between this profile and that
for the magnetic Hartmann flow represented by Eq. 9.10.17. Here, H2 is the ratio of that part of the
electric force density that is proportional to the fluid velocity to the viscous force density. An
alternative interpretation comes from recognizing that He = VTmig'TEV where Tmig = Ro/bEo (the time
for a particle to migrate the radius Ro relative to the fluid) and TEV E nb/JoRo. The electro-viscous
time, TEV' assumes the form n/EE2 familiar from Sec. 8.7, provided that Jo' pfbEo and one of the E's
is recognized from Gauss' law to be of the order pfRo/E.

The pump characteristic is obtained by integrating Eq. 7 over the channel cross section, defining
Qv as the volume rate of flow and recognizing that the pressure rise Ap through a channel of length 9
is k(ap/3z) [from Eq. 2.16.26a, the integral of xIo(x) is XIl(x)],

27rR =  [ Jo j (He Q 0 e 1
(8)Qv 2 b e oe).2

e

The velocity profile given by Eq. 7 has the dependence on the electric Hartmann number illustrated
in Fig. 9.12.2. Because ý is taken as constant throughout, the force density is proportional to the
charge density. With a constant current density, it is seen from Eq. 1 that the charge density is
least where the velocity is the most. In spite of the viscous retarding stresses, the tendency is for
elements near the wall to catch up with those nearer the center.

I n

t

r
R-

0 2 .5
V/ P -

Fig. 9.12.2. Velocity profile with electric Hartmann number as a param-
eter for configuration of Fig. 9.12.1.
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9.13 Quasi-One-Dimensional Free Surface Models

Channel flows, such as in rivers, canals and aqueducts, are a hydrodynamic example of the class
of mechanical and electromechanical flow configurations considered in this and the next section.
Thus, as an example, homogeneous incompressible fluid, typically water, rests on a bottom having the
elevation b(z), as shown in Fig. 9.13.1. The interface at x = C(z,t) forms the upper "wall" of a
natural conduit for the flow. Gravity confines the fluid to the neighborhood of the bottom. The height
of this upper channel boundary, g(z,t), is itself determined by the fluid mechanics.

A=6-b ; = pg - 2 V22 0(a-)

Fig. 9.13.1. Gravity flow with constant potential interface stressed by electric field. Quasi-
one-dimensional model expressed by Eqs. 11 and 12 reduces to classic gravity-wave model
if V = 0. The hydromagnetic flux conserving antidual of this potential conserving con-
tinuum is suggested by Sec. 8.5.

In the purely hydrodynamic context, a canoeist might ask of a long-wave model, given a down-
stream rock hidden at the bottom of the river [represented by b(z)], can he expect the surface
he sees above the rock to be elevated or depressed? In the next section, it will be seen that the
answer to such a question depends on the upstream flow conditions relative to the velocity of propa-
gation of a gravity wave. Questions to be asked, where electric or magnetic forces alter or replace
gravity, are similar. By way of illustration, an electrode is placed over the flow in Fig. 9.13.1 to
impose an electric stress on the interface. The charge relaxation time in the liquid is presumed
short enough that the interface can be regarded as retaining a constant potential. However, the elec-
tric surface force density is determined by not only V and a(z), but by the position of the interface
as well. Of course, it is hardly on the scale of a canoe that the electric field could compete with
effects of gravity. But on a scale somewhat larger than a Taylor wavelength, variations in a(z) can
affect the flow in a way that depends on the upstream flow relative to a wave velocity altered by the
electric field.

The electromechanical coupling due to the electric stress is typical of a wide range of electro-
mechanical interactions that can be modeled using the prototype laws derived in this section. The
configuration of Fig. 9.13.1 is typical because the fluid is subject to a volume force density (due
to gravity) that can be represented as the gradient of a pressure and because the surface force den-
sity (due to the surface free-charge force density) acts normal to the interface.

Many seemingly different mechanical and electromechanical configurations have in common the
following properties:

a) The dominant flow is in an axial direction, usually denoted here by z. The viscous skin
depth is small compared to the transverse dimensions of the flow. Effects of viscosity are therefore
ignored compared to inertial effects, and the longitudinal flow velocity is essentially independent
of the transverse coordinates:

v = v T(x,y,z,t) + v(z,t)i z  (1)

Because the interfaces are not subject to shear stresses, this approximation is especially appropriate
for free surface flows.

b) In the absence of flow, the free surface can assume a shape such that the conditions for a
_tatic equilibrium as defined in Sec. 8.2 prevail. Thus, electrical force densities are of the form
F = -VS and surface force densities act normal to the interface.

9.35 Sec. 9.13



c) Variations of the configuration with respect to the longitudinal direction are sufficiently
slow that a quasi-one-dimensional model is appropriate.

A formal derivation of the canonical equations of motion for this class of flows is based on the
space-rate parameter expansion introduced in Sec. 4.12 and applied to the Navier-Stokes and continuity
equations (in two dimensions) in Sec. 9.7. With k aqd d respectively representing typical dimensions
in the longitudinal and transverse directions, (d/k) << 1. What approximations are appropriate in th
laws of fluid mechanics follow from a review of Eqs. 9.7.1 - 9.7.4.

Longitudinal Force Equation: First, the transverse force equation is approximated by a balance
between the pressure gradient and any volume force density that is present. To first order in (d/Z)2

VT( p + C - pg*r) = 0 (2)

as illustrated in two dimensions by Eq. 9.7.1. Here VT is the gradient in the transverse directions
(x,y). In the large, at the interface and in the bulk, the cross section at any given longitudinal
position is in a state equivalent to a static equilibrium. Within the fluid,

p + E - pgr = f(z,t) (3)

where f is determined by the normal stress balance at the interface. With the presumption that the
velocity takes of the form of Eq. 1, the longitudinal force equation for the fluid becomes simply

av ýv af
p(-+t + = 0 (4)

At each z-t plane, the pressure, p, and surface force density (if any) must balance. This uniquely
specifies the cross-sectional geometry and f in terms of one scalar function, the transverse area
A(z,t):

p + - p pg-r = f(A) (5)

This hybrid pressure function serves to evaluate Eq. 4, which then becomes one of two mechanical equa-
tions of motion in the variables (v,A). If electromechanical coupling is involved, the pressure of
Eq. 5 will also be dependent on electric or magnetic variables.

M C iLc All fl h c

in the statement of mass conservation are
of the same order in (d/Z) 2 . (For example,
see Eq. 9.7.3.) Thus, all terms are re-
tained. Because the fluid is homogeneous
and incompressible, the integral statement
of mass conservation for a section on the
fluid having incremental lengths Az, shown
in Fig. 9.13.2, is

v.nda = Az v.ndk + A(z+Az)v(z+Az)

S C

- A(z)v(z) = 0 (6)
ow

Portions or tne transverse surrace bS are aries
bounded by rigid walls, while others are, and free

the free surface. Integrations over the

cross-sectional surfaces S2 and S3 , which

have fixed locations z + Az and z, account for the last two terms in Eq. 6. By definition, the sur-

face S1 deforms with the interface, so the velocity in the integrand of the first term on the right
in Eq. 6 is the interfacial velocity. To first order in the incremental length Az, the integration on

S1 is reduced to an integration around the contour C multiplied by the length Az.

The simple geometric significance of the contour integral in Eq. 6 is seen by using the volume
form of the generalized Leibnitz rule for differentiation of an integral over a time-varying volume.

With C = 1, and applied to a right cylinder having the cross section A (not the volume element of
Fig. 9.13.2, but rather a right cylinder with fixed ends), Eq. 2.6.5 becomes

dt dV = Az vfndk (7)dt V C
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The longitudinal length of the volume in Eq. 7 is fixed, so it follows that this expression is equi-
valent to

dA ( + +
Az dt Az v*ndi (8)

z C

The desired quasi-one-dimensional statement of mass conservation follows by substituting the contour
integral of Eq. 8 into Eq. 6 and taking the limit Az + 0,

M + 9 (Av) = 0 
(9)

Tt 9z

In the derivation, z has been considered a fixed quantity. Because A is not only a function of t, but
of z as well, the temporal partial derivative (the time derivative holding z fixed) is now used in
Eq. 9.

Gravity Flow with Electric Surface Stress: As a specific application of the long-wave model, con-
sider the configuration of Fig. 9.13.1. In the long-wave approximation, the zero order electric field
in the gap between interface and upper electrode is (see Sec. 4.12 for a formal space-rate expansion):

+ > V
E = i (10)

x a(z) - ý(z,t)

To zero order, this is also the electric field, En, normal to the interface. Balance of stresses at the
interface requires that p(o) = 2EEn, where, because the mass density of the upper fluid is much less
than that below, the pressure above is defined as zero. Gravity causes the only force density in the
fluid volume, so - p pg'r = pgx. Thus, evaluation of Eq. 3 at the interface gives f = p(C) + pg§. This
result makes it possible to express the longitudinal force equation, Eq. 4, in terms of (v,C):
of (v,C):

) + 
S z 1 (a V2 _ _ 

P( + v pgý - -o 0 (11)

Because the flow is independent of y, the flow area is taken as an area per unit length in the y direc-
tion, A -* - b. Thus, Eq. 9 becomes

+ [v(5 - b)] = 0 (12)
at az

With a(z) and b(z) prescribed, these last two nonlinear expressions comprise the quasi-one-dimensional
model. With the removal of the voltage, they become the classic equations for gravity waves and flows.

A second configuration having a small enough scale that capillary effects dominate those due to
gravity is shown in Fig. 9.13.3.1 Here, polarization forces augment and stabilize the tendency of the
capillary forces to provide a flow having most of its surface "free." Such "wall-less" flow structures
provide for a gravity-independent channeling of a flowing liquid while permitting the interface to be
active in heat or mass transfer processes.

It is instructive to linearize Eqs. 11 and 12. With the electrode and bottom flat, so that a and b
are constants, and for perturbations from a static equilibrium in which the fluid depth is constant, the
dispersion equation must agree with what is obtained from a linear (small-amplitude) theory as would
develop following the approach of Sec. 8.10. Illustrated once again is the equivalence between a
linearized quasi-one-dimensional model and a long-wave limit of a linearized model (Fig. 4.12.2).

Steady flow phenomena predicted by the models developed in this section are illustrated in
Sec. 9.14. Nonlinear temporal transients are taken up using the method of characteristics in Chap. 11.
That even steady-state phenomena depend on the causal effect of wave propagation is already evident
in Sec. 9.14.

9.14 Conservative Transitions in Piecewise Homogeneous Flows

Piecewise irrotational steady flows are illustrated in this section with a quasi-one-dimensional
model that can be applied to a variety of interactions with fields. Typical is the configuration shown
in Fig. 9.14.1. Liquid flows in the y direction with variations 

+ -f
in the depth ý(y) slow enough that

the velocity profile is essentially independent of depth: v = vi . (The longitudinal coordinate is taken
as y rather than the z used in Sec. 9.13.) Y

1. See T. B. Jones, Jr., and J. R. Melcher, "Dynamics of Electromechanical Flow Structures," Phys.
Fluids 16, 393-400 (1973).
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Fig. 9.13.3

Tall-less" pipe in which fluid is
,nfined by means of capillary and
3larization forces. The electric
.eld also stabilizes the transverse
juilibrium against the pinch in-
Lability caused by surface tension.
I practice the applied field should
a-c having a high enough frequency
avoid free charge and mechanical

:sponse at twice the applied fre-
lency.

A magnetic field is imposed in the x-y plane. The fluid is an electrolyte or even a liquid metal,
so that a uniform current density, Jo, can be imposed in the z direction. However, the flow velocity
and conductivity are low enough that the magnetic Reynolds number is small. Currents induced by the
motion through the imposed magnetic field can therefore be ignored. So also can the magnetic field
generated by Jo.

Given the velocity v, and depth ,, where the fluid enters at the left, what are these quantities
as a function of y? For purposes of illustration the magnetic field is imposed by a two-dimensional
magnetic dipole adjacent to the channel bottom (at the origin).

First, observe that the magnetic field and current configuration are the same as illustrated in
the last part of Sec. 8.4. Thus, the magnetic force density takes the form P = -VE where, if Jo and
A(x,y) are respectively the z-directed current density and vector potential for the imposed magnetic
field, f= -JoA (Eq. 8.4.13). For an N-turn coil with elements having the spacing s, as shown in
Fig. 9.14.1, a driving current, i, results in the vector potential

sNi sin 6
A = (1)

27 r

Transformed to Cartesian coordinates, this function becomes

sNi x
A= (2)

2tr 2 2
x +y

Steady-state conservation of mass, as expressed by Eq. 9,13.9, requires that the volume rate of

flow he the same over the cross section at any position y:

vy = Ev (3)

In the longitudinal force equation, Eq. 9.13.4, -pg.r = pgx and 3/Dt = 0; and, by recognizing that
vDv/Dy = 2D(1 v )/ay, it follows that

1 1 2 + f ] = 0 v 2 + f (4)
DY V _ ý PY' P =
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This is the same expression that is objained from
Bernnoulli's equation, Eq. 7.8.11, if v a vi . IX

At the interface there are no surface currents
Also the fluid has negligible magnetizability, so r
there is no magnetic surface force density. Vari-
ations of the interface are on a scale long enough
(compared to the Taylor wavelength, Eq. 8.9.15) that
surface tension can be ignored. Thus, interfacial
stress balance shows that the pressure is continuous
at the interface. Because the mass density and cur-

sl -- dipole
rent density above the layer are negligible, the
pressure there is constant and can be defined as Fig. 9.14.1. Cross section of fluid flowing
zero. Thus, evaluation of Eq. 9.13.3 at the inter- to right through imposed magnetic
face, where p = 0, gives f, and Eq. 4 becomes dipole. Uniform current density is

imposed into paper.
1 2
I PV + PgE + V(.,y) = H (5)

For any given flow, the "head" II is conserved. By using Eqs. 2 and 3, Eq. 5 is converted to an im-
plicit expression for E(y) as a function of y:

1 M sNi _ _ = 
S+ Pg - 2 Jo 2 + 2

'I ( + y

The viewpoint now used to understand the implications of Eq. 6 would be familiar to a hydraulic
engineer. But rather than being concerned with variations in the depth of a river, perhaps caused by
an obstruction in the bottom, interest here is in the effect on the depth of the nonuniform magnetic
field.

With the flow conditions, mass density, and currents i and Jo set, the left side of Eq. 6 can be
plotted as a function of E with the longitudinal position y as a parameter. An example is shown in
Fig. 9.14.2 where, because ý measures a vertical distance, it is the ordinate. Flow conditions

2

C)
0 I 2 5

Fig. 9.14.2. Head diagram representing graphical solution of Eq. 6.

p(.v.)2/2 = 1, pg = 1, and sNiJo/2Tr = 1.
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to the left establish H. For the value shown, the entrance depth is either at A or B. The same head
is established by a relatively deep but slowly moving entrance as by a shallower but more rapidly
moving flow. The dependence of 5 on y can now be sketched by observing that flow entering at A or at
B must conserve H. Thus, entrance at depth A leads to a depth that increases between y=l and y=O
to the values obtained by the intersections of the appropriate curves with the constant head line.
Having reached the point directly over the dipole at y = 0, the depth further downstream returns to
its original value at A. The result is shown in Fig. 9.14.3a.

For the entrance conditions of B in Fig. 9.14.2, the fluid depth is decreased rather than in-
creased by the interaction. The profile is illustrated in Fig. 9.14.3b.

,X

OD :j
-/ / /I/ I / / / / / I II I I

/11
/ //////////~J ~/ // / /

Fig. 9.14.3. Conservative transition of steady flow carrying uniform current

density in z direction as it passes through field of magnetic dipole:
(a) subcritical entrance; (b) supercritical entrance.

What evidently distinguishes the two entrance conditions, A and B, is their being above and
below a critical depth, c', defined as the depth where the head function at y - -- is a minimum.
This critical depth is found from Eq. 6 by taking the limit y -+ - m , then taking the derivative with
respect to C, setting that expression equal to zero and solving for the depth, C c. The important
point is that the flow velocity obtained from Eq. 3 for this depth is

v = 1gc (7)

This is also the velocity of a shallow gravity wave on the surface of an initially stationary fluid
having the depth Cc (see Eq. 8.9.16 with y - 0, pa + 0, and b -- Q). It follows that the case of

Fig. 9.14.3a is typical of what happens if the fluid enters at a velocity less than that of a gravity
wave. Such an entrance flow is termed subcritical. Supercritical flow at the entrance results in a
depression of the depth, as in Fig. 9.14.3b.

Shallow gravity waves propagate on the moving fluid with velocity v + VgC. If the flow is sub-
critical, waves propagate to left and right in the entrance region and the one propagating upstream
provides a mechanism -for communicating the effect of the downstream field to the entrance. With super-
critical flow, both gravity waves propagate to the right and there is no such mechanism. Hence, it
might be expected that the steady flow established from a transient condition would depend intimately
on the convection velocity relative to the wave velocity.

Any of the configurations discussed in Secs. 8.3 - 8.5 which resulted in static equilibria suggest
steady flows that can be represented by quasi-one-dimensional conservative flow transitions. Examples
are shown in Figs. 9.13.1 and 9.13.3.
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Any of the configurations discussed in Secs. 8.3 - 8.5 which resulted in static equilibria
suggest flows that can similarly undergo conservative transitions. Examples are shown in
Figs. 9.13.1 and 9.13.3. If fields exist in the entrance region, there are in general electro-

mechanical contributions to the criticality condition, reflecting the effect of the field on the
propagation velocity of surface waves.

Compressible flow transitions through ducts have much in common with those described in this
section. Acoustic related waves play the role of the surface waves in this section for determining
the criticality conditions.

GAS DYNAMIC FLOWS AND ENERGY CONVERTERS

9.15 Quasi-One-Dimensional Compressible Flow Model

Gas flow through ducts having slowly varying cross-sectional areas is not only of interest in
regards to understanding the performance of nozzles and diffusers, but also basic to magnetohydro-
dynamic and electrohydrodynamic energy conversion configurations. The basic model is developed in this
section with sufficient generality that it can be applied directly to these problems in the following
sections.

The duct with its rigid walls is depicted schematically in Fig. 9.15.1. In the same spirit as
in Sec. 9.13 on free surface flows, the formulation is to be reduced to one involving the single in-
dependent spatial variable z. The model hinges on having a cross-sectional area A(z) that varies
slowly with z. Even though there is some motion transverse to the z axis, the dominant flow is in
the z direction with the transverse flow of "higher order." Effects of viscosity are ignored, and
hence the fluid is allowed to slip at the walls. Thus, it is assumed at the outset that the dominant
velocity component, as well as the pressure and mass density, are independent of the cross-sectional
position:

v = v(z)1_; p = p(z), p = p(z) (1)Z

The integral laws of mass, momentum and
energy conservation, used in conjunction with
the incremental control volume of Fig. 9.15.1,
are the basis for deriving the quasi-one-
dimensional differential equations. Consider
first the steady form of mass conservation,
Eq. 7.2.2 with ap/3t = 0 and S the surface (·

of the incremental volume. Because there is
no velocity normal to the channel walls,

[pvA]z+Az - IpvA]j z 0 (2)

In the limit of vanishing Az, Eq. 2 becomes the Z Z-4cZ
first of the laws listed in Table 9.15.1. Fig. 9.15.1. Schematic view of duct having slowly

varying cross section A(z).

The integral form of conservation of momen-
tum, given by Eq. 7.3.3 with 83/at = 0, P + - p + and -fvVp dV = ýiSnda, becomes

pv A]z+Az - [v + +z + p Azn dk = AF Az (3)

Note that included is an integration over the walls of that component of the normal force acting in the
z direction. An incremental section of the wall is sketched in Fig. 9.15.2. For a slowly varying
cross section,

z
p ý Azn dk = -ptA(z + Az) - A(z)] (4)

Now, substitution of Eq. 4 into Eq. 3 gives in the limit Az - O,the differential expression

d 2 A) d(pA) dAdz (pv A) + dz - p = AF
dz dz dz zz  (5)

The momentum conservation equation of Table 9.15,1 follows if the conservation of mass statement, Eq. (a)
of the table, is used to simplify the first term. Subscripts are dropped from both Vz and Fz for con-
venience.
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Table 9.15.1. Summary of quasi-one-dimensional flow eouations for ideal
gas subject to force density F and power density JE.

Equation

Mass conservation d (pvA) = 0
dz

Momentum conservation pv z+ = F
dz dz

d 1 2
Energy conservation pv dz (HT +v ) = EJ

Mechanical state equation p = pRT

Thermal state equation 6H = c 6T
T p

Fig. 9.15.2

Incremental control volume showing
normal vector n at duct walls and
cross section enclosed by contour C.

contour C

Note that the quasi-one-dimensional momentum conservation law would be correctly obtained by
simply writing the one-dimensional z component of the differential equation of motion. The misleadin
inference of this finding might be that the quasi-one-dimensional model is obtained by simply writing
the one-dimensional differential laws. However, the mass conservation law gives clear evidence that
such is not the case: Eq. (a) of Table 9.15.1 is certainly not the one-dimensional form of V.pv = 0
unless A is constant.

The appropriate integral form representing conservation of energy follows from integration of
Eq. 7.23.7 over the incremental volume. There is no velocity normal to the walls of the incremental
volume, and hence

1 2 1 2
[p(H + - v )VA]z+ - [p(H + v2 )vA] = AEJAz

[(HT 2 z+Az T 2

Here, E and J represent dominant components of 2 and f. If the limit of vanishing Az is taken first,
and then Eq. (a) of Table 9.15.1 exploited, Eq, (c) of that table follows.

To have a summary of the model, the mechanical and thermal equations of state for an ideal gas
are also listed in Table 9.15.1. Given the duct geometry A(z), and the field induced quantities F,
E and J, the quasi-one-dimensional model is complete.

9.16 Isentropic Flow Through Nozzles and Diffusers

By definition, a duct shaped to accelerate a gas serves as a nozzle, while one that functions as a
diffuser decelerates the flow. The actual variation of cross section depends on the gas velocity
relative to the acoustic velocity, i.e., on whether the flow is subsonic or supersonic. An immediate
objective in this section is an understanding of the relationship between duct geometry and the steady
flow evolution in a purely aerodynamic situation.
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But in a broader context, the study illustrates once again how propagation effects can influence
steady flow phenomena. The analogy to free surface gravity channel flows from Secs. 9.13 to 9.14
is often cited. There, gravity waves replace acoustic waves in propagating disturbances and concern
is with the variation of the fluid depth ý rather than the mass density p. But just as a given vari-
ation in the duct cross-sectional area A can lead to either an increased or a decreased mass density
(depending on whether the flow is subsonic or supersonic), a variation in the height of the channel
bottom can lead to an increased or decreased liquid depth.l

The wide variety of free surface electromechanical flows from Secs. 9.13-9.14 are also analogous
in their behavior to the flow of compressible gas. The role of acoustic waves is played by electro-
mechanical waves.

For the purely aerodynamic situation considered in this section, F = 0 and J = 0 in the equations
of Table 9.15.1. This makes it possible to find integrals of the flow. In any case, conservation of
mass as expressed by Eq. (a) of that table shows that

pvA = pvA (1)

where subscripts o denote variables evaluated at a given position s . The energy conservation and
thermal state equations of Table 9.15.1 show that o

12 1 2
c T + - v = cT + - v (2)
p 2 po0 2 0

As a representation of momentum conservation, Eqs. (b)-(e) of Table 9.15.1 combine to give the equation
of state

PP-Y = PoPY (3)

This manipulation is carried out without making the quasi-one-dimensional approximation with
Eqs. 7.23.8-7.23.13. Recall also that the acoustic velocity is related to the local temperature by
Eq. 7.23.6:

a = Vii (4)

This last relation should be regarded only as a definition of a. Its use in the following develop-
ments in no way implies that the equations have been linearized.

The subscripts used in defining the constants of the flow are now identified with a particular
position along the duct. Given vo, Po, To and Po, the flow velocity, pressure, temperature and density
at points downstream in the flow are to be determined. It is convenient to define the Mach number
of the flow at the point o as

M = v/a o = v /'yR-T (5)

The objective is a relationship between the velocity v and the area A, with the other flow vari-
ables eliminated. Thus, from Eq. 1 the density is eliminated by writing

p vA
P vA (6)

In turn, it follows that Eq. 3 can be used to find the pressure from v and A:

v -Y A -Y
P = ( -) ( ) (7)

o 0

The temperature follows from the perfect gas law and Eqs. 6-7

T = To•1-y ( (8)
o o

Now, if this last expression is introduced into Eq. 2, it can be'solved for the area ratio as a func-
tion of the velocity ratio with the Mach number at the point o as a parameter:

M2  
2 /-

A 1lv- M0 [ - v2 (9)

o -

1. For a discussion in depth, see A. H. Shapiro, Compressible Fluid Flow, Vol. I, Ronald Press
Company, New York, 1953, pp. 73-105.
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Given an area ratio and Mach number, Eq. 9 defines v/vo . The remaining flow variables follow
from Eqs. 6-8.

For a given gas (given y), Eq. 9 can be represented by curves in the v/vo - A/Ao plane with Mo as
a parameter. Illustrated in Fig. 9.16.1 are curves typical of flows that are supersonic and subsonic
at the point o. The point (1,1) represents the flow condition at point o. Consider the subsonic flow
with the Mach number at o equal to /-.T. If the area decreases, the M2 = 0.5 trajectory requires that
the velocity must increase, because the trajectory is from o to a in Fig. 9.16.1. The section behaves
as a nozzle in that it increases the flow velocity. Similar arguments for trajectories b-d motivate
the appearance and function of the ducts shown in Fig. 9.16.1.

Note that a supersonic flow behaves in a
fashion that is just the reverse of what would
be expected from simple incompressible flow
concepts. An increase in the local area gives
rise to an increase in the flow velocity, the
duct functions as a nozzle, while the diffuser
function is obtained by making a converging
channel.

It is the slope of the v/vo - A/Ao curve
at (1,1) that determines whether the velocity
increases or decreases with increasing cross-
sectional area. That slope is found from V
Eq. 9 to be

d(A/A°)
= M2- 1 (10)

d(v/v) /vo=

an expression which makes it clear that the
velocity-area relationship reverses as the Mach· ' ' · ·-
number is increasea tnrougn unity. 0 0.5 I 1.5 2

A/Ao
The trajectories of Fig. 9.16.1 make it

clear that the laws used to describe the flow Fig. 9.16.1. Velocity-area relationship in flow
cannot pertain if the area is decreased by transition from position "o": "a" sub-
more than a critical ratio (Ac/Ao). It can be sonic Nozzle, "b" supersonic nozzle,
seen that as the area is reduced to this criti- '1z" supersonic diffuser, and "d" subsonic
cal ratio, the flow approaches unity Mach number diffuser. Trajectories indicated in the
(see Prob. 9.16.1). The flow is then said to be v/vo - A/Aa plane have the physical inter-
choked. The existence of a greater area ratio pretation shown by the channel cross
negates the assumptions basic to the model. sections.

The choking crisis can be responsible for generation of shocks, highly dissipative discontinuities
in the flow. To understand transitions from subsonic to supersonic flow requires combining the con-
servative flow transitions of this section with the shock relations to be derived in the problems.

The Laval nozzle of Fig. 9.16.2 provides the means of accelerating a stationary gas to supersonic
velocities and illustrates one consequence of choking. The channel converges to a smallest cross-
sectional area Ac at the throat, and then diverges. Gas enters from a large room at the left and leaves
under vacuum at the right. The manometer heights record the pressure. From Eq. (b) of Table 9.15.1,
it is clear that a falling pressure implies an increasing velocity and vi&e versa. With the pressure
at the left constant, the pressure at the right is decreased by opening a valve.

The conservative transition through the channel is understood in terms of the velocity-area curves
of Fig. 9.16.3. A reduction in outlet pressure causes an increase in the Mach number at the upstream
position o, and hence an alteration of the curves as shown. With low pressure drop, M2 H2 0 = 1 < 1, say,
and the trajectory is b in the figure. The velocity first increases until the throat is reached and
then decreases until the original pressure is very nearly recovered. The transition is "conservative."
However, as the outlet pressure is reduced, the flow at the throat becomes sonic, as in trajectory c.
It is not possible to further increase the Mach number at o. Rather a further decrease in the out-
let pressure results in supersonic flow beyond the throat. This is shown, experimentally in
Fig. 9.16.2c because the velocity continues to increase beyond the throat. In the supersonic region,
upstream boundary conditions prevail. Hence, the supersonic region just to the right of the throat
isolates the flow upstream from that downstream, and upstream flow remains essentially the same even
as the outlet pressure is further reduced. But, if the supersonic region is controlled by upstream
conditions, how then does the gas adjust its flow so as to match the outlet flow conditions? The
shock shown to the right of the throat in Fig. 9.16.2 solves this dilemma by making an abrupt transition
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(a)

(b) Courtesy of Education Development Center, Inc. Used with permission. (c)

Fig. 9.16.2. Laval nozzle. (a) Cross section with flow from left to right; (b) subsonic trans­
tion; (c) subsonic-to-supersonic transition with shock discontinuity beyond throat seen
by Schlieren optics. From film "Channel Flow of a Compressible Fluid." (Reference 1,
Appendix C).

from supersonic-to-subsonic flow. After the shock, the velocity decreases
rather than increases, just as is expected for a subsonic flow in a diverg­ v
ing section. After the shock, the channel behaves as a subsonic diffuser.

V ) ,
An observation to be made from the Laval nozzle is that if the flow is to o ---- - --:-~,
make a transition from subsonic to supersonic, then this must be done at ,, u',
the throat and the flow there must be sonic. I ,

,, I,
, I

: : IPhenomena illustrated in this section have analogues in the flows I ,

developed in Sec. 9.14. In the inhomogeneous incompressible flows, Ac/Ao A/Ao
there are also "subcritical-to-supercritical" transitions and the ana­
logue of the shock is a "jump," or sudden change in the flow accompanied Fig. 9.16.3. Velocity-area
by dissipation, usually through the agent of turbulence. Shocks are taken diagram showing tra­
up in Sec. 9.20, and the analogies explored in the problems. jectories of flow cor­

responding to "b" and
"c" of Fig. 9.16.2.

9.17 A Magnetohydrodynamic Energy Converter

The magnetohydrodynamic generator shown in Fig. 9.17.1 combines the magnetic d-c interactions of
Sec. 4.10 with the compressible channel flows of Sec. 9.15. The gas is rendered electrically con­
ducting by ionization in a combustion process, and the object is to convert the thermal. energy to elec­
trical form. The interaction region serves as both the turbine and the generator in a conventional
plant. From the combustion zone, the gas is accelerated to velocity V at the entrance to the con­o
version section by use of a nozzle, as discussed in Sec. 9.16. By virtue of its conductivity, the gas
can play the role of the armature conductors of a d-c machine as it passes through a transverse mag­
netic field imposed by an external magnet. Electrical continuity through the moving gas and an external
circuit connected to the load is provided by electrodes placed on the walls. These play the role of

lbrushes in a rotating d-c machine.

One of the most significant problems in making magnetohydrodynamic generators practical is the
relatively low electrical conductivities that can be attained. The conductivity is relatively small

1. For an in-depth treatment, see G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics,
McGraw-Hill Book Company, New York, 1965.
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even at extremely high temperatures, and
although seeding of the gas and other tech-
niques are used to increase the degree of
ionization, the gas is far too low in con-
ductivity at reasonable outlet temper-
atures to make the generator a practical
substitute for existing turbine-generator
systems. As a result, such generators are
being currently developed as "topping"
units, with conventional systems used to
convert some of the significant amount of
energy remaining in the gas as it leaves
the MHD generator exit.

MHD Model: Because the conductivity
is relatively low, the flow can be regarded
as occurring at low magnetic Reynolds num-
ber. The effect of the flow on the mag-
netic field and current distributions is
small. The electrodes constrain the walls to Fig. 9.17.1. Magnetohydrodynamic generator
the same voltage V over the channel length: configuration.

t÷ + V
E i E(z) = - i (1)

y y w(z)

and because the upper and lower walls are magnetic surfaces, with a constant magnetomotive force
(the ampere turns driving the external magnetic circuit)

H= i (2)
x d(z)

The generator is constructed with a constant aspect ratio, so that if the width increases, so also does
the height:

w = constant 
(3)

d

The objective is to determine the electrical power output, given the inlet conditions of the gas, and
either the geometry of the converter or the desired flow process. Because the power conversion den-
sity is correctly expressed as EJ, the quasi-one-dimensional model of Table 9.15.1 is applicable once
the force density F is stipulated.

The flow is at low magnetic Reynolds number so the magnetic force is essentially imposed,

F = -JB (4)

Thus the magnetoquasistatic laws for the fields do not pome into the formulation. However, to relate

J to E, Ohm's law for the moving fluid, as expressed by Eq. 6.2.2, is required. In terms of the model
variables,

J = a(E + vB) (5)

Given the voltage (or a relationship between V and the current as imposed by the external load),
E is known. Then, Eq. 5 provides the additional law needed because the additional unknown, J, is
introduced by the MHD coupling.

The electrical load connected to each pair of segments is characterized by a "loading factor" K
defined by

E '
K H -v (6)

vB

If the object is as much electrical power output as possible, the resistance of the load on each
segment should be adjusted to make K = 1/2. This can be argued by recognizing that in terms of K,

J = avB(l - K) (7)

and hence the output power from a section of the electrodes having unit length in the z direction is

JVd = -J(wE)d = wdav 2B 2(1 - K)K (8)

With the imposed field and local flow velocity held fixed, the output power per unit length is maximum
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with K= 1/2. (Note that in fact the current in turn can alter the velocity, so that the actual optimum
K could be somewhat different from 1/2. Nevertheless, it is useful to think of the loading as being
in the range of K = 1/2.) It is now assumed that the load is adjusted over the generator length to make
K a constant.

Constant Velocity Conversion: Most likely, the geometry is considered fixed and the flow vari-
ables are to be determined. However, the generator can be designed such that one of the flow vari-
ables assumes a desired distribution throughout the generator. Following this latter approach, con-
sider now the particular case in which the flow velocity v is to be maintained constant throughout
and A(z) determined accordingly.

Because v = v = constant throughout, Eqs. (a) - (e) of Table 9.15.1 [with Eq. (b) augmented by
Eqs. 4 and 6 and Eq? (c) supplemented by Eqs. 6 and 7] become

pA = p A (9)
oo

= -av B (1 - K) (10)
dz o

dT 2
pc = - v B (1 - K)K (11)

p dz o

p = pRT (12)

The last three of these relations combine to show that (y c /c and c cv =R)

Kdp= y dT 
p y - T(13) (13)

Thus, integration relates the pressure and temperature:

y/[(y-l)K]
P- = I\o (14)

From Eq. 12, the density can be related to T:

T [y-(y-l)K]/[(y-l)K]

_=_ _o= (15)
p p T T

In turn, the area follows from Eq. 9:

A o •-[Y-(y-l)K]/[(y-l)K] T (16)

- p =T (16)

With these last three equations, it is clear that a determination of T(z) would lead to a specification
of all flow variables. The temperature is simply obtained from Eq. 11 which can be written as

dT av(AB2)(l - K)K (17)
dz (Ap)cp

and since Ap and AB2 are constants (see Eqs 9, 2 and 3), the term on the right is constant. Integra-
tion therefore gives a linear dependence of temperature on distance:

SH2
T = 1 - (ovo Z) (- K)K( ) (18)

The pressure, density and area then follow from Eqs. 14 - 16. With a loading factor K = 0.5 and
y = 1.5, the exponential in Eq. 15 is 5. Thus, the gas density decreases while, from Eq. 16, the
channel area must be made to increase. The electrical power out per unit length is given by Eq. 8.
Because B varies inversely with d and the aspect ratio is constant, the power out per unit length is
independent of z. Thus the total power output is obtained by evaluating Eq. 8 at the inlet and multi-
plying by the channel length k:

V dJdz = (wodo)(oivioo)v poH 2(1 - K)K 9(19)
o 
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Here, the power output is written as the product of an "active" area wodo, a magnetic Reynolds number
based on the channel length, a product of magnetic pressure and velocity and a dimensionless factor
representing the degree of loading. Thus, the generator output takes the form of an area-velocity-
magnetic-pressure product, familiar from Sec. 4.15. The modifying factor of the magnetic Reynolds
number is present because it is the alteration in magnetic stress caused by the current that accounts
for the interaction with the field. The magnetic Reynolds number is the ratio of the induced-to-the-
imposed magnetic field. Thus, one component of Ho in the magnetic pressure term represents the im-
posed field, and the product of the other value of Ho and Rm represents the spatial variations in H
induced by the motion.

Given the temperature Td at the generator outlet where z = k, the electrical power output is
alternatively evaluated using Eq. (c) of Table 9.15.1. The negative of the right-hand side, in-
tegrated over the generator volume, is the total electric power output, while the integral of the
left side is simply mass rate of flow multiplied by the drop in specific enthalpy. Hence, because
pvA is constant

V dJdz = p ooA (Ho - Hd) (20)

where HT(z = £) E Hd. For an ideal gas, HT = cpT, and with the use of Eq. 18 for the temperature,
Eq. 20 is identical to Eq. 19. As seen from Eq. (c) of Table 9.15.1, if the generator operates with a
variable velocity, then it is the stagnation specific enthalpies H1  = HT + 1v2 that appear in Eq. 20.
Why is it that even though there is ohmic heating accounted for by JE, all of the drop in enthalpy
turns up as electrical power output? The answer comes from recognizing that the electrical heating
is of the gas itself. Hence, heating at one position results in thermal energy storage which can be
recovered downstream. Ohmic heating in the electrodes or external conductors that is removed from
the system is another matter and subtracts from the right-hand side of Eq. 20.

There is of course a price paid even for
Lle h 11IL i1 4 i P 1- 4 lf h iA.
LL e o m c eat ng o t e gas use . slT canl

best be appreciated by inserting the generator
into a thermodynamic cycle and seeing how the
increase in entropy caused by the ohmic dissipa-
tion dictates an increased heat rejection and
hence a diminished overall efficiency. This is
discussed in Sec. 9.19.

The increase in entropy through the gener-
ator is evaluated by using the pressure and den-
sity ratios found with Eqs. 14 and 15 in the
entropy equation of state for a perfect gas,
T 7 9 19.

q. . ' ' V . .4 Z/. ..

o 0 S -c (1-K) (21) Fig. 9.17.2. Flow evolution through MHD gener-
S - S - c (l- In -) (21)
T  T p K T ator of Fig. 9.17.3 with A(z) and hence

o
a(z) designed to give constant velocity.

Thus, the decrease in temperature predicted by
Eq. 18 is accompanied by an increase in the specific entropy, ST '

To summarize, the area distribution has been designed to make v = vo throughout, with the
other flow conditions represented by Eqs. 14, 15, 18, and 21. Evolution'of the flow is typified by
Fig. 9.17.2. The temperature decreases with z in a linear fashion. For y = 1.5 and K = 1/2, the
area ratio A/Ao and specific volume are then proportional to (T/To)-5 and hence increase with z.
According to Eq. 3, this means that d/do is proportional to (T/To)-5 /2 . The pressure varies as
(T/To)6 and hence drops even more rapidly than the temperature. Some of the implications of these
characteristics for an energy conversion system are explored in Sec. 9.19.

Finally, observe that because the acoustic velocity is proportional to T2 (Eq. 7.23.14) and hence
increasing with z, while v is constant, the Mach number is increasing. This suggests the alternative
mode of operation of Prob. 9.17.1.

9.18 An Electrogasdynamic Energy Converter

Just as the MHD convertor of Sec. 9.17 is a variation on the d-c magnetic machines of Sec. 4.10,
the electrogasdynamic or EGD device of Fig. 9.18.1 is closely related to the Van de Graaff machine
of Sec. 4.14.

Electromechanical coupling is through the free charge force density pfE. With the objective of
obtaining a net space charge, and hence an electrical force density on the gas, charged particles are
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Fig. 9.18.1

Cross section of circular EGD conversion

J(z+Az) with surface con-channel having walls 
-- t ductivity a. (a) Charge is injected

---- at the left and removed at the right.
(b) Incremental volume element for

Z4Z deriving quasi-one-dimensional model

(b)(b)

injrinjected at the left and removed at the the right, right, thus thus giving giving rise rise to to the the generator generator current current I. I. AlthoughAlthough
ionlions can be used, charged solid particles icles or or droplets droplets are are used used to to achieve achieve small small electrical electrical losses.losses.

These The! particles are of sufficient size ze to to insure insure that that their their slip slip velocity velocity relative relative to to the the gas gas is is smallsmall

compared coml to the gas velocity. Once charged, charged, the the particles particles can can be be modeled modeled as as having having a a velocity velocity propor-propor-

tional tiol to the electric field intensity, ty, with with the the constant constant of of proportionality proportionality the the mobility mobility b. b. In In thethe
fral y is = PFb', and hence in the laboratory frame the electro-frame of the gas, the current density is f = pfbEf', and hence in the laboratory frame the electro-quasistatic qual transformations give

Jf = pf(bE + v) (1)(1)

The first objective in this section ction is is a a substantive substantive discussion discussion of of the the electric electric field field alternativealternative

to to MHD energy conversion. A second is is the the illustration illustration of of how how the the quasi-one-dimensional quasi-one-dimensional modelingmodeling
exteextends into the electrical side of the the interaction interaction when when the the effects effects of of the the motion motion on on the the field field areare

dom:dominant. Thus, by contrast to the low low magnetic magnetic Reynolds Reynolds number number limit limit used used in in Sec. Sec. 9.17,considered 9.17, considered herehere
areare interactions with entrained particles icles of of sufficiently sufficiently low low mobility mobility that that the the distribution distribution of of chargecharge
isis strongly influenced by the motion. .This This necessitates necessitates a a self-consistent self-consistent electromechanical electromechanical formula-formula-
tion tioi and the augmentation of the quasi-one-dimensional si-one-dimensional mechanical mechanical equations equations formulated formulated in in Sec. Sec. 9.15.9.15.
Bec;Because of limits on achievable electric tric pressure pressure imposed imposed by by electrical electrical breakdown, breakdown, it it is is difficult difficult toto
demonstrate deme much of a reaction on the e flow flow from from the the electrical electrical forces. forces. Nevertheless Nevertheless no no restrictionsrestrictions
areare made in that regard.

The EGD Model: The development of of a a model model serves serves to to further further describe describe the the nature nature of of the the interaction.interaction.
It it hinges on there being no interest in in the the distribution distribution of of the the charge charge over over the the channel channel cross cross section.section.
In In fact, the flow is likely to be turbulent rbulent with with an an associated associated mixing mixing that that makes makes the the charge charge densitydensity
uniform uni: over a given duct cross section. ion. The The generated generated field field EEz z -= E(z) E(z) is is also also assumed assumed to to be be constantconstant
overover the cross section. The radial field field Er E, is is defined defined as as that that evaluated evaluated adjacent adjacent and and normal normal to to thethe
wal:wall. The cross section is circular with with radius radius C 5 so so that that A(z) A(z) = = 7C2(z).g2(z).

Conservation of charge for the control control volume volume of of incremental incremental length length Az Az in in Fig. Fig. 9.18.1b 9.18.1b requiresrequires
thalthat

[pf (bE+ v)A]+A [f(bE + v)A])A] zz + + PfbEr21Az p fbE (2)r 2uýz = = 0 (2)

TheThe first two terms account for charged ged particles particles leaving leaving and and entering entering the the volume volume in in the the z z directiondirection
traveling tra~ with the velocities bE + v. .With With the the last last term, term, it it is is recognized recognized that that in in the the gas, gas, unlike unlike onon
the the belt of a conventional Van de Graaff aaff machine, machine, a a transverse transverse electric electric field field Er Er can can cause cause particleparticle
motion motj relative to the gas with as much uch ease ease as as the the axial axial field field E. E. Thus, Thus, there there is is in in general general a a currentcurrent
to to the wall represented by the last term in Eq. 2.

To understand what determines the radial field E , it is necessary to specify the physical nature
ofof the wall. Here it is modeled as having a surface conductivity as, so that current carried to the
wallwall is then carried along the walls to the electrical terminals. The conservation of charge equation,
nownow applied to an annular volume with surface S2 enclosing the section of wall having length Az, requires
thatthat

pfbEr27Az = [21aosE]z+Az - [2nOsE] (3)z  ~FYY~~""YY L~II~YSYJZ+aZ I~II~VSUJZ \Jj

A A further further and and important important relation relation between between E E and and the the space-charge space-charge density density is is written written using using thethe
integral int~int~ form of Gauss' law for the surface S1 of Fig. 9.18.1b:
integral form of Gauss' law for the surface S1 of Fig. 9.18.lb:

[Er2E] +Az - [ 72E]z + c 2TEr Az = pf 2Az (4)
[80~52 o ~3~+8. +z [c~n52E] o Z z + ',2'SEnz o rAZf~A p~ngaz (4)
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The first two terms account for electric displacement through the surfaces with normals in the +z direc-
tions, while the third is the net radial flux.

The differential equations describing the electrical side of the coupling are found by taking the
limits Az - 0 of Eqs. 2-4, and are summarized now by

dz [1f(bE + 2 v)C r] 2+ p fbEr = 0 (5)

d
a (ýE) - PfbE r = 0 (6)

d 2 Pf
d (E E) + 2EE - = 0 (7)

Without raising the order of Eqs. 5 and 7, Er is eliminated in these equations by using Eq. 6:

dz [Pf(bE + v)T 2 + 2sra E] = 0 (8)

d 2E) + 2s d f
(d2E) + ( SE ) = (9)

dz p b dz C

In addition to these two statements, representing the electrical side of the interaction, there are the
mechanical relations from Table 9.15.1, with F = p E and EJ reflecting the fact that the wall is ther-
mally insulated and insulating, so that electrical heat losses in the wall are also available to the
gas. Thus, the incremental volume used in deriving the quasi-one-dimensional model (Fig. 9.15.2 and
Eq. 9.15.6) includes a section of wall having length Az,

2 ) d (pvT = 0 (10)
dz

Pv dv + d = pE (11)
dz dz f

20 E2

d 1 2 (
pv (cT + _ v ) = + v) + (12)

dz p(c 2 PfE(bE

p = pRT (13)

Given F(z), these last six expressions describe the evolution of the flow in terms of the six independeni
variables pf, E, v, p, p and T. The terminal variables are then given by evaluating

I = pf(bE + v)t 2 + 2ros E (14)

V = - Edz (15)
o

Note that according to Eq. 8, I is the same evaluated at any position, z.

In view of Eqs. 10, 14 and 15, the energy equation, Eq. 12, can be multiplied by the area i2 and
integrated from the entrance to the exit to show that

2 12(H 12 
C pov [(HT +- v ) - (H + -i v ) ] = I 

J
Edz = -VI (16)

That is, the difference between entrance and exit enthalpy plus kinetic energy is equal to the electrical
power output. Electrical heating, due to particle slip in the gas and ohmic heating in the wall, is to
some extent recovered downstream. However, the ohmic heating does show up as an increase in entropy at
the outlet.

Problem 9.18.3 illustrates how the equations are written in a form convenient for numerical
integration. The formulation is similar to that for the MHD generator in Sec. 9.17. However, because
the field variables are as much a part of the coupling as are the flow variables, E and pf play roles
on a par with p, v, etc. The channel geometry can be regarded as given and the flow determined, or
the dependence of one of the field or flow variables on z can be specified and the geometry determined
along with the other variables.
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Electrically Insulating Walls: Physically, Eq. 8 requires that the sum of the total convection
and conduction currents in the gas and the conduction current in the wall passing any position z must
be the same at any other z. Equation 9 is Gauss law, written to the exclusion of Er so as to make
possible a comparison between radial and longitudinal electric fields in accounting for the space
charge. If the wall equivalent conductivity as/E is large compared to the equivalent bulk conductivity
pfb, then most of the images for the space charge are at the same axial position on the duct walls. But
in the opposite extreme where

20
-- << «- 1 (17)
P fb

space charge results mainly in the divergence of an axial field E and the radial field is negligible.
If, in addition to Eq. 17, the wall current is negligible compared to that in the gas,

pf(bE + v)M2 >> 2sa E (18)

then the last term in Eq. 8 is ignorable. If the wall is sufficiently electrically insulating com-
pared to the volume that both Eqs. 17 and 18 are satisfied, then the radial electric field can be
ignored in Eqs. 5 and 7. Physically, this is because a surface charge of the same polarity as the
space charge builds up on the walls. This surface charge is just that required to make the electric
field be tangential to the wall.

Although the quasi-one-dimensional model presumes that the channel cross section is a slowly
varying function of z, it does not presume that the channel is short. Geometrically, the channel
would be made to look similar to a Van de Graaff generator. But what has been learned is that using
a homogeneous substance such as the gas to replace the belt of a Van de Graaff machine results in a
steady-state space-charge field that is of necessity in the same direction as the generated field.
This is in contrast to the Van de Graaff machine. The only way to make the space-charge field pre-
dominantly perpendicular to z is to make the wall compete for an appreciable fraction of the generated
current. This may be practical for the generation of high voltages, but because it implies an elec-
trical loss in the walls on the same order or greater than that generated, it is impractical in
making bulk power.

Note that the inequality of Eq. 1) also justifies ignoring the last term in the energy equation,
Eq. 12, compared to the first term on the right. Thus, for an insulating wall the appropriate model
is represented by Eqs. 8-13 with as + 0.

Zero Mobility Limit with Insulating Wall: For efficient generation, it is desirable that the
mobility be sufficiently small that

IbEl << v (19)

in which case bE can be ignored in Eqs. 8 and 12. Limitations on wall conductivity implied by Eq. 17
become even more stringent as it is again assumed that terms in Eqs. 8, 9 and 12 proportional to as
are negligible.

With zero mobility, conservation of charge and mass, Eqs. 8 and 10, show that

f I
p- = 2 (20)

PdSd•vd

where the subscript d denotes variables evaluated at the downstream end of the generator where z = R.
Thus, the force equation, Eq. 11, becomes

S1 2 + • I+ + =dm 0 (21)
dz 2 p dz

PdedrVd

where the potential, 0, is defined by E m -de/dz. Similarly, the energy equation, Eq. 12, becomes

d Ic T + 2  2 @] = 0 (22)

These last two expressions make it clear that the duct flow with no electrical coupling is equivalent
to that with coupling if we replace ½ v2 _ (½ v2 + IO/pd a"d). Thus, the flow is isentropic, as can
be seen by manipulating Eqs. 21 and 22, together with tHe mechanical equation of state to obtain
Eq. 7.23.13:

9.51 Sec. 9.18



n

S= ( ) = (23)
Pd Pd Pd Td

Of course, this must be true because the rate of heat generation is zero in the limit os + 0 and then
b + 0.

Constant Velocity Conversion: Suppose that the channel is designed to implement a constant gas
velocity v = vd throughout. Then Eqs. 8 and 10 show that

2 2 2 = 2pf pfdS; 2 pC2 = PdCd (24)
Pf Pfd d' dd (24)

and the right-hand side of Eq. 9, representing Gauss' law, is constant, so that that expression can be
integrated to obtain

2E = - 2 d fd ( - £) 
Sdz d (25)

o

Here, the generator is designed (5 prescribed) for constant velocity operation with E at the outlet
adjusted to zero. This is motivated by an interest in generator operation and hence a desire to im-
pose as large a net electric force in the -z direction as possible.

The temperature is related to the area variation by combining Eqs. 23 and 24b:

T = d 2 (y-1)
Td = \1 (26)Td d

The quantity in brackets in Eq. 22 is constant, and hence relates the temperature of Eq. 26 to the
potential. Thus, the potential is defined as V at z £ and also written in terms of C2= .

2 d2 T2(y-1)
Pddvd pPd d d - (27)

f V + (Td-T) V + I E (27)

Now, by substituting Eq. 27 for the potential in Eq. 25, an expression is obtained for the cross sec-
tion as a function of z. Integration, and the condition that E(L) = Cd' gives

-= 1 - (1 ) (28)
C 2 2Eo de Td(Y-1)

2
where the definition of I pfdlwdvd has been used. With this result, Eqs. 24-27 give the dependence
of Pf, p,E, T and 4 on z. The normalized distance upstream from the exit is (1 - z/J). Thus, the duct
radius is least at the inlet and increases to its maximum at the exit. The temperature therefore de-
creases in accordance with Eqs. 26 and 28, as it must if the velocity is to remain constant and yet
electrical power is to be removed.

The major limitation on an electric field device is likely to be the maximum electric stress that
can be developed without causing sparking. From Eq. 25 it is clear that the most critical point in
this regard is at the inlet where E = Eo is evaluated using Eqs. 25 and 28 with z = 0. From Eq. 25, it
followb that Pfd = -(CEo/Eo)(Eo/Ed)2 . Then, if that result is used in Eq. 28 also evaluated at z = 0,
and it is recognized from Eqs. 26 and 23 that Td = To(CO/Fd)2 (-1l) and hence pd = P (go/Ed)2 , it follows
that the area ratio and largest electric pressure (normalized to the entrance enthalpy) are related by

2 L 2
E E2/2=Y1 2d
P c = - (29)

o

Given the thermal entrance conditions and y, the maximum electric field consistent with electrical break-
down serves to determine the area ratio. In turn, all of the other parameters are then determined.
For example, the ratio of electrical power out to thermal power entering the duct is found from com-
bining Eqs. 26, 27 (evaluated at z = 0 where T = To and 4D = 0) and 29:

VI (EoE2/2) (30)

2 - pcT (30)
pcTV 0 p o j
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Thus, the entrance ratio of electric pressure to thermal energy per unit volume determines the fraction
of thermal energy that can be extracted in a single stage device. To see that the electrical power
output is again approximated by an area-velocity-electric-pressure product, consider the particular
case where y = 1.5 (compared to 1.4 for air). Then, Eq. 30 becomes

VI = ¶r2vl E2) [1 + 2'To (31)

The factor modifying the expected form Av(' e E ) insures that as the electric pressure is increased,
the output saturates and never exceeds the avaidable thermal power.

In practice, even with the use of high pressures and electronegative gases to prevent sparking,
the electric pressure is likely to be small compared to pocpTo. One way to scale the conversion mag-
nitude upward in spite of this is to use many of the individual converters in series, so as to extract
a reasonable fraction of the available energy. However, frictional losses (which are ignored here) are
likely to give pressure drops on the order of ½ eoE2, and create a source of entropy that cannot easily
be made manageable by multiple staging. Frictional losses are reduced if the walls are essentially
removed and the charged stream is allowed to expand in a "natural" fashion. Some developments are
along these lines, 1 with momentum transferred from the expanding stream to a second recirculating flow.

9.19 Thermal-Electromechanical Energy Conversion Systems

To appreciate the limitations imposed on engines that convert heat into electrical power through
an electromechanical process, the converter must be seen in the overall context of a steady-state
cycle. Use made of thermal energy available in a fuel depends primarily on thermodynamic considerations,
and cycle refinements such as reheat loops are essential to the achievement of efficiencies such as are
found in modern power systems. Objectives in this section are served by considering a basic system,
with refinements a subject in itself.

In the steady state, a process can be characterized by what happens to enthalpy, volume and
entropy of a given mass as it passes through its cycle. Thus, the specific extensive variables HT,p-1
and ST are used along with pressure, temperature and velocity to represent the state of a system at a
given position in the cycle. The understanding is that the enthalpy, for example, passing a given loca-
tion in time At is (AvAt)pHT.

d-c electrical power out
Eitner the Mnu or EGD converter

can be the generator in the cycle of
Fig. 9.19.1. The state of a unit mass
of the fluid as it passes a given sta-
tion denoted by a-e in Fig. 9.19.1 is
given by the state-space trajectories
of Fig. 9.19.2.

Regardless of the cycle, it is im-
portant to first recognize the relation-
ship between variables implied by the
state equation for a perfect gas. The
entropy and mechanical state equations,
Eqs. 7.23.12 and 7.22.1, relate T to ST
with p as a parameter, as required for
the T-ST diagram:

T = (p_) e )) Fig. 9.19.1. Open cycle with either MHD or EGD
T 0 Po yc v generator.

Hence, the lines of constant pressure shown in Fig. 9.19.2a. For Fig. 9.19.2b the same state equations
are solved for the pressure as a function of the specific volume p-1 with ST as a parameter:

p - S -ST0
= (P-) exp (2)

o v

1. M. O. Lawson and J. A. Decaire, "Investigation on Power Generation Using Elecrofluid-Dynamic
Processes," Intersociety Energy Conversion Engineering Conference, Miami Beach, Florida,
August 13-17, 1967 (participating societies including ASME, IEEE and AIAA).
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Fig. 9.19.2
bc ST

t t (a) Temperature-specific entropy
trajectory for cycle of Fig. 9.19.1.

T p Broken lines are at constant pres-
~· O sure; (b) pressure-specific volume

0 d--- .e trajectory, broken lines are at
constant entropy.

ST - I

(a) (b)
The physical position in the cycle of a unit mass of the gas and its state at each position are

now described beginning with a. The cycle might be "open," in that ambient air is taken in at a with
temperature and pressure thereof pinned to atmospheric conditions. Open cycle or not, it is desirable
to make the compression from a to b essentially isentropic.

Combustion involves the working gas as a primary constituent and results in heat addition from
b to c. At this point the gas is essentially at rest. From c to o the nozzle converts some of the
thermal energy into kinetic form, ideally through an isentropic expansion. The developments of
Sec. 9.16 therefore describe the nozzle and, subsequently, the diffuser. According to Eq. 9.16.2,

.c o 1 2
HT = HT + v (3)

where -is the "stagnation enthalpy" in the combustor and o denotes entrance conditions to the
generat r (nomenclature consistent with Secs. 9.17 or 9.18).

From o to d is described in the previous two sections. For example, in the MHD interaction
the T-ST relation through the generator is Eq. 9.17.21, and the p - p-1 relation follows from
Eqs. 9.17.14 and 9.17.15:

T (S - ST = exp T T ) (4)

S-y/[y-(y-1)K]

P -1
o p

The thermodynamic state reflected in the plots is not the whole story., There is also a change in
kinetic energy in the transitions from c - e. Upon reaching d, the gas has a residual kinetic energy
and to complete the cycle the process by which it is brought to rest with the same ambient conditions
as a must be specified. First the gas is brought to rest, d. e, in as nearly an isentropic manner
as possible using a subsonic diffuser. Again, using Eq. 9.16.2,

d 1 2 e
T + vd = HT  (6)

Then, by means of a heat exchanger, or simply by expelling the gas to the atmosphere, the gas is
returned to ambient temperature and pressure. For the latter, heat rejection from e + a represents
a loss of energy and a major contribution to the-o-veall inefficiency. A regeneration system recovering
some of the rejected heat is described in(Prob. 9.19.12

-' .An overview of the energy conversion cycle comes from representing the system by the specific
enthalpy. To this end, note that in the steady state, the combined internal and kinetic energy con-
servation statement for a volume V enclosed by a surface S is the integral form of Eq. 7.23.7. Vis-
cous and thermal losses are neglected, so that

SE.JfdV- p(HT 1 vv).nda (7)

V S

Sec. 9.19 9.54



As derived, the left side of this expression is the sum of the total ohmic heating and work done by
external forces (Eq. 7.23.1 or 7.23.2).

First, think of the ohmic heating as equivalent to the heat of combustion and apply Eq. 7 to the
combustor. In the combustor, the kinetic energy is ignorable and therefore Eq. 7, divided by the mass
rate of flow, becomes

Apy(He - H b
thermal energy input/unit time A T )- c b

mass/unit time Av T - T

Second, Eq. 7 is applied to the converter section, where the left-hand side becomes the negative

of the electrical power output:

1 2 (Hd 1 2
electrical power output VI 2 o 2 d Se

= 
mass/unit time Apy = Apv = - HT

Here, the third equality brings in the nozzle and diffuser functions, represented by Eqs. 3 and 6.

Third, Eq. 7 is used to represent the compressor. This time, the left side represents mechanical
work done by an external force density of mechanical origin:

compressor energy input/unit time b a
(10)

mass/unit time HT HT

Finally, with the neglect of electrical losses (other than in the NHD or EGD generator), heat transfer
losses and frictional losses, the overall efficiency can be written as

- Ha
electrical power out - compressor power (__ - He)-(Hb T T T (11)

thermal power in c b
SHT -H

Written as it is in terms of the specific enthalpy, this relation is quite general. For an ideal gas
HT = cvT and Eq. 11 takes a form emphasizing the importance of having a high combustor temperature:

(Tc - Te) - (Tb - Ta)
n1= T - (12)

c - Tb

It is now possible to see why an entropy increase in the generator implies a loss of efficiency.
If the generator operated isentropically, then points e and d in Fig. 9.19.2a would become points e
and d; thus Tc - Te would be increased in Eq. 12 with the result an improvement in efficiency.

By writing Eq. 11 in the equivalent form

(Hc - Hb (He - Ha
T( - H)- (HT T- heat in - heat rejected

(13)
Hc Hb heat in

T T

it is seen that the entropy increase requires a greater heat rejection and for that reason a decreased
efficiency.

Note that the rejected heat could be put to useful purposes, for example in heating or refrig-
erating buildings. The high priority put on increasing the efficiency as defined by Eq. 13 reflects
the presumption that the heat rejected is indeed wasted.
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Problems for Chapter 9

For Section 9.3:

Prob. 9.3.1 Plane Couette flow exists in a planar channel if there are no electromagnetic stresses
and no longitudinal pressure gradients. (This would be the case if the channel were a model for a
reentrant flow.)

(a) What is the velocity profile?

(b) With both boundaries fixed and no electromagnetic stresses, the flow is driven by the pressure
gradient and called plane Poiseuille flow. Describe the velocity profile and use it to relate
the volume rate of flow, Qv, through a channel of length I and width w to the pressure drop.

Prob. 9.3.2 Carry out the derivation of Eq. 9.3.5 described in the paragraph following that equation.

Prob. 9.3.3 The circulating flow shown in Table 9.3.1 is reentrant, and hence has no azimuthal hybrid
pressure gradient. Show that the radial dependence of the azimuthal velocity is given by Eq. (b) of
that table.

Prob. 9.3.4 In the absence of electromagnetic forces, a rotor having radius b rotates with the angular
velocity %b. It is surrounded by a viscous fluid in an annulus with an outer wall at the radius a having

angular velocity 2a. Hence, with l = 0, the configuration is that of the Couette viscometer shown in
Fig. 7.13.1.

(a) Find the viscous torque acting on the inner rotor.

(b) Show that in the limit where b >> (a-b), the flow reduces to plane Couette flow (Prob. 9.3.1).

Prob. 9.3.5 Axial flow through an annular region with circular cylindrical boundaries is depicted in

Table 9.3.1. Show that the velocity profile is as summarized by Eq. (c) of the table.

Prob. 9.3.6 A pipe has radius R.

(a) Use Eq. (c) of Table 9.3.1 to deduce the velocity profile as a function of the pressure gradient.

This is Couette flow in cylindrical geometry.

(b) Find the relationship between pressure drop and volume rate of flow Q for a pipe having length k.

For Section 9.4:

Prob. 9.4.1 A tank, shown in Fig. 9.4.2a, is made of insulating material and holds a semi-insulating
liquid so that it forms a layer of depth b with a free surface at x = 0. At a distance a above the

interface, an electrode structure runs parallel to the interface and imposes the traveling wave of

potential Re Vo expj(wt-ky). Thus, the experiment shown in Fig. 5.14.4a is modeled. The time aver-

age surface force density is derived in Section 5.14. Using the fully developed flow model, find an

expression for the velocity profile as a function of the system parameters and the imposed voltage

amplitude.

Prob. 9.4.2 In the configuration of Fig. 9.4.2b, the electrodes are immersed in the liquid. The

model is for the experiments shown in Fig. 5.14.4b. Thus there is a layer of liquid above the stracture

having a depth a; a free upper surface; and a layer of the returning liquid below having a depth b and
bounded from below by a rigid equipotential surface. Take the lower surface of the box to be an equi-
potential surface, and the region of the free interface as extending to infinity. Use fully developed

flow models for the regions above and below the electrodes to approximate the volume rate of flow for

the circulation around the electrode structure.

Prob. 9.4.3 A layer of liquid metal has an interface carrying skin currents induced by means of a

traveling wave of surface current backed by an infinitely permeable material, as shown in Fig. 9.4.2c.

Use the sinusoidal steady-state skin-effect model of Section 6.8 and the fully developed flow model to

find the surface velocity of the liquid in the tank.

Prob. 9.4.4 The configuration shown in Fig. 9.3.2d is a model for ciFulation in liquid metals by non-k

uniformities in a high frequency imposed magnetic field. The magnetic skin depth is much less than b.

Fluid motions are slow enough that they have little effect on the fields. The upper bus-electrode is

designed in Prob. 6.9.2 to give a uniformly distributed surface force density. Using the stress derived

in that problem, find the interfacial velocity induced by the nonuniformity in field.
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For Section 9.5:

Prob. 9.5.1 The planar fluid layer shown in Fig. (a) of Table 9.3.1 is a liquid metal driven by a
traveling magnetic-field wave that imposes a tangential field .• = Re ^ expj(wt-ky) at the upper
surface. The structure used to produce this field might be like that of Fig. 9.5.1, or the layer
might be embedded in a heterogeneous system. The skin depth 6 /=2/p7 a is much less than both the
layer width A and the wavelength 27r/k.

(a) With the velocities at the upper and lower surfaces and the pressure gradient left arbitrary, show
that the velocity profile is approximately

S^2  2 lkIfaI 2S2  2(x-A)
v = v (1 - ) 2 + + 3 

[ 2k - I H8yn 2 2 -
A 2T Ay t 18A

(b) Sketch the magnetic contribution to this profile and compare it to the high frequency profile shown
in Fig. 9.5.2.

Prob. 9.5.2 The cross section of a liquid metal induction pump is
shown in Fig. P9.5.2. As the circular analogue of the planar config-
uration considered in this section, it consists of liquid metal in
the annulus between highly permeable coaxial cylinders. The inner
cylinder has outer radius b while the outer one has inner radius a.
A winding, disposed essentially on the surface at r = a, imposes a
surface current k = 1z Re KO exp j(wt-mG) so that the fluid is
pumped azimuthally. Use the velocity profile of Table 9.3.1,
Eq. b, and the magnetic diffusion relations summarized by
Eq. 6.5.10 and Table 6.5.1 to determine the velocity of the
fluid in the annulus. Set up the integrations so that they
can be evaluated numerically, as in this section. Include
an evaluation of the volume rate of flow.

Prob. 9.5.3 Table 9.3.1c shows the geometry of a circular
induction pump. The liquid metal is in the annulus between Fig. P9.5.2
coaxial walls at r = a and r = b. The region inside the inner
wall can be taken as infinitely permeable while that outside the outer wall is a traveling wave structur
backed by an infinitely permeable material. The winding is excited so that at r = a there is a surface
current = Re Ko ej(wt-kz)^i. The fluid is pumped in the axial direction. Use the velocity profile of
Table 9.3.1, Eq. c, and the magnetic diffusion relations summarized by Eqs. 6.5.15 and Table 6.5.1 to
determine the fully developed velocity profile. Set up the integrations so that they may be convenient-
ly evaluated numerically, including the relation between pressure gradient and volume rate of flow.

For Section 9.6:

Prob. 9.6.1 A reentrant flow is mgdeld as in this section by a plane flow. When t = 0, the fluid is
static and a uniform force density F = Foiy is suddenly applied. Walls at x = 0 and x = A are fixed.
Find the fluid response.

Prob. 9.6.2 Find a force density profile Fy(x) such that the fluid velocity profile has the same rel-
ative distribution as the fluid comes up to speed. Assume that this force density is suddenly applied
when t = 0 and remains constant in time thereafter.

For Section 9.7:

Prob. 9.7.1 There are electromechanical situations where a fluid essentially "slips" relative to a
fixed boundary. An example results when a double layer exists between an insulating boundary plate
and an electrolyte and a tangential electric field is applied. The resulting flow, which is taken
up in Chap. 10, is dominated by viscous stresses within the double layer. Insofar as the bulk flow
is concerned, the fluid in the vicinity of the plate is moving with a uniform velocity vy = U (i.e.,
the velocity is independent of y). Suppose that v y(0,y) = U for y > 0, that the rigid plate requires
that vx(O,y) = 0 and that the fluid is stagnant as x + -. Formulate the similarity problem. What is
the viscous stress acting on the plate and what is the total force acting on a length L of the plate?

Prob. 9.7.2 For the stress-constrained boundary layer, what is the transit time between y = 0 where
the stress begins and y = y for a particle on the surface? Show that the similarity parameter, Eq. 25,
is the square root of the ratio of the viscous diffusion time to this transit time.
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Prob. 9.7.3 The fluid interface shown in Fig. 9.7.6 is subject to the imposed surface force density
T(y) = To(y/a)k, where To, and k are constants.

(a) Show that appropriate similarity parameter and function are

A (Tn 1/3 k+2
T OP 1/3 k-1

f(S)y 3.v 2ak
k 2

a r

(b) Show that the boundary layer equations are

f g

2k+l 2 k+2)fh
h i ( g -)h

(c) Argue that appropriate boundary conditions are given by Eq. 27.

Prob. 9.7.4 'The configuration shown in Fig. P9.7.4 ~=-V,y/2 h2b/ -- "
has a planar layer of relatively inviscid ohmic n-rn '-

= -- -u |

liquid having depth b and charge relaxation time
short compared to transport times of interest.

| 

· '· -

The liquid has a "free" surface at x = 0 which, · ·

because the mass density of the liquid is much · '

greater than that of the air above, is held flat -Vb(b-.y )2b'
by gravity. Electrodes in the plane x = b constrain
the potential of the liquid as shown in the figure, - ' '
where Vb and b are constants. X
(a) Show that in the liquid the electric potential is Fig. P9.7.4

= -b(x_ -y )
2b

(b) At a distance a above the interface, electrodes constrain the potential to be as shown in the figure.
Assume that a is small enough so that Ex in the air can be approximated as the voltage divided by
the spacing. What is the electric shearing surface force density acting on the interface?

(c) Show that the boundary layer resulting from this surface force density can be represented as in
Prob. 9.7.3. Assume that b is so much greater than the boundary layer thickness that the fluid
outside this layer can be regarded as stagnant. What is the value of k?

For Section 9.8:

Prob. 9.8.1 Two semi-insulating liquid layers having ohmic conductivities (Ya~ab), permittivities

(Ca,Eb) and viscosities (na,lb), respectively, are shown in Fig. 9.8.2. Assume that the flow has
little effect on the distribution of fields, that gravity holds the interface flat and that the
Reynolds number is small.

(a) What is the shearing surface force density Ty(y) due to the field?

(b) Sketch the expected cellular flow pattern.

(c) What is the velocity of the interface vy(y) as a function of the driving voltage Vo?

(d) What conditions must prevail to insure that effects of motion on the field are negligible and
that Ry is small?

For Section 9.9:

Prob. 9.9.1 Fully developed Hartmann flow exists in the half-space x > 0. In the plane x = 0 there
is an insulating rigid flat plate. Throughout the fluid, there is a uniform electric fieldE = Ezi
and the pressure gradient in the y direction is constant. Determine the velocity profile v = v(x .
What is the thickness of the Hartmann boundary layer? y
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For Section 9.14:

Prob. 9.14.1 Flow over an uneven bottom is shown in

P9.14.1.
Fig. 

of motione uations 
the quasi-one-dimensional (a) Write 

in terms of E(y,t) and vy(y,t). t
(b) Draw a "head" diagram analogous to Fig. 9.14.2 and 4m

* . Vdiscuss the steady transition 
P P .,( of the fluid depth

as it passes over an elevation in the bottom.
How does the profile depend on the entrance veloc-
ity relat-ive to the velocity of a gravity wave? Fig. P9.14.1

Prob. 9.14.2 An alternative to the deduction of the quasi-one-dimensional derivation given herf is
to use the space-rate expansion illustrated in Sec. 4.12. For a gravity flow, where = 0 0 and pg-r
= -pgx, normalize variables such that

x = dx, y = ky, t = Zt/ , p = dgpp

y = v, vx x

and deduce the quasi-one-dimensional model by expanding the dependent variables in powers of the space-
rate parameter (d/2) 2 . See Fig. P9.14.1 for the configuration.

Prob. 9.14.3 The cross section of an electromechanical flow structure is shown in Fig. P9.14.3. The
applied voltage is high frequency a-c, so that free charge cannot accumulate in the highly insulating
liquid. Under the assumption that the mechanical response is only to the time average of the field,
Va is taken as the rms of the applied voltage and henceforth regarded as being d-c. The flow dynamics
in the z direction is to be described under the assumption that as the fluid cross section varies the
interfaces remain in the regions to right and left, respectively, well removed from the position of
minimum spacing between electrodes.

(a) For static equilibrium in directions transverse to z, what are p(ýa) and the cross-sectional area
A(Ca)? (Assume p = 0 exterior to the liquid.)

(b) Show that the quasi-one-dimensional
equations of motion are

2@E2 a + 2 v 2a
.t a + v - E =0

tv av 1 (E-+o) V2 a82)
P +V z + 2 2,_2.2 a -- =0at 2 2 2 az a B2 a (r, a) Vig. ±.4.3

For Section 9.16:

Prob. 9.16.1 Derive the area-velocity relation of Eq. 9.16.9.

Prob. 9.16.2 Along the trajectories a and o of Fig. 9.16.1, in both the subsonic nozzle and supersonic
diffuser, the area ratio decreases in the direction of flow. Show that as the channel reaches the crit-
ical area ratio, defined as the minimum ratio consistent with isentropic steady flow, the Mach number
is unity.

Prob. 9.16.3 Use Eqs. (b) - (e) of Table 9.15.1, with no external coupling (F = 0, J = 0) to show
that

- ) 
S(pp = 0

for the quasi-one-dimensional flow described in this section.

For Section 9.17:

Prob. 9.17.1 Because constant velocity implies an increasing Mach number, the flow discussed in this
section approaches sonic velocity even if initially subsonic. To avoid the associated losses in the
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Prob. 9.17.1 (continued)

subsequent diffuser, used to bring the gas to rest after passage through the MHD duct, it can be advan-
2 2tageous to make A(z) such that the Mach number remains constant: M =v /yRT = M2. Assume that B is

also constant with respect to z and observe that vdv = yRM2 dT/2. Use conservation of energy and momen-
tum to show that

o o S= K(y- )1 - (Y-)M2(K-1
PO0 0

In turn, find p, p and v in terms of T. Then find and integrate a differential equation for T.
Finally, what is A(z) and the specific entropy ST(z)?

Prob. 9.17.2 In general, the z dependence of flow variables cannot be found in analytical form.
However, numerical integration of the equations from given inlet conditions is relatively straight-
forward once the differential equations have been written as a system of first order equations.

The loading is allowed to be arbitrary so that E is now independent of vB. Write the quasi-one-
dimensional laws in the systematic form (p' H dp/dz)

P A'
-pv

p A

-OB (E+vB)
p

33pv v
V OE (E+vB)

M2(y-1)

T' 0
T

0
2

M

where, from top to bottom, these equations represent mass, momentum and energy conservation, the differ-
ential forms of the mechanical equation of state and definition of M2 . Under the assumption that A(z)
is given, invert these equations and show that written in terms of "influence coefficients" they are

P, 2  _ 1 (Y-1) A'
M

P p Yvp A

p,
)] M2 (Y-1)

p yM2  - [1+M2(Y_1p pv

v' 1 O* (E+vB)
v 1-M2 yvp

2
T' 2 M2 (y-l) S(y-l)(YM -l)

M (y-l) -
T ypv

M2 (y-1)+2 (yM2+1) (y-l) OE (E+vB)
-M2(y-1)-2 p ypv2

M

Discuss how these equations would be integrated numerically. Describe a systematic approach to speci-
fying A(z) such that one of the flow variables has a prescribed evolution with z.

Prob. 9.17.3 The three modes of operation for a d-c machine with a rigid conductor are summarized in
Fig. 4.10. To say whether the MHD duct as a whole gives generation, braking or pumping, the distribu-
tion of flow variables and load must be determined. In general, for a compressible conductor, solutions
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Prob. 9.17.3 (continued)

to the equations found in Prob. 9.17.2 are required. Consider here the local interaction, the effect
of specifying E and B at a given location by means of segmented electrodes. Use the results of
Prob. 9.17.2 specialized to a channel of uniform cross section to find the signs of the rates of
change of flow parameters for the following cases:

(a) Generator operation with local electrical power out, EJ < 0, and a retarding magnetic force, JB > 0,
for M 2 i1.

(b) Pump or accelerator operation with EJ > 0 and JB < 0 for M2 > i.

(c) In both of the above, identify those cases where acceleration is reversed from what would be
expected for the assigned JB and explain.

For Section 9.18:

Prob. 9.18.1 Use the procedure outlined before Eq. 9.18.23 to show that the zero mobility flow is

isentropic and hence satisfies Eq. 9.18.23.

Prob. 9.18.2 The zero mobility generator is to be designed for constant temperature throughout.

Show that the pressure and mass density are then also constant. Given the outlet conditions denoted
by subscripts d, find v and D in terms of the channel area A = C2. In turn, show that the area is
governed by the equation

2

d2  -1 fd d
2 3

dz o (AdpdVd)

Show that this expression can be integrated, with boundary conditions E(Z) = 0 and A(k) = Ad, to obtain
the implicit dependence of A on z:

[ 2 1/2
x2 pfd

F(x)ex = (Z-z) Pfd

6o dd

2x 2 x x x 2 Ad 1/2
F(x) e f dx ; x E [n( -)

o

where F(x) is tabulated as the Dawson integral.1 Use subscripts to denote inlet variables and show
that

2
E E 2/2
PoV o

Show that the electrical output power VI can be written in terms of the inlet electric pressure as

vA

VI 0 E )[I - exp(-r)]

where

1 2 1 v
r (-oEo po(-o 

Prob. 9.18.3 A systematic approach to writing the quasi-one-dimensional equations in terms of influence

coefficients is outlined in Prob. 9.17.2. Consider here the analogous electrohydrodynamic flow with

1.M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS Applied Math. Series 55,

U.S. Printing Office, Washington, DC, 1964, p. 319.

Problems for Chap. 9 9.62



Prob. 9.18.3 (continued)

finite mobility and wall conductivity. Write the appropriate flow equations in a form analogous to the
first equations in Prob. 9.17.2. The geometry can be taken as given so that E'/5 is known, and the un-
knowns are p'f/pf, E'/E, v'/v, P'/P, p'/P, T'/T and (M2)'/M2. Invert this system of seven equations to
show that the influence-coefficient representation of the equations is

v'/v

p'/p

T'/T pfE/p

1
bE +

p'/pf
M2-1 I A jI

pfE -v -. i Y 1 ) ( b E + v)
Pv Y

E'/E
OE

'i'
Is

-2(bE + v +
p'/p 5affOf

M2'/M 2

where

A14 = A15 A24 = A25 = A34 = A35 = A51 = A52 = A53 = A54 = A64 = A65 = A74 = A75 = 0

A12 = 1-A3 = A41= -A42 = A43 = -A62 = A63 =1; -A71 = A7 2 = M2(y-) + 2

M2; 2
A 11= A61 = A21 = A23 M

A22= -M2(y-1) - 1; A 31= -A32 =M2(Y-1)

33 73 My- ; A44 = s
20

2 A4 5 = -(M2-1) E(b + -); A = M -
45 55v EPf

. and

' Pf/ oE
Q E-2(1 +• b) l+(2as/Epfb)

Prob. 9.18.4 In the configuration of Fig. 9.18.1, ions are injected at the left and collected at the
right with no gas flow (v = 0). The total current is I and the inlet radius is Co. Determine the radius
&(z) required to keep the electric field E = E0 independent of z. What is the associated space-charge
distribution?

For Section 9.19:

Prob. 9.19.1 In the diffuser, from d to e, it is assumed that the pressure rises. Show that if the
flow at the generator outlet is subsonic, pe > pd"

Prob. 9.19.2 In a "conventional" thermal power plant, shaft power from a turbine is used to drive a
synchronous alternator which generates electrical power. Thus the generator of Sec. 4.7 integrates into
a system fundamentally like that of Fig. P9.19.2a. The turbine plays a role in this Rankine steam cycle

2 analogous to that of the MHD generator, directly producing shaft rather than electrical power. The
steam cycle is summarized by the T-ST plot, which shows the demarcation between liquid, wet vapor and

2. The analogy to a turbine extends to the manner in which frictional heat generated at one stage can be
partially recovered downstream with the inefficiency showing up through the entropy production (ignored
in this problem). See E. F. Church, Steam Turbines, McGraw-Hill Book Co., 1950, Chap. 14.
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Prob. 9.19.2 (continued)

superheated gas phase. Clearly the perfect gas model is not appropriate. Use the enthalpy function
defined at the marked stations, and assume that the turbine acts isentropically. Find the overall
efficiency, defined as the electrical power output divided by thermal power input. Assume that the
generator has an efficiency nT for mechanical to electrical conversion and that the compressor is not
used. Now the MHD generator §as the disadvantage that relatively high outlet temperatures must be
maintained in order that the thermal ionization responsible for the gas conductivity remains effective.
Thus the cycle of Fig. 9.19.1 is operated as a topping unit with the rejected heat used to drive the
steam cycle of Fig. P9.19.2a. Find the overall efficiency of the combined system in terms of the
enthalpy function. Show that it can be written in the form of Eq. 9.19.13 where the heat rejected is
that rejected by the steam cycle.

P9.19.2a P9.19.2b
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Electromechanics with Thermal
and Molecular Diffusion
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10.1 Introduction

The general three-way coupling between electromagnetic, mechanical and thermal or molecular sub-
systems might be pictured as in Fig. 10.1.1. Thermal interactions are the subject of the first half
of this chapter while the second is concerned with the molecular subsystem.

Diffusion dynamics is familiar from the mag-
netic diffusion of Chap. 6 and the viscous diffusion
of Chap. 7. For both thermal and neutral molecular
diffusion processes, Sec. 10.2 builds on this back-
ground by identifying the characteristic times,
lengths and dimensionless numbers with analogous
parameters from these previous dynamical studies.
Much of the sinusoidal steady-state and transient
dynamics, boundary layer models and transfer rela-
tions are equally applicable here.

Electrical heating and the need for conduc-
tion and transport of that heat is often crucial
in engineering problems. Section 10.3 is there-
f- ore d4 evoLte d4 to t U 

al one-way acoup 
l n 1*- n .oe 

Uihheat
generated electrically in a volume is removed by
thermal diffusion, (a) in Fig. 10.1.1. The three- Fig. 10.1.1. Three-way coupling.
way coupling illustrated in Sec. 10.4 involves an
electrical conductivity that is a function of temperature, (b) in Fig. 10.1.1, an electric force created
by the resulting property inhomogeneity, (f), and a convection that contributes to the heat transfer,
(d).

The rotor model introduced in Sec. 10.5 should incite an awareness of analogies with dynamical
phenomena encountered in Chaps. 5 and 6 on circulating fluids, but it should not be forgotten that the
diffusion phenomena discussed in many of these sections also occur in solids. The magnetic-field-
stabilized Bsnard type of instability discussed in Sec. 10.6 is an example of a continuum phenomena
that might be modeled by the rotor. This study gives an opportunity to illustrate how the Rayleigh-
Taylor types of instability from Chap. 8 are modified if property gradients have their origins in
thermal or molecular diffusion.

Because the effect of molecular diffusion of neutral species is similar to that of thermal con-
vection, the sections on molecular diffusion are confined to the diffusion of charged species. Dif-
fusional charging of small macroscopic particles subjected to unipolar ions is the subject of Sec. 10.7.
Section 10.8 is aimed at picturing the standoff between diffusion and migration that makes a double
layer possible. Based on this simple model, shear-flow electromechanics are modeled in Sec. 10.9 and
used to introduce electro-osmosis and streaming potential as electrokinetic phenomena. Another electro-
kinetic phenomenon, electrophoresis of particles, is taken up in Sec. 10.10. Sections 10.11 and 10.12
introduce electrocapillary phenomena, where the double-layer surface force density from Sec. 3.11 comes
into play. Sections 10.7 and 10.8 involve links (a) and (b) in Fig. 10.1.1, while Secs. 10.9, 10.10
and 10.12 involve all links. The sections on molecular diffusion suggest the scale and nature of elec-
tromechanical processes found in electrochemical, biological and physiological systems.

10.2 Laws, Relations and Parameters of Convective Diffusion

Thermal Diffusion: The most common thermal conduction constitutive relation between heat flux and
temperature is Laplace's law:

= -k VT (1)

where kT is the coefficient of thermal conductivity. Not only in a perfect gas, but also for many
purposes in a liquid, the internal energy is usefully taken as proportional to the temperature. Thus,
the energy equation, E'q. 7.23.4, becomes

BT + 2 d (
a- + v.VT ~= T+ ý • d d; ' f +T - pV~v (2)

PCv
where the thermal diffusivity is defined as KT kT/pc,. From left to right, terms in this expression
represent the thermal capacity, convection and conduction. The last term is due to electrical and
viscous dissipation and power entering the thermal system because of dilatations. Although cv and kT
are in general functions of temperature, thermally induced variations of other parameters are usually
more important and so cv and kT have been taken as constant in writing Eq. 2.
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Table 10.2.1. Thermal diffusion parameters for representative materials.

Temp. Mass Specific Thermal Thermal Prandtl
Material (OC) density heat conductivity diffusivity number

P (kg/m3) (J/kgoC) kT (watts/moK) KT (m2/s) PT PT

Liquid c
Water 10 1.000x10 3  4.19x103  0.58 1.38x10 7  9.5

" 30 0.996x103 4.12x103 0.61 1.46x10 7  5.5

70 0.978x10 3  3.96x10 3  0.66 1.61x10 -7  2.6

" 100 0.958x103 3.82x10 3  0.67 1.66x10- 7  1.8
7  

Glycerine 10-70 1.26x103 2.5x103 0.28 0.89x10 - 1.3x10

Carbon tetra- 3 3 0.832xi0- 7  7.3
15 1.59x10 0.83x10 0.11 0.832x10 7.3

chloride

3  3  4.2x10-6  2.7x10- 2hercury 20 13.6x10 0.14x10 8.0 

CErelow-117 50 8.8x103  0.15x10 3  16.5 1.25x10- 5  ,-5xlO- 3

Gases c
v

Air 20 1.20 0.72x103  2.54x10- 2  2.1x10- 5  0.72

100 0.95 0.72x103  3.17x10- 2  3.3x10- 5  0.70

Solids CP

Aluminum 25 2.7x10 0.90x103  240 9.4x1 -

Copper 25 8.9x103 0.38x103  400 llx10 7

Vitreous quartz 50 2.2x10 3  0.77x10 3  1.6 9.4x1 -7

1o

With electrical and viscous heating given, and work done by dilatations negligible (as is
usually the case in liquids), Eq. 2 becomes a convective diffusion equation analogous to magnetic
diffusion equations in Chap. 6 and viscous diffusion equations in Secs. 7.18-7.20. Instead of the
magnetic or viscous diffusion times, the thermal diffusion time

TT = a 2/K

characterizes transients having A as a typical length. For processes determined by convection, it is
the ratio of this thermal diffusion time to the transport time, k/u, that is relevant. With u a
typical fluid velocity, this dimensionless number is defined as the thermal Peclet number,

RT = u/KT
The response to sinusoidal steady-state thermal excitations with angular frequency w is likely to have
a spatial scale that is much shorter than other lengths of interest, in which case the thermal diffusion
skin depth

_2K;
6, =1 w

is the length over which the thermal inertia of the bulk equilibrates the oscillatory conduction of heat.
It is this length that makes wTT = 2.

Typical thermal parameters are given in Table 10.2.1. In liquids, cp and cv are essentially
equal. Even at relatively low frequencies the thermal skin depth is perhaps shorter than might be
intuitively expected, as illustrated by Fig. 10.2.1.

Molecular Diffusion of Neutral Particles: The analogy between thermal and molecular diffusion
evident from a comparison of the equation for conservation of neutral particles (Eq. 5.2.9 with-b =
G - R = 0 and pi - n),

ant -V2
+ v*Vn = KDV n

at 
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to Eq. 2. Transient molecular diffusion, steady diffusion
in a steady flow and periodic diffusion are respectively
characterized by

time TD = £2/KD molecular diffusion (7)

RD = RU/KD molecular Peclet number (8)

6 = 2-2KD/; molecular diffusion (9)D 2skin depth

Typical parameters are given in Table 10.2.2. The mole-
cular diffusion skin depth is presented as a function of
frequency in Fig. 10.2.1, where it can be compared to the
thermal skin depth for representative fluids and solids.
Simple kinetic models support the observation that, in
gases, molecular and thermal diffusion processes have
comparable characteristic numbers.1 Relatively long
molecular diffusion times, high molecular Peclet numbers
and short skin depths typify liquids on ordinary length
scales. In liquids, the molecular diffusion processes
occur much more slowly than for thermal diffusion.

Convection of Properties in the Face of Diffusion:

One of the most common ways in which coupling arises &W/?r (HZj--
between the diffusion subsystem and either the electro-
magnetic or mechanical subsystem is through the dependence
of properties on temperature or concentration. The elec- Fig. 10.2.1. Skin depth for sinusoidal
trical conductivity is an example. In liquids, it can be steady-state diffusion of heat
a strong function of temperature. If a = o(T), it follows (solid lines) and molecular dif-
from Eq. 2 that fusion (broken lines) at fre-

quency f = w/2rr.
Do T DT a 2[ T + -] (10)
Dt T Dt at

so that, in the absence of diffusion and heat generation, the conductivity is a property carried by the
material. That is, the right-hand side of Eq. 10 is zero. Subsequent to the transport of material
having an enhanced conductivity into a region of lesser a, the diffusion tends to return the temper-
ature, and hence the conductivity, to the local value.

In a liquid, the electrical conductivity is linked to the molecular diffusion in a more complicated
way. Suppose that an ionizable material is added to a fluid, which in the absence of the added material
does not have an appreciable conductivity. Ionization is into bipolar species having charge densities
p+ with the unionized material having the number density, n.

The conservation equations for such a system were written in terms of the net charge density and
conductivity in Sec. 5.9, Eqs. 9-11. Written in normalized form, the terms in these equations can be
sorted out by establishing an ordering of the intrinsic times relative to times of interest, T. Typical
of relatively conducting, certainly aqueous electrolytes, is the ordering shown in Fig. 10.2.2. Because
T/Tth >> 1, generation and recombination terms dominate all others in the conservation of neutrals
expression, Eq. 5.9.11. It follows that

2 (b+ - b) Tn = b + b_ T e  
bb / 2 2pf 2 f  (11)

+mig ( + b + ) \*mig f

In the net charge density equation, Eq. 5.9,9, T/T e >> 1, so that the convective derivative on the left
and the last term on the right are negligible compared to the other terms. Hence, that expression
becomes

I.Va + ap f M K% K bK + K b V a (K+ - -_)0,+ + b_) (12)
D K+b+ Kb+

In Eq. 5.9.10, the first term on the right, multiplying T/T M, is expressed using Eq. 12, the second
is negligible because Te/Tmig << 1, the third through the sixKh cancel by virtue of Eq. 11, while

1. J. 0. Hirschfelder, C. F. Curtiss and R. B. Bird,.Molecular Theory of Gases and Liquids, John
Wiley & Sons, New York, London, 1954, pp. 9-16.
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'^^^
Table IO.Z.Z. Typical molecular diftusion parameters.

(Prandtl number PD n/PKD)

Diffusion Molecular
Material in Liquid Temperature coefficient Prandtl number

(oC) 1 (m2 /s) PD=TD /v=fl/P

-9
NaC1 H20 18 1.3 x 10-9  770

-9
5 0.9 x 10 9  1700

-9KNO 3  H20 18 1.5 x 10 - 9  670
-9

HC1 H20 19 2.5 x 10- 9  400
-9

KC1 H20 18 1.5 x 10-9  670
--912 Ethyl alcohol 18 1.1 x 10

Material in Gas K* PD

-502 Air K° = 1.78 x 10 - 5  0.8
-5

H2  N2  K = 6.74 x 10 5  0.2
-5

H20 5  Air K = 2.20 x 10 0.7

For these gases, KD = Ko(T/273)2/p; T in OK, p in atms.

tEvaluated at 0oC.

Fig. 10.2.2

I I I I Hierarchy of characteristic times for
ambipolar diffusion of conductivity.

th e Tmig TD

because te << Tmig, the last term is negligible compared to the next-to-last term. Hence, in dimen-
sional form, the expression becomes

Kb +Kb
D o K V 2 ; + - - + (13)Dt a a b+ + b

Thus, the conductivity is subject to convective diffusion, but with the amhbipolar diffusion coefficient,
Ka. Although oppositely charged ions may have different mobilities and diffusion coefficients, the
electric field generated by separation of species tends to make the species diffuse together. According
to Eq. 12, the net charge can relax essentially instantaneously. Given the distribution of a from
Eq. 13, coupled through 4 to the mechanical subsystem, Eq. 12 can be used to find the distribution of
net charge density and hence the force density.

2. For further data and indication of accuracy see E. W. Washburn, International Critical Tables,

Vol. 5, McGraw-Hill Book Company, New York, 1929, p. 63.
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THERMAL DIFFUSION

10.3 Thermal Transfer Relations and an Imposed Dissipation Response

Fully developed flows responding to imposed force densities (Secs. 9.3-9.5) are similar in their
description to the sinusoidal steady-state thermal diffusion exemplified in this section. Dissipation
densities and material deformation are known, and therefore not influenced by the resulting distribu-
tion of temperature and heat flux.

A typical example, shown in Fig. 10.3.1, is an MQS induction system in which a conducting layer
having thickness A is subject to currents induced by tangential magnetic fields at the upper and
lower surfaces:

HQ = Reiaej (Wt-ky); H' = Ree' ej(wt-ky)
y y y y

The layer,which might be a developed model for
the conductor in a rotating machine, translates T~o~i"Wrk1ý
in the y direction with the velocity U. Given
the electrical dissipation density ýd='~. ', what
is the distribution of temperature in the layer?
This density has a time-average part that depends
only on x and a second harmonic traveling-wave
part that depends on (x,y,t). Fortunately, for
a given motion, the conduction equation, Eq. 10.2,
is linear,

T aT 2 d
T + U T V T = d

at 
Y

By T Pcv

so that' a transfer relation approach can be taken
that combines ideas familiar from Secs. 2.16,
4.5 and 9.3. The system is in the temporal and Fig. 10.3.1. Electrical dissipation due
spatial sinusoidal steady state. to currents induced in moving

layer result in steady and second-
Electrical Dissipation Density: The harmonic temperature response.

traveling-wave magnetic excitations at the
(a,8) surfaces are in general determined by the
structure outside the layer. If the layer is B
bounded by current sheets backed by infinitely permeable material, the amplitudes (Hy,H) are simply
(-a, K(). Regardless of the specific system, magnetic diffusion in the layer is described by the
transfer relations (b) of Table 6.5.1. In terms of the resulting amplitudes (OAB)', the distribution
of the vector potential follows from Eq. 6.5.6:

sa inh YmX x sinh ym(x-A)
AA =- -A si Ym = + jpa(W - kv)sinhU. sinh yA

The electrical dissipation follows by evaluating

Sf f 1 ^ * 2 E j(2wt-2ky)= E'-[J J + ReJ e]d f d i a z z

with the current density related to I by Eq. 6.7.5,

1 d2A
Jz = - 2 - k 2  = -jo(w - kU)A(x)

z \dx2

Thus, the dissipation density is determined, with a steady x-dependent part and a second-harmonic
traveling-wave component,

=d o(x ) + Rej(x)eJ(2wt-2ky)

where

o = _2 o( - kU)2  *; = - 2 2o(w - kU) A

The temperature response is now the superposition of parts that are respectively due to the steady and
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to the second-harmonic drives,

j( 2t-k2y )
T = T (x) + ReT(x)e

0

where w2 = 2m and k2 - 2k.

Steady Response: Because th9 steady dissipation depends only on x and the system extends to in-
finity in the y directions, Eq. 7reduces to

/ d2To &
1"-=

dx' T

This expression is integrated twice, using as boundary conditions that the steady part of the temper-
atures at x = A and x = 0 are respectively TP and TO:

STo a + I 0  (x") dx"dx' x - 1 f T 0o(x")dx"dx' (9)

Associated with this steady part of the response is the heat flux

dT kT a 8 (x')d x

ro(x) = -kT (T o o o(x')dx' - (10)
o

The system external to the layer provides constraints on (To, T) and (ro',) which, together with
Eq. 10 evaluated at the respective surfaces, specialize these general relations.

Traveling-Wave Response: The response to the traveling wave of dissipation can itself be divided
into a homogeneous and particular part. Each takes the complex-amplitude form ReT exp j(w2t - k2)'
and so Eq. 2 requires that

d2 2 H 2 2 2 - k2U)

dx2 T T k + (11)

The homogeneous expression takes the same form, Eq. 2.16.13 with y + YT, as for the flux-potential
relations from Table 2.16.1, so the heat-flux temperature transfer relations can be written by analogy:

1
-coth yTA sinh yTA

= kTYT (12)
-1

coth yTAsinh yT

The total solution is T = TH + Tp and it follows that TH = T - Tp. Substitution of this and the
associated heat flux PH  r - rp on the left and right in Eq. 12 results in transfer relations ex-
pressing the combined response of the layer to internal and external dissipations:

-coth yA sinh yT
T sinh YTA

= k TYT (13)
-1

coth yTAsinh yTA P

Any particular solution can be used to evaluate these expressions; but, following the approach
used in Sec. 4.5, suppose that both the dissipation density apd the particular solution are expressed
as a summation of the same modes Hi(x):

S= Tp 
A

i(x); = .E T ii(x) (14)
i=0 i=0
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Then, Eq. Ilb shows that these modes satisfy the equation

d2 2) 2 i 2 J(W2 - k2U )

i  0; vi  --- - k2  (15)
dx kTTi KT

Boundary conditions to he satisfied by these modes are a matter of convenience in writing Eq. 13 or
expressing Hi. Here, Tp, and hence Hi, is taken as zero at the boundaries,

Hi = (16)sin vix; i = 

and it follows from the definition of vi, Eq. 15, that

i[ j (2 - k2U)
Tii /kT (-i) 2+ k2+ 2kT (17)

The amplitudes, ;i, are in this case simply Fourier amplitudes evaluated exploiting the orthogonality
of the modes, li,

1= $(x)sin v.xdx (18)
A 10

Thus, because T = 0 on the a and 8 surfaces, the total temperature response to the traveling-wave part
of the dissipation is

= Ssinh YTX sinh YT(xA)1 i e J (wRe 2t-k2y)T [ T h A + E• T sin X) e (19)sinh yTA sinh yTA i=1

In terms of the same temperature amplitudes, (Ta,TB), the heat flux at the boundaries follows by
evaluating Eq. 13:

,

-coth -coth yT TA sinh 1 yT Ta A (-1)i
(T0)0

^8 = kTYT
- soi= in 2 2 + (w2 -k2U)

7
sinh yTA coth YTA k 2 KT

These transfer relations between temperatures and heat fluxes at the (ac,) surfaces of the layer,
are applicable to the description of different thermal conduction systems in which the layer might be
embedded.

In practice, the thermal diffusion skin depth 6T '2kT/(w2 - k2U), based on the Doppler fre-
quency (w2 - k2U), is likely to be short compared either to the thickness of the layer or to half the
wavelength of the magnetic field, 2w/k2. For example, from the curve for copper in Fig. 10.21,

6T ' .06 mm at m/2w = 100 Hz. Thus for the lowest values of i in either Eq. 17 or Eq. 20, it is likely
that

2 2 1w2 - k2UI 2
() + k 2 << 2 (21)

T

The Fourier coefficients Ti are therefore proportional to 0i for the lowest terms in the series, and
the driven response has essentially the same profile over the layer cross section as does the dissipa-
tion density. In this case, the thermal capacity absorbs the heat with a 900 time delay of the temper-
ature relative to the dissipation density. There is insufficient time for the heat to diffuse ap-
preciably. Also note that in this short thermal skin-depth limit these lowest order terms are propor-
tional to 6'2, and so the thermal inertia represented by the heat capacity tends to suppress the oscil-
latory part of the temperature response.
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10.4 Thermally Induced Pumping and Electrical Augmentation of Heat Transfer

By means of a simple one-dimensional flow, illustrated in this section is the three-way inter-
action between electric, kinetic and thermal suhaystems, The flow is essentially incompressible.
Shown in Fig. 10.4,1 is a section from a duct for fluid flowing in the y direction. Grids in the plane
y m 0 and y = k constrain the fluid temperatures in these planes to be Ta and Tb, respectively. Typica
of many semi-insulators (such as doped hydrocarbons,plasticizers and even chocolate), this liquid has
an electrical conductivity that is a function of temperature. For this example,

a = all + aT(T - Ta)]

where a and aT are constant material properties.

With .the application of a potential difference,V,
between the grids, there is a current density Jo that

I V --i
flows in the y direction between the grids. Continuity r.. .... . .. .'.. .' .'. '. .. .. . ... ..."
requires that Jo be independent of y, and hence that ... ... '... . -- .' '.' ....... .. .'. . '.'..
the electric field between the grids be nonuniform. .. -. -' .
The charge density attending this nonuniformity con- ... .. -: a a .-.: -: • . -.::.
spires with the electric field itself to give an elec-
tric force density tending to pump the liquid. How- Fig. .. 4.1. ·•:.•.- ::: C -'. :" .- *-t f . .: -....". r--'.
ever, fluid motion implies the convection of heat and
a field induced contribution to the temperature dis-
tribution and hence to the heat transferred between the " --.X*..: a · .

:
grids.

S. . . .* . :
The width of the channel is large compared to £.

Hence, the velocity profile is uniform with respect to
the transverse direction. Viscous effects are confined
to the flow through the grids and reflected in a pres-
sure drop through each of the grids. Because the flow

Ta Tb
is one-dimensional and essentially incompressible,
V = U y. In terms of this velocity and the locations

Fig. 10.4.1. Configuration for electro-indicated in Fig. 10.4.1, the pressure drops through
thermally induced pumping andthe grids are taken as
electrically augmented heat
transfer.cnU cnU

Pa - Pal =d' Pb' - Pb -d

where the dimensionless coefficient c is determined by the geometry of the grids. The dependence of th
grid pressure drops on the viscosity and velocity is consistent with flow through the grids at a low
Reynolds number based on a characteristic dimension, d, of the grid.

Elecýical Relations: Consistent with the geometry is an electric field having the form = E(y)t.
It is assumed that in this EQS system, the charge relaxation time, Te, is short compared to the thermal
diffusion time, T , and that the transport time, k/U, is long compared to Te but arbitrary relative to
TT . That Te << JU means that the convection current density, PfU, can be ignored compared to the elec
trical conduction current density, GE. Thus, even with the fluid motion, Ohm's law is simply I = at
with a given by Eq. 1. Because Jf = Jo y is independent of y, this makes it possible to specify E(y)
in terms of the yet to be determined temperature distribution, T(y):

E = Jo{a [1 + a T(T - T a)]}

With the terminal current, i, taken as the cross-sectional area, A, times J , the electrical terminal
relation is then given by

V = Ed = a I4T
o a o [1 + a - T)A

Mechanical Relations: Only the longitudinal component of the Navier-Stokes equation is relevant,
and because the flow is one-dimensional, neither inertial nor viscous force densities make a contribu-
tion between the grids,. With the electrical force density written as the divergence of the Maxwell
stress (pfE m d(g cE2)/dy), the force equation then becomes simply

(p -. EE_ 2 ) = 0

s
l

.

e

-
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The quantity in brackets is independent of y and can be evaluated by letting p(O) = Pa' and E(0) =
E(T = Ta). Thus, evaluation of p at y = I where p = pb' gives

a 'b' E(Ea - Eb) (6)Pal - Pb' = 2 a N

By means of Eqs. 2, this expression is expressed in terms of the pressures just outside the grids:

J2
2cnU + 1 o - T -(T 2  (7)

Pb - a d 2(T - {[i + b  a ) ] 2- 
a

a

As with the electrical relations, Eqs. 3 and 4, the temperature distribution is required to evaluate
this mechanical terminal relation,

Thermal Relations: With the electrical and viscous dissipations taken as negligible compared to
thermal inputs from the grids, the energy equation, Eq. 10.2.2, reduces to

dT d2T
pC U kT d2 (8)

dy2

With one integration, this expression simply states that the heat flux, rT, is independent of y:

dTr = - k dy + pcvUT (9)T T dy v

The temperature distribution is then determined by solving Eq. 9 subject to the condition that T(O)=T :

T (= - e ) + Te (10)kTRT a

Here, RT 2 pcv U/kT is the thermal Peclet number.

What might be termed the thermal terminal relation is found by evaluating Eq. 10 at y = k where
T = T and solving for the heat flux, now determined by Ta and Tb and the velocity U (represented
by RT;:

Tb -. Tae kTRT (11)
rT  (11)

l- e

By way of emphasizing the degree to which convection contributes to the heat flux, the Nusselt
number, Nu, is defined as the ratio of rT to what the flux would be at the same temperature difference
if only thermal conduction were present:

TbNu 

Nu kT(Ta T)/ RT Tb 
(12)

a J

Given terminal constraints on the external pressure difference, Pb - Pa, electrical current,
i = JoA and temperatures Ta and Tb, the remaining variables are now known. The distribution of elec-
tric field intensity and the voltage are given by Eqs. 3 and 4. The flow velocity, U, follows from
Eq. 7. and hence RT is determined. Finally, the temperature distribution and heat flux (or Nusselt
number) are given by Eqs. 10-12.

Illustrated in Fig. 10.4.2 is Nu as a function of RT for the case where Ta > T From Eq. 7,
note that if the flow were re-entrant so that Pa = Pb, the fluid velocity and hence would be pro-
portional to Jo. Typical distributions of the temperature are shown in the insets to Fig. 10.4.2.
Illustrated is the tendency of the convection to skew the temperature profile in the streamwise direc-
tion from the linear profile for conduction alone.
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2 Fig. 10.4.2

Nusselt number as a function
of thermal Peclet number for
Tb/Ta = 0.5. Inserts show

-2 0 temperature distributions
typical of positive (RT = 4)
and negative (RT = -4) flows.

TO 2-2-
O IYA.

10.5. Rotor Model for Natural Convection in a Magnetic Field

When heated, most fluids decrease in mass density. In a gravitational field, the result is a
tendency for hot fluid to rise and be replaced by falling cold fluid. Heating and cooling systems
exploit the transport of heat through the agent of this "natural" convection.

The electrothermal pumping illustrated in Sec. 10.4 is an electromechanical analogue of this
process. Gravity is replaced by the electric field and the role of the temperature-dependent mass
density taken by the electrical conductivity.

The model developed in this section can be applied to understanding such aspects of thermally
induced convection as the instability that starts the convection with the thermally stratified system
satisfying conditions for a static equilibrium.

Thermally induced circulations are often undesirable. An example is in the growth of crystals,
where convection is a source of imperfections in the product. Especially in liquid metals, it is
possible to damp these circulations by applying a magnetic field. Such damping is included in the
model.

In Sec. 10.6, the incipience of the instability and its magnetic stabilization are considered
again in terms of the more general fluid mechanics, but for small-amplitude circulations. The model
developed here retains nonlinear dynamical effects and is similar to models that have proved useful
in gaining insights into magnetohydrodynamic circulations of the earth's core.1

The cylindrical rotor, shown in Fig. 10.5.1, is both a thermal and an electrical conductor, such
as a metal. It is free to rotate with angular velocity 0. Surrounding the rotor is a jacket, the
exterior of which is constrained in temperature to Text(e). Specifically, representing heating from
below and cooling from above would be the exterior temperature distribution

T ext = TE - Te sin 8

•if TE were positive.

Heat transferred across the thickness, d, of the layer to the shell has alternative mechanisms
for reaching the top of the cylinder and being transferred back across the layer to the exterior.
Along the shell periphery, the heat can be thermally conducted, or if the shell turns out to be moving,

1. W. V. R. Malkus, "Non-periodic Convection at High and Low Prandtl Number," Mem. Soc. Roy. Sci.
Liege 4 [6], 125-128 (1972).
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it can be convected. For conduction alone, the heat flux is
symmetric and so also is the temperature distribution. Thus,
if there is no motion, thermally induced changes in mass den-
sity on the right are the same as to the left, and the effect
of gravity gives rise to no net torque. But, if there is
motion, conduction of heat is augmented on one side but in-
hibited on the other, and there is a skewing of the temper-
ature distribution. The result is an expansion of the mate-
rial on one side that exceeds that on the other, and a net gravi-
tional torque that tends to further encourage the motion. This
tendency toward instability that depends on the rate of rotation
is countered by two other rate processes. One results in viscous
drag from the fluid surrounding the cylinder, modeled here by the
thin layer of fluid. As an additional damping mechanism, a mag-
netic field ý =Holy is imposed. Thus, in response to the motion,
z-directed currents are induced in the cylinder in the neighbor-
hoods of the north and the south poles, and these conspire with
Ho to produce a rate-dependent damping torque on the rotor.

Heat Balance for a Thin Rotating Shell: An incremental sec-
4t- n- fk th - Il Uh in LV Fi 1 5 2 de U Ube 4b h

equation in integral form, Eq. 7.23.3. Consistent with the mate-
rials being only weakly compressible is the neglect of pV-v. The

Fig. 10.5.1. Cross section of
objective here is a quasi-one-dimensional model playing a heat-

rotor used to model ther-
transfer role that is analogous to that of the shell models intro-

mally induced convection.
duced in Sec. 6.3 for magnetic diffusion.

The rate of increase of the thermal energy stored in the section of shell is accounted for by the

net convection and conduction of heat into the section plus the volume dissipation,

8T
pc [R(AO)A] --_= -PCv AR[T(O + AG) - T(0)]

+ kA[ T (6 + Ae) - ()- ) R(AO) T r + dR(AO)A
T R a 6 Od~dB

Divided by AO and in the limit AO - 0, Eq. 2 becomes

a aT kT 2T 1 r d 
+-)+T=t PvR 2 2 Ape +P

v v

In the following, it is assumed that the volume dissipation, Od, associ-
ated for example with ohmic heating, is negligible compared to heating
from the exterior.

In Eq. 3, the angular velocity (like the temperature) is a depend-
ent variable. The expression is nonlinear. Because the shell can only
suffer rigid-body rotation, it is appropriate to reduce the thermal
aspects of the problem to "lumped-parameter" terms as well. If the
thermal excitation were more complicated than Eq. 1, it would be neces-
sary to represent the temperature distribution in terms of a Fourier
series. But for the given single harmonic external temperature distri-
bution, only the first harmonic in the series is required:

T m To(t) + T cos 6 + T sin 0
0 x y

Fig. 10.5.2. Incremental
The components (Tx,Ty) represent the components of a "thermal axis" section of thermally
for the cylinder.

conducting moving

the jacket is represented in terms of a surface shell.Heat flux through 

coefficient of heat transfer, h, so that rr = h(T - TA For pure conduc-

tion through a fluid layer having thermal conductivityt kTf, and thickness d, h = kTf/d.

Substitution of Eq. 4 into Eq. 3 results in terms that are independent of 0 and that multiply

cos 6 and sin 6, respectively. The equation is satisfied by making each of these groups vanish. Hence

the three expressions
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dTo hdt cv (T - TE ) (5)

dTx kT h
d -GT T - T (6)
dt y pc 2 x Apcv xpcvR

dT kT h hT
S ___ nT T= T h T e(7)
dt x pcR2 y A y Apc v

Because To only appears in Eq. 5, that expression serves to determine the mean temperature distribution.
In the remaining equations, the dependent variables are (Tx, Ty, .). Thus, a mechanical (torque) equa-
tion for the rotor will complete the description.

Magnetic Torque: Within the electrically conducting shell, Ohm's law (Eq. 6.2.2) requires that
the z-directed current density be

J = a(E - poHo R sin 8) (8)

Here, the magnetic field intensity due to the current in the rotor is ignored. The ends of the cylindri-
cal shell are pictured as being shorted electrically by perfect conductors. Because the electric field
in this imposed field approximation is irrotational, and there is no magnetization contribution to
Faraday's law, the shorts require that Ez = 0 in Eq. 8. Thus, the magnetic torque per unit length in
the z direction is

2 3 2 27

zm 0 oo

Consistent with the low magnetic Reynolds number approximation used is a torque proportional to speed
that tends to retard the rotation.

Buoyancy Torque: Typically, an increase in temperature results in a decrease in density, although
there are exceptions. For small excursions in temperature the surface mass density (kg/m2) is taken
as

(10)am = aM[l - a(T - TE)] 

where a is typically positive. Of course, associated with an increase in surface mass density is a
local extension of the shell. The resulting effect on the radius tends to be cancelled by contrac-
tions elsewhere, but in any case will be neglected, Thus, the net gravitational torque per unit length
on the shell is

Tzg = -g --M[1 c(T - TE)]R cos 6 RdO (11)

With the use of Eq. 4, this integral reduces to

Tzg = wrgaaR2Tx  (12)

A positive Tx means the shell is hotter on the right than on the left, and for positive a, material
should tend to rise on the right and fall on the left. As expressed, this buoyancy torque is indeed
positive under such circumstances.

Viscous Torque: The fluid in the jacket surrounding the shell is presumed thin enough that its
inertia is negligible compared to that of the shell. Also,viscous diffusion is complete in times of
interest. Then, the flow can be pictured as plane Couette with a shear stress -DnR/d. Thus, the vis-
cous torque is

3
T 2 nR3 (13)zv d

Torque Equation: The shell has essentially a moment of inertia per unit length 2wR3 aM. (Small
changes due to the expansion are ignored.) Thus, the torques from Eqs. 9, 12 and 13 are set equal to
the inertial torque:
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3 = -AR3 ap2H2 + g 4 R2 2R (14)
2iR3 -AR o o d n (14)

Along with Eqs. 6 and 7, this expression provides a relationship between Tx, Ty , and Q.

Dimensionless Numbers and Characteristic Times: Normalization of the three equations of motion
so that

T = T /T, T = T /T , t = tT , 2 = Q/T (15)

x -x e -ye T T

identifies characteristic times:

pc R Apcv 2 R M daM 2 RaM
T T TRa; T- T
T kT  ' t h' g g(oMaTe) ' m v TMI= pH2

00

and dimensionless numbers

2

_ Rdga~MTepCv =vT T  RgaMRTePcv TMI T
R " R= 
av 2nkT 2T ' am 22 2

g ooT mg

and leaves Eqs. 6,7 and 14 in the form

dT

(16)dt = T - Tx(l + f) 

dT

= Tx - T (1 + f) - f (17)

1 d_
- - + R T (18)

xPT dt 

where TT/Tt E f. Thus, only three dimensionless numbers specify the physical situation, f,

-l -1-1 T 
T 1 

T
m

R E[R + R and p p ( + 1 ) (19)
a av am T 1 2 2 T

V T I

The thermal diffusion and relaxation times TT and Tt, respectively, represent the dynamics of
heat conduction in the azimuthal direction and radially through the jacket, in the face of the shell's
thermal inertia. The period of a gravitational pendulum having differential surface mass density
GMaTe and total surface mass density oM is familiar from the gravity waves described in Sec. 8.9. The
thin-shell magnetic diffusion time, Tm, is the time for circulating currents to decay (Sec. 6.10),
while TV is a viscous diffusion time based on the fluid viscosity but the mass density of the shell
(Sec. 7.18).

The Rayleigh number, Ra, is large if the time for gravitational acceleration is short (Tg is
small) compared to the geometric mean of the time for viscous slowing of the shell, Tr, and the time
for the shell temperature to return to a uniform distribution, rT . Put another way, T2/Tv is a
gravity-viscous time representing the competition of gravitational and viscous forces. The Rayleigh
number is then the ratio of the thermal diffusion time to this gravity-viscous time.

The magnetic Rayleigh number, Ram , is large if 
Tg is short compared to the geometric mean of TT

and TMI/¶m, where the latter is the time required for the magnetic damping to slow the shell despite
its inertia.

In the absence of the magnetic field, PT plays the role of a thermal Prandtl number, the ratio
of the thermal to the viscous diffusion time. With negligible viscosity but a magnetic field, the
number becomes what might be termed a thermal-magnetic Prandtl number, where the viscous diffusion time
is replaced by the time T /tm.
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Nu

Ra-
Fig. 10.5.3. Graphical solution of Eq. 21. Fig. 10.5.4. Vertical heat flux normalized

to flux in absence of rotation as a
function of Ra.

Onset and Steady Convection: The similarity between the thermal rotor model and the model for
electroconvection developed in Sec. 5.14 (see Prob. 5.14.2) suggests looking for a stationary state.
In Eqs. 16-18, the time derivatives are taken as zero and from the first two equations it follows that

-RT
T =  Y =  f (20)
x (1 + f) (l + f)2 + 2

Hence, the torque equation is expressed in terms of the angular velocity:

R fn
= a (21)

(1 + f) + n

The graphical solution of this expression, pictured in Fig. 10.5.3, is familiar from the elec-
tric rotor of Sec. 5.14. If Ra is small, the only intersection of the two curves is at the origin
and the rotor is stationary. A negative or positive velocity obtains if Ra exceeds Ra, where

Rc = (1 + f)2/f (22)
a

so that the slope of the thermal torque curve at the origin exceeds that of the viscous-magnetic
torque curve (which in normalized form is unity). Solution of Eq. 21 gives this velocity and Eqs. 20
give the associated components of the temperature:

0 = v(R - Re)f; Tx = /R ; T = -(1 + f)/R (23)aa x a y a

These steady conditions are interpreted as the result of an instability having its threshold at

Ra = Ra and resulting in steady rotation in either direction. As Ra becomes large compared to its

critical value, Rc, the reciprocal angular velocity is approximated by the product of the gravitation-
al time and the square root of the ratio of the fluid thermal diffusion time to a time representing
the combined damping effects of viscosity and magnetic diffusion.

The rotation is reflected in the vertical heat flux. Heat passing into the jacket over the lower
half and leaving over the top half is augmented by the motion. From Eq. 5 for the steady motion, it
follows that To = TE. Using Eqs. 1 and 4, the heat flux is computed from

QT =  r Rde =  h(T- T ext)RdO = 2hR(T + Te) (24)

The Nusselt number, Nu, is now defined as the ratio of this heat flux to what it would be in the
absence of rotation (convection),
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QT () = 1 + T y()

Nu T(=0) 1 + Ty (0)

Through Eq. 23, it follows that

(+ f)[l (1+ f) c
R a(1 + f ) [1 - R ] ; > Ra Ra
a R Rc  (26)

1 ; R < R<a a

The Nusselt number is shown as a function of Ra in Fig. 10.5.4. This type of dependence is typical of
fluid layers heated from below. At most, the effect of the steady convection is to render the rotor
isothermal, but even then conduction through the jacket limits the flux. Hence, the asymptote (l+f)
for Nu as Ra,-*. Raising the magnetic field reduces Ra and hence suppresses the heat flux. Of course,
if the magnetic field is large enough to prevent the convection altogether by making Ra < Ra, then
heat transfer is solely due to conduction and Nu -+ 1.

The dynamical model can be used to study transient behavior. A hint that the predicted phenomena
are of great variety is given by considering the stability of the steady rotation just described.
Perturbation of the steady rotation shows that oscillatory instability (overstability) can result at
high Ra (see Prob. 10.5.1). Because the rotor inertia now comes into play, PT is therefore a critical
parameter.

If heated from the side, the rotor is not in a state of static indeterminancy. It can execute
steady rotation in one direction without a threshold. This configuration is also useful for modeling
practical natural convection systems. These observations are developed in the problems.

10.6 Hydromagnetic B4nard Type Instability

What is conventionally termed Bgnard instability is commonly seen when a layer of cooking oil in
the bottom of a pan is heated from below.1 If heat were applied with perfect uniformity over the
horizontal plane, density stratification would result because the lighter fluid is on the bottom. What
is seen is cellular convection, as illustrated in Fig. 10.6.1, and it results because, in the gravita-
tional field, the configuration of mass density is unstable, as might be expected from Sec. 8.18.
Because material of fixed identity tends to lose its heat to its surroundings, and hence to take on the
same mass density, thermal diffusion requires a finite vertical heat flux before the convection is ob-
served.

The rotor of Sec. 10.5 is a finite-amplitude model for this cellular convection. Recognized now
are the infinite number of degrees of freedom of the actual fluid, but the continuum model is re-
stricted to perturbations from the static equilibrium.

The layer, shown in Fig. 10.6.2, is horizontal. Driven by a temperature difference Tb-Ta, the
static layer sustains a uniform vertical heat flux ro. The heat conduction through this static layer
is in the steady state, so the temperature distribution is linear and the heat flux independent of x.
With DTs the stationary gradient in temperature, this flux is 0o = -kTDTs.

There is no equilibrium magnetic force density, so gravity alone is responsible for the vertical
pressure gradient. Conditions for the magnetic Hartmann-type of approximation prevail, in that the
magnetic diffusion time, Tm, is much less than the magneto-inertial time TMI , while TMI is much less

than the viscous diffusion time, Tv (see Sec. 9.9). In fact, in this section, viscous effects will be
ignored altogether.

The gravitational acceleration of the fluid has its origins in the dependence of the mass density
on the temperature. For the relatively small changes in mass density typical of liquids,

p = p [l + a (T TE)] (1)

where po and a are constants and TE is the average equilibrium temperature. The coefficient of thermal
expansion, ap, is typified in Table 10.6.1.

1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961, pp.9-75.
For effect of magnetic field see pp. 177-186.
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Fig. 10.6.1

Cellular convection subsequent to incipience
of thermally induced Benard instability.
A layer of silicone oil is heated from below
in a frying pan. (Reference 4, Appendix C).

Courtesy of Education Development Center, Inc. Used with permission.

x

Fig. 10.6.2

Layer of conducting fluid such as liquid
metal supporting uniform vertically di­
rected heat flux and magnetic field in­
tensity.

Table 10.6.1. Coefficient of thermal expansion a p - -(3p/3T)/p
for representative fluids at 2000 C

Coefficient of thermal
Liquid expansion

l(OC- )up

4
Water -2.1 x 10-

4Glycerol -4.7 x 10-
4Mercury -1.8 x 10-
4n-Xylene -9.9 x 10-

Gas (at constant pressure)

-3Dry air -3.4 x 10

For small temperature excursions, mass conservation becomes

+ DT
V'v -u ­ (2)

p Dt

so the flow is not exactly solenoidal. It is straightforward to include dilatational terms in the force
and energy equations, but the additional analytical effort is not justified in the class of flows of
interest here. Because up is small, V·v ~ O. However, it does not follow that the mass density of a
given element of fluid remains constant.

The perturbation part of the thermal equation, Eq. 10.2.2 with ~d ~ 0, makes evident why the
temperature (and hence the mass density) of fluid of fixed identity varies:

aT' 2- + (3)
at (DT )v = LV T'

s x -L

On the left is the time rate of change of T' for a given element of fluid, and on the right the thermal
diffusion that accounts for this rate of change.
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The force equation is written neglecting the viscous force density:

p +p1-a (T - T )]g + gT'1 + I x Hi

Consistent with the Hartmann type approximation considered in Sec. 9.9, Ho is imposed both in the force
equation and in the constitutive law

needed in Eq. 4. Also, because the imposed H is constant,

Vx E 0

With Eq. 5 substituted into Eq. 4, the pressure is eliminated from the latter by taking the curl. In
fact the desired equation for vx, devoid of 1, is obtained by taking the curl again and exploiting the
identity V x V x v V(V.)) -V 2$. Then the x component is simply

2
2( T' a2 T'\ 2 x

.) V- 2v=2R.1 at x= -p 0oy 2
2 / S(oH o  2

ax

Here, the mass density has been approximated as uniform in the inertial term and V.v - 0. This last
approximation is valid provided ap£ DTs << 1, where I is a typical length, perhaps the thickness A of
the layer. •For a layer of mercury, 1 cm thick, subject to a 1000C temperature difference, this number
is 1.8 x 10- .) The electric field appears in the other components of the force equation operated on
in this fashion, but not in the x component.

In normalized form, Eqs. 3 and 7 become

[I (D 2 - k 2 ) + D2]v - R k2T = 0
p x am

v + [j, - (D - k2)]T = 0

where

W = /(A2 ) = TADTs; r = rxkTDT L-
L ; T 'L

- s x -xT s

2 2
x = xA; vx KT/A; p = Ko.,p /A

. b - 'ý
The variables that complement (T,vx) are the thermal flux,

r = -DT (10)x

and the pressure, found from the x component of the force equation, Eq. 4, in terms of (T,v x):

Dp = RamPTMT (11)- jvx

The magnetic Rayleigh number and thermal-magnetic Prandtl number are familiar from Sec. 10.5,
where they are written as ratios of characteristic times.

Because Eqs. 8 and 9 have constant coefficients, solutions take the form

T= E T exp(ymx) (12)

x = Y2  - 2k ) ] T- E  J. - ( m exp(Ymx) (13)
m=l

where the latter follows from Eq. 9. The characteristic equation gotten by substituting into Eqs. 8
2and 9 is quadratic in y . Thus, roots take the form y = +y and y = +Yb. With a 7-[jw - (y2 - k2 )]

and b -[jo - (yb - k2 )], the conditions that Eqs. 12 and 13 assume the correct values at the a and B
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surfaces are

a
Ya -Y, Yb Yb

e e e e T
IT4

1 1 1 1

I~
(14)

ae ae be be T

a a b b --

The procedure for deducing transfer relations between T ,T xx] and [rx' x,p ] is now similar to
that given in Sec. 7.19. Here attention is confined to the temporal modes and the critical conditions
for instability.

Suppose that the boundaries are actually rigid walls, so that (vx,vx) = 0, and are constrained
to be isothermal, so that (ia,T) = 0. Then the determinant of the coefficients in Eq. 14 must vanish.
The determinant is easily reduced by subtracting the second and fourth columns from the first and third,
respectively. Thus

4(b - a)2 sinh Ya sinh Yb = 0 (15)

Nontrivial roots to Eq. 15 are either ya = jnir or Yb = jnw, n = 1,2,..-. To determine the associ-
ated eigenfrequencies jw E sn of the temporal modes, the characteristic equation, found by substituting
exp(yx) into Eqs. 8 and 9,

2 2)) 2 2

[s(Ln n - k ) + py Y ][n- (yn - kL )] + pTRazmkL = 0 (16)

is evaluated with I = jnw. This expression can be solved for sn to give

+ B2(n S-B + k2 ] - R k}[(n)[1 2 + k2 

s -B = 2-2 (1.7)
2[(n) 2 + k ]

where B E nw)2 + (nw)2 + k2 2. Provided that the quantity in {} under the radical is greater
than zero, Mll roots are negative, because then the radical has a magnitude less than B. However, if
that term is negative, half of the roots represent growing exponentials. Thus, the critical condition
for the onset of cellular convection of each mode, n, at a wavelength 2w/k is

2
Rm (n) [(nr) + k 2  

(18)
k

Note that Ram is indeed'positive for the typical fluid heated from below, because ap is typically negativ
and DT, is also negative. In addition to the transverse modal structure represented by n, there is the
longitudinal dependence represented by k. According to the model, the n = 1 mode with infinitely short
wavelength (infinite k) is the most critical with incipience at

Rc 2 (19)am

To have a better approximation as to the critical longitudinal wavelength of the most critical mode, it
would be necessary to add further physical processes, such as viscous diffusion, to the model. The way
in which viscosity plays the damping role of the magnetic field is illustrated in Sec. 10.5 and
Prob. 10.6.3.

In the rotor model, there are two thermal time constants, with a ratio TT/Tt E f. In the fluid
layer, there is no such dimensionless ratio, because azimuthal and radial conditions involve the same
spatial scale and the same fluid properties. Hence, the critical Rayleigh number that is equivalent to
Eq. 19 is given by Eq. 10.5.22. The steady convection and overstability of that convection predicted
using the rotor model give some hint as to the nonlinear phenomena that ensue as Ram is raised beyond
Ra. At first, due to cellular convection, there is an augmentation of the heat transfer, as typified
by a Nusselt number that increases with Ra. The steady cellular motion is itself potentially unstable
with an ultimate turbulent (nonsteady) state the result. The transition to turbulence should be ex-
pected to be a function not only of Ra but also of pT"
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MOLECULAR DIFFUSION

10.7 Unipolar-Ion Diffusion Charging of Macroscopic Particles

Ions encountering the surface of a macroscopic particle tend to become attached. This is espe-
cially true in gases, where macroscopic particles are commonly charged in passage through an ion filled
region. This is illustrated in Sec. 5.5, where an imposed electric field is responsible for the migra-
tion of ions to the surface of the particle. The result is "impact" or "field" charging. The model in
Sec. 5.5 neglects the fact that, on a sufficiently small scale, there is also a diffusional contribu-
tion to the ion flux. Through diffusion, ions also reach the surface and hence charge the particle.
This contribution can exceed that due to impact for sufficiently small particles.

As diffusion charging proceeds, it does so at a decreasing rate because the electric field gener-
ated by the chaiging tends to produce an ion migration that counters the ion diffusion. The determina-
tion of this charging rate and hence of the particle charge gives the opportunity to discuss some general
features of the diffusion of a single charged species while obtaining a useful result.

The continuum conservation laws from Sec. 5.2 include contributions from molecular diffusion.
What is now described is a continuum in which almost all particles are neutral and uniform. A relatively
small fraction of the particles are charged. For a single charged species, taken for purposes of il-
illustration as positive, the conservation of mass equation is Eq. 5.2.9, with G = 0 and R = 0. Com-
bined with Gauss' law, it gives

+ (v + bE)-Vp = K V2  pb (1)at + E

With a characteristic length A and time T, fluid velocity U and electric field E, the respective terms
in Eq. 1 are of the order

1 U 1 bE 1 + 1 pb 1 (2)

trans mig I D o e

where the expression has been divided by a characteristic amplitude of p. For the charging of a
particle having radius a, Z might be taken as a. The competition between diffusion and migration is

Trepresented by the terms in Trmi and D . These terms are equal if Tmig = TD; and, because of the
Einstein relation, Eq. 5.2.8, tHis is equivalent to

kE = kT/q (3)

Thus, thermal diffusion and migration are of equal importance if the thermal voltage is equal to the
voltage drop over a characteristic length. For E = 105 V/m (typical of fields in an electrostatic
precipitator) the length that makes diffusion and migration equal is 2.5 x 10- 7 m. The radius, a,
of the macroscopic particle is taken as being of this order.

-4
The diffusion time is estimated by taking as a typical ion mobility from Table 5.2.1, b = 10-4

which (for an ion df one electronic chargel gives as a typical diffusion coefficient K+ = 2.5 x 10-6.
Thus, the diffusion time is only 2.5 x 10- sec.

By comparison, the self-precipitation time Te is long. Whether ions are present in a given
volume by virtue of convection or migration, Te & 10-3 sec or longer is typical. After all, the ions
are self-precipitating with this time and some other mechanism having an equally short characteristic
time must be available to secure the required density.

The transport time is estimated by taking as typical the velocity of a charged submicron particle
in a field of 105 V/m, say 10-2 m/sec. Thus trans = 2.5 x 10-5 sec, which is still 100 times longer
than TD and Tmig.

Consistent with ignoring the self-precipitation term is the neglect of contributions to t from the
diffusing ions. Thus, I in Eq. 1 is taken as imposed, in general by the charge, Q, on the macroscopic

particle and charges on external electrodes. With this understanding, and one more observation, Eq. 1
then reduces to

V.(bip - K Vp) = 0 (4)

The first term in Eq. 1 has been neglected because the time scale for the charging process is
very long compared to the diffusion and migration times. Looking ahead, it will be found that the
charging time is of the order of Te . The charging process is quasi-stationary in the volume with the
transient resulting only because of the field's dependence on the charge, Q, of the macroscopic
particle.
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In general, the solution of Eq. 4 with an externally applied electric field is difficult. Here,
it will now be assumed that any ambient electric field is small compared to (kT/q)/£. Thus, in Eq. 4
the electric field is now taken as

= 2r (5)
A 2 r4TE r
O

With this field there is a radial symmetry, so Eq. 4 can be integrated once to obtain

247r K+ d- p (6)(ý 
+ dr E

o

Here, i(t) is the electrical current to the particle.

Superposition of particular and homogeneous solutions to Eq. 6 results in

is i1
o ) bg i•°o 

P = (Po + bQ exp 4 Q (7)

where the coefficient in front of the second term, the homogeneous solution, has been adjusted to make

p pO far from the particle.

The diffusion model pictures ions in the neighborhood of a given point as having a random distribu-
tion of velocities. At the surface of the particle, those moving inward are absorbed and this forces
the ion density there to zero. Thus, a second boundary condition is p(a) = 0 and Eq. 7 then becomes a
relation between the particle charge and the rate of charging, i(t):

dQ = i = bp° o(8)Qe-fQ (8)
dt Eo - fQl 

where in view of the Einstein relation, Eq. 5.2.8, f - q/4E oakT.

Rewritten so as to be integrable, this Fuchs-Pluvinage equation1 becomes

Q efQ -t b p
dQ - dt (9)

o Q o 0

Integration then gives

Qm

m-- m t (10)
m=l

where Q = Q/QD ( =  /f = 47eoakT/q is the charge needed to terminate the thermal "field", (kT/q)/a,
on the surface of the particle) and where t = t/Te (Te = Eo/Pob, the self-precipitation time for the
ions based on the ion density far from the particle). This charging characteristic is shown in
Fig. 10.7.1.

Diffusion charging is expected to dominate over impact charging if the particle is sufficiently
small that aE < kT/q, where E is the imposed or ambient electric field. Thus, in a field of 105 V/m,
particles must be smaller than about 0.2 um for diffusion charging to prevail. In fact, for the model
to be valid, there is also a lower limit on size. The continuum picture of diffusion depends on the
particle having a radius that is large compared to the mean free path of the ions and neutrals. In air
at atmospheric pressure, this distance is 0.09 um. For particles somewhat smaller than this, the con-
tinuum diffusion model is called into question. Models based on having a mean free path much greater
than the particle radius give a charging law that .is surprisingly similar to Eq. 10,2 so the result is
actually useful for particles smaller than the mean free path. Effects of the ambient field (impact
charging) in combination with diffusion have been considered. 3

1. N. A. Fuchs, Izv. Akad. Nauk USSR, Ser. Geogr. Geophys. 11, 341 (1947); P. Pluvinage, Ann. Geo-
phys. 3, 2 (1947).

2. H. J. White, Industrial Electrostatic Precipitation, Addison-Wesley, Reading, Mass., 1963,
pp. 137-141.

3. B. Y. H. Liu and H. C. Yeh, J. Appl. Phys. 39, 1396 (1968).
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Fig. 10.7.1

Normalized charge on a macroscopic par-
ticle having radius a, as a function of
normalized time, where charging is by
diffusion alone, QD E 47eoakT/q and
Te E o/b.

U eU C'+U bU tU
t/, -

10.8 Charge Double Layer

Considered in this section is the competition between migration and diffusion that creates a
double layer at an interface between a bipolar conductor and an insulating boundary. The fluid is
some form of electrolyte in which dissociation has created ion species having densities p+ with a
background of molecules having density n. The conservation laws for the charged and neutral species
are Eqs. 5.8.9 and 5.8.10 and the system is EQS.

At the outset, the electrolyte is presumed to be highly ionized. As discussed in Sec. 5.9,
this means that generation largely depletes the neutral density. In the neutral conservation equa-
tion, Eq. 5.8.10, terms on the left are essentially zero while recombination and generation on the
right almost exactly balance. As a result, G-R is negligible in the charged particle equations,
Eqs. 5.8.9, as well.

Consider the quasi-stationary distribution of ions in the vicinity of an insulating boundary.
For now, there is no fluid convection, so v = 0. The steady one-dimensional particle conservation
statements then reduce to

ddp

-x [b+ExP' - K+ d ] (1)=0 

d dp
d- [-bExp - K_ ] = 0 (2)

with Gauss' law linking the electric field to the charge densities

dcE

dx =p+ - (3)

The polarizability of the fluid is assumed uniform, so E is a constant.

The wall, at x = 0, is taken as insulating or "polarized," in that there is no current due to
either species through its surface. Hence, the current densities in brackets in Eqs. 1 and 2 are each
zero. These expressions are then solved for Ex. Because p-ldp/dx = d(tnp)/dx and Ex = -de/dx, it
follows that

+ P+ kT +
= IK+ 1in n (4)

b+ PO q Po

= ln ln - (5)
b Po q Po

- 0 0

Here, as an integration constant, the charge densities have been taken as reaching the same uni-
form density, po, far from the boundary. Also, the Einstein relation, Eq. 5.2.8, has been used to ex-
press the ratio of diffusion coefficient to mobility in terms of the thermal voltage kT/q. Consistent
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with the positive and negative charges being generated by an ionization is the assumption that the q is
the same for each ionized species.

The charge densities required to express Gauss' law can now be found by solving Eqs. 4 and 5 for

p±. Thus, Eq. 3 becomes the classic Debye-HUckell expression from which the double-layer potential is
determined:

d 2  sinh [D/(kT/q)] 
(6)

dx

Normalization of the potential and length makes clear the key role of the Debye length, 6D:

x =x6D, = kT/q, D EkT (7)

because then Eq. 6 becomes simply

d2
2 = sinh 0 (8)

dx

The Debye length is that distance over which the potential developed by separating a charge density po
from the background charge of the opposite polarity is equal to the thermal voltage kT/q. By sub-
stituting for kT/q = K6b, 6D can also alternatively be considered the distance over which the mole-
cular diffusion time 6/K is equal to the self-precipitation time c/pb. Thus, 6D varies from about
100 X in aqueous electrolytes to microns in semi-insulating liquids.

To integrate Eq. 8, multiply by DN and form the perfect differential

d •2 - cosh (9)

Far from the layer, the potential is defined as zero. Because there is no current flow there and the
charge densities neutralize each other in this region, the electric field -D4 also goes to zero far
from the boundary. Thus, the x-independent quantity in brackets in Eq. 9 is unity, and the expression
can be solved for DM. The x- and 4-dependence of that expression can be separated so that it can be
integrated:

dx = + d0 (10)
o - 2(cosh - 1)

As a function of the normalized zeta potential _, this result is illustrated in Fig. 10.8.1.

The exponential character of the potential distribution is best seen directly from Eq. 6 by recog-
nizing that if 4 << 1, sinh can be approximated by its argument. It follows that the solution is
simply 4 = -I exp (-x). For ý > 1, the rate of decay is faster than would be expected from low C limit.

On the interface is a surface charge given by

F2p FkTA

-f dx' .f = q

and this has image charge distributed throughout the diffuse half of the double layer. Found from the
potential by inverting Eqs. 4 and 5, the charge densities p+ and net charge density pf are illustrated
in Fig. 10.8.2.

Double layers can exist not only at interfaces between an insulating material and an electrolyte,

but even at the interface between a liquid metal such as mercury and an electrolyte. What is required
is an interface that, for lack of chemical reaction, largely prevents the transfer of charge. For
potential differences under about a volt or so, even a mercury-electrolyte interface can prevent the
passage of current. Double layers at such interfaces are taken up in Sec. 10.11. In the next two
sections, the double layer abuts a material that is itself a rigid electrical insulator.

1. P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York, 1966,
pp. 33-52.
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Fig. 10.8.1. Potential distribution in Fig. 10.8.2. Charge density distributions
diffuse part of double layer with for 5 = kT/q.
zeta potential as parameter.

10.9 Electrokinetic Shear Flow Model
--r

A double layer in an electrolyte abuting an insulating solid is sketched in Fig. 10.9.1. Even/

though this layer tends to be extremely thin, the application of an electric field tangential to the
boundary can result in a significant relative motion between the solid and fluid. From the boundary
frame of reference, the field Ey exerts a force density PfEy on the fluid, and shear flow results.
Because pressure forces prevent motion in the x direction, flow is essentially orthogonal to the double-
layer diffusion and migration currents. Thus it can be superimposed on the static double-layer dis-
tribution discussed in Sec. 10.8. In layers that are "wrapped around" a particle, as taken up in
Sec. 10.10, a component of the applied field tends to compete with the fields internal to the layer.
The model now developed can only be applied to such situations if the x component of the applied field
is small compared to the double-layer internal field.

The relative flow is inhibited by the viscous stresses associated with strain rates developed with-
in the layer itself. These strain rates are inversely proportional to the layer thickness (of the order
of the Debye length) so the relative velocity tends to be small. Nevertheless, such electrokinetic
flows are important in fine capillaries and in the interstices of membranes. Electrophoretic motions
of both macroscopic and microscopic particles in electrolytes also have their origins in this streaming.

The simple model developed now is used in this section to describe electro-osmosis through pores.
It will be used to describe electrophoresis of particles in Sec. 10.10.

Fig. 10.9.1

Schematic view of double layer
subject to imposed field in
y direction resulting in shear

+1t14
+ *+

iii""""" 
flow.

4t "4
f 

t- 1 t
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Zeta Potential Boundary Slip Condition: For flows that have a scale that is large compared to the
Debye thickness, the electromechanical coupling can be reduced to a quasi-one-dimensional model that
amounts to a boundary condition for the flow.

On the scale of the double layer, the imposed electric field can be considered to be uniform. The
velocity is fully developed in its distribution in the sense of Sec. 9.3. Also, because the double-
layer region is so thin, the viscous force density far outweighs the pressure gradient in the y direc-
tion. Thus, the force equation, Eq. 9.3.4, takes the one-dimensional form

d2v dT
= T = EE (1)

dx2  dx ' yx y x

where the derivative of the shear component of the stress tensor simply represents the force density
pfEy. To prescribe the flow outside the layer, it is assumed that at the diitance d from the slip
plane, there is a fictitious plane at which fluid moves with the velocity v"i and sustains a viscous
shear stress Sa.

The constant from integration of Eq. 1 is evaluated by recognizing that the electric shear stress
falls to zero at x = d, where the external viscous stress equilibrates the internal stress:

dv

-- = = -T + Sa  (2)
dx yx yx

A second integration is possible because E is constant and Ex = -d4/dx. Also, Syx is a constant,
so that yx

fx dx cv.
nv = EE dx + S dx

y o y dx J o yx
(3)

= eE [D(x) - D(0)] + xSa
y yx

In terms of the conventions used in Sec. 10.9, the potential of the slip plane is taken as -t, while
that at x = d is zero, so Eq. 3 becomes

EE v = - d+ S (4)

y rn n yx

If the external stress, Syx, comes from shear rates determined by flow on a scale large compared
to 6D, the last term in Eq. 4 can be ignored. The mechanical boundary condition representing the
double layer is then simply

v = .-- (5)
y n

In refining the simple model, a distinction is sometimes made between the potential evaluated in the
slip plane and evaluated on the other side of a compact zone of charge that forms part of the double
layer but is not in the fluid and hence cannot move.

Electro-Osmosis: Flow through a planar duct, such as shown in Table 9.3.1, illustrates the applica-
tion of Eq. 4. Suppose that the duct width, A, is much greater than a Debye length. In the volume of
the flow, there are no electrical stresses, so Eq. (a) of Table 9.3.1 gives the velocity as

-E C 2

v (x) = + 
y n 2n By [(x2 (6)

A(6

The volume rate of flow per unit z follows as

3 EE 5
A d + E A (7)

= 12n dy n

This relation gives the trade-off between flow rate and pressure drop of an electrokinetic pump. The
pressure rise developed in a length k of the pore is at most that for zero flow rate,

Ap =!IEyc9/A 2 (8)
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In situations where A is small (but, to validate the model, still larger than a Debye length), this
pressure can be appreciable. For example, with 4 = 0.1 V (about four times the thermal voltage kT/q),
A = 1 Um, EB = 104 V/m, t = 0.1 m and c - 5co, the pressure rise is about 5 x 10n/m2 , which would
raise water to a height of about ei~m.

In membranes composed of a matrix of materials, perhaps of a biological origin, surrounded by double
layers, flow of fluid through the interstices is modeled as flow through a system of pores, each described
by a relation such as Eq. 7.1 The velocity profile for 6D arbitrary relative to A is found in
Prob. 10.9.1.

Electrical Relations; Streaming Potential: Associated with the electric field and flow in the
y direction, there is a current density

Jy = (p+b+ pb_)Ey + (p+ - p )vy (9)

The charge densities in this expression are as found in Sec. 10.8 and illustrated by Fig. 10.8.2. The
conductivity, p+b+ + pb_, tends to remain uniform through the double layer, but, if C > 1, tends to be
increased somewhat over the bulk value. The convection term is concentrated in the region of net charge,
and hence (on the scale of an external flow having characteristic lengths large compared to 8D) comprises
a surface current. Because it results from motion of the fluid, it might be termed a convection cur-
rent. However, it results from fluid motion within a Debye length or so of the boundary, and this mo-
tion is caused by the externally applied pressure difference and the field itself. For a small zeta
potential sinh i = 0 and 0 -C exp (-x/6D), and so it follows from Eqs. 10.8.4 and 10.8.5 that

2po'y 2Po

P+ - P = (kT/q) kT/q exp(-x/6D) (10)

and that the velocity of Eq. 3 is

EE
v = - y[1 1 - exp(-x/6 )] + X SO (11)
y n D n yx

The current density of Eq. 9 can be divided into a volume density represented by the' first term evalu-
ated with p+ = po and a surface current density represented by the second term

S2p o -x/6 EE C -x/6D) xSa
S (p - p)v = e (I - e ) + ydxSokT/q ono 

(12)2p 

n(kT/q) 2 y + yx) (12)

Both terms in this surface current density are due to convection, but the first reflects motion caused
by the field itself. This contribution therefore appears much as if the material had a surface con-
ductivity po 2

0 c6D/N(kT/q). Its origins are more apparent if it is recognized as the product of the sur-
face charge po6DC/(kT/q) and the slip velocity EBE y/.

The total current, i (per unit length in the z direction), flowing through a channel having
width A is then the sum of the surface currents at each of the walls and the bulk current

i = oAE + 2K (13)
y y

where K is given by Eq. 12. For the case at hand where A >> 6,D the wall stress, Syx, can be approxi-
mated using Eq. 5 as a boundary condition, and so is determined by the pressure gradient.
(See Prob. 10.9.2.)

10.10 Particle Electrophoresis and Sedimentation Potential

Electrophoretic motions account for the "migration" of a wide variety of particles in an applied
electric field intensity. Particles may be as small as large molecules or as large as macroscopic
particles (in the micron-diameter range). If these motions persist over times much longer than the
charge relaxation time, it is clear that the particle and its immediate surroundings carry no net
charge. The particle is not pulled through the fluid by the electric field, but rather by dint of the
field "swims" through the fluid.

1. A. J. Grodzinsky and J. R. Melcher, "Elecromechanical Transduction with Charged Polyelectrolyte
Membranes," IEEE Trans. on Bibmedical Eng., BME-23, No. 6, 421-33 (1976).
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Electrophoresis is used by chemists as a means of
classifying particles. For example, protein molecules
can be distinguised by electrophoretic techniques, and
the electrophoretic motion of particles through a liquid
absorbed in paper or comprising the main constituent of
a gel is used for routine clinical tests (paper and gel
electrophoresis). Electrophoretic motions are also used E 
to control particles of pigment in liquids, for example

Til ot I
in large-scale painting of metal surfaces.

Electrophoretic motions are now modeled under the
assumption that the particle is much larger in its ex-
treme dimensions than the thickness of the double layer.
The particles are insulating, and approximated as
spherical with a radius R, as shown in Fig. 10.10.1.
The particle is taken as fixed, with the fluid having a
uniform relative flow at z + 4-, as illustrated. Ex-
ternal electrodes are used to apply the electric field
intensity Eo, which is also uniform in the z direction.
As z - +-,

4 + -E r cos 6
o

Fig. 10.10.1. Solid insulating particle

Electric Field Distribution: For a control volume
erla 

double 
ortin su 

which cuts through the double layer, as shown in Fig. 10.10.2,
conservation of charge requires that the conduction current from the bulk of the liquid be balanced by
the divergence of convection surface current along the interface:

+ 4
n.J + V.•f = 0

Here, Kf is the integral of the tangential current density Pfv over the mobile part of the double layer
and takes the form of Eq. 10.9.11. It is assumed that, because the external viscous stress results
from strain rates on the scale of R, and relative motions of the liquid are due to the field itself,
the stress term in Eq. 10.9.12 is negligible compared to the first term. In terms of the spherical
coordinates, Eq. 2 therefore requires that at r = R,

-aor + R sin (a E sin 6) = 0 r Er

where o Ep es /n(kT/q). To satisfy tite condition on $ at in-
finity,SEq. 1, 4 Ks taken as having the fc)rm Particle

cos 8
S= -E o r cos 8 + A 2 (4)2r

Fig. 10.10.2. Control volume
It follows from Eq. 3 that

enclosing double layer.
2o

ER [o - R-S]
o

A= (5)2 as
[a + ]R

and hence that at r = R,

3E a
E 2- o0 sin 8

2(a + -- )R

What has been solved has the appearance of being an electrical conduction problem. But, remember that
the surface conductivity reflects the convection of net charge by the slip velocity of the fluid
relative to the particle.
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Fluid Flow and Stress Balance: The slip velocity follows from Eq. 10.9.3 evaluated using Eq. 6:

E
v e E = sin 6; 3 (7)

T1 6 0 2 0 s
1+ aR

In addition to this boundary condition, the radial velocity is essentially zero at r = R and the
velocity approaches the uniform one of Eq. 1 far from the particle. Because of the small particle
size and relatively low velocities, the conditions for low Reynolds number are likely to prevail.

The boundary conditions fit the exterior, n=l, high Reynolds number flows of Table 7.20.1. Thus,
the stress components follow directly from Eq. 7.20.24 evaluated using Eq. 7 and vr = 0:

(8)

Here the complex amplitudes represent the 6 dependence summarized in Table 7.20.1.

The net force on the particle in the z direction can be computed from these stresses by inte-
grating the appropriate components over the spherical surface, as in Eq. 7.21.1:

fz =  R2 rr- Sor) =*A 'Rn(6U + 4v )  (9)

There are no external forces acting on the particle, so fz = 0. It therefore follows from Eq. 9 that
the particle "swims" at a velocity

2 - e oiE (10)U = - Ve = 

1+--
oR

2
where a ps 2 E6 /n(kT/q). This velocity is now interpreted as the velocity of the particle due to an
appliedsfiela witR the fluid stationary. Note that it is in a direction opposite to that.of the applied
field (assuming that the zeta potential is positive, or that the charge in the liquid is positive, as
indicated in Fig. 10.10.1). The charges in the fluid surrounding the particle carry the fluid in the
direction of the field. The resulting force on the particle is in an opposite direction. The particle
moves as if it were subject to the net force QE, where Q is proportional to the net charge on the
particle side of the double layer.

As would be expected, for small zeta potentials, the particle velocity increases with ý. How-
ever, as ý becomes "large," this velocity peaks and finally becomes inversely proportional to r. This
finding might at first seem surprising, but relates to the fact that for large ý, the motion is im-
peded by fields generated by the build-up of charge carried forward by convection. According to the
model, convected charge must be carried back again by conduction through the surrounding liquid. Thus
it is that the tendency of an increasing ý to decrease the particle mobility is avoided by increasing
the conductivity of the surrounding fluid.1

With external forces such as those due to.gravity or centrifugal acceleration forcing a particle
through the liquid, reciprocal coupling occurs. Convection of charge in the double layer results in a
dipole of electrid field intensity and current density around the particle.. If many particles are
present, these generated fields add, to induce a "macroscopic" field measurable by electrodes immersed
in the liquid through which the ion of particle move. This sedimentation potential (or "Dorn
effect") is the subject of b. 10.10.3

10.11 Electrocapillarity

A simple experiment that would prove baffling without an appreciation for the action of double
layers at interfaces between liquids is sketched in Fig. 10.11.1. Mercury drops fall from a pipette

1. For extensive discussion see V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Engle-
wood Cliffs, N.J., 1963, pp. 472-93.
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Fig. 10.11.1

Falling mercury drops surrounded by
NaCI electrolyte are deflected as
they pass through imposed field Eo.
Typical for a drop having radius
R = 1 mm passing through field
of E0 = 100 V/m would be a hori-
zontal velocity of 5 cm/sec.

through an electrolyte between electrodes to which a potential difference of a few volts has been ap-
plied. The drops are strongly deflected to one of the electrodes.

It is natural to simply attribute a net charge to each drop. However, the electrolyte is rela-
tively conducting and this means that any net charge would leak away in a few relaxation times
(Prob. 5.10.3). For the experiment of Fig. 10.11.1 this time is about 10-8 sec! Clearly, the drop
and its immediate surroundings can carry no net charge on the time scale of the experiment. The drops
must be "swimming," much as for the electrophoresing particles of Sec. 10.10. However, there are two
important ways in which the drops do not fit the electrophoresis model. First, the drop is much more
conducting than its surroundings. More important, it moves much too fast to be accounted for by the
electrophoresis model and reasonable zeta potentials.

Up to potential differences on the order of a volt or so, the mercury-electrolyte interface can
be polarized, in the sense that there are no chemical reactions to sustain a current flow so that the
interface acts as an insulator. The result is an electric field within the double layer that is far
larger than that in the electrolyte, on the order of 108 V/m compared to 102 V/m. The conditions are
established for having a double-layer surface force density, as discussed in Sec. 3.11.

If the drops were rigid, the surface force density would have no effect. On a closed surface,
there is no net force resulting from a surface force density (Prob. 3.11.2). However, the liquid
surface can be set into motion. The shear rate is determined by the scale of the drop and not the
scale of the double layer. This is why the drops move with such surprising speed relative to par-
ticles subject to electrophoresis.

The double layer also provides a mechanism for mechanical-to-electrical transduction. In the
mercury drop experiment, electrical signals are generated in the electrolyte by the passing drops.
Here again is cause for surprise, because generation of an appreciable electric field by the motion
implies a significant electric Reynolds number. Based on the bulk properties of the electrolyte
and the time for a drop to migrate one radius, this number is typically 10- 7 . The lesson here is
that the relevant relaxation time should reflect the heterogeneity of the system. The electric energy
storage is in the double layer but the electrical loss is in the surrounding medium. Hence, the cor-
rect electric Reynolds number is modified by the ratio of the drop radius to the double layer thick-
ness, a number that is of the order of 10-3/10-8 = 105. Drop motions are taken up in Sec. 10.12.

That the double layer electric surface force density of Sec. 3.11 takes a form similar to that
found in Sec. 7.6 for surface tension, is a warning that in dealing with naturally occurring double
layers it is not possible to make a clear distinction between electrical and mechanical surface force
densities. The microstructure of the fields within the layer is in general not known. For example,
through the electrochemical interaction of mercury and electrolyte, interior fields are generated
which can be altered by an externally applied potential difference, but are not solely determined by
external constraints.
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Developments in this section make no distinction between electrical and mechanical surface
forces. Rather, a surface tension Ye is used to represent both electrical contributions and those
ordinarily associated with the surface tension. The starting point is a statement of conservation
of energy for an element of the interface. Such a statement defines the energy in terms of the local
geometry and potential of the interface. If the exterior field contribution to the energy of the
system is significant, then the energy stored in the electric field is a function of the geometry of
the interface and of neighboring conductors and dielectrics. This contribution of the exterior fields
is represented by the first term in Eq. 3.11.8. In what follows, it is assumed that exterior energy
storage is negligible.

The surface tension Ye is to the interface what the stress is to the volume. With the under-
standing that YE - Ye, the control volume of Fig. 3.11.1 is used, where Ye is visualized as a force per
unit length acting normal to the edges. Because the interface can be expected to have properties in-
dependent of rotations about the normal vector n, it is assumed at the outset that the surface tension
acting in the p direction is the same as that acting in the ý direction. Also, the edges are pictured
as free of interfacial shear stresses. (A monomolecular interfacial film, residing on the interface as
a distinguishable phase, can behave as two-dimensional fluid or solid. For the former, Ye is replaced
by a two-dimensional tensor yij, with components departing from the diagonal form Yij = Ye6ij used here
because of relative motion (because of surface viscosity). The role played by the pressure in the
mechanical three-dimensional force density is taken by Ye on the surface. The scalar surface tension
can be regarded as an inviscid model for the interface that is particularly appropriate if the inter-
face is clean.2

Force equilibrium for the control volume requires that Eq. 3.11.8 relate the surface force density

and the surface tension:

- ÷ + 1 1
T = -ny [- + (1)eR 1  R2 + V

where external stress contributions are dropped.

With the objective of relating ye to the double-layer charge, consider conservation of energy for

a uniform section of the interface. An incremental increase in the energy Ws stored in the section of

interface having area A can either be caused by doing work by means of the surface stress along the

edges, or by increasing the total double layer charge qd placed on the electrolyte side of the inter-

face in the face of the potential difference vd:

6Ws = ye6A + vd6qd (2)

The mechanical and electrical work in this expression make it analogous to the conservation of energy

statement for a lumped parameter electroquasistatic coupling system, for example Eq. 3.5.1. One dif-

ference is that in Chap. 3 the force is assumed to be of purely electrical origin.

A second useful connection is between Eq. 2 and similar thermodynamic relations used in Sec. 7.22

for compressible fluids. In the volumetric deformations of a gas, p6V plays a role analogous to that

of the term ye6A in Eq. 2.

With the objective of using the double layer potential difference vd as an independent variable,
recognize that vd6qd = 6(vdqd) - qd6vd so that Eq. 2 becomes

6W -e6A + qd6vd; W q dvd - Ws  (3)

where W1 is an electrocapillary coenergy function. In a manner familiar from Sec. 3.5, the assumption
that WL is a state function of A and vd makes it possible to write

aw' DW'

6W's =A 6A + v 6Vd (4)

and to conclude by comparing Eqs. 3 and 4 that

awl awla' y aq
s s e d (5)

v = --- q
e BA ' d vA

DD d avd d A

2. For discussion, see for example G. L. Gaines, Jr., The Physical Chemistry of Surface Films,
Reinhold Publishing Corp., New York, 1952.
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Fig. 10.11.2a. Incremental capacitance and Fig. 10.11.2b. Surface tension as
charge per unit area as function of function of voltage for
voltage for mercury-KNO3. Here the data of (a). y has been
electrolyte is 0.2 M KNO3 in gel. defined as value for
This solid-liquid interface exhibits H20-Hg interface.
properties typical of liquid-liquid
interfaces. 3

The third of these expressions follows by taking cross-derivatives of the previous two expressions.

An example of a constitutive law expressing the dependence of the charge on A is

qd = Aad(vd)

This expression pertains to a "clean" interface because it stipulates that provided the potential dif-
ference is held fixed, increasing the area of exposure between mercury and electrolyte proportionately
increases the total charge. Such a law would not apply if, for example, the layer were a thin region
of insulating liquid that conserved its mass and therefore thinned out as the area increased.

With the use of Eq. 6, Eq. 5c becomes the Lippmann equation:

aye
-A ,

v I 

The graphical significance of Eq. 6 for an electrocapillary curve is depicted by Fig. 10.11.2.3
double-layer charge/unit area determined from Ye by Eq. 7 does not depend on a specific model.

That an alternative view has been taken of the same type of surface force density treated in
Sec. 3.11 is illustrated by taking the coenergy stored in the area A as being proportional to that
area and the integral of a coenergy density over the cross section of the layer,

+
W' = A W'(v)dv

s
0

3. A. J. Grodzinsky, "Elastic Electrocapillary Transduction," M.S. Thesis, Department of Electrical
Engineering, Massachusetts Institute of Technology, Cambridge, Mass., 1971.
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Then, with the use of Eq. 5a, an expression is obtained for Ye comparable
to that for YE given with Eq. 3.11.8. Of course, here W' can include
contributions of a mechanical origin, whereas in Sec. 3.11 it does not.
To preserve the generality inherent to Eq. 3, it is integrated along the
state space contour of Fig. 10.11.3:

W' = - Yo6A + AV o(d) v
I

SJA 0 d d)vd

where an electrical "clean-interface" constitutive law, Eq. 6, is assumed. S V
The surface tension is defined as Yo with the potential equal to d." Thus,
measurement of ad and integration is one procedure for determining Ye, Fig. 10.11.3. Line integra-
which by virtue of Eqs. 5a and 9 is tion in state space

(A,vd) to determine
co-energy function,

(10)Ye = Eq. 9.Yo- d ad(vd) vd
d

Conventionally, ad is determined by electrical measurements. With the area held fixed, a section
of the interface is driven by a voltage composed of a constant part Vd and a small perturbation va. The
measured current is then to linear terms

dvd aod
d

(11)
id = ACd dt-;

so that the incremental capacitance Cd(vd) can be deduced. The surface charge then follows from the in-
tegration:

vd

(12)ad = d Cd(Vd)dVd
Dd

The constant of integration must be independently determined, say by measuring the voltage at which
there is no mechanical linear response to a tangential perturbation field. Thus, the electrocapillary
curve can be determined by two successive integrations, the first Eq. 12 and the second Eq. 10. An
independent measurement of the surface tension, say at the voltage for zero charge, 4)d, is required for
the second integration constant. The three curves for the differential capacitance, Cd, double layer
charge density ad, and surface tension Ye are illustrated in Fig. 10.11.2.

Finally, note that for a clean interface the double-layer shear force density can still be thought
of as the product of ad and the tangential electric field on the electrolyte side. This is seen by
combining the potential and tangential field boundary conditions of Eqs. 2.10.10 and 2.10.11 (with
Et = 0 and 0 = constant on the metal side of the interface) to write

Et =-VEvd (13)

Then, if Ye varies only by virtue of vd,

(14)EVYe =av VE d = odEtd

This expression for the shear component of T applies if the layer is homogeneous in the sense that
any section of the interface is characterized by the same constitutive law, Eq. 8.

Electrocapillary phenomena illustrate how double layers can impart a net electric surface force den-
sity to an interface. Although most studied and best understood for Hg-electrolyte interfaces, elec-
trocapillarity serves as a thought provoking example in developing models involving other more complex
combinations of materials.

4. P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York, 1966.
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10.12 Motion of a Liquid Drop Driven by Internal Currents

Although incapable of causing a net electric force on a closed surface, the double-layer con-
tributions to the surface force density can nevertheless induce net motion. The specific example
used to illustrate how is depicted by Fig. 10.12.1, and intended as a primitive model for the trans-
duction of an electrochemically generated current into net mechanical migration. Perhaps it might
pertain to the locomotion of a biological entity. With the driving current outside rather than in-
side, it is the configuration of the dropping mercury electrode. (See Prob. 10.12.1.)

The spherical double-layer interface separates an electrolytic fluid inside from a relatively
highly conducting fluid outside. At the center, there is a current source having the nature of a
battery, modeled here as a dipole current source. A source of I amps is separated along the z axis
by a distance d << R from a sink of I amps (the positive and negative terminals of the battery).
The objective is to determine the velocity of the drop relative to the surrounding fluid, which is
stationary at infinity. So that the flow is steady, use is made of a frame of reference fixed to the
center of the drop. The surrounding fluid then appears to have a uniform velocity Utz far from the
drop.

/I\I

Fig. 10.12.1. (a) Liquid drop separated from surrounding liquid by ideally polarized
double layer. Dipole current source is located at drop center. (b) Stream
lines for fluid motion as viewed from frame fixed to drop.

With the double layer positive on the inside and I positive, U will be found to be negative,
meaning that the drop is propelled in the z direction or in the direction of the dipole. Thus the
magnitude and direction of migration is determined by the dipole. The physical mechanism is the double-
layer shear surface force density tending to propel the interface from north to south. This density is
largest at the equator. The consequent bulk flow is sketched in Fig. 10.12.1b. Inside, a doughnut-
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shaped cellular motion results, while outside fluid is pumped
V .i J C

in the -z direct.L onL. scous s 
U ear stressesLl at lthe nter aceL

are typically determined by the interfacial velocity and a
characteristic distance on the order of the drop radius R. The
double-layer thickness is many times smaller than R, and hence
the viscous shear stresses within the double layer (which are
based on the thickness of the double layer) make the layer
move essentially as a whole. Thus, for the present purposes,
the fluid velocity is continuous through the double layer, and
it is the net surface force density discussed in Sec. 3.11 that
is the drive.

The physical explanation for the drop motions applies
(turned inside out) to the drop motions discussed in
Prob. 10.12.1. It is because the interface can flow that -1 -
the drops sustain a net electrically driven motion. Propul-
sion of a boat is in a way analogous. The double layer simply
"rows" the drop through the surrounding fluid. pole current source in

terms of a source and sink

A self-consistent model for radial and tangential stress of current disposed along

equilibrium, as well as conservation of double-layer charge, could the z axis a distance d
in general be complicated. The remarkable fact is that a relatively apart.

simple model can be formulated combining electrical and mechanical
distributions that have the 6 dependence cos 6 or sin e. The drop is assumed to remain spherical.
The assumption is subsequently shown to be valid.

First, the electrical current-dipole is represented. In the electrolyte, the current density is
given by If = -ObVn and hence there is an electric potential associated with the point current source
and sink, c0+=±I/4nobr±. The distances r± are sketched in Fig. 10.12.2. By taking the limit d << r of
the superimposed source and sink potential, it is seen that in the neighborhood of the origin, the po-
tential must be

Id cos e
4ia 2 (1)
47rb r2

c On a spherical surface radius c << R, the potential takes the form ReO cos 0, which is the n = 1
and m = 0 case from Table 2.16.3. The complex amplitude on the 8 + c surface surrounding the dipole at
r = c is

ic Id (2)
2

4rab c

The electric transfer relation, Eq. (a) from Table 2.16.3, again in the limit c << R, then gives the
radial field at r = R in terms of the current drive and the potential at the interface:

$b 2 c b-b = 3c 3Id (3)
E +-- 

r 3 (3)R R 4aR 3

The 0 dependence is recovered by multiplying by cos 0.

The region r > R is highly conducting, so for now the potential there is taken as uniform. The
coupling at the interface is a two-way one.

Charge Conservation: Because the interface moves in a nonuniform fashion, charge carried by con-
vection must be supplied by conduction at one pole and similarly removed at the other. The interface
is presumed to be ideally polarized, so that charge conservation requires an equilibrium between the
convection of the double-layer charge associated with the interior region and conduction normal to the
interface from the interior:

E (a dv R sn e a0 Ld sin = fj bE ( 

A similar relation applies to the exterior side. In the absence of the electrical drive, the interface
has a uniform charge ao consistent with a potential difference Vd. The surface potential variation
caused by I is reflected in a charge variation. In the following it is assumed that the total departure
of the potential from Vd is relatively small so that the double layer charge, ad, in Eq. 4 can be
approximated by 0o.
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The transfer relations for the viscous flow, as developed in Sec. 7.20, suggest that ve = ve sin 6,
so that Eq. 4, with cos 8 factored out, becomes

2aov6  _b 3Id

2a ab b= = ab  R + (5)

Here, Eq. 3 establishes the second equality.

The combination of electric double-layer boundary conditions, Eqs. 2.10.10 and 2.10.11, reduces
here to

E b (6)
e R ae

serving as a reminder that just inside the interface there is a tangential electric field.

Stress Balance: The radial and tangential balance of mechanical stresses, with the surface force
density given by Eq. 10.11.1 and with the shear term expressed a& Eq. 10.11.14, are represented by

--Ha + Sa + b S 2Ye = 0 (7)
rr rr R

a  b

Sr - Sr + odE0 = 0 (8)

With the outside potential defined as zero, it is appropriate to let 4 be the departure from potential
Vd in the interior. Then

Ye - de; ad y- d(9)
Vd

where yc is the surface tension at the equator and ad is in accordance with the Lippman Eq. 10.11.7.
The 0-independent part of the surface tension radial force is balanced by a uniform pressure jump
Ha - Hb at the interface. With the assu ption that ad - 0o , Eq. 7 is satisfied for each value of 0 if

2ob b
2S - 2 + 2 0 (10)

rr rr R

where cos 6 has been factored out and amplitudes are introduced consistent with Table 7.20.1.

Similarly, according to Eqs. 8 and 6, tangential force equilibrium results at each value of 6 if

Sa b b =0 (11)
Or Or R

where sin 6 is factored out.

That the double layer moves as a whole at a given interfacial location implies a tangential
velocity at the interface that is continuous, while the assumption that spherical geometry is retained
requires that the interior and exterior radial velocities vanish:

~a -b -a -b (12)
v = v 0 ; v r = 0; v = 0 (12)

With velocity amplitudes so related, viscous stresses are given for the outside region by Eq. 7.20.24
with the radius -- R and for the interior by Eq. 7.20.23 with radius a + R. These are now sub-
stituted into Eqs. 10 and 11. Three conditions on the amplitudes, physically representing conservation
of charge, Eq. 5, and these radial and tangential interfacial stress balances are
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o b 0 S~b 31d
vR R

4rR

3 2 0  3na
- 3(na+2nb )  o a = 0 (13)

3 a 3R
3 (n +n )r o aR a b U 0

R 2R

The velocity of the drop relative to an exterior fluid at infinity is the negative of U, where
from Eq. 13

H o
U -Id e H E 0 (14)

3 " ( +HZ)' 2 e j - 3 - "
4R b bn a  b ) (' +e ob(Ta + b )

The associated interfacial velocity follows by subtracting twice Eq. 13c from Eq. 13b,

e- 3U
v (15)

With I and ao positive, the signs are consistent with Fig. 10.12.1 and the introductory discussion.

The ormalized double layer charge density, He, also takes the form of an electric Hartmann
number, YvTe/TEV. This is seen by recognizing that ao -* e where ois typical of the electric field
inside the layer. The dependence of U on He sketched in Fig. 10.12.3 makes it clear that an optimum
charge density exists. With He small, the motion is mainly limited by viscosity and so increases in
linear proportion to oo . But if He >> 1, then the interfacial velocity, and hence U, is limited by
the ability of the electrolyte to conduct away the convected charge.

lo azscover wnat ximlts tne magnitude of
U, suppose that ao is made the optimum value
so that He = 1. Then, Eq. 14 becomes

-Id b
U = (16)opt 2 3 (16)8R ob (a: +2 b)

The magnitude of I is limited by the
maximum excursion of the double-layer potential
from Vd. From Eqs. 13a and 15, the interfacial
potential variation has the amplitude

3a
b = 3d +_ U (17)

47R2rb "b
•q . . .. • •b

These voltage contrlbutions are respectively 0
due to conduction and convection. With He = 1,
the second term cancels half of the first, so e
that the pole-to-pole excursion in potential,
2Pb , can be used to write Eq. 16 as Fig. 10.12.3. Dependence of drop velocity

on normalized double layer charge.
2b (b

U b (18)
opt 6 3

b -2 -3

Typical values are jb = 0.1 V, ab = 10- 2 2 mhos/m, na = -b = 10 for water based electrolytes, and hence
velocities on the order of 3 cm/sec. Of course, the low Reynolds number condition may not be met with
such a velocity. But clearly, the double layer mechanism can be the basis for significant motions.

The mechanical response to an electrical drive has been emphasized. That fields are generated
by the motion is a reminder that the electrocapillary double layer can be the site of a reverse trans-
duction.
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Problems for Chapter 10

For Section 10.2:

Prob. 10.2.1 The region between two planes, at x = A and x = 0, is filled with a material having
uniform thermal properties that sustains fully developed flow with velocity v = v(x)ly. The surfaces
are at the respective constant temperatures (Ta, TS). In the volume, there is an arbitrary dissipation

Yd(x).

(a) Determine the temperature distribution T(x).

(b) What is the thermal flux at the boundaries? Note that this is one of a group of "fully developed"
heat conduction configurations, playing a role in heat transfer analogous to the fluid mechanics
relations of Table 9.3.1.

For Section 10.3:

Prob. 10.3.1 The magnetically excited layer considered in this section is embedded in a system in
which the surroundings are relatively thermally insulating. The temperature of the layer rises to a
sufficient extent that the steady dissipation is accommodated by the steady heat flux. However, insofar
as the time-varying part of the heat flux is concerned, the layer surfaces are bounded by thermal insula-
tors. What are the temperatures at the layer surfaces?

Prob. 10.3.2 The moving slab of Fig. 10.3.1 is now a semi-insulating dielectric having uniform elec-

trical conductivity a and permittivity E. Potential distributions at the a and B surfaces are

respectively Re$O expj(wt-ky) and ReV expj(wt-ky).

(a) Write the electrical dissipation density in the form of Eq. 10.3.6.

(b) Find the temperature distribution throughout the slab and the heat fluxes at its surfaces. Assume

that at the a and B surfaces the respective temperatures are

T + ReT expj(w 2 t-k 2y) and T + ReTexpj(w2t-k2y).

For Section 10.4:

Prob. 10.4.1 A ferrofluid has a permeability that has the temperature dependence 1 = a[1-a (T-T ),
where •a and uP are constant parameters. In the channel of Fig. 10.4.1, the fluid is subjected to a

uniform transverse magnetic field intensity Ho . The object is to pump the fluid by imposing the temper-

atures Ta and Tb on the grids, and hence producing a variation in the permeability in the direction of

the heat flux. Assume that the boundary layer thickness is small compared to the channel cross section,

so that the velocity is uniform across the channel. Determine the pressure-velocity relation that is

analogous to Eq. 10.4.7 and the temperature distribution and heat flux.

For Section 10.5:

Prob. 10.5.1 The rotor described by Eqs. 10.5.16 - 10.5.18 is in the state of steady rotation described

by Eqs. 10.5.23.

(a) Show that this stationary state is overstable if R exceeds

4
(l+f) pT+ (l+f)

2a =T f pT- (l+f)

(b) Show that the frequency of oscillation at the onset of this instability is

1/ [pT+(l+f)]
2= 2PT(l+f) [pT (l+f)l

Prob. 10.5.2 The rotor of Fig. 10.5.1 is heated from the side rather than from below. Thus the exter-

nal temperature distribution is given by Eq. 10.5.1 with sine + cose.

(a) Deduce the equations of motion, similar to Eqs. 10.5.16 - 10.5.18.

(b) Use a graphical solution similar to that pictured by Fig. 10.5.3 to determine the steady angular

velocity. Explain qualitatively the direction of rotation.
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For Section 10.6:

Prob. 10.6.1 Implicit to Eq. 10.6.17 is the principle of exchange of stabilities. That is, as Ram is
raised, each temporal mode becomes unstable with sn = 0. If it is only the condition for onset of
instability that is of interest, it can be assumed at the outset that sn = 0 and Ram can be treated
as an eigenvalue. Thus (Ram)n is the value of Ram that reduces the frequency of the nth mode to zero.

(a) Use Eqs. 10.6.8 and 10.6.9 with the boundary conditions that T = 0 and v = 0 on the boundaries
x = 0, x = 1 to show that, provided Ram > 0, the principle of exchange of stabilities holds.
(See the Temporal Modes subsection of Sec. 8.18.)

(b) Set w = 0 in Eqs. 8 and 9 and solve the eigenvalue problem for Ram. The result should be
Eq. 10.6.18 and hence 10.6.19.

Prob. 10.6.2 For the thermal-hydromagnetic layer between the planes a and a as treated in this
section, determine the transfer relations

ri8

_p [Cij] v-x
pýcl -x

L7

Prob. 10.6.3 Consider the layer of Fig. 10.6.2, but with viscosity.

(a) Show that the normalized equations replacing Eqs. 10.6.8 and 10.6.9 are

2_2 j j  2_ 2 2 H 2 =
[(D2-k2 - (D -k2) - 2 D2]V = -RT A]- 

p m x a

--(D2_k2 ) = -v
x

where

=KT/A 2A ^
T = TADT

x = xA vx =v xKT/A

k = k/A E = pAb2 /K•2P

and the conventional Rayleigh, Prandtl and Hartmann numbers are

ap gA DT n T IA2 c2 H
0 s T 2 oo

R -=p ; H
a KTfl PT PKT T v m 71

(b) Outline a scheme to determine the transfer relations expressing the surface stresses and
heat flux (S, Sxx Sa 5̂ , x, Px) in terms of the surface velocities and temperatures
(0x, , , , TO). The motions may be assumed to be independent of z, so kz = 0.

For Section 10.7:

Prob. 10.7.1 A thin metal cylinder-having radius R is charged by unipolar ions having the density

po at the radius a from the cylinder's center. Assume that at a given instant the charge per unit

length on the cylinder is X and that the self fields of the ions in the volume are negligible com-

pared to those due to the charge on the cylinder.

(a) Determine the ion charge density as a function of radial distance r.

(b) What is the current per unit length collected by the cylinder as a function of the voltage

of the cylinder relative to that at r = a?

(c) If the cylinder is allowed to charge up, what is X(t) given that when t = 0, X = 0?
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electric f eld on a homogeneous layer of liquid bounded from above (at x = 0) by air. Model the liquid
as devoid f all but one positive species of electrical carriers with charge density p+. Agsume that
charge in heneighborhood of the interface shields the field from the liquid bulk so that E = Eoix
at x = 0 a d E + 0 as x W-m. Hence, self fields of the ions are included.

(a) With negligible net current through the air, and hence in the liquid, show that the electric field
and charge density comprising the monolayer of surface charge for x< 0 are

Ex = Eo/(l-x/d) ; + = (E o/ad)/(l-x/ad)2 ; d = 2K+/bEo

(b) For E = 10 v/m, what is a typical value of d ?

For Section 10.8:

Prob. 10.8.1 An electrolyte is bounded by plane parallel boundaries, each having the potential -5.
They are positioned at x = 0 and x = A.

(a) Under the assumption that i << 1, what is the distribution of M? What is the potential D E= at
- -c

the midplane?

(b) For arbitrary magnitude of 0, show that in terms of normalized variables the potential distribution
is S d!

2 coshý - coshic

where again Ic is the potential at the midplane.

(c) Given the normalized spacing A E A/6 , describe a numerical procedure for finding ( and hence
determining the potential distribution.

(d) For A = 2 and 5 = 3, what is ý' ? Plot the potential distribution.

For Section 10.9:

Prob. 10.9.1 The boundaries of a planar duct, such as pictured in Table 9.3.1, have a spacing A that
is not necessarily large compared to Sd"

(a) Used Eq. a from Table 9.3.1 to express the velocity distribution in terms of the potential distrib-
ution.

(b) Show that this expression reduces to Eq. 10.9.5 in the case where the Debye length is short compared

to the channel width.

(c) In Prob. 10.8.1, a procedure is developed for finding the potential distribution with arbitrary wall

spacing. Show that the velocity distribution can be written in the normalized form

2 6
v = kTy • - D + ((x) +

2CE kT 3y - AA 
y

where v = veE kT/nq and x = x6 and where O(x) follows from Prob. 10.8.1.
- y - D

Prob. 10.9.2 A two-dimensional channel having width A has walls with potentials A = -ý . The current

density in the y direction is "fully developed" and hence the total current through the channel is given

by Eq. 10.9.13.

(a) Show that the current is related to the imposed E and the pressure gradient 2p/9y by

2P 4256
o D E A_ 3p'

i = a + E
n(kT/q) y n l y

(b) For an "open-circuit" channel (i = 0) having a length 9 and pressure difference Ap = -Z8p/9y, what

is the streaming potential v -E £?
Y
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For Section 10.10:

Prob. 10.10.1 Following Eq. 10.10.2, it is argued that the shear stress induced surface current is
ignorable compared to that driven by the imposed field. Approximate the shear stress contribution using
the velocity U that was determined and justify this approximation.

Prob. 10.10.2 The particle considered in this section is fixed on a "stinger" which does not distort
the field or impede the flow but does constrain the particle to a fixed position relative to the fluid
at infinity. What is the force imparted by the electric field to the stinger?

Prob. 10.10.3 The particle is fixed on a stinger, as in Prob. 10.10.2, but both a uniform electric
field and a uniform flow velocity are imposed at infinity. Because the flow is now forced, the contrib-
utions of the shear stress to the surface current can be significant. In view of Eq. 10.9.12, represent
the surface current as

K8 = OsE 8 + BS6r

where for 4 < kT/q, a = 2po6D2/n(kT/q) and determine the potential distribution around the particle
as a function of E and U. What is the potential if E = 0? What is f ?

For Section 10.11:

Prob. 10.11.1 A clean interface is modeled as having a surface tension Yo at the voltage vd = Od,
the tension being independent of the area A, and a Helmholtz double layer consisting of a plane parallel
capacitor having spacing A, permittivity E and zero double layer charge at vd = *d. Determine Cd, ad
and Ws, and compare to Fig. 10.11.1.

Prob. 10.11.2 A hemisphere of mercury submerged in an Pa
electrolyte is shown in cross section in Fig. P10.11.2.
The interface between liquids forms a double layer of -- ------- -----1
thickness A, pictured here as being a "Helmholtz"
layer. (Prob. 10.11.1) jte

(a) Write an expression for static equilibrium using aP
!

the control volume shown to balance the pressure
forces against those due to the combined surface
tension and Maxwell stresses. Show that the

-------- 

resulting expression is as would be deduced t- - I 

from Eq. 10.11.1, where the electrocapillary
surface tension is found in Prob. 10.11.1.

(b) Now suppose that, by means of an orifice at the center Fig. P10.11.2
of the hemisphere, a small additional amount of mercury
is introduced, so that the interface expands from R to R + 6S. Use the result of (a) to compute
the incremental change in pressure implied by the electrocapillary model.

(c) An alternative model might depict the double layer as composed of a film of insulating fluid.
In that case, the equilibrium would take the same form as found in (a). But, suppose that with
the addition of an increment of mercury the surface expands in such a way that the insulating
layer of fluid preserves its volume. Find an expression for the change in pressure associated
with an incremental change in radius 6 . Compare the result to that found in (b) and explain
the difference.

For Section 10.12:

Prob. 10.12.1 With the objective of determining the mobility b = U/Eo of the mercury drop in an
electrolyte, consider a drop that is highly conducting, with a surrounding electrolyte permeated by an
electric field which is Eoiz far from the drop. Following steps paralleling those in this section, show
that the mobility is

b = R/(- + (2 + 3 )

A mercury drop in an electrolyte is the configuration of a dropping mercury electrode, widely
used to study electrochemical double layers because the surface is constantly renewed by continual
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Prob. 10.12.1 (continued)

generation of drops.1 The dropping mercury electrode is used in analytical chemistry as a sensitive
means of measuring trace constituents of the electrolyte.2

Prob. 10.12.2 A linear volume rate of flow is secured in the configuration of Fig. P10.12.2 by
exploiting the double layer shearing surface force density. An electrolyte is bounded from above by
insulating walls and from below by alternate sections of insulator and pools of mercury, each having
length Z >> a or b.

elecTr
e tylo i ns ulat ing con d t

Electrodes fixed adjacent to the
pool edges are driven by an external
current source and cause a "standing
wave" of current with the distribution
sketched. Hence, the ideally polarized
double layer experiences a shearing sur-
face force density tending to carry the
liquid in one direction, while the insu-
lating sections prevent backward motion
where that force density would be
reversed.

(a) Model the system as quasi-one-
dimensional, assuming fully Fig. P10.12.2
developed plane flow in each
of the sections and using mass and momentum conservation to piece these flows together at the pool
edges. Assume that gravity holds the interface flat and that the system is closed on itself.
Assume that the electrolyte is sufficiently highly conducting that charge convection at the
interface can be ignored and the interface can beregarded as essentially uniformly polarized
(even with the driving current producing a voltage drop in the interfacial plane).

(b) Find the volume rate of flow of the electrolyte as a function of the driving current.

1. An extensive treatment of the subject is given by V. G. Levich, Physicochemical Hydrodynamics,
Prentice-Hall, Englewood Cliffs, N.J., 1965, pp. 493-551.

2. J. Heyrovski and K. Jaroslav, Principles of Polarography, Academic Press, New York, 1966.
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11.1 Introduction

Some of the most significant interactions between continua having large relative velocities in-
volve charged particle beams accelerated under near-vacuum conditions. Thus, the first part of this
chapter gives some background in electron beam dynamics. The charged particles of Chap. 5 become a con-
tinuum in their own right because their inertia is dominant. Section 11.2, on the laws and theorems for
a charged particle gas, draws on the fluid mechanics of Chap. 7, and leads to the steady electron flows
considered in Secs. 11.3 and 11.4. Flows illustrated in these latter sections are typical of those
found in magnetrons and in electric and magnetic electron beam lenses. Pictured as they are in
Lagrangian coordinates, the motions appear to be time varying. But, if viewed in Eulerian coordinates,
the electron flows of these sections are steady and might be considered in Chap. 9. The remaining sec-
tions relate not only to electron beams, but to electromechanical continua introduced in previous
chapters.

Sections 11.6-11.10 have as a common theme the use of the method of characteristics to understand
dynamics in "real" space and time. The approach is restricted to two dimensions, here one space and
the other time, but makes it possible to investigate such nonlinear phenomena as shock formation and
nonlinear space-charge oscillations. Thus it is that these sections are concerned with quasi-one-
dimensional models. As pointed out in Sec. 4.12, the small-amplitude limits of these models are identi-
cal with the long-wave limits of two- and three-dimensional models. Thus, the quasi-one-dimensional
model represents what physical content there is to the dominant modes from the infinite number of
spatial modes of a linear system. However, nonlinear phenomena can be incorporated into the quasi-one-
dimensional model.

In addition to giving the opportunity to develop nonlinear phenomena, the method of characteristics
gives the opportunity to explore the implications of causality for longitudinal boundary conditions and
the general domain of dependence of a response pictured in the z-t plane. This gives an alternative to
the complex-wave point of view, taken up in the remainder of the chapter, in appreciating the difference
between absolute and convective instabilities and between evanescent and amplifying waves. The proto-
type configurations examined in Sec. 11.10 are analogous to traveling-wave electron beam or beam plasma
systems taken up in later sections.

Sections 11.11-11.17 return to a theme of complex waves. Spatial transients in the sinusoidal
steady state are considered in Sec. 5.17 with the tacit assumption that the response decays away from
the excitation source. As illustrated in these sections, the response could just as well amplify from
the region of excitation. How is an evanescent wave, which simply decays from the region of excitation,
to be distinguished from one that amplifies? Temporal transients are first introduced in Sec. 5.15,
and instability, defined as an unbounded response in time, illustrated in Sec. 8.9. In a system that
is infinitely long in the longitudinal direction, a dispersion relation that gives "unstable" w's for
real k's can either imply that the response is unbounded in time at a given fixed location, or that
there is unlimited growth for an observer moving with the response. In a given situation, how is an
absolute instability to be distinguished from one that is convective? For special hyperbolic systems,
these questions are answered in terms of the method of characteristics in Sec. 11.10. Sections 11.11
and 11.12 are devoted to the alternative of answering these questions in terms of complex waves. The
remaining sections illustrate with classic examples.

BALLISTIC CONTINUA

11.2 Charged Particles in Vacuum; Electron Beams

Equations of Motion: In terms of the Eulerian coordinates of Sec. 2.4, Newton's law for a par-
ticle having mass m and charge q, subject to the Lorentz force (Eq. 3.2.1), is

m(- + v-Vv) = q(E + vx -po ) (1)

Multiplied by the particle number density, n, this expression is almost what would be written to
describe a fluid. The pressure and viscous stress terms are absent from Eq. 1. To each point in
space is ascribed the velocity, v, of the particle that happens to be at that point at the given
instant in time.

Because the pressure and viscous stresses are absent, much of the literature of electron beams
pictures the motions in Lagrangian terms, as discussed in Sec. 2.4. Then, the initial coordinates of
each particle are the independent variables as the partial derivative with respect to time is taken:

m = q(E + v x ý H )  (2)at0

A.t
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Thus, for example, in cylindrical coordinates the equations of motion for a particle having the instan-
taneous position (r,e,z) are

d2r de 2 + Hrd dE (3)
dt2 dt m r m oz dt

2
de d"2r + 2 dr d8 1 d ( 2 2 -- de = (d Hr dz oH dr- (4)
dt2  dt dt r dt ordt oz dt

2
d z qE - 1 H H r d (5)

2  dt m z m or dt

where the second terms on the left in Eqs. 3 and 4 are respectively the centripetal and Coriolis
accelerations of rigid-body mechanics.

The dynamics of interest can be pictured as EQS with an imposed magnetic field. In Sec. 3.4 it
is argued that in EQS systems, the magnetic force is negligible compared to the electric force. Now,
the particles of interest include electrons or ions in vacuum. Their velocities can easily be large
enough to make magnetic forces due to the imposed field important. The arguments of Sec. 3.4 show that
the part of the force attributable to a magnetic field induced by the displacement current (or the cur-
rent density associated with the accumulation of net charge) is still negligible provided that times of
interest are long compared to the transit time of an electromagnetic wave.

The laws required to complete the description are usually written in Eulerian coordinates, much
as in the description of charged migrating and diffusing particles in Sec. 5.2. With the charge den-
sity defined as nq, conservation of charge, Gauss' law and the condition that the electric field be
irrotational are written as

- + Vp = 0 (6)

V.E E = p (7)
o

E = -VO (8)

Either Eq. 1 or 2 and these three expressions comprise two vector and two scalar equations in the
dependent variables -, - and p,O.

Energy Equation: The equivalent of Bernoulli's equation for charged ballistic particles is ob-
tained following the same steps as in Sec. 7.8. With the use of a vector identity* and Eq. 8, Eq. 1
becomes

av 14 + + +
mt + x v) + V( mvv + q) = q x iH0  (9)

-• 4

where the vorticity, W V x v. Because both the vorticity and magnetic field terms in this expression
are perpendicular to V, it can be integrated along a stream line joining points a and b to obtain

bS 8 1 4 . +4 b
m *d + + q =]a 0 (10)

a

In the steady state, the sum of the kinetic and electric potential energies of a particle are constant,
regardless of the imposed magnetic field. Note that, in Eulerian coordinates, particle motions are
steady provided 0 is constant.

Theorems of Kelvin and Busch: The curl of Eq. 9 describes the vorticity in Eulerian coordinates:

~+ Vx ( x v) = V x (v x H) (11)
at m

This expression can be integrated over an open surface S enclosed by a contour C moving with the par-
ticles. The generalized Leibnitz rule, Eq. 2.6.4, then gives

*÷+ + 1 -.)
v.Vv = v.Vv (V x v) xv + 2 V(
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dt S ad da = m C (x xoH).dl o (12)

Provided there is no imposed magnetic field, the vorticity is conserved over a surface of fixed identity
The magnetic field generates vorticity.

Kelvin's theorem, represented in Eulerian terms by Eq. 12, is often exploited in Lagrangian terms
in dealing with axisymmetric electron beams having no 0 components of electric or magnetic field.
Then, Eq. 4 describes the 0-directed particle motions. Because particle current contributions to A are
ignored, a is solenoidal and can be represented in terms of a vector potential, T = [A(r,z)/r]i 0
(Eq. (g) of Table 2.18.1). Thus,

1 d 2 dO = [ 1 A dz 1 1A dr
(r ) = - [ + (13)r dt dt m r 3z dt r - r dt

What is on the right in Eq. 13 is the rate of change of A(r,z) for a given particle,

d(r2 d)0 - m dA (14)dt 

From Sec. 2.18, 27A is the total magnetic flux linking a circle of radius r. Thus, with 2rAo defined
as the flux linked by a surface on which the particles have no angular velocity, Eq. 14 can be integrate
to obtain Busch's theorem:1

2 de (15)
r - (A - A) (15)

This result is a useful integral of one of the equations of motion. It also lends immediate in-
sight to the result of directing a beam of particles through a complex magnetic field, for if the beam
enters from a field-free region with no angular velocity, so that Ao = 0, then it is clear that it
leaves the magnetic field with no angular velocity.

11.3 Magnetron Electron Flow

Electron flow in a type of magnetron configuration illustrates the implications of the laws given
in Sec. 11.2. A uniform magnetic field, Bz, is imposed collinear with the axis of a cylindrical cathode
surrounded by a coaxial anode, as shown in Fig. 11.3.1. The arrangement is essentially that of a cyclo-
tron-frequency magnetron, an early type of device for converting d-c energy (supplied by the source con-
straining the anode to a potential V relative to the cathode) to microwave-frequency a-c.

Fig. 11.3.1.

In configuration of cyclotron-frequency
magnetron, electrons emitted from inner
cathode execute cyclotron motions as
they are accelerated toward anode across
axial magnetic field.

1. J. R. Pierce, Theory and Design of Electron Beams, D. Van Nostrand Company, New York, 1949, p. 35.

11.3 Secs. 11.2 & 11.3

.

d

,



Busch's theorem, Eq. 11.2.15, describes the tendency of the electrons to rotate about the magnetic
field. Here, the flux density is uniform, so 2wA = wr2BZ . Also, the electrons have no angular velocity
at r = a, so 2nAo = zb2Bz. Thus, Eq. 11.2.15 becomes

2
de I b

(1)dt 2 c(1 ) 
r

where q = -e, and the electron cyclotron frequency is defined as wc = Bze/m.

An electron in the vicinity of the cathode is accelerated in the radial direction by the imposed

electric field. As its radial position increases, Eq. 1 shows that it picks up an angular velocity,

just as would be expected from the Lorentz force generated by the radial motion. The radial force equa-

tion is required to describe the trajectory. Because motions are in the steady state, the energy equa-
tion, Eq. 11.2.10, provides a convenient first integral of this equation. The potential and kinetic

energies are both zero at the cathode, so that with the use of Eq. 1 for the angular velocity, it follow

that
22
rw 2

dr2 - 2 2e (2)
+ 4 (I - 2 =

r

Thus, the electron executes radial motions in a potential well determined by the combination of the elec

tric field tending to pull the electron outward and the magnetic field tending to divert it into an
angular motion and eventually back toward the cathode. For the coaxial geometry, and in the absence
of space-charge effects, the potential distribution is

= V In ( )/ln (-) (3)

and so, Eq. 2 becomes an expression for the velocity
as a function of radial position,

S 1 2(1 12 (4)
dt 2 In a 2

r

where the normalization has been introduced,

r = r/b, a = a/b, t = twC

8 eV B e
- 2m2 c m

w mbc

Typical potential wells are shown in
Fig. 11.3.2. For V = 10, the electron is returned
to the cathode while for V = 16 it collides with
the anode. For a critical value, V = Vc, the elec-
tron just grazes the anode. This critical value is
determined by setting Eq. 4 equal to zero with
r = a,

V = (i - 2)a (6)
c 2a

Integration of Eq. 4 gives

r 2dr Fig. 11.3.2. Potential wells for cyclo-

fo In r 2 1 2 (7) tron motions. All variables are

VVIn a r ( normalized.
r

Numerical integration gives the radial dependence shown in Fig. 11.3.3. In turn, the angular position
follows from Eq. 1:

1 t (8)
S (1 - )dt

o r
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Fig. 11.3.3. Radial position of electrons as function
of time. All variables are normalized.

The results from the radial integration can be used to numerically evaluate this expression and obtain
the trajectories shown in Fig. 11.3.4.

For these trajectories, where the potential is held fixed, the electron kinetic plus potential
energy is conserved. With the introduction of a potential component varying at a frequency on the order
of wc, energy imparted to an electron by the d-c field can be removed in a-c form. With the d-c voltage
adjusted to make V = Vc, the effect of a small increase in potential is dramatically different from that
of a small decrease. Suppose that as a given electron departs from the cathode, the potential increases.
The electron is accelerated by the potential and hence takes energy from the source. But, it also
strikes the anode or cathode and is removed after only one orbit. By contrast, an electron that leaves
the cathode as the potential is decreasing will be decelerated and hence give up energy to the a-c
source. This electron does not strike the anode, and in fact tends to remain in the annulus for many
cycles, contributing, along with electrons having a similar phase relation to the a-c field, to giving
up energy to the a-c source.

If the a-c source is replaced by a low-loss resonator, the device can sustain self-oscillation.
Hence, it can be used as a generator of energy having a frequency on the order of Wc. For electrons
with Be = 0.1 tesla, wc/2w = 2.8 GHz. Common magnetrons make use of resonators to provide for a
traveling-wave interaction with the gyrating electrons.1

1. H. J. Reich, P. F. Ordnung, H. L. Krauss and J. G. Skalnik, Microwave Theory and Techniques, D. Van
Nostrand Company, Princeton, N.J., pp. 708-735.
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Fig. 11.3..

Cyclotron motions in cylindrical
magnetron with normalized volt-
age as a parameter.

11.4 Paraxial Ray Equation: Magnetic and Electric Lenses

Oscilloscopes and electron microscopes are devices exploiting electric and magnetic lenses.
Simple lens configurations are shown in Fig. 11.4.1. In both the magnetic and electric configurations,
the electron beam enters from a region where there is no magnetic field with an axial velocity which,
according to the energy equation, Eq. 11.2.10, satisfies the relation

1 ,dz,2
I m( r) = e (1)

The tendency of the axisymmetric magnetic field to focus the beam can be seen by considering the
Lorentz force on an electron entering the field somewhat off axis. The longitudinal velocity crosses
with the radial component of A to produce an angular velocity. Busch's theorem, Eq. 11.2.15, ex-
ploits the solenoidal character of I to represent this effect of the rotational field in terms of the
axial field alone. Thus, even if the magnetic flux density near the axis is approximated as in-
dependent of r, for an electron entering from a field-free region, Ao = 0, and the angular velocity can
be simply taken as

eB
de = (2)
dt 2m

This component in turn crosses with the axial component of B to deflect the electron toward the axis.
Thus, while in the magnetic field, the electron is deflected toward the z axis; but, in accordance with
Eq. 2, once through the field it continues toward the axis without an angular velocity.

In the electric lens, the electron tends to be focused toward the axis as it enters the fringing
field, but to be diverted toward the electrode as it leaves the field. The net focusing effect derives
from the fringing field having a greater intensity as the electron enters than as it leaves.

Paraxial Ray Equation: An equation for the radial position, r, of an electron as a function of its
longitudinal position, z, is the basis for designing both magnetic and electric lenses. It pertains
to electrons traversing the fields near the axis where the magnetic flux density is essentially in-
dependent of radius, i.e., of the form Bz(z). The radial component of i implied by the z dependence
is already built into Eq. 2. The radial component of t near the axis has an r dependence that can be

represented in terms of a given dependence of the potential 0 = O(z) at r - 0 by exploiting Gauss'
law (Prob. 4.12.1):

2
Er = e- (3)

r dz

Given Bz(z) and O(z), what is r(z)? With the use of Eqs. 2 and 3, the radial component of the
force equation, Eq. 11.2.3, becomes

2 eB 2
dr 1 eBz2 er d2

2 -- ) r = m 2 2 (4)
dt dz
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Fig. 11.4.1. (a) Magnetic electron beam lens approximated by fields
and focal length of Fig. 11.4.2.

Fig. 11.4.1. (b) Electric electron beam lens with trajectory
exemplified by Fig. 11.4.3.

Here, the electron position is pictured with time as the independent parameter. With 4 and Bz independ-
= ent of time, the electron flow is steady so that time can be eliminated as a parameter and r r(z).

With the objective of writing Eq. 4 with z as the independent variable, observe that

dr dr dz
dt dz dt
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and from the time derivative of Eq. I that

2
d z - e d (6)
dt2  m dz

In the lens region, Eq. 1 is approximate. With Eq. 6, it is therefore assumed that the longitudinal
kinetic energy is much greater than that due to the radial and angular velocities. With the use of
Eqs. 5 and 6 it follows that

2 2 2 2
dr dr dz2 dr dz 2e d2r 
dt 2  d 2 ( ) + ( ) = -  •  +  e dd dr (7)2 2 dt dz 2 m 2  m dz dz
dt dz dt dz

Thus, the radial component of the force equation, Eq. 4, becomes the paraxial ray equation,1

2
dr + A dr + Cr = 0 (8)

2 dz
dz

where

1 d 1 e 2 1 d2
A = T- 7; B+2dz' = 8 m z 4 dz 2

Magnetic Lens: The limiting form of Eq. 8 for a purely magnetic lens is misleading in its sim-
plicity (Prob. 11.4.1):

2
dr 2

2 K r 0; K m B (9)
dz

Through Eq. 1, 0 represents the incident axial velocity. A reasonable approximation to the on-axis
axial field for a solenoidal coil that is long compared to its radius is the distribution shown in
Fig. 11.4.2. Thus, in Eq. 9, Bz = 0 for z < 0 and z > k, and Bz = Bo over the length Z of the lens.
An electron entering at the radius ro, with dr/dz - 0, therefore has the trajectory

r = r cos Kz (10)
o

inside the lens and leaves on a straight-line trajectory with the slope

dr (z = ) = -r K sin K, 
dz o (11)

With the focal length, f, defined as shown in Fig. 11.4.2, it follows that

= (Ka sin KX) (12)

Thus, the focal length decreases with Bz (represented by Kt) as shown in Fig. 11.4.2.

Electric Lens: For numerical integration, Eq. 8 is written in terms of a pair of first-order
equations

d

wuh -Au - Cr

where z z/a, r = r/a, u = u, A = aA, and C = a2C.

As an example, consider the electric lens of Fig. 11.4.1. The potential distribution inside the
abutting cylindrical electrodes with radius a that comprise the lens is found in Prob. 5.17.3 to be an
infinite series with radial dependences represented by Bessel functions. The z dependences of the
dominant terms have an exponential decay away from the plane z = 0, exp Lz, where =i 2.4 is the first
root of the Besssel function Jo(a). For the present purposes, this longitudinal distribution of

1. J. R. Pierce, Theory and Design of Electron Beams, D. Van Nostrand Company, New York, 1949,
pp. 72-91.
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Fig. 11.4.2. For magnetic lens of Fig. 11.4.1a, having essentially uniform axial field
Bo over length k, focal length f normalized to k is given as a function of KZ,
defined with Eq. 10.

- U I C U 'Ft U ( 0 V
z/a -

Fig. 11.4.3. For the electric lens of Fig. 11.4.1b, the axial potential distribution is
represented by the broken curve. The solid curve is the electron trajectory pre-
dicted by Eqs. 13 and 14 with Vo/V = 0.5 and B = 2.

potential is approximated by

/I

- = V + - (1 + tanh ) (14)

This distribution of potential is shown in Fig. 11.4.3.

Using Eq. 14, A and C (given with Eq. 8) are given functions of z. Note that, although it has

space-varying coefficients, the paraxial ray equation, Eq. 8, is linear. Thus, general properties of
the electron flow can be deduced using superposition. Numerical integration, using Eqs. 13, is straight-
forward and results in electron trajectories typified in Fig. 11.4.3. Note that the electron velocity,

deduced at any given point from Eq. 1, is increased in the conservative transition through the lens.
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11.5 Plasma Electrons and Electron Beams

A model often used to represent electronic motions in a "cold" plasma, and even electron beams in
"vacuum," gives the electrons a background of ions that neutralize the space charge. Because the ions
are much more massive than the electrons, on time scales of interest for the electron motions, the ions
remain essentially motionless.

A uniform axial magnetic field is imposed. In equilibrium, the electrons stream with a uniform
velocity U along the magnetic field lines. Electron motions across the magnetic field result in cyclo-
tron orbits that tend to confine the motions to the axial direction.

Because the electron motions are axial, the transverse components of the force equation only give
an after-the-fact approximation to the transverse components of the velocity. The axial component of
the force (av equation is, to linear terms in the velocity - = (vz + U)Tz,

av
m + U(1)

at az m az

The current density for electrons having a number density no+n(x,y,z,t) and this velocity is

+ + 4-
J = -enoUiz - e(nU + nv z)iz  (2)

so that to linear terms, conservation of charge requires that

-- (enU + envz) - (ne 0 (3)z0 z at

Finally, because the equilibrium electronic space-charge density, -noe, is cancelled by that due to
positive ions, Gauss' law requires that

V2( = ne (4)
E

Perturbations vz , n and 4 are described by Eqs. 1, 3 and 4.

Transfer Relations: Consider now a planar layer of plasma or beam having thickness A in the
x direction. Solutions to Eqs. 1 and 3 take the form vz = Revz(x) exp j(t - kyy - kzz ) , so substitu-
tion into Eq. 1 gives

= z=- e (5)(5)

In turn, Eq. 3 and this result give

^ k2
knv kne

n ZOZ 0 _ z Z 0 A
(6)

(w - kU) (_ 2

Finally, this relation combines with Eq. 4 to show that the potential distribution must satisfy

-2 =0; y dx--d- = k y + k p (7)z(

-2'
where the plasma frequency is defined as w = In e /e m. This relation is of the same form as for re-
presenting Laplace's equation in Sec. 2.16 Thus, the transfer relations are the same as in
Table 2.16.1, provided that y is defined as in Eq. 7. Note that a similar derivation leads to trans-
fer relations in cylindrical geometry so that the ttansfer relations for an annular beam are as given
by the relations of Table 2.16.2 with coefficients suitably defined. For example,
fm(x,y) -+ fm(x,y,k - y), where y may differ from one annular region to another.

Space-Charge Dynamics: The sheet beam shown in Fig. 11.5.1 exemplifies the dynamics of beams in
uniform structures. The surrounding region is free space, with walls to either side constrained by a
traveling wave of potential. The wall potential can be regarded as a given drive, although more
generally it can be made consistent with external electromagnetic structures. The velocity is purely
axial, so the boundaries do not deform and boundary conditions are simply
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Fig. 11.5.1

U Planar electron beam in uniform
axial magnetic field.

-- ------------------------4

c = Vo, 4d= ;e, D = De, = 0 (8)
x x x

Here, interest is restricted to motions that are even in the potential, so with the last boundary con-
dition it is presumed that @C = $i.

Transfer relations for the free-space region and for the beam follow from Eq. 7 and Table 2.16.1:

cIjc 1
DC -coth ka sinh ka

x sinh ka
= ek (9)

dI Icoth ka
x sinh ka

sx snh yb

1f
0inh yb coth yb

The last equation gives ;f in terms of ;d. This is inserted into Eqs. 9b and 10a, set equal to each
other. The resulting expression can be solved for Od. Substituted into Eq. 9a, that gives

S= -k (k + Ycth ka tanh b) c; D k coth ka + y tanh yb (11)
x D(w,k)

This result gives the driven response, but also embodies the temporal modes and spatial modes, as
discussed in Secs. 5.15 and 5.17. These are described by the dispersion equation, D(w,k) = 0.

Temporal Modes: It is clear that there are no roots of this expression having 7 purely real.
Purely imaginary roots abound, as is evident by substituting y - ja:

(ab)tan(ab) = (kb)coth[(kb) a] (12)

Graphical solution of this expression, for a given a/b, results in roots, an . The frequencies of associ-
ated temporal modes follow from the definition of y2= -a2 given with Eq. 7:

S U(b 1/2W = bk (-)+ (13)
Zp L) (bk) -1/2

Here it has been assumed that ky = 0. This dispersion equation is represented graphically by
Fig. 11.5.2.

For each real wavenumber, k, there are two eigenfrequencies representing space-charge waves. In
the absence of convection these have phase velocities, m/k, in the positive and negative directions.
With convection, these waves are respectively the fast and slow space-charge waves that are central to
a variety of electron-beam devices and interactions. The transverse dependence of a temporal mode
having a real wavenumber kz = k is sinusoidal within the beam and exponential in the surrounding regions
of free space, as depicted by the inserts to Fig. 11.5.2.

Without the equilibrium streaming, the temporal modes are similar to those of the internal electro-
hydrodynamic space-charge waves of Sec. 8.18. There are an infinite number of modes, n > p, within
the region of the u-k plot bounded by the fast and slow wave branches for any given mode n = p. In the
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Fig. 11.5.2. Normalized angular frequency as a function of normalized wave-
number for space-charge waves on planar electron beam of Fig. 11.5.1.
Inserts show transverse distribution of potential for two lowest
eigenmodes at longitudinal wavenumber kb = 1.

frame of reference moving with the beam velocity U, the frequencies, w-kU, of these modes approach
zero as the mode number, and hence the number of oscillations over the transverse dimension of the
beam, approaches infinity.

Spatial Modes: Typically, in electron beam devices, it is the response to a given driving fre-
quency that is of interest. The homogeneous part of the response is made up of spatial modes having

= wavenumbers that are solutions to D(w,k) 0, with w the specified driving frequency. In general, these
are complex roots of a complex equation. However, those modes having real wavenumbers for the real
driving frequency can be identified from Fig. 11.5.2.
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DYNAMICS IN SPACE AND TIME

11.6 Method of Characteristics

In representing the evolution of a continuum of particles, it is natural to express the partial
differential equations of motion as ordinary equations with time as the independent variable. As
illustrated in Secs. 5.3, 5.6 and 5.10, what can result is a complete picture of the temporal evolu-
tion, but one viewed along a characteristic line in (T,t) space. The price paid for the character-
istic formulation is an implicit dependence on space. That the characteristic lines do not have to be
identified with particles is illustrated in this and the next five sections. Physically, the character-
istics now represent waves rather than particles. However, the objective is again to reduce partial
differential equations to ordinary ones.

If the equations, written as a system of first-order expressions, have coefficients that are not
functions of the independent variables, they are said to be quasi-linear. An example comes from the
one-dimensional longitudinal motions of a highly compressible gas.

For now, there is no external force density and viscous effects are ignored. Thus, with the
assumption that 9 = v(z,t)tz, p = p(z,t) and p = p(z,t), the force equation, Eq. 7.16.6, becomes

p(-t av + v •7 av ) + = 0 0 (1)(1)

The flow is not only assumed adiabatic, but initiated in such a way that every fluid particle can be
traced backward in time along a particle line to a point in space and time when it had the same state

(p,p) = (po,Po). The flow is initiated from a uniform state. Thus, Eq. 7.23.13 holds throughout the

region of interest, and it follows that

(2)
S= =az a2 aP; a a op ) 1 (2)

o o

It follows that Eq. 1 can be written as

(0) -v + (a 2 ) •p + (P) a- +  ) = a 0 (3)
at as at as

Conservation of mass, Eq. 7.2.3, provides the second equation in (v,p):

(1) + (v) + (0) + at (p) 0 (4)az at az

These last two expressions typify systems of first-order partial differential equations with two in-
dependent variables (z,t). They are not linear, but do have coefficients depending only on the
dependent variables (v,p). The characteristic equations are now deduced following the reasoning of

1
Courant and Friedrichs.

First Characteristic Equations: Arbitrary incremental changes in the time and position result in
changes in (p,v) given by

dp = -p dt + ap dz at az (5)

Bv av
dv = -v dt + v dz (6)at az

The objective now is to find a linear combination of Eqs. 3 and 4 that takes the form

f(P)dp + g(v)dv = 0 (7)

because this equation can be integrated. To this end, note that a line in the z-t plane along which
dp and dv are to be evaluated has not yet been specified. It can be selected to guarantee the desired
form of the equations of motion.

1. R. Courant and K. 0. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers,
New York, 1948, pp. 40-45.
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A linear combination of Eqs. 3 and 4 is written by multiplying Eq. 3 by the parameter XA.and
Eq. 4 by XAand taking the sum:

Ba p + y + 2 av y avL v
-t (1)2 (Y+ a ) +  

+lP 2vP+ ) = 0 (8)

If this expression is to have the same form as Eq. 7, where dp and dv are given by Eqs. 5 and 6, then

2
dz _ 1V + A2a dz X1 P 

+ X2vp
dt ; t p(9)

These expressions are linear and homogeneous in the coefficients (p,v):

dz --v -a 2 I 1 0
dz = (10)

jj dt 2 0

It follows that if the coefficients are to be finite, the determinant of the coefficients must vanish.
Thus,

+
dzd- = v + a; C (11)
dt -

If v,p and hence a(p) were known functions of (z,t), these expressions could be solved to give families
of curves along which Eq. 8 would take the form of Eq. 7. Apparently two such families have been found.
They are called the Ist characteristic equations and respectively designated by C+ and C-.

Differential equations, such as Eqs. 3 and 4, for which the Ist characteristic equations are
real, are said to be hyperbolic. Elliptic equations, for which the Ist characteristics are not real,
must be solved by some other method than now described.

Second Characteristic Lines: The goal of writing Eq. 8 in the form of Eq. 7 is achieved by
factoring X1 from the first two terms and A2 from the third and fourth terms, and then substituting
for the coefficients of the second and fourth terms, respectively, using Eqs. 5 and 6:

X p 9p dz av 3v dz
= 

1A t + z dtas dt+) 0 (12)

If this expression is multiplied by dt and divided by A1 , the desired form follows:

2
dp + p -- dv = 0 (13)

To establish the ratio 12 /l1 , either of Eqs. 10 can be used. For example, substituting 12 /X1 as found
from Eq. 10a gives

dp + (! - v)dv = 0 (14)
2 -dt
a

This expression is further simplified by using the Ist characteristic equations, Eqs. 11, to write

+
a

dv + dp = 0 on C (15)-P

where the choice of signs is determined by which sign is being used in Eqs. 11.

With a(p) specified by Eq. 2, the IInd characteristic equations can be integrated:

+
+ 2a(p=c+ on C (16)

Here, c+ and c- are respectively invariants along the C+ and C- characteristic lines.

Systems of First-Order Equations: The method used to determine the first and second character-
istic equations makes their deduction a logical response to the objective. As long as the number of
independent variables (z,t) remains only two, the same technique can be used with more complex problems.
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But, it is convenient in dealing with several first order equations to use a more formal approach to
finding the. characteristics. Although the formalism now considered appears to be different, in fact
the characteristic equations are the same.

Equations 3 and 4 are particular cases of the first two expressions in the set of four,

ap
C A1  A2  A3  A4

ap
D BI  B2  B3  B4 az

(17)
Byv

dp dt dz 0 0 Bt
av

dv 0 0 dt dz
az

Here, the coefficients Ai and Bi are in general functions of (p,v,z,t). Also, for generality,
C = C(p,v,z,t) and D = Dtp,v,z,t) represent the possibility that the differential equations are in-
homogeneous in the sense that they have terms which do not involve partial derivatives. The last two
expressions will be recognized as the differential relations for dp and dv, Eqs. 5 and 6.

Following the formalism leading to Eqs. 11 and 15, Eqs. 17a and 17b are multiplied respectively
by 1I and 12, and added. Then the ratio of coefficients for the respective Z/at's and 2/az's are
required to be dz/dt, and the result is two homogeneous equations in the V's:

= 0 (18)

The first characteristic equations are found by requiring that the determinant of the coefficients in
Eq. 18 vanish.

This same condition is obtained by requiring that the determinant of the coefficients in Eq. 17
vanish. To see this, rows three and four are multiplied by (dt)-1 . Then rows three and four are
multiplied respectively by -A1 and -A3 and added to row one. Similarly, rows three and four can be
multiplied respectively by -B1 and -B3 and added to row two. The result is the determinant

dz A -A, 0 A-A-- dz
0 

A2 - .dt 4 3 d
dz dz

0 B -B Lz 0 B -B -
2 1 dt 4 3 dt = 0 (19)

dt dz 0 0

0 0 dt dz

Now, by expanding about the dt's that appear in columns with all other entries zero, the same require-
ment as given by Eq,. 18 is obtained. The first characteristic equations are obtained by writing the
differential equations in the form of Eq. 17 and simply requiring that the determinant of the coeffi-
cients vanish. The same approach can be used with an arbitrary number of dependent variables.

To solve Eqs. 17 for any one of the four partial differentials would require substituting the
column on the left for the column of the square matrix corresponding to the desired partial derivative,
and to divide the determinant of the resulting matrix by the coefficient determinant. However, the
coefficient determinant has already been required to vanish, since that is just the condition for ob-
taining the Ist characteristic equations. Thus, if the partial derivatives are not infinite, the
numerator determinants must also vanish. Four equations result which are reducible to the IInd charac-
teristic equations.

As an example, consider once again Eqs. 3 and 4. The coefficient determinant is

1 v 0 p 1.
Sc 

0 a2  P pv 0 (20)

dt dz 0 0

O 0 dt dz

111 
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and can be expanded, taking advantage of the zeros, to give Eqs. 11. Then the numerator determinant
for finding ap/at is the coefficient matrix with the column matrix on the left in Eq. 17 substituted
for the first column on the right, or

r0 v 0 p

2
0 a p pv

= 0 (21)
dp dz 0 0

dv 0 dt dz

With the use of the first characteristic equations, Eq. 21 reduces to the second characteristic equa-
tions given by Eqs. 15. A check of the other three equations obtained by substituting the column
matrix in the second, third and fourth columns gives the same result.

11.7 Nonlinear Acoustic Dynamics: Shock Formation

The longitudinal motions of a gas under adiabatic conditions both serve as a vehicle for seeing
how the characteristic equations are used, and provide insight into the nonlinear phenomena that are
responsible for wave steepening and shock formation.1 (See Reference 10, Appendix C.)

Initial Value Problem: The characteristic equations are given by Eqs. 11.6.11 and 11.6.16.
Although there is no necessity for linearizing, it is helpful to realize how perturbations from a uni-
form flow with velocity U, density po and acoustic velocity ao are represented by the characteristics.
(The linearized versions of Eqs. 11.6.3 and 11.6.4 are the one-dimensional forms of Eqs. 7.11.1-7.11.3.)
In that limit, the first characteristic equations have U + ao on the right, and are therefore inte-
grable to give straight lines with slopes equal to the wave velocities U + ao in the +z directions.
These families of lines are illustrated in Fig. 11.7.1a.

In general, v and a can vary and the characteristic lines sketched in Fig. 11.7.1b in the z-t
plane are not known. However, the functions v and a(p) are known at an intersection of the C+ and C-
characteristics, wherever that may be. That is, suppose the initial values of v and a at points A and
B shown in Fig. 11.7.2 are given (at t = 0 but at different points along the z axis). Then, from
Eq. 11.6.16a, c+ is

a r2a(p)
+ = [v]A + [ _I (1)

Similarly, from the initial conditions at B,

(2)B
cb = [V]B - b2a() [y( (2)

a + b
Now, c+ is invariant along the C characteristic, and c- is invariant along the C characteristic. At
point C, certainly at a later time and generally at a different point in space than either A or B,
Eqs. 11.6.16 both hold, with c+ = c and c- = c,. Hence, they can be solved simultaneously for either
v or a(p). For the former, addition yields

a bc+ c

[V]C 2 (3)

Given conditions at A and B, the solution at C is established. The solution.is known, but where
and when does it apply? The Ist characteristic equations must be integrated to determine the location
of C in the z-t plane.

The characteristic lines have the physical interpretation of being wave fronts. Conditions at A
and B propagate along the respective lines and combine at C to give the response. It is remarkable
that what happens at C depends only on the conditions at A and B. But the "location" of C is determined
by initial conditions everywhere between A and B, as can be seen by considering how a computer can be
used to "march" from left to right in the z-t plane and determine the solution in a stepwise fashion.

1. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers,
New York, 1948, pp. 40-45.
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Fig. 11.7.1. (a) Linear case where v and a are known constants and the charac-
teristics are straight lines. (b) c4 and cý are established from the
initial conditions at A and B. Because they are invariant along the C+

and C- characteristics respectively, the solution is established where
the characteristics intersect at C.

The Response to Initial Conditions: In the linearized case, the characteristics are straight
lines as shown in Fig. 11.7.1a. The point of intersection, C, is then determined because the z co-
ordinates of A and B, as well as the characteristic slopes, are known. The effect of the non-
linearity is to bend the characteristic lines in the z-t plane. This is not surprising, because it
would be expected that the velocity of propagation of wavefronts (the slope of dz/dt of a character-
istic line) depends on the local speed of sound superimposed on the local velocity of the fluid.

7
In Fig. 11.7.2, a discrete representation of the charac- L

teristics is made. Initial values are given at the positions
z = zi. The C+ line emanating from z and the C- line from zk
cross at some point (j,k). To find the solution throughout the
z-t plane, k-I

a) Evaluate the invariants using the initial values in

Eqs. 1 and 2:

C+= [v] ± [(4)

b) Tabulate solutions at all intersections (j,k) by
solving simultaneously Eqs. 4:

t1
[v] (j)= (c + ck )

+ (5) Fig. 11.7.2. The (z-t) intersection

of jth C+ characteristic and

[a] =  (c- c k )(j) -1 kth C- characteristic is de-
(j,k) + 2 noted by (j,k).

c)Use the results of (b) to tabulate all characteristic slopes at the intersections (j,k):

d +[z1- = [v] + [a] (6)dt ( ,k) (j,k) (,k)

d) Start when t = 0 and build up grid by approximating characteristic lines as being straight
between points of intersection. Coordinates and slopes at neighboring points (zj k-1) and (zj+lk)
determine z-t coordinates of point (zj,k). Thus both the solution and the z-t coordinate at which it
applies are determined.

11.17 Sec. 11.7
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Simple Waves: Initial and boundary conditions are illustrated in Fig. 11.7.3 in which the fluid
is initially static [v = 0, a(p) = a] and is driven by a piston at one end. The piston, with position
shown as a function of time in the figure, is initially at rest at z = 0 and is pushed into the gas
until it reaches the final position z = zo . The slope of the piston trajectory has the physical sig-
nificance of being the piston velocity; hence the velocity of the fluid along the piston trajectory is
the slope of the trajectory, (dz/dt)p.

r. ,
I,4-,

( (Kh\( 
\ uJ /

Fig. 11.7.3. (a) Gas filled tube driven by piston. (b) Boundary and initial value
problem where the initial state of the fluid is uniform (when t = 0) and an ex-
citation is applied by means of a piston which is initially at z = 0. (c) a and
v are constant along C+ characteristics, which are straight lines.

By definition, the initial boundary value problem described leads to simple-wave motions. This
name designates the response to a boundary condition with the region of interest having a uniform
initial state.

Consider the two C characteristics sketched in Fig. 11.7.3b. They intersect the z-axis at
points A and B, where the initial conditions require that the fluid is stationary (v = 0), and that
the velocity of sound is ao . From this, it follows that the invariants c., established at point A
and at point B using Eq. 11.6.16, are the same,

-2a
a b o

c = c (7)
- - y-1

Points C and D are intersections with the same C+ characteristic. Hence, the invariant c+ is the
same at points C and D. Given c+ and c_ along the characteristics which intersect at C, the velocity
and density at that point are found by simultaneously solving Eqs. 11.6.16,

c+ + ca
v(C) = 2 (8)

Similarly,

b
c+ + cb

v(D) =  2 (9)2

a b
However, because of the special nature of the initial conditions, Eq. 7 requires that c a = c , and it
follows that v, and by similar arguments, a(p) or p, are constant along any given C+ characteristic.
Even more, because v and a are constant, it then follows from Eqs. 11.6.11 that the C+ characteristics
have constant slope.

The C+ characteristics appear as shown in Fig. 11.7.3c. Along the characteristics shown, the
velocity, v, remains equal to that of the fluid at the piston (point B), where

dz
v =(q-)p (10)
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Fig. 11.7.4. Simple-wave characteristic lines initiated by piston.

4 8 12 16 20 t

Fig. 11.7.5. Velocity of fluid as a function of z and t.

With Eq. 7, c- is established along the C- characteristic, and it follows from Eq. 11.6.16 that the
sound velocity a(p) at the point B on the piston surface, where v is (dz/dt)p, is

a = a + -) 2 (•• p (11)

This velocity of sound, a, along with the implied density p and velocity v from Eq. 10, remain constant
+ along the C+ characteristic. The picture of the dynamics is now complete, because the C character-

istic emerging from B has a constant slope given by the Ist characteristic equation, Eq. 11.6 .11:

dz dz (+)
d(it- + (-) p 2 (12)
dt 0 dao

Suppose that the piston position depends on time, as shown in Figs. 11.7.4 and 11.7.5. With no
instantaneous change in velocity when t = 0, the piston reaches a maximum velocity when t = 3, and then
decelerates to zero velocity by the time t = 6. The C+ characteristics originating on the piston can
be plotted directly using Eq. 12. Here, it is assumed for convenience in making the drawing that y and
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ao are unity. Note that as the piston velocity increases, the characteristic lines increase in slope,
while characteristics originating from the piston when it decelerates decrease in slope. Remember
that the fluid velocity v at the surface of the piston is just the slope of the piston trajectory.
This velocit'y remains constant along any given Cr characteristic, Hence, a plot of the fluid velocity
as a function of (z,t) appears as shown in Fig. 11.7.5. In regions where the characteristics tend to
cross, the waveform tends to steepen, until at points in the z-t plane where the characteristics cross
the velocity becomes discontinuous. This discontinuity in the wavefront is referred to as a shock
wave. With the steepening, variables change more and more rapidly in space. This shortening of
characteristic lengths brings into play phenomena not included in the adiabatic model.

Note that a shock wave tends to form from a compression of the gas. By contrast, the decelara-
tion of the piston tends to produce a waveform which smoothes out. Fluid near the leading edge of the
pulse is moving in the positive z direction, and this adds to the velocity of a perturbation, a, in th
region. Hence, variables within the pulse tend to propagate more rapidly than those nearer the leadin
edge, and the wave steepens at the leading edge. Similar arguments can be used to explain the
smoothing out of the pulse at the trailing edge. In any actual situation, y will exceed unity, and th
increase in density, and hence acoustic velocity, makes a further contribution toward the nonlinear
effect of shock formation. In actuality, effects of viscosity and heat conduction prevent the forma-
tion of a perfectly abrupt discontinuity in p, a, and v.

Limitation of the Linearized Model: To be quantitative in giving conditions under which non-
linearities are important, suppose that the piston is set into motion when t = 0 and reaches the
velocity (dz/dt)p by the time t = T. Then the characteristics are essentially as shown in Fig. 11.7.6
where the displacement of the piston is ignored compared to other lengths of interest. From Eq. 12,
the characteristic originating at t = 0, z = 0, is

z = a t (13)

while that originating at t = T, z = 0 is

z = [a0 + ()p (')](t - T) (14)

Nonlinear effects will be important at z = £, where these characteristics cross. Solving Eqs. 13 and
14 simultaneously for z = .by eliminating t gives

F a
= aT d +1 (15)

Hence, for a given characteristic time T, say the period in a sinusoidally excited system, there is a
length (some fraction of £) over which a linear model gives an adequate prediction. This distance
becomes large as (dz/dt)p becomes small compared to the velocity of sound, ao . It is clear, also, tha
making the period small (the frequency high) can also lead to nonlinearities. This fact is not as
limiting as it seems, since the peak piston velocity in any real system is likely also to decrease as
the frequency is increased.

Fig. 11.7.6

An excitation at z = 0 raises the
fluid velocity from 0 to (dz/dt)p
in the characteristic time, T.
Then nonlinear effects become im-
portant in the distance t required
for the resulting characteristics
to cross.
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11.8 Nonlinear Magneto-Acoustic Dynamics

The longitudinal motions of a perfectly conducting gas stressed by a transverse magnetic field,
discussed in Sec. 8.8 for small perturbations of a slightly compressible fluid, provide an example of
nonlinear electromechanical waves. The methods of Secs. 11.6. and 11.7 are put to work in many in-
vestigations of magnetohydrodynamic waves and shocks, especially in the limit of perfect conductivity
considered here.1 Motions, considered here perpendicular to the imposed magnetic field, have been con-
sidered for arbitrary orientations of the field.2

Equations of Motion: At the outset it is assumed that the motions are one-dimensional:

v = v(z,t)T ; H = H(z,t)i (1)

The physical laws governing the dynamics are those of compressible fluid flow and magnetoquasi-
statics. Reduced to one-dimensional form, conservation of mass, Eq. 7.2.3, requires that

~a+v -- + p -~= 0 (2)
ýt 5z az

In writing the force equation, Eq. 7.16.6, viscous forces are ignored. The magnetic force density is
conveniently written by using the stress tensor, Eq. 3.8.14 of Table 3.10.1;

av av p = aH
p ( + v v _) + = -P H -z (3)

In the perfectly conducting fluid, there is by definition no electrical dissipation. If in addition
effects of dissipation and heat conduction are negligible, the energy equation, Eq. 7.23.3, reduces
to an expression representing an isentropic process, Eq. 7.23.7:

tt(pp - = ) ( + v z-) (pp- ) (4)

In view of the one-dimensional approximation and Eq. 1, the field automatically has zero divergence.
The combination of the laws of Ohm, Faraday and Ampere are represented by Eq. 6.2.3. The x component
of that equation, in the limit where a + m, becomes

-(vH) +_ = 0 (5)

The other components of Eqs. 3 and 5 are automatically satisfied.

Characteristic Equations: Following the technique outlined in Sec. 11.7, Eqs. 2-5, together with
the relations between changes in the dependent variables along the characteristic lines and the partial
derivatives, are arranged in a matrix. For convenience, Dp/3t - P,t, ap/Bz = P'z, etc.:

0 1 v 0 p 0 0 0 0 p,t

0 0 0 p pv 0 1 0 p0H P'z

0 -yp -ypv 0 0 p pv 0 0
v, t

0 0 0 0 H 0 0 1 v V,
z

(6)
dp dt dz 0 0 0 0 0 0

p,t

dv 0 0 dt dz 0 0 0 0 p,'

dp 0 0 0 0 dt dz 0 0 H,
t

dHJ 0 0 0 0 0 0 dt dz H,
z

1. G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill Book Company, New York,
1965, pp. 309-339.

2. W. F. Hughes and F. J. Young, The Electromagnetodynamics of Fluids, John Wiley & Sons, New York,
1966, pp. 312-318.
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To obtain the Ist characteristic equations, the determinant of the coefficients is required to
vanish. The determinant is reduced by following steps similar to those that lead from Eq. 11.6.17 to
11.6.19, and then expanding by minors:

dz =v on C
dtdt 11 2 1/2 (7)

dt v + % on C-; % -[ +

The Cp characteristics are the particle lines, and actually represent two degenerate sets of character-
istics. The CG characteristics represent magneto-acoustic waves, discussed for small amplitudes in
Sec. 8.8.

The second characteristic equations are obtained from Eq. 6 by solving the determinant arrived at
by substituting the column on the left into the first column of the square matrix. Straightforward ex-
pansion gives

(dz -v)dv \{dE4dz, P( - v) dzI+d +dp dz 2 +Ypv+( - - v)

dz dz
-dp - [ H  -]dH} = 0 (8)

The second characteristic equations along the particle lines are found from Eq. 8 using Eq. 7a. That
the determinantal equations are degenerate is again reflected by the first factor in Eq. 8; remember
that (dz/dt - v) appeared as a quadratic factor in the denominator. The second term in brackets is
zero if dz/dt = v, so that

[ dp - dp] + [dp dH] = 0 on Cp (9)
p o0 p H

This equation is actually the sum of two independent expressions, as can be seen by considering Eq. 4,
which on the particle characteristic can be written as

-Y p  1- dp - dp = 0 or d(pp ) = 0 on C (10)
P

On the same particle characteristics, Eqs. 2 and 5 combine to give

p - p  H= 0 or d() = 0 on C (11)
H p

These last two equations insure that 9 is satisfied, and account for the degeneracy of the two character-

istic equations.

Using Eqs. 7b in 8 gives the two additional characteristic equations

-- +

+pabdv - dp - poHdH ±  (12)= 0 on C

Thus, the Ist characteristic equations are summarized by 7 and the IInd characteristic equations given
by Eqs. 10-12.

Initial Value Response: To any given point in the (z,t) plane can be ascribed four intersecting
characteristic lines, two of which are simply the particle line. These are illustrated in Fig. 11.8.1.
In general, the solution at the given point is obtained by simultaneously solving Eqs. 10-12, which are
four equations in four unknowns. The first two of these expressions can simply be integrated to give
invariants along cP:

pp-Y ppY on C (13)

c c p  H/p = Hc /P c on C (14)

The second of these states that a fluid circuit of fixed identity must conserve magnetic flux.
Hence, an increase in density caused by the compression of a fluid element is accompanied by a local
increase in H. The model of Fig. 8.8.1a remains a useful way of viewing the interaction.
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Suppose that, at some time in the evolution of the system,
the pressure, density and field are uniform and are (po,po,Ho).
The invariants on the right in Eqs. 13 and 14 are independent
of position thereafter:

-Y -Y
pp = poo - Y (15)

H Ho
(16)

P Po

It follows that the remaining IInd characteristic equations,
Eqs. 12, become t)

ig. 11.8.1. The solution at (z,t)ab H F
invariantsdv = 0; ab results from - dp + = [oPoY(PY l) + po()2] (17)

op carried along the four char-
acteristic lines shown, with

In effect, the dynamics now involve only the characteristics C-
CP representing two families

and two of the four original variables. Given (p,v) from solving
of characteristics.

Eqs. 7b and 17, p and H are found from 15 and 16. The dynamics are
similar to those for the gas alone, except that a + ab(p). Note

that the dependence of the magneto-acoustic velocity on p is in part determined by Ho .

11.9 Nonlinear Electron Beam Dynamics

The nonlinear motions of streaming electrons are usually described in terms of Lagrangian co-
ordinates. Nevertheless, an Eulerian description affords considerable insight if it is couched in
terms of characteristics. By contrast with the equations of Secs. 11.7 and 11.8, those now considered
are inhomogeneous.

The laws describing an electron beam neutralized by a background of ions are of the same nature as
used in Sec. 11.5. Here, they are written without linearization but with the assumption that motions
and fields are one-dimensional and that fields, like the motion, are z-directed. Hence, particle con-
servation requires that

Sz an an =(no + n ) + a + vz - z 0

where no is the equilibrium number density and n(z,t) is the departure from that equilibrium. The longi-
tudinal force equation is

av av
z _ e

at z a. m z

and in one dimension, Gauss' law is

aE
z en

az E

Variables are normalized at the outset so that time is measured in terms of the plasma frequency
Wp 4-e 2 no/mco,

t = 
o o

t; z = z/R; n = n/no; e= e/W ; v v/(zw) p
= E E /(n ei/ o)

By definition,

o av
e - z= 

and Eq. 3 becomes

DE
n = --az
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Then, Eq. 1 and D( )/az of Eq. 2, combined with Eq. 3, are the first two of the four equations,

an1 v 0 0 -(1 + n)8
at
an0 0 1 v n -
Bz

(7)Btdt dz 0 0 dn

Bz o
0 0 dt dz deaz

The third and fourth are expressions for dn and de, introduced following the procedure described in
Sec. 11.6.

That the determinant of the coefficients vanish gives the Ist characteristic equations. There
are two families of lines, but these are degenerate:

d- dz = v on C- + (8)
dt

The second characteristic equations could be obtained by substituting the column on the right for any
pair of columns on the left and setting the respective determinants equal to zero:

dn 0 +
dt = -(1 + on C (9)
dt 2

de n - 2 on C (10)

These expressions are simple enough that they could have been obtained directly from Eqs. 7a and 7b by
inspection.

A configuration typical of klystron beam-cavity interactions is shown in Fig. 11.9.1. The elec-
tron beam passes through screen electrodes at z = 0 and z = £. These are constrained to the potential
difference, V(t) = V (t)(noeZ2 /co), which will be taken here as a given drive. In reality, V(t) migh
be associated with a resonator that is used to either excite the beam or extract energy.

The region of interest in the z-t plane is between the electrodes, 0 < z < A and for 0 < t.
Characteristic lines that enter this region along the z-axis (when t = 0) are denoted by K = N...M,
while those that enter along the t-axis (where z = 0) are represented by K = 1...N. To integrate
Eqs. 9 and 10, it is appropriate to have two initial conditions for the latter and two entrance bound-
ary conditions for the former.

When t = 0, the velocity and electric field distributions between the screens are taken as known.
As an example, if the beam is initially unmodulated, the electron velocity is constant and there is no
space charge between the screens:

v = U, E = V(O) (11)

For the boundary conditions, it is assumed that the beam enters with a constant velocity, U. In
passing through the screen, an electron is subjected to a step in electric field, but not to an impulse
Hence, this velocity is continuous through the screen, this means that along the t-axis, where the
electrons enter the region of interest, av/at is also continuous. It follows from the force equation
for an electron; Eq. 2, that 9 is not continuous through the screen. Rather, if = 0 0 just upstream of
the screen at z = 0, according to Eq. 2, e assumes the value

(0,t) = - E(,t) U (2)(12)

just downstream. The number density is continuous through the screen, so that if the beam is un-
modulated upstream, then just downstream

n(O,t) = 0 (13)

Although not relevant as a boundary condition, it can be seen from Eq. 1 that the step in e across the
screen is accompanied by a step in an/az.

To make Eq. 12 a useful boundary condition, E(0,t) must be related to V(t). To this end, two
integrations of Eq. 6, with the condition that the second intergration give V(t), result in
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Fig. 11.9.1. (a) Beam enters region between screen electrodes with velocity U. At microwave

frequencies, the screens typically provide coupling to cavity resonators, as shown by
the inset. (b) Characteristic lines in the z-t plane. Coordinate (x,t) is denoted by
characteristic line (K) and time (L).

E = V - JJ n(z',t)dz'dz + J n(z',t)dz' (14)
0o o

so that the electric field at z = 0 can be evaluated and used to express Eq. 12 as

(0,t) = - + n(z',t)d'dz (15)
U U jo

Equations 13 and 15 comprise the boundary conditions at z = 0.

The integration of the second characteristic equations, Eqs. 9 and 10, can be carried out by
treating them as simultaneous ordinary differential equations. This is possible only because the
characteristic lines to which they apply are the same. Depending on whether the characteristic line of
interest enters through the t = 0 axis or the z = 0 axis, the initial conditions or boundary conditions
serve as "initial" conditions for this integration. However, the integration is not quite this straight-
forward, because superimposed on the propagational dynamics is Poisson's equation, which makes the
entrance field instdntaneously reflect both the net effect of the charge in the region of interest and
the voltage V(t). This is why the boundary condition on 8, Eq. 15, depends not only on the voltage but
also on the charge throughout.

Consider the numerical steps that portray the space-time dynamics while marching forward in time.
The initial conditions when t = 0 (L = 1) can be used with Eqs. 9 and 10 to establish n(z,dt) = n(K,2)
and 8(z,dt) E O(K,2) at the points where the characteristics (K = N .. M) intersect the t = dt axis (L=2).
Also, Eqs. 8 can be used to determine where these solutions apply, i.e., where

z

v(z,dt) = U + e(z,O)dz (16)
o
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Fig. 11.9.2. Turn-on transient in configuration of Fig. 11.9.1 with sinusoidal voltage applied to
screens. Normalized U = 2, V = 2 and angular frequency w = (2pw ).

The characteristic line K = N-1 entering at z = 0 when t = dt does so with conditions set by the
boundary conditions of Eqs. 13 and 15. Note that because n(0,dt) E n(N-1,2) is known and n(z,dt) has
already been determined at the location K = N--.,L = 2, integration called for in Eq. 15 can be carrie
out. Hence, (0O,dt) is determined. Thus, the dynamical picture is completely established when t = dt
This process can now be repeated to determine the response when t = 2dt, and so on. The turn-on tran-
sient resulting from the application of a voltage V(t) = V sin wt, is shown in Fig. 11.9.2.

Note that even though the transient has a well defined wave front, determined by the characteri
line passing through the origin, the characteristic lines are distorted even ahead of this wave front.
This is because the applied voltage and the space charge between the screens have an instantaneous ef
on the velocity of electrons throughout. Where the characteristic lines converge, abrupt changes in 
sity occur. By increasing the driving voltage, characteristic lines can be made to cross. Electrons
entering at one time are overtaken by those entering at a later time. It is to handle this situation
that Lagrangian coordinates are often used. 1

Once an electron has entered the interaction region, so that its initial conditions are establiO
its evolution in the state space (e,n) is determined. This can be seen by combining Eqs. 9 and 10 so
to eliminate time as the parameter:

(1 e+ -n(dn = (1 + n)(e

Given an initial position in the state space (e,n), numerical integration of Eq. 17 results in one of
trajectories of Fig. 11.9.3. It follows from Eqs. 9 and 10 that as time progresses, the trajectories
are traced out in the direction indicated by the arrows. Thus, the number density in the neighborhoo
of a given electron (moving along a characteristic line) is oscillatory in nature, with a frequency
typified by the plasma frequency, w . For the particular initial conditions of Eqs. 13 and 15, which
pertain along characteristics emanating from the t axis, the trajectories all start from the e axis,

but with an amplitude determined by Eq. 15. The picture is now one of particles acting as nonlinear
oscillators translating in the z direction with the velocity v.

The perturbation dynamics are governed by the linearized forms of Eqs. 9 and 10, which combine
to show that

1. H. M. Schneider, "Oscillations of an Inhomogeneous Plasma Slab," Ph.D. Thesis, Department of
Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Mass., 1969.
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Fig. 11.9.3. Phase-plane (e-n) trajectories of oscillations of electron beam.

d2n + n 0 (18)
2dt

Thus, on a characteristic crossing the t axis when t = to (where n = 0), (19)

n = A(to) sin (t - to)

Linearized, Eq. 8 can be integrated to express the characteristic line along which Eq. 19 applies:

z = U(t - to) (20)

Found from Eq. 20, to can be substituted into Eq. 19 to obtain

wz
n = A(t - ) sin ( ) (21)

where dimensional variables have been reintroduced.

The response is the product of a stationary emvelope having a wavelength. Ar 2wrU/wp and a part
traveling in the z direction with the electron velocity, U. The envelope is stationary in space
because every electron oscillator passes the z = 0 plane with n = 0. The amplitude of its oscillation
is determined by the initial condition on 8 when it passed the screen at z = 0. Note that in this small-
amplitude limit, the phase-plane trajectories of Fig. 11.9.3 are circles with radii much less than one.
It follows that to achieve linear dynamics, 8 << w .

P

11.10 Causality and Boundary Conditions: Streaming Hyperbolic Systems

Objectives in this section are: (a) to develop readily visualized prototype models for streaming
interactions; (b) to picture in z-t space the evolution of absolute and convective instabilities and
of systems which if driven in the sinusoidal steady state would display evanescent and amplifying
waves; (c) to use the method of characteristics to illustrate the crucial role of causality in the
choice of boundary conditions. In terms of complex waves (and eigenmodes) a small-amplitude version
of the dynamics will be considered again in Sec. 11.12. There, causal boundary conditions, as dis-
cussed here, will be essential to understanding the stability of systems of finite extent in the longi-
tudinal direction.
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Emphasized in this section is the dependence on the longitudinal (streaming) direction. Trans-
verse dependences, at least in linear systems, are represented by higher order transverse modes.
Linearized, the quasi-one-dimensional models now used represent the long-wave "dominant modes" from
a complete small-amplitude model. This interrelationship of models, represented by Fig. 4.12.2, is
illustrated in the problems.

Quasi-One-Dimensional Single Stream Models: Planar fluid jets are shown in Fig. 11.10.1. In
the electric version, the sheet jet is perfectly conducting in the sense that charges can relax on
the interface in times short enough to render the interfaces equipontials. (Perhaps a jet of water
in air.) The jet has a thickness A << a and each of the interfaces has a surface tension y. Elec-
trodes to either side of the jet have a potential Vo E aEo relative to the jet.

a Eo

a jEo Ho _

I 0- .oo
-L·

(a) (b)

Fig. 11.10.1. Prototype single-stream systems consisting of perfectly con-
ducting sheets convecting to the right with velocity U. (a) Poten-
tial constrained EQS configuration; (b) flux constrained MQS con-
figuration.

For long-wave motions, the transverse electric surface force density, T(z,t), can be approxi-
mated by picturing the jet as having a deflection C(z,t) from the center line, with essentially
negligible slope. Thus, perhaps by using the stress tensor on a control volume enclosing a section
of the jet, it follows that

S (aE2) (aE )2
T ( E 0 2 (1)

(a- ) (a+ +)

In the magnetic version, the jet is also perfectly conducting, hut now so much so that the mag-
netic diffusion time voAa >> 1. The s stem is then the antidual (Sec. 8.5) of the electric one, and
T obtained from Eq. 1 by replacing E Eo 2

•  -,i H . In either system, the inertial and surface tension
forces acting on the sheet are now also written with the assumption that deflections are slowly
varying with respect to z. With U defined as the streaming velocity, and approximated here as con-
stant, and p the-jet mass density, it follows that Newton's law for motions in the transverse direc-
tion is

32zU-) 2 2= +T (2)

The same expression would be written to describe a membrane having surface mass density Ap and tension
2y. The velocity of waves on a fixed membrane would then be VE p2

For motions having a typical time scale T, it is convenient to write Eq. 2 in terms of the
normalized variables

( = s/a, t = t/T, z = z/TV (3)
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New variables are introduced:

v = ; e = (4)

so that Eqs. 1 and 2 can be written as two first-order expressions:

ev ev e P Pe ie i (5)
(- + M M + M(~ + M t) a 1 2 (

ll) ;) (++ M(]

v e = 0 (6)
5z _t

where 2 eE2  211 H2

o2 2 22 00H2
SpAa- = (T/TE) 2or- pa = (Tr/TI)2 and M U/V
pha El pna MI

The last expression follows from taking cross-derivatives of Eqs. 4. Note that P is the square of
the ratio of the characteristic time to an electro or magneto inertial time, while M is a Mach number.
The magnetic and electric systems are respectively described with P positive and negative. With P>O,
the transverse force acts in the same direction as the displacement, and hence promotes instability.
With P<O, the force acts as a nonlinear spring to recenter the sheet.

Single Stream Characteristics: The characteristic represtntation of Eqs. 5 and 6 follows from
writing Eqs. 5 and 6 in the form of Eq. 11.6.7 and using the procedures outlined in Sec. 11.6:

dv + de(M + 1) = )2- (1 dt (7)

on
d= M + 1; (C-) (8)
dt --

It follows from the definition of e, Eq. 4, that

E = e dz (9)

where the lower limit of integration is selected as one where ( is either known or can be related to
other variables through a boundary condition.

Because the nonlinearity is confined to the second characteristic equations, Eqs. 8 can be
integrated:

+ +
Z- = (M + 1)t + Z- (10)

Thus, the characteristics are straight lines in the z-t plane, as illustrated in Fig. 11.10.2. By
contrast with the situation in Sec. 11.7, where the second characteristics could be integrated, but
the first not, here the z-t lines along which Eqs. 7 apply are known. It is the second character-
istic equations that cause the trouble.

I

C C
c-

3
Fig. 11.10.2

1/1ýý QB Characteristic lines in z-t plane used

A,
to determine response at C given initial
conditions at A and B.

i

I----S
I ^4 1-

--IAI - t
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There are two rewards for following the discussion now undertaken of how the characteristics can
be used to give a numerical picture of the dynamics. The finite difference algorithm can be used to
compute the response to initial and boundary conditions in a straightforward fashion. Perhaps more
important, the implications of causality for boundary conditions becomes evident in the process.

Consider the determination of the response at C in Fig. 11.10.2, given that at B and A an
instant, At, earlier. With the understanding that Av• and Av! are incremental quantities computed
respectively at the points A and B:

+
VA A

VC =A (11)

vB +AB

These two expressions must result in the same response at C. Hence, they can be simultaneously solved.
The result is the first of the following four relations between the incremental variables evaluated
at one or the other of the previous points on the incident characteristics;

+
1 -1 0 0 AvA vB - V

BAA

0 0 1 -1

(12)
1 0 M-1 0 PfAAt

A+AeA
0 1 0 M+l Ae Pf BAt

- B. B

where

f 4 )2 2(1 (1 + )

The second of these equations is analogous to the first with v replaced by e. The third and fourth
represent the second characteristics, Eqs. 7. Solution of Eqs. 12 results in expressions for the in-
cremental quantities in terms of the variables evaluated at the previous time step:

Av [VAB(M-I) + [eA-eB](M 2 -1) + .P[fA(M I) - f(M-l)]At (13)

+ + "+ (M+1)[eA-eB] + P[fAfB) At (1)Ae 2 A2 B[VA-vB] ) (14)

As indicated by the superscripts, these are the incremental changes in v and e along the C+ character-
istics.

Single Stream Initial Value Problem: Suppose that when t = 0, C(z,0) [and hence e(z,0)] and
v(z,O) are given at equally spaced points along the z axis. Further, suppose it is decided that for
convenience the response is to be found when t = At at points C similarly selected to fall at inter-
vals Az. The values of e, E and v at A and B can be determined from the initial conditions by inter-
polating between the initial values.

Then the values of eC and vC, e and v when t = At, follow from Eqs. 13 and 14 used with expres-
sions of the form of Eq. 11. Numerical integration, as called for by Eq. 9, then gives the distribu-
tion of ý at this time. The situation when t = At is now the same as was the initial one, so the
process can be repeated to find the response when t = 2At. Thus, the dynamics are unraveled by
"marching" forward in time along the characteristic lines. Of course some error will be introduced
by the interpolation required to evaluate v and e at A and B and by the numerical integration of Eq. 9.

Typical responses are shown in Fig. 11.10.3. In the absence of a field (P=0) the initial pulse
divides into components propagating upstream and downstream relative to the convecting sheet. These
pulses propagate without distortion, leaving a null response between. Because they can be represented
analytically, this case gives a check on the numerical scheme (Prob. 11.10.1).

Regardless of the sign of P, one effect of the inhomogeneity is to fill the region between these
pulses with a response. With P < 0, physically the sheet is subject to a spring-like magnetic
restoring force. In the extreme of no tension (V = 0), the situation would be one of convecting non-
linear oscillators, similar to that considered in Sec. 11.9. The tension adds wave propagation effects
already familiar from part (a) of Fig. 11.10.3. The combined result, illustrated in part (b) of the
figure, once again shows waves propagating along the characteristic lines, but now attenuating and
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leaving behind an oscillating remnant. This oscillating part tends to be carried by the convection
and have an angular frequency -~T

As would be expected for P > 0, which represents a transverse electric force acting much as a non

linear "negative" spring force, the response in parts (c) and (d) of Fig. 11.10.3 grows with time.
T~%.b types of instability are illustrated. For M < 1, where the flow is "sub" relative to the wave
velocity V, the response becomes unbounded for an observer having a fixed location along the z axis.
This is termed an absolute instability or, to distinguish it from the type of response shown for
M > 1, a nonconvective instability.

For the convective instability of part (d), M > 1 and the response at a given location remains
bounded. But, for an observer moving downstream it grows. Such an instability can be excited by a
temporarily periodic signal at some location along the z axis and a sinusoidal steady-state established

downstream in which the response takes the form of a spatially amplifying wave. At least for linear

systems, such waves are best considered in the frequency domain, as illustrated in Secs. 11.11-11.13.

The nonlinear field coupling has its most pronounced effect in the electric field case. As E - a

(its maximum possible value), the electric force becomes infinite. Thus, the peaks of the deflection
tend to sharpen. In the P > 0 examples shown by Fig. 11.10.3, the initial deflection, consisting of
a cosinusoid plus a constant in the intervals shown, tends to become a triangular pulse.

Quasi-One-Dimensional Two-Stream Models: Consider now the two-stream configurations of
Fig. 11.10.4. The sheets have the respective convective velocities U1 and U2 and the same wave

velocities V. They are now not only subject to the "self-field" effects resulting from the electric

and magnetic fields, much as for the single streams, but they are also coupled to each other by this
field. Thus, a given sheet is subject to "self" and "mutual" forces, represented on the right in the

transverse force equations:

82a +2y D 2 -lp -1 2fy E 32 = 1 E2 f (15)
Ap(- +U 2 -)2 - 2y 2  2 

_ 
oo (16)

where, with the displacements normalized to a,

fl(ýl,i2) 1 2 = I- 4 - (17)+ 2 - 2

2 12 4. _+C 2 + (18)

H

H_

(a) (b)

Fig. 11.10.4. Prototype two-stream configurations. (a) Potential
constrained EQS configuration. (b) Flux constrained MQS
configuration.
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With variables defined as in Eq. 4 and normalized as suggested by the single-stream model, these equa-
tions are written as four first-order expressions:

a a a a ae-
+- + M = Pfv( (19)

a a a a De2
( + M 2 + M2  + 2  )e2  ae (20)Pf2(2 ,2 2

av ae1 1
(21)az at 0

av2  Be
2 22at 0

Bz Bt =0 (22)

Again, for the EQS system, P > 0 while for the MQS system, P < 0.

Two-Stream Characteristics: The same determinant approach used to find the single-stream
characteristics can be applied to Eqs. 19-22. However, it is more convenient to recognize that the
only coupling between streams is through the inhomogeneous terms. Thus, in view of Eqs. 7 and 8
found for a single stream, the characteristics are just what they would be for the individual streams
with the inhomogeneous terms appropriately altered. Thus

dv1 + del(M (23)1 T 1) = Pfl(F 1, 2 )dt

dz (24)

dv2 + de2 (M2 + 1) = Pf2(1l,)2)dt (25)

dz 
_ + (26)dt = M2 2 1; (+)

The solution at some position, E, when t = t + At is now determined by the response at posi-
tions A,B,C and D on the respective characteristics when t = 1, as illustrated in Fig. 11.10.5.:

t t+at t
(a)

. -

(b)
Fig. 11.10.5. Characteristics in the z-t plane illustrating (a) "super" counter-

streaming and (b) "super" stream-structure interactions.
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Just as Eqs. 13 and 14 follow from Eqs. 7, Eqs. 23 imply that the changes in vl and el along the C+
characteristic from A to E are given by 1

AvlA = 5 (VlVlB) (M-1)+(elA-elB)(M21-1)+P[flA(M+1)- 1B(Q-l)]At} (27)

+ 1
AelA = - 1(vlA-vlB)+(elA-elB) (M+l)+P(flAflB)At (28)

Similarly, from Eqs. 25, changes in v2 and e2 along C2 from C to E are as given by these equations
with 1 + 2, A + C and B + D. As before, numerical integration of el and e2 gives the distributions
of 51 and E2. The lower limits of integration in Eq. 9 should be made consistent with the entrance
conditions on the respective streams.

Two-Stream Initial Value Problem: Given the initial distributions of ,1' vl, C2 and v2 , the
evolution of these variables with time can be determined numerically, much as for the single streams.
Given that P can be positive or negative (the two configurations of Fig. 11.10.4) and that M1 and M2
can be greater or less than unity (each stream can be "super" or "sub") and can be negative or positi
(streaming in either direction), it is clear that there are now many physical interactions that might
be considered. The super counter-streaming and super stream-structure interactions illustrated in
Fig. 11.10.5 perhaps add the most physical insight.

The characteristics alone make it clear that with counter-streaming "super" streams it is
possible to have an absolute instability. With P > 0, this instability has much the same character
as for the single "sub" stream. But what might be surprising is the instability that results even
with P < 0. In this case of magnetic field coupling, the effect of the field on the single stream
is to produce decaying oscillations. With two counter-streams, oscillations are fed from one stream
to the other and then back to the point of origin with a phase shift. Thus, certain oscillations
build up, as the numerically computed response of Fig. 11.10.6 illustrates. Note that the in-
stability is unbounded at a fixed position along the z axis. It takes the form of an absolute in-
stability, in that the displacement at a given z tends to grow with time.

/

Fig. 11.10.6. Counter-streaming interactions between "super" streams coupled by magnetic
field (P = -1000, M1 = 1.5, M2 = -1.5). Two-stream instability is in this case
absolute.
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Causality and Boundary Conditions: Any real system is of course bounded in the axial direction.
One merit of the characteristic viewpoint is that causality is implicit to a specification of the
conditions imposed to account for these boundaries. The dynamics unfold along the characteristic lines,
always proceeding forward in time. Boundary conditions must be consistent with this requirement.

Consider first the boundary conditions for the single-stream configurations. The differential
equation of motion is second-order in the longitudinal coordinate, so two conditions are required.
Mathematically, these could be both imposed at z = 0, both at a downstream position z = L, or one at
each position. But which of these is consistent with having a causal relation between the response and
the initial conditions depends on whether the stream is "super" or "sub."

If the stream is supercritical, both families of characteristics are directed downstream, as
illustrated in Fig. 11.10.7a. As time goes on, the response at C that depends on the initial condi-
tions between A and B becomes one at C' that depends on both initial conditions and conditions at the
upstream boundary. Finally, at points such as C", the response is fully determined by the boundary
conditions at the entrance. Periodic entrance conditions clearly result in a temporally periodic
reponse. The supercritical boundary conditions are equivalent to initial conditions and the response
is found following the same line of reasoning as illustrated for the initial value problems. Two
boundary conditions must be imposed at the upstream boundary, but none are imposed on the region
0 < z < k by the downstream boundary.

I

A

E

O at t
(a) (b)

Fig. 11.10.7. Boundary conditions consistent with causality. (a) Supercritical
characteristics implying two upstream conditions and none downstream,
(b) Subcritical flow with one condition at each extreme.

By contrast, if the flow is subcritical, as illustrated by Fig. 11.10.7b, two conditions at
either boundary leave the representation over-specified, and one condition must be imposed at each
boundary. To see this, consider how the solution in the neighborhood of the downstream boundary would
be found using the characteristics. To find the solution when t = At, the procedure is as already
outlined except for the end points, like C of Fig. 11.10.7b. At this boundary point, v v= C is
stipulated (say). Thus, because vA is also known from the initial conditions, the change in v along
the C+ characteristic incident on the boundary, Av , follows from Eq. lla, From the second character-
istic equation along C+, Eq. 12c, the value of Ael is then determined and hence e at the boundary, eC,
is found. Thus, e cannot be independently specified as a boundary condition. With the variables
determined at the boundaries in this fashion, the stage is set for repeating the process to determine
the solution when t = 2At.

Of course, two boundary conditions can be arbitrarily imposed, say two upstream conditions in a
subcritical flow. But it is clear that the resulting solution answers the question, what initial con-
ditions are required to make the solution satisfy the desired subsequent conditions at the boundaries?
Boundary conditions are usually intended as statements made in advance to predict future events. If
not causal, they place requirements on what must have taken place before to have certain conditions at
the boundaries now.
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Consider now causal boundary conditions for the two-stream configurations. The system is now
fourth-order in z and therefore four boundary conditions are required. With the understanding that
characteristics have a direction determined by increasing time, one condition must be imposed where
each family of lines enters the region of interest.

As+an example, consider again ýhe supercritical counter-streaming configuration. The character-
istics C1 enter at z = 0 while the C2 characteristics enter at z = Z. To see that the imposition of
these conditions is consistent with marching forward in time, consider how the solution is determined
when t = t + At, given the solution when t = t. Provided that Az and At are selected so that the
characteristics passing through every interior point on the grid when t = t + At pass through the line
t = t in the interval 0 < z < Z, the solution at each of the interior points is found by the same
procedure as for the initial value problem. The solution at an end point, such as E in Fig. 11.10.8a,
is then found by using Eqs. 27 and 28 to find vl and el at E. The boundary conditions provide the
values of v2 and e2 at E. In this way, the response is determined over the entire interval, including
the end points, and the stage is set for the next time step. The example of Fig. 11.10.6 is in fact
computed taking into account boundary conditions Cl(0,t), vl(O,t), C2 (£,t), v2 (k,t) all zero. However,
time has not progressed far enough to make these conditions significant.

.b..
I h

S2 =U

B
B

C
A

A

t t+nt t t+ At
(a) (b)

Fig. 11.10.8. (a) Downstream boundary of counter-streaming configuration at
which two conditions, on E2 (and hence v2) and e2 , are imposed.

It is because coupling between characteristics for the two streams occurs only through the in-
homogeneous terms that this simple procedure takes into account boundary conditions on the counter-
steaming supercritical streams.

In Fig. 11.10.8b, the stream-structure interaction makes more evident what is in general
required. Stream (1) is supercritical while (2) is not only subcritical but is not streaming at all.
To find the response at a downstream boundary, like point E of Fig. 11.10.8b, Eqs. 27 and 28 again
provide (vl, el) at E. One boundary condition is imposed, say v2 is given. Because v2 at C is also
known, Av+follows. In turn, Eq. 25a (the second characteristic equation on C2) can be used to solve
for Ae2C. Thus, e2E is determined and all conditions at E are known.

At the upstream boundary, v1 and el are imposed as is a third condition, say that v2 is known.
From this last condition the second characteristic equation along C can be used to determine e2 at
E'. Again, all conditions at the end points of the grid when t = t + At are established and the
stage is set for the next iteration.

In the absence of longitudinal boundary effects, the "super-sub" streaming interaction with-
P > 0 is convectively unstable. That is, the response to initial conditions at a fixed position is
bounded in time. In this case, boundary conditions have a profound effect. Those just described
turn the convective instability into an absolute one that builds up in an oscillatory fashion.
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LINEAR DYNAMICS IN TERMS OF COMPLEX WAVES

11.11 Second Order Complex Waves

The remaining sections in this chapter continue a subject begun in Sec. 5.17. There, Fourier
transforms are used to represent spatial transients in terms of the sinusoidal steady-state spatial
modes. The example considered there, of charge relaxation on a moving sheet, is typical of a wide
class of linear systems that are uniform in the longitudinal direction, z, and excited from transverse
boundaries, perhaps over an interval 0 < z < R. In Sec. 5.17, the resulting temporal sinusoidal steady
state consists of responses, shown in Fig. 5.17.8, that spatially decay upstream and downstream from
this range. These are a superposition of the appropriate spatial modes. Within the excitation range,
the response is also a superposition of spatial modes. But in addition, in this range there is the
driven response having not only the same temporal frequency as the drive, but the same wavenumber as

well. The Fourier transform provides a formalism for "splicing" the modes and driven response together

in the planes z = 0 and z = R.

As pointed out in Sec. 5.17, there are two questions left unanswered in the process of finding
the spatial transient. First, it is assumed there that the sinusoidal steady-state complex waves
decay away from the excitation region. Thus, those spatial modes having positive imaginary k are ex-
cluded from the downstream range k < z, while those with negative imaginary parts are left out in the
region z < 0. The examples introduced in this section include the possibility that the downstream
response in fact grows with increasing z. In Sec. 11.12, the objective is to have a means of dis-
tinguishing such amplifying waves from those that are evanescent, or decay away from the drive.

Any discussion of a sinusoidal steady state is predicated on having an answer to the second
question. Is the system absolutely stable, in the sense that the response is bounded with increasing
time at a fixed location in space? Only then will the temporal sinusoidal steady state have a chance
to establish itself. The difficulty here is that a system is not necessarily absolutely unstable
even if it displays temporal modes with negative imaginary frequencies. Temporal modes, having fre-
quencies given by the dispersion equation evaluated using real values of the wavenumber, are the
response to initial conditions that are spatially periodic. These extend from z = -- to z = +-o.
Thus, in an infinite system, temporal modes do not suggest whether the instability grows with time at
a fixed location, z (absolute instability), or rather grows only -for an observer that moves with some
velocity in the z direction (convective).

The identification of an absolute instability is taken up in Sec. 11.13.

Second Order Long-Wave Models: It is the purpose of this section to set the stage for the next
two sections. Although the w-k picture of the evolution of a system in space and time is widely
applicable, it is helpful to have in mind simple situations that make it possible to establish a
physical rapport for what the mathematics represents. In Fig. 11.11.1, sheets of liquid stream in
the z direction between plane-parallel plates or electrodes. (These same configurations are con-
sidered from another point of view in Sec. 11.10.) With the stream in steady equilibrium there is no
transverse deflection, E, and there are uniform fields between the plane-parallel perfectly conducting
walls and the sheets, as shown. Over the range 0 < z < k, the transverse boundaries are driven either
by electric or magnetic potentials superimposed on the uniform bias potentials which give rise to the
equilibrium fields.

The models now developed highlight the dominant modes of systems actually having an infinite
number of spatial modes. The higher order modes that are left out of the models come into play if
"wavelengths" of interest are as short as the spacing, a, or the sheet thickness, A. The magnetic
configuration is the antidual of the electric one, as defined in Sec. 8.5. Thus, the equation of mo-
tion follows directly from the electric case now derived, with Eo + o, Eo + Ho, 4 -+ A/po.

With the stream modeled as a membrane having a tension twice that due to the surface tension,
the equation of motion is Eq. 11.10.2. Taking into account the excitation potentials, the transverse
surface force density in the long-wave limit is simply the difference between the electric stresses
acting on the top and the bottom of the sheet:

1 (-Eoa + d 2  (-Ea -$d) 2  jd (1)
T =o d oo 

(a - ) (a + )

For small amplitudes of the drive and response,

2s E 2c E2

T 00 o (2)
*a d a

This expression is now used to complete the transverse force equation, Eq. 11.10.2, which takes the
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= normalized form (5 g= a, t tT, and z = zTV):

(- + M -)2 ~ + PE - Pf(z,t)

The membrane wave velocity and Mach number are defined as

V = P; M= U

and "pressure" parameters and forcing functions making the equation applicable to the electric and mag-
netic configuration, respectively, are

22E2T 21o H T2 
p= ooP 00

Apa Apa
Am

f f = aH
- aEo -- o aHo

Thus, with P > 0 the configuration is electric, and the self-field part of the transverse force is de-
stabilizing. That is, a deflection results in a field intensification and hence a transverse force
on the stream tending to further increase the deflection. In the magnetic field configuration, P <
and it is as though there were a continuum of magnetic springs between the stream and the walls. A
flection leads to a force tending to return the stream to its equilibrium.

Whether the underlying method of characteristics from Sec. 11.10 has been followed or not, it is
useful at this point to review the response to initial conditions, shown in Fig. 11.10.3, for these
streaming configurations. It is the Mach number, M, that determines if the initial pulse can propa-
gate upstream. For M < 1, wave fronts propagate in both directions, whereas if M > 1, the entire re-
sponse is washed downstream.

If P is positive, the amplitude becomes unbounded. But, whether the growth is at a fixed loca-
tion or for an observer moving with some velocity depends on M. Thus, in this electric case, the in-
finite system is absolutely unstable if M < 1 and convectively unstable if M > 1.

If P is negative, the response consists of forward and backward waves. The magnetic field
results in their leaving an oscillation in the region between. If M < 1, this oscillation decays
with time at a fixed location, while if M > 1, the response falls abruptly to zero as the wave front
that is trying to propagate upstream is swept downstream.

With these predispositions as to what inhomogeneous boundary homogeneous
should be expected, consider now the repre- conditions at frequency w0 /boundary conditions
sentation of the dynamics in terms of com-
plex waves. - - - - - - - 1 - -- .--3

n1

Spatial Modes: Consider first the re-
sponse to excitations that are in the sinu-
soidal steady state, having a frequency
w = bo. Because they involve the same mani-
pulations, but contrasting issues, two types
of problems are now considered. In the first,
the system is bounded by the planes z = 0 and
z = Z. The transverse boundaries are not
driven. Rather, the drive is through one of
the longitudinal boundary conditions which
varies at the angular frequency wo.

The second type of problem is one ex- (b)
tending from z = -- to z = +oo with the exci-
tation from the transverse boundaries over Fig. 11.11.2. Typical systems that are uniform in
the range 0 < z < £. These bounded and un- the z direction; (a) bounded longitudinally
bounded situations, pictured in Fig. 11.11.2, by planes where boundary conditions are im-
are similar enough that they are now con- posed; (b) unbounded in the z direction with
sidered at the same time. drive from a transverse boundary over the

interval 0 < z < k.
To be consistent with normalization of

Eq. 3, deflections are taken to be of the form

=Re ~e(wt-kz)
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where frequencies and wavenumbers are normalized such that wT = w, kTV = k. The inhomogeneous solution
to Eq. 3, caused by the drive on the transverse boundaries and applying over the range 0 <,z < iJ, fol-
lows by substituting this form of solution into Eq. 3 with w = wo and k = (. Solving for ý gives

Pf
=D(w,1) (7)

where the dispersion function is

D(w,0) = (Wo - M )2 _ 2 + P (8)

For solutions of the form of Eq. 6 to satisfy the homogeneous form of Eq. 3, k must satisfy the dis-
persion equation D(w,k) = 0. Thus, with amplitudes A and B at this point arbitrary, the solution over
any range of z is

[Pie-jBz + -jklz + -jk 2 zI 
S= ReD--(o~ + Ae + Be Je jW 0 t (9)

where

D(w,k) = ( - Mk)2 - k2 + P (10)

Thus, the wavenumbers k1 and k2 in Eq./8 are given by solving the quadratic expression D(wo,k) = 0:

k1 = Tj + (11)
-1

where

2woM W•2 + P(l -M )

M2 - 1 M2 - 1

As a graphical representation of the spatial modes, these roots are displayed in Fig. 11.11.1.
For a particular driving frequency wo, the roots of D(wo,k) are represented by the intersections with
the horizontal line. The solid curves indicate the real part, kr, while the broken lines are the
imaginary part, ki . Where one k is shown, it is in common to both roots.

Four possibilities are distinguished in Fig. 11.11.1. The configuration can be electric or mag-
netic (P > 0 or P < 0) and it can be subcritical or supercritical (IMI < or IMI > 1). As can be seen
from Eq. 1, two of the four have ranges of frequency over which the wavenumbers are complex:

< P(M2 S2 1) (12)
o

One is the subcritical magnetic case, where P < 0 and IMI < 1. The other is the supercritical elec-
tric case, where P > 0 but IMI > 1. In each of these, one spatial mode apparently "grows" with in-
creasing z while the other "decays." Of course, in the magnetic subcritical case the spatial mode
that appears to grow in the z direction is really an evanescent mode decaying upstream from a down-
stream drive. The supercritical electric case actually does involve a wave that is amplifying in the
z direction as it moves away from an upstream source.

Section 11.12 shows how the distinction can be made between evanescent and amplifying waves by
considering how the waves are established in the sinusoidal steady state subsequent to turning on the
excitation.

The remainder of this section is intended to develop a physical understanding of evanescent and
amplifying waves and of absolute and convective instabilities.

Driven Response of Bounded System: If IMI < 1, boundary conditions can be imposed at z = 0 and
z = k. That these conditions are consistent with causality can be established by the method of char-
acteristics (Sec. 11.10), or by using the arguments of the next section to determine that one spatial
mode propagates in the +z direction (and hence can be used to satisfy a boundary condition at z = 0),
while the other propagates in the -z direction (and can be used to satisfy the condition at z = £).
As an example, suppose that the sheet is given a sinusoidally varying excitation at z = 0 and fixed
at z = £. Also, make the transverse boundary excitation zero, so f = 0. Then, the coefficients A
and B in Eq. 9 are determined and the solution becomes: (Note that in the normalized expression,

£/tV.) j= 

-Re sin y(z - ) t-  (13)
d sin y2
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If the frequency is below the cutoff frequency, Eq. 12, y is imaginary and the evanescent nature of

the response is made more evident by writing Eq. 13 as

sinh y(z - ) J(Wot-nz)
= f -Re d sinh ya e (14

Some features of this steady-state response are illustrated by the experiment shown in
Fig. 11.11.3. Here, the sheet is replaced by a wire under tension. In the absence of a magnetic
force, it too has a deflection described by the wave equation. There is no longitudinal motion, so
M = 0 and hence r = 0 in Eqs. 13 and 14. By passing a current through the wire and imposing a mag-
netic field that is all gradient along its zero-deflection axis, a magnetic force is produced that is
proportional to F. This force tends to restore the undeflected wire to its original position. The
configuration is described in Prob. 11.11.2, where it is shown that the equation of motion is again
Eq. 3 with P < 0 and M = 0.

In the first picture of the sequence, the current is zero and what is seen is the standing
wave resulting from the interference of two oppositely propagating ordinary waves. (In these pic-
tures, the z direction is to the left, so the excitation is to the right.) The frequency is such
that the wire is very nearly in the lowest resonance condition that prevails if yZ = nff. As the
current is raised, the magnetic force tends to counteract the inertial force (that makes the wire
bow outward). The current is reached where these forces just balance, and the deflections decay away
from the excitation. The rate of decay is largest at zero frequency (a static deflection).

Consider next the dramatic effect of having the continuum not only stream, but be supercritical,
so that IMI > 1. Then, two boundary conditions must be imposed at the inlet, where z = 0, and none
that influence matters in the range of interest are imposed at the exit. For example, the deflec-
tion is again the sinusoidal one assumed before, but the spatial derivative is constrained to be
zero. Then, the coefficients A and 9 are determined and the solution is

- k e- jY z ) (klejYz j(wot-nz)
=Re Ed 2y

The case of most interest has the electrip configuration of Fig. 11.11.1 as a prototype and hence
P > 1 0. If P is raised high enough that < P(HI - 1), y is imaginary, and the space-time picture of
the deflections given by Eq. 15 is more apparent if it is written in the form

S(tlellz - k l e - YIz) j(.ot-fz)
S= -Re Ed 2y e (16)

In the case of this supercritical stream, a demonstration is made by letting the continuum be a
jet of water, with capillarity providing the (surface) tension (see Prob. 11.11.3). The drive is pro-
vided by spherical electrodes positioned just upstream of (z = 0) on each side of the stream and bi-
ased by a constant potential relative to the stream with a superimposed sinusoidally varying voltage
having the angular frequency w.

With P = 0, so that y is real, the response is illustrated in Fig. 11.11.4. (Again, streaming
is from right to left with the excitation at the right.) The fast and slow waves carried downstream
by the convection interfere to form "beats." That is, the envelope of the deflection is a standing
wave having wavelength 27/y. In Fig. 11.11.4b, the frequency has been raised to the point where about
one half-wavelength of the envelope appears within view. In a slow motion picture (Complex Waves II,
Reference 11, Appendix C), the phases propagate through this envelope with velocity wo/h.

With a field applied to the jet, the kinking motions of the jet are very similar to those of the
planar sheet. Thus, raising the voltage is equivalent to raising P, and has the effect on the dis-
persion equation and jet that is illustrated in Fig. 11.11.5. Over most of its length, the response
described by Eq. 16, is dominated by the growing exponential. Again phases have the velocity wo/
with the exponentially growing envelope.

Instability of Bounded Systems: The importance of imposing boundary conditions that are consist-
ent with causality is made dramatically evident by considering implications for stability of correct
and incorrect conditions. For a bounded system, it is not meaningful to envision a convective insta-
bility. Once boundary conditions have been imposed, there remains only the possibility of an abso-
lute instability in the response to initial conditions. This transient response is representedby a
Ruperposition of modes satisfying homogeneous transverse and longitudinal boundary conditions (f and

+d - 0).

For the subcritical system, it can be seen from Eq. 13 that the eigenvalues for these modes are
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( a )

( b)

given simply by

sin '(9., = 0 ~ '( = nTf/9." n = 1,2,3··· (17)

In evaluating this expression, using the definition of '( given by Eq. 11, the frequency is now the
eigenfrequency, conveniently represented here as jW ~ sn. Thus,

2 2s2 = _(nTf) 2 (M _ 1) 2 + P (1 _ M ) (18)
n 9., ~

Because IMI < 1, it follows that P must be positive if there is to be instability. As P is raised,
the n = 1 mode is the first to become unstable and that occurs if

P (19)

At this threshold, the deflection has a shape given by Eq. 13, with an envelope having the shape of a
half-wave of a sinusoid. This instability is illustrated in the limit M ~ 0 in Complex Waves II
(Reference 11, Appendix C).

Consider the consequence of an unjustified use of Eq. 18. Suppose that it is valid for the
supercritical case, IMI > 1. It would then be concluded that the system is unstable with P made
sufficiently negative (the magnetic case in Fig. 11.11.1). Of course, with IMI > 1, one boundary
condition underlying the identification of these eigenmodes is not consistent with causality. From

11.43 Sec. 11.11

Fig. 11.11. 4

Supercritical stream (M > 1) with
no field (P = 0) and excitation
to the right. Raising the fre­
quency just brings one half-wave­
length of "beat" into view.
(From Complex Waves II, Refer­
ence 11, Appendix C.)

Courtesy of Education Development Center, Inc. Used with permission.
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the correct solution, Eq. 15, it is clear that in this supercritical case there are no eigenmodes,
never mind modes that are unstable.

Driven Response of Unbounded System: Consider now the sinusoidal steady-state response to a drive

from transverse boundaries in the unbounded configuration, Fig. 11.11.2b. For the quasi-one-dimen-
sional model, solutions are piecewise continuous in the z direction. In regions I and III there is no
drive and hence f = 0, while in region II there is a drive. With an appropriate assignment of f, the
general solution, Eq. 8, can be applied to each region. There are two coefficients, A and B, associ-
ated with each region. These represent the amplitudes of the spatial modes and are determined by
boundary conditions at infinity and by the conditions prevailing where the regions meet at z = 0 and
z = 2.

A picture of the sinusoidal steady-state response in the four regimes illustrated in Fig. 11.11.1
is given in Fig. 11.11.6. First, consider the subcritical situations. Here, boundary conditions must
exist at z + - and z - -- that have an effect on the asymptotic response. So long as the waves are
propagating (P > 0 and P < 0 but the frequency above cutoff), it is necessary to specify conditions
at infinity. One such specification might be a "radiation condition," which requires that boundaries
are far enough removed that waves reflecting their presence have not returned to the region of exci-
tation, or that these boundaries absorb the incident wave without there being any reflected wave.
In either case, for IMI < 1, the response is

-jk 1z
Je ; z< 0

jwo t .- jBz -jk z -jk z
= Re e D(,)+ e + e ; 0 < z < (20)

D(11) II II

-jkl z

B IIIe <z

where modes representing conditions at infinity have been excluded from regions I and III.

The four coefficients are determined by making the displacement and its spatial derivative piece-
wise continuous. That is, requiring that ý and ac/az be continuous at z = 0 and z = £ gives four con-
ditions allowing the four amplitudes to be determined in terms of f.

For P > 0 and for P < 0 with the driving frequency above cutoff, the response outside the exci-
tation region consists of purely propagating waves. Thus, the envelope of the response in the ex-
terior is constant in z. In the magnetic case, where P < 0, the response below the cutoff frequency
consists of evanescent waves, as sketched in Fig. 11.11.6. As suggested by the general form of the
solution, Eq. 20, in the excitation region the response is a sum of the spatial modes representing
end effects and a driven response that has the same wavenumber as the drive. For operation below the
cutoff frequency, the response in the mid-range of region II at distances removed by several decay
lengths from the ends would be just the part having the same spatial periodicity as the drive. This
type of behavior is familiar from Sec. 5.17, and also illustrated in detail by Fig. 5.17.8.

The case P > 0 and IMI < 1 is absolutely unstable. Sooner or later the response to initial con-
ditions would dominate the sinusoidal steady state.

Now, consider the effect of having a supercritical stream, IMI > 1. The response in region I is
entirely determined by the upstream boundary conditions. If those conditions are homogeneous, or that
boundary is too far upstream to have had an effect during times of interest and initial conditions on
the stream are zero, then the solution in region I is known to be zero. With this understanding, the
response then takes the form

0; z < 0

pe-jý z  -jkiz -jkz
-= Re e D(w0, ) + A ie + BIIe ; 0 < z < k (21)

-jk z -jk z

AIIIe +B IIIe ; R < z

The response continues to evolve in the direction of streaming. In region II, the amplitudes
are fully determined by the requirement that ý and 3E/Dz be zero at z = 0. In turn, the downstream
response in region III follows by requiring continuity of E and a3/3z at z = £.
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traveling waves

2BC 2,JC 21JC 2BC 2.JC 2,JC
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amplifying or beating traveling waves

traveling waves

Fig. 11.11.6. Boundary conditions (B.C.) and jump conditions (J.C.) for second
order unbounded systems.

In the case P > 0 (the unstable configuration), operation below the cutoff frequency results in
an amplifying wave. Thus, it is possible that even within the excitation region the spatially periodic
response will not prevail. The spatially amplifying wave certainly dominates in the downstream region,
since the only other contribution to the response in that region is a decaying wave.

The downstream responses for the stable and unstable supercritical cases of Fig. 11.11.6 are
illustrated experimentally by Figs. 11.11.4 and 11.11.5, respectively.

In retrospect, what is the intellectual basis for the association of the spatial modes with bound
ary conditions at infinity that made the difference between the supercritical and subcritical solu-
tions? (Certainly it is not an identification of the direction of propagation of the phases.) In
fact, left at this point, it is necessary to fall back on the method of characteristics, Sec. 11.10, t
justify the association of modes with boundary conditions. In the next section, the objective is to
have a method of relating the modes to the conditions of causality. The excitation will be turned on
and the appropriate solution found as the asymptotic response. This approach can be used in systems
where the method of characteristics is not applicable.

It has been presumed in this discussion of the response for the infinite system that at a given
point in space, the response remains bounded as time increases. It will be the purpose of Sec. 11.13
to identify conditions for an absolute instability and to discriminate between it and a convective in-
stability.

11.12 Distinguishing Amplifying from Evanescent Modes

Whether the excitation is from transverse or longitudinal boundaries, the sinusoidal steady-
state asymptotic response is a superposition of waves having complex wavenumbers, k, for a real
frequency, w. To understand how these modes are to be combined in this long-time limit, it is neces-
sary to picture the response in relation to the turn-on transient from which it arises.1,2

1. For a more complete exposition of criteria for identifying the types of complex waves in in-
finite media, see R. J. Briggs, Electron-Stream Interaction with Plasmas, The M.I.T. Press,
Cambridge, Mass., 1964, pp. 8-46. Also, A. Bers, Notes for MIT subject "Electrodynamics of
Waves, Media, and Interactions."

2. A. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley-Interscience, New York,
1970, pp. 27-44.
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the outset that the temporal dependence can be represented by a complex amplitude, for example D =
Re$(x,y,z,w)exp(jwt). The spatial transient is in turn represented by a Fourier transform. To permit
a representation of the transient which joins the initial conditions to a possible sinusoidal steady
state, this temporal complex amplitude is now replaced by the Laplace transform pair

jw t d  -jwt
(xz,t) = = (x,z,w)et 2 $(x,z,) = (x,z,t)e dt (1)

xzt) )-jo o

As in Sec. 5.17, the longitudinal dependence is in turn represented by the Fourier transform

+co +CO

j-kz dk -j
P(x,z,W). (xkw)ekz d (x,k,w) = (xzw)e dz (2)

The Laplace transform, Eq. lb, starts when t = 0, and so the transform of temporal derivatives brings
in initial conditions. For example, the Laplace transform of the first derivative is integrated by
parts to give

t = -jwt De- jj t - (-jw)De dt = -D(x,z,O) + jw4 (3)

Thus, if a variable is zero when t = 0, then the Laplace and Fourier transform of its temporal deriva-
tive is simply jwP. Of course, the Laplace and Fourier transform of the derivative with respect to z
is -jk$. That is, relations between complex amplitudes apply also to Laplace-Fourier transforms, pro-
vided that rest conditions prevail when t = 0 for the transformed variables. If there are finite
initial conditions, then care must be taken to include them in transforming all relations.

As an example, consider the second order systems represented by Eq. 11.11.3 in an unbounded con-
figuration. The excitation is from transverse boundaries (Fig. 11.11.2b) where the forcing function
is imposed over the interval 0 < z < R as a traveling wave

j(w t-fz)
f = u (t)[u (z) - u (z - k)]Ref e

Sj(wot-Bz) -j( t-ýz)
e

= u(t)[ul(z) - ul(z - )][foe + fo
1-1 2o o

Substitution, first into Eq. lb and then into Eq. 2b, gives the transform of the forcing function as

[l j(k-ý) ^* j(k+)
f[ e ] f[l - e j ( k + ) ]

f 0 + 0 (5
2(w - w )(k - B) 2(w + w )(k + 3)

Note that the second term is obtained from the first by substituting fo - fo, wo -* -o, and + -8.
With the understanding that the real response is the sum of the one now found and a response formed by
making this substitution, it will be assumed in what follows that the drive is just the first term in
Eq. 5. (Note that fo is not a transform, but rather simply a complex number expressing the phase and
amplitude of the drive.)

With the understanding that when t = 0, C and ý3/3t are zero, the Laplace-Fourier transform of
Eq. 11.11.3 gives an expression for the transform of the sheet deflection:

Pf 22 
D(w,k)' D(w,k) (w - Mk) - k + P (6)D(wk)

This expression is obtained either by treating variables as though complex amplitudes are being intro-
duced or by starting from scratch by multiplying Eq. 11.11.3 by exp[-j(wt - kz)] and then integrating
both sides of the expression from 0 to - on t and from -- to o on z. Integrations by parts of the
terms involving derivatives and the definitions of the transforms, Eqs. lb and 2b, then also result
in Eq. 6. (Note that consistent with the normalization used in Sec. 11.11 are k H kTV and W = wT.)
Thus, in view of Eq. 5, the desired Laplace-Fourier transform is written in terms of the specific
traveling-wave excitation, turned on when t = 0, as

D(w)q(k)
D(w,k)
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where

Po [e ) k_ -j1]
g(k) -2 j (k - a)

Sj( - Wo)

The model represented by Eqs. 8 and 9 is long-wave. But, the form of the response transform taken by
Eq. 7 is representative of a much wider range of physical situations that are uniform in the z direc-
tion. The details of a transverse dependence are determined by solving differential equations and
boundary conditions over the transverse cross section. This amounts to representing the transformed
variables in terms of trahsfer relations and boundary conditions, as exemplified many times in
Chaps. 5, 6, 8, 10 and in Sec. 11.5.

Laplace Transform on Time as the Sum of Spatial Modes; Causality: The evolution in z-t space
is determined by using Eq. 7 in evaluating the inverse transforms, Eqs. 1 and 2:

+4o

(z,) = f g(k) e-jkz dk
= 6LOD(w,k) -z) 2T (10)

Fig. 11.12.1. Fourier contour.

IýWi

( )
i(z,w)ejwt d~w

C(z,) 2z)e 2 (11)
=

a-

Fig. 11.12.2. Laplace contour.

The w that appears in Eq. 10 is any one of the frequencies on the Laplace contour, CL of Fig. 11.12.2.
That is, the integral on k is carried out with w each of the (generally complex) frequencies required
to subsequently carry out the integration on w.

Causality is built into the inversion of the transforms through the choice of the Laplace con-
tour. On this contour, w = w - jo, where a is constant. Thus, in Eq. 11, exp(jwt) = exp(jwrt)exp(at).
Thus, for t < 0, the integran5 goes to zero as a - 0, and the integrand along the Laplace contour can
be replaced by one closed in the lower half plane. That the response for t < 0 must be zero is there-
fore equivalent to requiring that this integral over the closed contour C t vanish. The closure is
illustrated by Fig. 11.12.3. Cauchy's theorem makes it clear that thij causality condition will pre-
vail, provided that the Laplace contour is below all singularities of F(z,w) in the w plane.

For any given frequency on this contour, the situation for inverting the Fourier transform as
specified by Eq. 10 is no different than in Sec. 5.17, except that the frequency is in general some
complex number. In Sec. 5.17, where it is assumed at the outset that sinusoidal steady-state condi-
tions prevail, the frequency is the real frequency of the drive.

Note that g(k) is not singular at k = B. Further, for the second order system, and for others
having dispersion equations that are polynomial or transcendental in k, the roots of D(w,kn) = 0
represent poles in the k plane. Thus, if the integration on the Fourier contour can be converted to
one that is closed, then Cauchy's residue theorem
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Fig. 11.12.3. Closure of Laplace contour to Fig. 11.12.4. Closures to evaluate
identify CL consistent with causality. Fourier integral.

N(k 
)

N(k) dk = +2j(K + K2 + ); K = kn) (12)C D(k) n D'(kn

provides a simple evaluation. The positive and negative signs are for counterclockwise and clockwise
directions of integration. For a given frequency on the Laplace contour, the Laplace transform is
the sum over the spatial modes.

To see what closed contour can be used to replace the open one that is to be evaluated, observe
that in Eq. 10

[e j ( k B  - _ 1][e - j k z ] = e - j  e e - e e (13)

If z is in the range z < 0, the entire term goes to zero if ki - +=o. Thus, the Fourier integration can
be replaced by one on the closed contour Cu in the upper half of the k plane, as shown in Fig. 11.12.4.
If z is in the range k < z, the entire term goes to zero if the contour is closed in the lower half
plane, on Ck. In the excitation range, where 0 < z < Z, the terms in Eq. 13 must be treated separately.
The individual functions are singular at k = B, so the response in this range includes not only the
spatial modes, but a "driven response" having the wavenumber B. This is considered in detail in
Sec. 5.17, and will not be highlighted here. With the understanding that the summation is made appro-
priate to the range of z being considered (to left or right of the excitation range), Eq. 10 is in-
tegrated to give the Laplace transform

=j9g(kn) -jknz
(z,w) = ) D ( k  +(() e (14)

nD'(,k)

where the upper and lower signs pertain to the upper and lower contours in Fig. 11.12.4. For example,
in the case of the second order systems, where Eq. 6 gives the dispersion equation,

D(w,k) = (M - l)(k- k )(k - kl)

2 SwM + P(1 - M2
k, M+ - (15)

-1

It follows that in Eq. 14

22 
D'(kl) =+ (M2 - -

-

l)(k k_) = + 2 w2 + P(l - M) =  2 1( - + c) cc)(w (16)

-1
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Asymptotic Response in the Sinusoidal Steady State: The Laplace contour, CL, lies below

all singularities of t(z,w). In the second order systems, there are singularities of the individual
terms in Eq. 14 at +c." Whether or not they represent singularities of ((z,w) depends on the yet to
be determined appropriate summation in Eq. 14. These branch poles of the individual terms are illus-
trated for the submagnetic case in Fig. 11.12.5. They are designated as branch poles because the
function D'(w), where kn = kn(W), is double-valued if w is allowed to pass through the branch line
joining these poles (see Fig. 11.12.5). Because of J(w), there is clearly a pole of E(z,w) at =wo .

Fig. 11.12.5

A
Wi W For second order system, singularities of individual

+WC \ terms of Eq. 14 are branch poles at w = +w , where
ii/1 li/I --WC C

-c /-p(l-M2). Branch lines of (M2-1)(k +-kC )

8_ &+ /(-• )(W+k ) are defined so that the principal value
Sc c
f a o comlex, vaial A ex~-g~ (j6 is - < 6

-Wc WC W rvys~r~~vr~~Jl I

The objective here is not to carry out the second integration called for with Eq. 11, but rather
to discern the response when t + C. At a given location, z, there are two long-time possibilities. B
The response can either reach the sinusoidal steady state, or it can become unbounded. To achieve the
former, it must be possible to move the Laplace contour, CL, so that it is as shown in Fig. 11.12.6.
This is possible if there are no singularities below the
(open) contour. The part, C', runs parallel to the real
axis with wi slightly positive. Thus as t + m, the in-
tegrand of Eq. 1i on CL goes to zero, and this part of
the integration gives no asymptotic contribution. The CL
contributions to the integral along the oppositely di-

ll/ \W
rected segments, L, cancel. nhus, the Integral reduces
to a closed integral on C"'. The only singularity with-
in this contour is in 6(w, at o = wo. Thus, CL L

g(kn) j(wot-knz) Wo
=  j(tk ; k = k (w (17)

(z,t) (kn)e o) 

-n n n 0 Fig. 11.12.6. Laplace contour in
limit t + C with no singu-

where upper and lower signs pertain to closures of the
contour in the upper and lower plane.

As an example, consider the submagnetic second order system (with IMI < 1 and P < 0). In this
case there are no singularities in the lower half of the w plane, but there is the embarrassment of
branch poles on the wr axis, as illustrated in Fig. 11.12.5. However, these occur on the axis because
there is no damping in the system. If a force term is added to the equation of motion (Eq. 11.11.3)
having the form

f = -B(ýt + Uvz)( (18)

where B is a positive damping coefficient, the branch poles are displaced into the upper half plane.

It is now possible to identify the proper contributions to the Laplace transform, Eq. 14, and
hence to the sinusoidal steady-state response given by Eq. 17. For a given Laplace contour, CL
(a a finite positive constant), the poles, kn, form a locus of points in the k plane. Again, for the
submagnetic case (P < 0 and IMI < 1), one locus is in the lower half plane and the other in the upper
half plane. As the Laplace contour is displaced upward to the Cr axis, these loci terminate in con-
tours of complex k for real w shown as dashed lines in Fig. 11.12.7. More prominently shown in this
figure are the contours followed by the poles, kn, as the Laplace contour is displaced upward to the

Wr axis. On these contours, wr is constant and a is decreasing to zero. For example, holding Wr =
0.8, as a is reduced to zero gives one pole that moves down and to the right in the second quadrant
(kn = k-1) and a second that moves upward and to the left starting in the fourth quadrant (kn = kl).
As a reaches zero, these poles become complex conjugates. In general, one pole comes from above and
one from below, each terminating on the locus of k for real w. In this example, no pole staiting in
the lower half plane reaches the upper half plane and vice versa.

It is now clear that the n = -1 pole constitutes the only term in the sum in Eq. 17 with closure
of the Fourier contour in the upper half plane (for z < 0) while n = 1 and closure in the lower half
plane is appropriate for z > 0. Thus, Eq. 17 becomes
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Fig. 11.12.7. Loci of k for loci of w shown by inset. Broken curves are
values of k for real w. Submagnetic case (IMI < 1, P < 0) displays
evanescent waves (P = 1, M = 0.5).

j(k -3)Z j(wo t-k_ z)
Pf +1 +1

o [1 - e ]e < 0
S(z,t) ; z (19)2 (k - )(k1 - kl)(M - 1)

+1

That is, if the frequency is in the range wo < lWcl where waves are cut off, these waves are evanes-
cent. They decay away from the excitation. For example, that k_l has a positive imaginary part
does not mean that it represents a wave that grows in the +z direction, but rather that it is a wave
decaying in the -z direction. Converted to a real function of time in accordance with the discus-
sion following Eq. 5, the result given by Eq. 19 is consistent with the sinusoidal steady-state
response deduced in Sec. 11.11 for this case (Eq. 11.11.20).

Consider by contrast the establishment of a sinusoidal steady state in which there is an ampli-
fying wave. As the Laplace contour is pushed upward toward the wr axis in the w plane, one or more
roots, kn, of D(w,kn) = 0 move across the kr axis in the k plane. This is illustrated in Fig. 11.12.8
by the superelectric second order system (P > 0 and IMI > 1). Here, for a large both poles, kn, are
in the lower half of the k plane. As o is decreased keeping wr constant, one of the poles terminates
in the lower half plane while the other passes through the kr axis into the upper half plane.

Remember that "pushing" the Laplace contour to the wr axis in the w plane is no more than a way
to approximate the inverse Laplace integral in the limit t - c. The function represented by the in-
verse Laplace integral must be the same, regardless of the integration contour. This requires that
as the Laplace contour is moved upward, the Fourier integration contour must be distorted so that
when it is evaluated by closing the contour, that contour includes the same poles of D(w,kn). That
is, it must continue to include those that have passed through the kr axis into the upper k plane.
This "analytic continuation"3 of the Laplace transformation is therefore obtained by using Fourier
contours revised as illustrated in Fig. 11.12.9. By allowing the Fourier contour, Fig. 11.12.9, to
be distorted so as to enclose the same singularities, the domain of the w plane over which C(w,z) is
analytic has been extended so that the Laplace contour can be that illustrated in Fig. 11.12.6.

For the second order superelectric system, there are now no poles ejclosed by the Fourier con-
tour closed in the upper half plane and hence appropriate to evaluating ý(z,w) in the upstream region
z < 0. Thus, the response C(z,t) for z < 0 is zero. Note that this is true at any time and not just
for the asymptotic response. Moreover, for closure in the lower half plane and hence z > Z the

3. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, 1953,
p. 392.
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Fig. 11.12.8. Loci of k for loci of w shown by inset. Broken curves
are values of k for real w. Superelectric case (IMI > i,
P > 0) displays amplifying waves (P = 1, M = 1.5).

Fig. 11.12.9

/'CF As Laplace contour is pushed to
I kr w, axis. Dole k,+ crosses k_. axis.

wai, oek coss xs
indicating wave amplification.

k., ýýXk1

summation for the Laplace transform is over both spatial modes. That is, Eq. 14 becomes

-jk z -1z- g(k-1 )e
((z,w) = [g(kl)e

(20)
j(W- W )(M 2 - 1)(k_ - k1 )

Thus, in the long-time limit the Laplace integration along the contour shown in Fig. 11.12.6 results
in

j(wot-klz) j (wt-k1iz)
= =(z,t) _ _ M2 [g(k+l)e - g(k-1 )e ]

(k- 1 - k+l)(M2 (21)
- 1)

Again, remember that the real expression is obtained from this expression as described following
Eq. 5.

What has been obtained for the second order example is the same sinusoidal steady-state solution
summerized by Eq. 11.11.21c. If the driving frequency is less than c , one of the downstream waves
decays away from the source while the other amplifies.
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Criterion Based on Mapping Complex k as a Function of Complex w: Causality requires that the

Laplace contour remain below all singularities of E(w,z). In the process of pushing the Laplace con-
tour upward in the w plane to discover the asymptotic response, singularities of D'(w,kn) must be
identified as possible singularities of the Laplace transform, Eq. 14. In the second order system,
it is possible to solve explicitly to determine the frequencies, ws, at which

3D
D'(ws,k k ) [- (Ws,k)]k=k = 0 (22)

n

In general, these possible singularities are more difficult to identify. However, they can be deter-
mined by examining the dispersion equation.

Remember that Eq. 22 is really an expression for ws, because by definition

D(ws,k s ) = 0 (23)

In the neighborhood of (Ws,ks), w and k are related by

D + D + 1 2D 2
D(w,k) = 0 = D(ws,ks ) + )+ +k (k-ks) 2 (k-k ) + "' (24)

ss s k s k s 2 k2 s k s

In view of Eqs. 22 and 23, Eq. 24 approximates the dispersion equation in the neighborhood of
(Ws,ks) as

D(w,k) D (132 D) (k - ks)2 = 0 (25)
DWk s W5 s 2 2 s

S,k 3k W,k

This expression makes evident what is happening in the k plane as w approaches w in the w plane,
for Eq. 27 is equivalent to the expression

)-2 Ws(W-Ws

k-k - = + (26)
s- 2

SD

3k2 k S

It is concluded that the coalescence of a pair of poles in the k plane is the result of having the
frequency w - ws .

Candidates for poles of (w,z) in the w plane can be identified by mapping loci of the roots
to the dispersion equation in the k plane resulting from varying w = wr - jo to cover the lower half
w plane. This is conveniently done by holding wr at fixed values and decreasing a from o to zero.

In retrospect, for the submagnetic and superelectric second order systems, the coalescence
of roots k and k does not occur in the lower half k plane. These mappings were illustrated by
Figs. 11.1l17 and 11.12.8, respectively. But, consider the supermagnetic second order system (1M1>1,
P<0). The map, illustrated in this case by Fig. 11.12.10, shows that at w = -j/-P(M2-1) - -joc (on
the wi axis) there is a coalescence of the roots of k, and hence a singularity in the terms of Eq. 14
comprising the Laplace transform. However, because both roots are below the Fourier contour, they
both contribute to the Laplace transform for k < z. In fact, as the roots coalesce, the pair of con-
tributions to the Laplace transform are together not singular. That is, the denominator of the in-
dividual terms can be evaluated by taking the derivative of Eq. 25 and then using Eq. 26 to substi-
tute for k - ks,

3D 2 D (kD D (27
k k =+ -2 2 k) (-s) (27)

3k 3k
k ,k k ,s k ,ss

S S S S S S

where the upper and lower signs refer to the respective roots. Thus, the pair of terms resulting
from the residues for the respective roots of k have opposite signs and, in the limit, equal mag-
nitudes. Rather than being singular, the pair tend to the form 0/0, and can be shown to remain
finite. It follows that the Laplace contour can be pushed to just above the wr axis (Fig. 11.12.6)
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Fig. 11.12.10

Loci of k for loci of w shown by in-
set. Supermagnetic case (IMI > 1,
P < 0) displays ordinary waves, both
propagating downstream (M = 1.5,
P = -1).

to evaluate the asymptotic response as before. In the upper half k plane, there are no roots of k for
w on the Laplace contour and hence the response is zero for z < 0. For Z < z, closure of the Fourier
integral in the lower half k plane gives contributions from both k+l and k_1 , so the Laplace trans-
form, Eq. 14, has two terms. However, as already pointed out, the only singularity is at w = w0, and
so integration on the Laplace contour leads to Eq. 21. Now, k+1 can only be real and the downstream
response takes the form of beating traveling waves. This is the same result as given by Eq. 11.11.15
and illustrated by Fig. 11.11.4.

In summary, the key to understanding the physical significance of a wave having complex values
of k for real w is a map of the loci of k that result from varying a from m to 0 for all values of
wr . If the loci of a given root terminate in complex k without crossing the kr axis, then it repre-
sents an evanescent wave. That is, in the sinusoidal steady state, the complex k represents a wave
that decays away from the source. On the other hand, if loci cross the kr axis, the mode represents
an amplifying wave. At a point where a locus crosses the real k axis, k is obviously real and a is
still positive. Thus, for a crossing of the kr axis, the dispersion equation must display "unstable"
values of w for real values of k. It is concluded that a necessary condition for existence of an
amplifying wave is that wavelengths exist for which a temporal mode is unstable. That is, for k real
there must be roots of D(w,k) for which mi < 0. As a type of instability that grows spatially rather
than temporally, the amplifying wave is also termed a convective instability.

11.13 Distinguishing Absolute from Convective Instabilities

In Sec. 11.12, examples were purposely considered which were absolutely stable. Thus, the
asymptotic response was in the sinusoidal steady state. A necessary condition for an amplifying wave
was found to be "unstable" values of w given by the dispersion equation for real values of k. How is
this response, which is bounded at a given location, z, to be distinguished from one that grows with
time at a given location?

Criterion Based on Mapping Complex k as Function of Complex m: Suppose that a mapping of the
dispersion equation, showing loci of k in the complex k plane resulting from varying a from - to 0
in the complex w = wr-ja plane, results in a double pole of the type illustrated in Fig. 11.13.1.
Here, as w - w., a pair of roots coalesce, one from the upper half plane and one from the lower half
plane. When it is closed, the Fourier contour can no longer be distorted to include the same poles.
Before a reaches zero, CF is caught between the coalescing poles, one coming from above and the other
coming from below.

As for the supermagnetic cast from Sec. 11.12, coalescence of the roots, kn, once again indic-
ates the possibility of a pole of F(w,z) in the lower half plane. This time the pole in fact exists,
because the roots, kn, are on opposite sides of the Fourier contour. Thus, pushed upward so that
most of it is just above the wr axis, the Laplace contour is as shown in Fig. 11.13.2. The Fourier
contour is caught between the coalescing poles, always including one or the other when closed in the
upper or lower half k plane. Integration along the Laplace contour on the segments CL just above
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branch pole

Fig. 11.13.1. Mapping of loci of k in the k Fig. 11.13.2. Laplace contour for
plane for trajectory of w passing through evaluating response as t-*o
singularity in Laplace transform, showing with branch pole in lower
coalescence of roots from upper and lower half plane.
half plane indicating absolute instability.

the Wr axis gives no contribution as t -+ -. However, integration along the segments, CE, adjacent
to the branch-cut and around the pole do give contributions. (Note that the segments to either side
of the branch-cut do not cancel, because the integrand is of opposite sign on one side from the
other.) In the long-time limit, the Laplace integration reduces to

j9(kn) j(dt-knz) de
(-z) lim E(z,t) = lim + •( •)E D'(k ) e (1)

t-- t> n D'(,k n 21T

On the contour segment CE, w = ws - ja where a is positive, so the asymptotic response is dominated
by a part that grows with time at a fixed location, z.

It is concluded that if the mapping of the dispersion equation from the lower half w plane into
the k plane discloses a pair of coalescing roots, kn, with one root from the upper half plane and one
from the lower half plane, then the pair represent an absolute instability. This is sometimes also
called a non-convective instability.

Note that if roots, kn, of D(w,kn) are to come from the lower and upper half plane and coalesce,
one of them must cross the kr axis. As it does so, a is positive. Hence, a necessary condition for
absolute instability as well as convective instability is that there be "unstable" frequencies for
real values of k. That is, for a wave to be a candidate for either spatial or temporal growth, it
must have temporal modes that are unstable.

One consequence of this observation relates to numerous situations that can be envisioned as
configurations from the sections and problems of Chap. 8 set into a state of uniform motion. For
example, consider the jet of liquid described in Sec. 8.15, but now having a stationary equilibrium
in which the jet streams in the z direction with velocity U. The dispersion equation is Eq. 8.15.25
with w + w - kU and takes the form

(w - kU)2 = f(k) (2)

Convection or not, there are only two temporal modes and only one of these can be unstable. That is,
for real values of k, at most one of the two roots, w, can have a negative imaginary part.

If the dispersion equation were to be solved for the real frequency spatial modes, there would
be an infinite number, about half appearing to "grow" in the z direction. What is clear from the
above result is that only one of these is a candidate for being an amplifying wave. The others are
evanescent waves.

Second Order Complex Waves: The subelectric second order system (IMI < 1 and P > 0, Fig. 11.11.1)
exemplifies an absolute instability. The w + k mapping is shown in Fig. 11.13.3. In this case, the
mapping indicates a branch pole at w = -mc H -j/P(l - M2), as can also be seen directly from
Eq. 11.12.16. The contour to be used for inverting the Laplace transform as t + o is indicated in
Fig. 11.13.4.

In more complicated situations, the mapping is carried out numerically by having a routine for
determining the roots, kn, of D(o,kn) given the complex frequency w = wr - ja. The pattern of the
loci in the neighborhood of the coalescing roots, typified by Fig. 11.13.3, can be used to disclose
the coalescing roots.
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Fig. 11.13.3. Loci of k for loci of W shown by inset. Subelectric case
(IMI < 1, P > 0) displays absolute instability (M = 0.5, P = 1).

Fig. 11.13.4

Laplace contour, CF, appropriate for evaluation

of asymptotic response of subelectric (IMI < 1,

P > 0) second order system. Branch cut of

(w - jos)(W + js) is defined consistent with

branch line for A exp(jO) shown by inset.

11.14 Kelvin-Helmholtz Type Instability

Perhaps the most often discussed instability resulting from the interaction of streams is mod-
eled by contacting layers of inviscid fluid, one having a uniform velocity relative to the other.1

In Fig. 11.14.1, the lower layer is initially static while the upper one streams in the z direction
with a uniform z-directed velocity, U. That the interface is subject to what is sometimes also called
Bernoulli instability suggests why there is a critical velocity above which the stationary equilibrium
is unstable. An intuitive picture makes clear the mechanism. For interfacial deformations that have
a long wavelength compared to a or b, mass conservation requires that

vz (a - Q = Ua (1)

1. G. K. Batchelor, Introduction to Fluid Mechanics, Cambridge University Press, London, 1967,
pp. 511-517.
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Fig. 11.14.1

_ •. 
aPa

. In stationary state, lower fluid is static
while upper one streams to the right with

. Z • . _ . uniform velocity U. At the interface there
is a discontinuity in fluid velocity, and
hence a vorticity sheet.

Suppose that an upward directed external surface force density, T, could be applied to a section of
the interface. At that point on the interface, normal stress equilibrium for the control volume of
Fig. 11.14.2 requires that

d e
T=p -p

where, for now, surface tension is ignored. With T applied slowly enough that the effect of the inter-
facial deformation on the flow can be pictured as a sequence of stationary states, the steady-state
form of Bernoulli's equation is applicable to the regions above and below:

P + Ppv + pgx = H.; x > 0~U U

P + pbgx x< 0= 1Ib;

Initially, T = 0 and the interface is flat, so substitution of Eqs. 3 into Eq. 2 evaluates Ha - Xb =
PaU2 /2. Thus, the difference of Eqs. 3 becomes

d e 1 (U2 2
p - P =2 a(U -) + b - Pa

Fig. 11.14.2
Spd.

Where the interface moves upward the streaming
velocity increases. Thus, the pressure above
drops and the interface is encouraged to further

* . . ·. · ·

deform.

The combination of this expression of Bernoulli's equation with mass conservation, Eq. 1, and inter-
facial stress equilibrium, Eq. 2, gives an expression for the dependence of the surface deflection
on the externally applied surface force density:

1 2_ 1
T = W p p U-[1 r ] + g(P, -

a U 2 a

a

What is on the right is an equivalent surface force density representing the combined effects of the
fluid inertia and gravity. (Rayleigh-Taylor instability is not of interest here, so it is assumed
that the heavier fluid is on the bottom, pb-Pa>O.) If positive, it acts downward. The equilibrium
is stable if a positive upward deformation results in a positive (restoring) surface force density.
Thus, for instability,

AT g(pt - Pa)a 2
- (C = 0) > 0 =# < U
ar Pa

The effects of surface tension, finite wavelength and unsteady flow left out of this intuitive
picture are brought in by a small-amplitude model that is little different from that developed in
Sec. 8.9. What has changed is the transfer relation for the streaming layer, which in view of
Eq. (c) from Table 7.9.1, is
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p k_ -coth ka sinh ka x

= k (7)

ýd -1 -^d
p -1 coth kasinh ka x

and the linearized relation between the vertical fluid velocity at the interface and the surface de-
formation (Eq. 7.5.5):

^d ^e
v x = v xX = j( - kz U) (8)

These expressions replace Eqs. 8.9.4a and 8.9.6 in an otherwise unchanged derivation resulting in the
dispersion equation

(w - kzU)2 a coth ka 2 2 b coth k 2 2
k + k = 2 k + g(b a (9)

This expression is quadratic in w but transcendental in k. Thus, there are only two temporal modes,
but an infinite number of spatial modes. In the limit U + 0, these are discussed in Sec. 8.9.

Consider first the temporal modes, having frequencies that follow from Eq. 9:

kz Upka coth ka - coth kb
= (10)

p a coth ka + pb coth kb

It follows that the temporal mode exhibits an oscillatory instability if the U is large enough to make
the radicand negative. For instability,

u2 tanh kb +tanh ka k3 + (p - P k
U> a k2 b a (11)

Deformations with wavenumbers in the direction of streaming are most unstable, so in the following,
k = kz . The first wavelength to become unstable as U is raised can be found analytically in two
limits. First, in the short-wave limit, where ka and kb >> 1, Eq. 11 reduces to

U 2 > + i Yk + b - (12)
b ]a k k

This expression exhibits a minimum at the Taylor wavenumber

k b (13)

which is familiar from Secs. 8.9 and 8.10. Again, this is the wavenumber of incipient instability and
Eq. 12 gives the critical velocity as

[4 g(P- Pa) Y]a I 1 (14)

In the opposite extreme of long waves (ka and kb << 1) Eq. 11 becomes

U2 b> + [yk2 b a) (15)

In this limit, the first wavenumber to become unstable as U is raised is zero and the critical veloc-

ity is
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U = + -b p) (16)

'b a

Note that, in the limit b/pb << a/Pa, this condition is the same as obtained by the intuitive argu-
ments leading to Eq. 6.

With the understanding that the temporal modes so far considered here represent the response to
initial conditions that are spatially periodic, or the response of a system that is reentrant in the
z direction, note that the salient difference between the Kelvin-Helmholtz instability and the
Rayleigh-Taylor instability of Sec. 8.9 is that the former appears oscillatory under the critical con-
dition and as a growing oscillation for conditions beyond incipience. This is by contrast with the
Rayleigh-Taylor instability which is static at incipience and grows exponentially. Note that the dy-
namic state at incipience is not included in the arguments leading to Eq. 6.

In connection with instabilities of the Rayleigh-Taylor type, it can be argued that because in-
cipience occurs with a vanishing time rate of change, effects of fluid viscosity are ignorable. Here,
the dynamic nature of the incipience points to inadequacies of the inviscid model.

To demonstrate the instability without there being more dominant mechanisms of instability
coming into play, the configuration shown in Fig. 11.14.1 is arranged so that the upper fluid enters
from a plenum to the left through a section that is perhaps of a length several times the channel
height, a, to establish the essentially uniform velocity profile. This distance cannot be too large,
or viscous effects from the wall and interface will have expanded into the mainstream. What is not
desired is anything approaching a fully developed flow for z > 0. In fact, the viscous boundary
layer will continue to expand over the interface, and what has been described is deformations of the
interface that have effective lengths large compared to the dimensions of the boundary layer.

Complications that are not accounted for by the model include the following. First, if the in-
terface is clean, the lower fluid will be set into motion by the viscous shear stress from the
streaming fluid. Thus, the postulated static fluid equilibrium for the fluid below is not strictly
valid. One way to avoid this complication would be to "turn on" the flow abruptly and establish the
instability before there is time for much effect of the viscous shear stress. Another is to have an.

1 interface supporting a monomolecular film. This would compress in the z direction, until the inter-
face would be brought to a static state by the gradient in tension of the film. For certain types
of films the incremental dynamics from this static equilibrium would then be as described here, with
a surface tension consistent with incremental deformations about this static equilibrium.

What is actually observed at the interface could also be unrelated to the Kelvin-Helmholtz in-
stability as modeled here because the developing boundary layer has become unstable over the inter-
facial region being observed. Boundary layer instability results in growing perturbations having a
scale on the order of the boundary layer thickness.

Certainly, if the fluid entering from the left has a fluctuating component to begin with, inter-
facial motions would result that had little to do with the model. These are the types of difficulties
that often make ambiguous association of the Kelvin-Helmholtz model with effects of wind and water.

In using the Kelvin-Helmholtz model to explain and predict phenomena, it is important to know
whether it predicts absolute or convective instability. Does the interfacial deflection at a given
position in Fig. 11..14.1 tend to grow in amplitude until it reaches a state of saturation, or is it
capable of responding to an upstream sinusoidal excitation as a spatially growing wave?

Of the infinite set of spatial modes, only one exhibits a crossing of the kr axis, and then only
if Eq. 11 is satisfied. Thus, there is only one candidate for an amplifying wave. The other spatial
modes must be evanescent, and are present to satisfy longitudinal boundary conditions.

Consider the (first four) lowest order spatial modes in the long-wave limit (ka and kb << 1).
The dispersion equation, Eq. 9, is then quartic in k and quadratic in w:

k4 + k2[G - U2 ] + rUwk - w2 = 0 (17)

where the wavenumber is normalized to an arbitrary length, Z, so that

k = k/k; w = w (18)

1. J. T. Davis and E. K. Rideal, Interfacial Phenomena, Academic Press, 1963, Chap. 5.
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2g(Pb -- Pa) apb
= ; =rE 2/ 1 +

ay ba (18 cont.)

- ay

The loci of the four roots to this expression in the complex k plane obtained by letting wi in-
crease from -o to 0 at fixed values of yr is shown in Fig. 11.14.3. It is clear that for the param-
eters summarized in the caption, there is a coalescence of roots coming from the lower and upper half
planes. Thus, it is concluded that the instability is absolute and grows with time at a fixed loca-
tion. This same conclusion is reached by Scott2 in the short-wave limit (Ikal and Ikb >> 1).

Fig. 11.14.3

For Kelvin-Helmholtz instability, loci of
complex k resulting from varying w as shown
by inset. Coalescence of poles from upper
and lower planes indicates that for param-
eters chosen, instability is absolute
(G = 1, U = 2, y = 0.1).

Spatially growing waves associated with wind blowing over water appear to require a model with
more physical content than the simple one considered here.

11.15 Two-Stream Field-Coupled Interactions

Electric or magnetic coupling between streams having different velocities can occur without the
necessity for physical contact between the streams. Thus, the long-wave models developed in Sec. 11.10
(Fig. 11.10.4) make a more satisfying representation of streaming interactions than does the traditional
Kelvin-Helmholtz model of Sec. 11.14.1 Transverse deflections of the respective streams are described
by Eqs. 11.10.19-11.10.22, where e and v are as defined by Eq. 11.10.4. With fl and f2 linearized,
these expressions become

2
+ 32 1 1

(- + M_ ) = + Pr P(13t 1 zz 1 2  1 - P2

a a 2 2 1
(- + M2 t ) 2 2 2 2 - 2 1)

3z

Normalization is as given by Eqs. 11.10.3 and 11.10.6. Remember, what is described is a pair of
"strings" respectively convecting in the z direction with Mach numbers M1 and M 2 . With an electric
field coupling the streams, P is positive, whereas with a magnetic field, P is negative. The "super"
and "sub" responses to initial conditions and boundary conditions consistent with causality are dis-
cussed in detail in Sec. 11.10. There, the method of characteristics is used to describe the dynamics
in real space and time.

The discussion is now limited to a description of the interaction of a stream with a fixed
"string." That is, M2 = 0 and M1 E M. The model is typical of interactions between electron beams

2. A. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley-Interscience, New York,
1970, pp. 83-87.

1. For a detailed discussion of the many possibilities for the model considered in this section, see
F. D. Ketterer and J. R. Melcher, "Electromechanical Costreaming and Counterstreaming Instabili-
ties," Phys. Fluids 11, 2179-2191 (1968) and "Electromechanical Stream-Structure Instabilities,"
Phys. Fluids 12, 109-117 (1969).
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and transmission lines and plasmas. Counterstreaming and costreaming cases are considered in he
problems.

What are the conditions for instability of the temporal modes, and is a given mode absolut ly or
convectively unstable?

Substitution of complex amplitudes in Eqs. 1 and 2 results in the dispersion equation

[( - Mk)2 k2 + ][2 _ k2  1 p2 0 (3)

This expression is quartic in either w or k. Subroutines for numerically finding the roots of poly-
nomials are readily available.

Consider first the superelectric case, where M > 1 and P > 0. The temporal modes are summerizea
by the plots of complex w for real k illustrated in Fig. 11.15.1. For M > 2 and M < 2, respectively,
Parts (a) and (c) illustrate the dynamics of the stream if the structure were held fixed, and of the
structure if the stream were fixed. These are the superimposed dispersion relations for an absolute
and a convective instability.

The self-consistent solutions to Eq. 3 are illustrated by Parts (b) and (d). For M > 2, Pt. (b),
very small k results in four roots having the same real part and forming two complex conjugate pairs.
At a midrange of k, two complex conjugate pairs result with the pairs having different real parts but
imaginary parts of the same magnitude. At high k, waves are formed that are typical of those on the
convecting string and fixed string respectively.

Fig. 11.15.1

Complex w as a function of real k for

electric stream structure (P > 0 r-

action. Parts (a) and (c), which are
drawn with mutual coupling terms ignored,
are shown for respective comparison to
Parts (b) and (d) (P = 1).

For 1 < M < 2, an overstability results over a range of k where the uncoupled systems show no
instability. This has a character that would not be expected from either the stream or the structure
alone.

The plots of complex k for fixed wr as Wi is increased from -o to 0, shown in Fig. 11.15.2, dis-

close the character of these instabilities. One pair of roots move from above and below the kr axis
to coalesce in the upper half plane. Thus, this pair represent an absolute instability. The other
pair migrate upward from the lower half plane, one extending into the upper half plane. This repre-

sents an amplifying wave.

It might be expected that the absolute instability eventually dominates the response. In the

next section, a physical demonstration illustrates how this same system, confined to a finite length,

can exhibit an oscillatory overstability that can be traced to the wave amplification.
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Fig. 11.15.2

For superelectric stream inter-
acting with fixed "string"
(P > 0) mapping of complex k
plotted for fixed wr as wi is
increased from -o to 0.

Fig. 11.15.3

(a) (b) Complex w as a function of real k for
magnetic stream-structure (P < 0) in-
teraction. Parts (a) and (c), which
are drawn with mutual coupling terms
ignored, are shown for respective com-
parison to Parts (b) and (d) (P = -1).

(c) (d)

Consider next the supermagnetic case, where M > 1 and P < 0. Now, the temporal modes are as

shown by the dispersion plots of Fig. 11.15.3. Purely propagating waves result if 1 < M < 2. How-

ever, if M is in the range 2 < M, there is a range of k over which overstability is exhibited. Be-

cause the uncoupled stream and structure are completely stable, this temporal mode instability has

some of the character of the Kelvin-Helmholtz instability. Note that it is similar to the high wave-

number overstability exhibited for the superelectric case by Fig. 11.15.1d. Whether the force on one

stream due to a deflection of the other pushes or pulls, the result is a growing oscillation.

By contrast with the Kelvin-Helmholtz instability, this one is convective. This follows

from the mapping of complex k for complex w in the lower half plane illustrated (for this 2 < M case)

by Fig. 11.15.4. The instability is indeed convective. The example is also worthy of remembrance

because it illustrates how longitudinal boundary conditions, which have not yet come into play here,

can have a dramatic effect. In Sec. 11.16, it is found that with boundary conditions (consistent

with causality) this convective instability can become absolute.
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Fig. 11.15.4

For supermagnetic stream inter-
acting with fixed "string"
(P < 0), mapping of complex k
plotted for fixed wr as Wi is
increased from -- to 0.

11.16 Longitudinal Boundary Conditions and Absolute Instability

Quasi-one-dimensional linearized models, which retain the fundamental modes of a two-dimensional
system having an infinite set of modes, can be obtained from the exact model by taking the long-wave
limit. The coupled second order system used as a prototype model in Sec. 11.15 is one example. The
following steps are generally applicable to determining the eigenfrequencies of such systems subject
to homogeneous longitudinal boundary conditions. From a point of view somewhat different from that
taken in Sec. 11.10, this section also emphasizes the importance of being sure that the boundary con-
ditions are consistent with causality.

Suppose that there are N spatial modes. That is, with the frequency specified, there are N
roots, kn, to the dispersion equation D(w,kn) = 0:

k = k (w) (1)n n

Then, the response can be written as

N -jkz

2 = Re( Ane(2)
n=1

where An are arbitrary coefficients. Although it remains to be found, the frequency of each term in
Eq. 2 is the same. Thus, for initial conditions having the z dependence of the function in brackets
in Eq. 2, the response would have the one (generally complex) frequency, w. All other dependent vari-
ables can be written in terms of these solutions, and hence in terms of the N coefficients, An.

There are N homogeneous boundary conditions imposed either at z = 0 or at z = Z. Evaluated
using Eq. 2 and the other dependent variables written in terms of these same coefficients, these
boundary conditions comprise N equations that are linear in the coefficients, An. The condition that
the coefficient determinant vanish,

Det(w,kl,k2,.--kN) = 0 (3)

together with the dispersion equation, Eq. 1, is the desired eigenfrequency equation.

To be specific, consider the stream coupled (either by the electric field or by a magnetic field)
to a stationary continuum. The configuration is as shown physically by Fig. 11.10.4 and described by

Eqs. 11.15.1 and 11.15.2 with M2 = 0. Longitudinal boundary conditions, illustrated schematically
by Fig. 11.16.1, are

1(0,t) = 0; -z (0,t) = 0; ( 2 (0,t) = 0; ( 2 (Z,t) = 0 (4)

That these are consistent with causality is demonstrated in Sec. 11.10 by appealing to the method of
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characteristics. Here, the same conclusions might be reached
by identifying three of the four spatial modes with the up-
stream boundary where z = 0 and the other with the downstream
boundary where z = £. Whether the coupling is electric

(Fig. 11.15.2) or magnetic (Fig. 11.15.4), the mapping of the
dispersion equation with wi increased from -o to 0 at con-
stant wr into the k plane gives rise to three loci originating U
in the lower half plane and one in the upper half plane.

The stream deflection is given by Eq. 2 with N = 4. It
follows from Eq. 11.15.1 that the stationary continuum has a
deflection that can be written in terms of these same coef-
ficients as Fig. 11.16.1. Schematic of stream-

structure interaction, show-
4 -jkn z 2 2 2 ing three upstream boundary

S= Re( E QnAne )ewt; n -k + P) (5) conditions and one downstream
N=l condition for M1>l and M 2=0.

The four linear equations obtained by using Eqs. 2 and 5 to
express the homogeneous boundary conditions, Eqs. 4, give

-j k 19 -jk 2 Z -jk 3 k -jk 4 p.
e e e e

Q, Q2 Q3 4

klQ k2Q2 k1 3Q3 k4Q4

The determinant of the coefficients in this expression set equal to zero takes the form of Eq. 3 and is

a complex equation for the complex variable, w. Remember that the kn's are determined in terms of the
frequency from the dispersion equation found from Eqs. 11.15.1 and 11.15.2.

In general, finding the roots of the complex transcendental combination of Eqs. 3 and 1 is dif-
ficult.1 Carrying out a numerical search for the roots is as straightforward as using the root-finding

techniques illustrated by Fig. 5.17.5. However, unless the computer is guided, it can easily fail to
converge on certain roots. One way to obtain solutions in a relatively automated way is to start by

finding the roots in a limit in which one of the parameters is small enough to make an analytical ap-
proximation possible. Then, these roots can be followed as that parameter is raised to the desired
value.

Numerically determined normalized eigenfrequencies are shown as a function of the normalized
length in Fig. 11.16.2. Illustrated here is the electrically coupled system (P > 0). The first mode
reflects the destabilizing effect of the electric field. At low fields, the effect of the coupling is

to produce damping, but as the field is raised, there is a threshold for static instability in this
mode, much as if the stationary continuum were coupled to rigid walls. The real part of the frequency

below this threshold and the condition for incipience are little different from what would be obtained

if the stream were rigid.

The effect of the coupling on the second mode is something new. According to the model (which

ignores viscous drag), this mode is overstable with the application of even the slightest electric
field.

In the magnetic case, with eigenfrequencies shown in Fig. 11.16.3, the static instability of the

lowest mode is replaced by a damping that only becomes larger as the field is raised. But, reflecting

a regenerative feedback mechanism, the higher order modes exhibit overstabilities similar to those

for the electric case. The eigenfunctions for the first three modes, illustrated by Fig. 11.16.4, give

some idea as to the origins of this spontaneous oscillation of growing amplitude.

The theoretical second eigenfunction for the electric case, having eigenfrequencies given by

Fig. 11.16.2, has an appearance little different from that of the demonstration experiment shown by

Figs. 11.16.5 and 11.16.6. In the first of these, a time exposure is shown of the water jet coupled

electrically to a stretched spring. A sequence of instantaneous exposures of the same system following

the dynamics through one oscillation is shown in the second figure. Deflections that amplify spatially

on the jet are fed back upstream by the spring with a phase that makes the feedback loop regenerative.

1. F. D. Ketterer, Electromechanical Streaming Interactions, Ph.D. Thesis, Department of Electrical

Engineering, Massachusetts Institute of Technology, 1965.
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That the system with magnetic field coupling displayed the same instability makes it clear that this
mechanism of instability has little to do with the nature of the coupling between stream and struc-
ture. It is the reflection of a wave on the spring by the downstream boundary condition that turns

the magnetic field configuration from an infinite system exhibiting an amplifying wave into one that
is finite and absolutely unstable.

Fig. 11.16.2

Complex eigenfrequency as a function
of normalized length for superelec-
tric stream-structure interaction.

FP/UT -

I-
4
0a

z

U
Lu
0

Fig. 11.16.3

Complex eigenfrequency versus normal-
ized length for a magnetic stream-
structure system for the lowest three
modes.

a/fPur
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Sec. 11.16

4w 4
±-+1.1 3 2 MODE I

Wi =
0.02151

1 . . . I .
/11/11/111/1/////1/////////////I
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wr= +155443 MODE 2
=
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Fig. 11.16.4. Eigenfunctions
for the three lowest modes
for the magnetic system of
Fig. 11.16.3.
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11.17 Resistive-Wall Electron Beam Amplification

Either as a limitation in a linear accelerator or as the basis for making an amplifier,1 the
convective instability induced by the interaction of an electron beam with charges induced on a
neighboring wall provides an interesting example of how lossy and propagating systems can interact
to produce a spatially growing wave. The planar version shown in Fig. 11.17.1 incorporates the beam
described in Sec. 11.5. What has been added is walls if finite conductivity, 0, themselves backed
by much more highly conducting material.

With the objective of obtaining the dispersion L
equation for the beam coupled to the resistive layer,

.................................................................observe that fields in the layer (described in
Sec. 5.10) are represented by the flux-potential
transfer relations [Eq. (a) of Table 2.16.1]. In l , C
view of the highly conducting material bounding the
resistive layer, Da = 0, and it follows that on the . d
lower surface of the layer, [

b e
^b ^b
D = sk coth kd 4b g..

x

At this surface, the potential is continuous

a b c = c

and conservation of charge requires that ....... ..
a ̂ b

(jw + -)D = 0E X - 
jWD 

x
Fig. 11.17.1. Cross section of planar

In view of Eqs. 1 and 2, this expression becomes one electron beam coupled to resis-
representing the layer as "seen" by the electron beam: tive wall.

D =- (jw +) (k coth kd)
x jW E

The beam is represented at this same surface by Eq. 11.5.11 (with 6 = 6o) . (Remember that it has
already been assumed in Sec. 11.5 that electron motions are even.) Thus, the dispersion equation is
obtained by setting Dc as given by Eq. 4 equal to Dc as given by Eq. 11.5.11:x x

-E k(k + y coth ka tanh yb)1 a
--1 (jw + --)(Ek coth kd) =
jW E k coth ka + y tanh yb

where
2

2 = 2k ( 1
(w - kU)2

The discussion of temporal and spatial modes for the beam coupled to an equipotential wall given in
Sec. 11.5 makes it clear that there are an infinite number of either temporal or spatial modes. Be-
cause of the Laplacian character of the field that couples the wall to the beam, the interaction
between wall and beam tends to be strongest for the longest wavelengths. Thus, the long-wave limit
of Eq. 5 is now taken by considering ka << 1, kb << 1, and kd << 1. Thus, Eqs. 5 and 6 become a
polynomial dispersion equation that is cubic in o and quartic in k,

(jwR. + 1) 1( ) - k)2 + k 2 2
- k 2 1 = -jwR rk 2 [(w - k)2(1 + b ba1 2e a p e a a p

and the higher order transverse spatial modes are neglected. Here the frequency and wavenumber have.
been normalized and dimensionless parameters introduced:

dEb _ Us _ o
= U ; R = -S-; r -bERU -e

bw
k = kb; w P-- -p U

1. C. K. Birdsall, G. R. Brewer and A. V. Halff, "The Resistive-Wall Amplifier," Proc. IRE 41,
865-875 (1953).
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The modes that have been retained by this long-wave model can be identified by considering two limits

of Eq. 7. In the first, 0 - m (Re + 0) and the expression reduces to one for space-charge oscilla-

tions superimposed on the convection:

wk
w = kU+ P

- I+ k2
rab

These are the lowest modes from Sec. 11.5. In the second, the beam is removed by setting wp + 0.
Then, Eq. 7 requires that

.2[ d1 e (1 + b)k2
jw = 1+a (10)

E bEF 2

This is the damped charge relaxation mode resulting from the ohmic loss in the layer and energy stor-
age both within the layer and in the region of the gap and beam.

What can be expected for the coupled modes? First, to consider the temporal modes, Eq. 7 is
written as a cubic in w:

3_ 1+br + ýj b2}2 b 2b 12 2

(11[

+w jR k +k(l+r+ ) 2(1+ rb)]- 2k(- + k) +k k( 2 _ w2)= 0
e a a p a a a p

Numerical solution of this expression is illustrated by Fig. 11.17.2, where complex W is shown as a
function of real k. For the given parameters, the growth rate, W2i, is small compared to the other
frequencies, and so it is shown on a separate plot.

S Fig. 11.17.2

Plot of dispersion equation for long-
wave coupling of electron beam to
resistive wall, showing normalized
complex w for normalized real k
(b/a = 1, r = 1, Re = 1, w = 1).

e --p
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That the system is unstable raises the second question. Would this instability result in a beam
oscillation that grew in time at a fixed location, or would it result in a spatial amplification of
any disturbance? The limitation on a particle accelerator, or the possibility of using the interac-
tion to make an amplifier, hinge on whether the instability is convective or absolute.

In order to plot loci of complex k as w is varied at constant Wr from mi = -w to 0, Eq. 7 is
expressed as a polynomial in k:

k 4jR [1 + r(l + )] + 1 + k3{2jiW2R [1 + r(1 + b 2
f e a e a

+ k2 jR [m + - + r (2 + b - ] + ( + - W- ) (12)
e a p a a p, a p

+k -2w -(jwR + 1) + (jwR + 1) = 0
a e a e

The loci of the four roots to Eq. 12 obtained by varying wi from -- to 0 with Wr fixed are shown
in Fig. 11.17.3. Of course, all values of wr must be considered. The ones shown are typical. Ap-
parently the instability is convective. Thus, fluctuations on the beam as it enters the interaction
region would amplify in space. To contend with an undesired instability on a beam having a given
entrance fluctuation level, the length of the interaction region would have to be limited.

Fig. 11.17.3

_
For resistive wall interacting
with electron beam, the loci of
the four long-wave modes in the
k plane are shown as wi is varied
from - to 0 holding 1r fixed.
The inset shows the associated
trajectories of w in the complex
1 plane. The instability is
apparently convective.

The problems give some hint of the wide variety of physical situations in which amplifying waves
result from coupling between charged particle streams and various types of structures and media.
Electron beam interactions and plasma dynamics are rich with examples of the various forms of complex
waves. So also is fluid mechanics, where boundary layer instabilities and other precursors of turbu-
lence are often amplifying waves.
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Problems for Chapter 11

For Section 11.2:

Prob. 11.2.1 Starting with the Lagrangian description of the particle motions afforded by Eq. 2,
show that if E = -V1 and 1 is independent of time, the sum of potential and kinetic energies,

m(V.")+q0, is invariant.

For Section 11.3:

Prob. 11.3.1 A planar version of the magnetron configuration considered in this section makes use
of planar electrodes that play the role of the coaxial ones in Fig. 11.3.1. The cathode, which is
at zero potential, is in the plane x = 0 while the anode is at x = a and has the potential V. Thus,
ignoring space-charge effects, the electric potential is Vx/a. A uniform magnetic flux density, Bo,
is imposed in the z direction.

(a) Write the equations of motion for an electron in terms of its position r = xix + yi + z .

(b) Combine these expressions to obtain a single second-order differential equation for x(t).

(c) Under the assumption that V is constant, integrate this expression once (in a way analogous to
that used in obtaining Eq. 11.3.2) to obtain a potential well that is determined by the combined
effects of the applied electric and magnetic fields. Use this result to generate a potential-well
picture analogous to Fig. 11.3.2 and qualitatively describe how the particle trajectories are
influenced by the applied potential. (Assume that particles leave the cathode with no velocity.)

(d) Sketch typical trajectories in the x-y plane.

(e) What is the critical potential, V = V ?

For Section 11.4:

Prob. 11.4.1 An electron has an initial velocity that is purely axial and moves in a region of con-
stant potential and uniform axial magnetic field. Show that Eqs. 11.2.3-11.2.5 are satisfied by a
subsequent motion in which the electron continues to move in only the z direction. How is it that
Eq. 11.4.8 can predict the focusing effect of the field even though it only involves the axial
component of i?

Prob. 11.4.2 In a magnetic lens, the potential, 0, is constant. Use Eq. 11.4.8 to show that all
magnetic lenses are converging, in the sense that dr/dz will be less as a particle leaves the lens
than as it enters.

Prob. 11.4.3 If the focal length is long compared to the magnetic length of the magnetic lens, it
is said to be a weak lens. In this case, most of the deflection occurs outside the field region with
the lens serving to redirect the particles. Essentially, r remains constant through the lens, but its
spatial derivative is altered. Use Eq. 11.4.8 to show that in this case the focal length is

z+ -1

e z

Show that this general result for a weak lens is consistent with Eq. 11.4.12.

Prob. 11.4.4 An electron beam crosses the z = 0 plane from the region z <0 with the potential V .
As it crosses, a given electron has radial position ro and moves parallel to the z axis. In the z =0
plane, a potential t - VoJo(yr) is imposed so that for z >0, 4 = VoJo(yr)exp(-yr) (See Eq. 2.16.18
with jk÷y and m = 0.) Use the paraxial ray equation, Eq. 11.4.8, to determine the electron trajec-
tory. Assume that yro << 1.

For Section 11.5:

Prob. 11.5.1 Under what conditions does an axial magnetic field suppress transverse electron motions?

To answer this question take the potential distribution as having been determined from Eq. 11.7.7 and

write the transverse components of the force equation with the potential terms as "drives." Argue
that transverse motions are small compared to longitudinal ones provided that the frequency is low

compared to the electron-cyclotron frequency.
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Prob. 11.5.2 An electron beam of annular cross section with outer radius a and inner radius b streams
in the z direction with velocity U.

(a) Show that the transfer relations are as summarized in Table 2.16.2 with k2 y k2[1- W/(w- kU)2
in the coefficients.

(b) As an application of these transfer relations, consider a beam of radius b (no free-space core)
with the potential constrained to be $c at the radius a. The region b< r <a is free space. Find
^C

r
(c) Find the eigenfrequencies of the temporal modes with a perfect conductor at r = a.

For Sectiofi 11.6:

Prob. 11.6.1 A physical situation is represented by m dependent variables x.

x = X1i .. .. . X x..... xm

which satisfy m first-order partial differential equations

m m x. 3x.
E [F 1 + G = 0

j=l ij t ij z

(For example, in Sec. 11.6, m = 2, x 1 = p and x 2 = v.) The coefficients Fij and Gij are functions
of the x's as well as (z,t).

(a) Use the method of undetermined multipliers to find a determinantal equation for the first
characteristic equations.

(b) Show that the same determinantal equation results by requiring that the coefficient matrix

vanish.

For Section 11.7:

Prob. 11.7.1 There is a complete analogy between shallow-water gravity-wave dynamics and the one-
dimensional compressible motions of gases studied in this section. Use Eqs. 9.13.11 and 9.13.12

with V = 0 and b = constant to show that if y = 2, analogous quantities are

2
a

P 5, v + v v, _ + gP

The analogy is exploited in the film "Waves in Fluids," which deals with both types of wave systems.

(See Reference 10, Appendix C.)

Prob. 11.7.2 The quasi-one-dimensional equations of motion for free surface flow contained by an

electric field (Fig. 9.13.3) are Eqs. 9.13.4 and 9.13.9, with A and p given in Fig. 9.13.3.
Find the associated first and second characteristic equations.

Prob. 11.7.3 An inviscid, incompressible fluid rests on a rigid flat bottom, as shown in Fig. 9.13.1.

Consider the motions with V = 0.

(a) Show that the first characteristic equations are

dz dz-- = v + R(E) on C-+
dt

and that the second characteristic equations are

v = +R() + c, on C-

where R(A) = 2 g.

(b) A simple wave propagates into a region of constant depth Ec and zero velocity. At z = 0, E = S(t).

Find v and E for z > 0, t > 0. Show that only if dEs/dt > 0 will a shock form.

(c) Consider the initial value problem: when t = 0, v = v (z,0) = 1 and E = 0 (z,0), where
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Prob. 11.7.3 (continued)

1 for z < -3

Eo(z,0) = -0.31z1+ 1.9 for -3 < z < 3

1 for 3 < z

For computational purposes, set g = 1 and use seven characteristics in each family originating at
equal intervals along the initial pulse. Evaluate the Riemann invariants c+ and c_ along the seven
C and seven C characteristics.

(d) Find v and R(M) at each of the characteristic intersections.

(e) Find the characteristic slopes at each of the intersections and draw the characteristics in the
z, t > 0 plane.

(f) Plot the velocity as a function of z when t = 0, t = 2 and t = 4.

Prob. 11.7.4 The region between plane parallel conducting plates having essentially infinite extent
in the y-z plane is filled with material described by the constitutive laws

B = oH; D = E + 6(E E)E
0

where p0o9 and 6 are constants. The plates form a transmission line for transverse electromagnetic
plane waves propagating in the z direction.

(a) Show that if E = E(z,t)ix and H = H(z,t)i , Faraday's and Ampere's laws require that

DE 3H aH ( 2 DEaz -o , ; -(36E +E)
az o at az at

(b) Show that the first characteristic equations are

dz ±bjo36E2 -½ +
dz= [ (36E + c)]- on C

and that the second characteristic equations are

H = TR(E) + c+ on C+

where R(E) is

R(E) [E E + -ln (E +E

(c) With no electric or magnetic fields between them when t = 0, the plates are driven at z = 0 by a
voltage source that imposes the field E(O,t) = Eo(t). Prove that the problem is over-specified
by imposition of H(O,t) = Ho(t). Show that all C+ characteristics are straight lines. Take ~o,
c and 6 as unity and the drive

E(O,t) = Eo(t)

where 0 for t < 0

E 1 - cos(t7/2) for 0 < t < 2
o 2

1 for 2 < t

and draw the C+ characteristics. (Use 7 lines originating at equal intervals in time from
0 <t <2.) Will a shock form? Use a sketch to show how the transient appears as it passes positions
z = 0, 1/3 and 2/3 and sketch to show how E depends on z when t - 0, 1 and 2.

Prob. 11.7.5 An axially symmetric deformation of a theta-pinch plasma is shown in the figure. The
plasma column has a radius E(z,t) and is perfectly conducting. The total flux of magnetic field Ao
trapped between the plasma and the surrounding perfectly conducting wall (radius a) is constant.
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Prob. 11.7.5 (continued)

(a) Model the plasma as a perfectly
conducting incompressible fluid and

L

write quasi-one-dimensional equations
of motion that include non-linear
effects (see Sec. 9.13.)-

(b) When t = 0, the plasma is static' Z Z

and has the "bulge" shown in
Fig. P11.7.5b. Show that the -. . .... - .
interface never subsequently has
a radius greater Ithan peak.

peak.

For Section 11.8: Fig. P11.7.5a

Prob. 11.8.1 A perfectly conducting gas subject to isentropic
dynamics is modeled as in Sec. 11.8. However, one-dimensional
motions now considered are arbitrary in form. Consider again
the one-dimensional space-time dependence of all variables;
e.g. v = v(x,t) and i = i(x,t). Determine the first character-
istic equations.

For Section 11.9:

Prob. 11.9.1 Show that for small amplitudes the phase space
trajectory for the configuration of Fig. 11.9.1b is represen-
ted by an ellipse.

Prob. 11.9.2 In the configuration of Fig. l1.l,1b, the
driving voltage is V(t) = Re V exp j(wt), where V and w
are given. Under the assumption that V(t) is small Fig. P11.7.5b
enough to give only a linear response, use the charac-
teristic equations to find n(z,t). Assume that the system is in the sinusoidal steady state.

For Section 11.10:

P4ob. 11.10.1 Use Eqs. 11.10.7 and 11.10.8 to derive an analytical expression for the P=0 case
illustrated by Fig. 11.10.3a.

Prob. 11.10.2 Consider the limit of the single-stream systems of Fig. 11.10.1 in which y->o and hence
V + 0. In this case, the normalization velocity should be U rather than V.

(a) Show that the normalized equation.of motion is

2+ a P 1 1
( at + 1z) (1-5) (1+)2

where P is as defined after Eq. 11.10.6.

(b) In this limit the situation is similar to that of Sec. 11.9, in that the characteristics degenerate
into the same lines. Show that with vaE/S3t + a8/a~ the normalized characteristic equations are

vd 1 2 P1 1= E 1 + 1 dz+ E 0;dt 2 on- =
S 4 (1-ý 1+E dt

(c) In the phase-plane (v,Q) a given element of the system starts with (v,c) = (v 0 E). Sketch
typical phase-plane trajectories for P > 0 and P < 0 and relate to the physical situations
of Fig. 11.10.1.

Prob. 11.10.3 Starting with Eqs 11.10.19 to 11.10.22, use the determinant approach to deduce
Eqs. 11.10.23 to 11.10.26. To deduce the solution at E in Fig. 11.10.5 from that at points A through
D, the procedure is similar to that for the single stream situations (illustrated by Eqs. 11.10.11 to
11.10.14.) For example, because the solution at E must be the same whether obtained along the C+ or
C characteristics, vlE vA + = lB + AB. Write eight equations, linear in (AvA, AVlB,
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Prob. 11.10.3 (continued)

+ + + + + +
Av C, Av2D, AelA, AelB, Ae2C, Ae2D), that can be used to find these quantities in terms of the2
initial data (vlA, VlB, V2C, V2D, elA, elB, e2C4 e2D, flAq flB, f2C, f2D). Check Eqs. 11.10.27 and
11.10.28, and the analogous expressions for (AvC2 , Ae+C )

Prob. 11.11.1 For the magnetic configuration of Fig. 11.11.1, follow steps paralleling Eqs. 11.11.1

and 11.11.2 to show that the long-wave linearized equation of motion is Eq. 11.11.3 with parameters

defined by Eqs. 11.11.4b and 11.11.5b.

Prh 11 11 2 A wire h9vino

tension T and mass per unit
length m is stretched along the
z axis. It suffers transverse
displacements ý(z,t), in the
x-z plane and carries a current I,
as shown in Fig. P11.11.2. Exter-
nal coils are used to impose a
magnetic flux density B = (B /d)

(Yix + xiy). (B and d are
given constants) in the neigh-
borhood of the z axis. This
is the configuration for the
experiment shown in Fig. 11.11.3.
Show that the equation of motion
takes the form of Eq. 11.11.3 with
M = 0 and f = 0. What is P?

Prob. 11.11.3 Derive Eqs. 11.11.13
and 11.11.14 starting with the roots
of the dispersion equation, Eq. 11.11.11. Fig. P11.11.2
Sketch the response for wo less than and
greater than the cut-off frequency, indicating the physical significance of n and y.

2
Prob. 11.11.4 Derive Eqs. 11.11.15 and 11.11.16 and sketch the response for 2 greater than and less
than P(M2-1). Indicate the physical significance of n and y. o

Prob. 11.11.5 A liquid jet having equilibrium radius R streams in the z direction with velocity U.

Coaxial with the jet is a circular cylindrical electrode having inner radius a and constant potential,

-V, relative to the jet. The stream, perhaps tap water, can be regarded as perfectly conducting.

Except for the coaxial electrode, the configuration is the same as described in Prob. 8.13.1.

(a) Determine the dispersion equation for perturbations having m = 1 (kinking motions).

(b) Take the long-wave limit of this relation (ka << 1 and hence kR << 1) to obtain a quadratic in w
and k representing the dominant modes of the system. Normalize this expression so that it takes

the same form as Eq. 11.11.10 and define M and P accordingly.

Prob. 11.12.1 The equation for the deflection C(z,t) of a "string" is the forced wave equation

2 
A = V a2 + f(z,t)

2 2 m

where V 2 is the tension divided by the mass per unit length, m. The force per unit length, f(z,t), is

an impulse in space and a sinusoidal function of time turned on when t=0.

f(z,t) = [(Az)f ]u (z) cos w t u1 (t)

(a) Determine the Fourier-Laplace transform of the deflection, M(k,w). Assume that when t = 0 the

deflection is zero.

(b) Invert the Fourier transform and use the residue theorem to find E(z,w).

(c) Invert the Laplace transform by using the residue theorem and causality to determine ý(z,t).

Check the result to see that it satisfies initial and boundary conditions and the equation of

motion.

Prob. 11.12.2 In Sec. 5.17, the spatial transient of charge induced on a moving semi-insulating

sheet is considered. It is assumed that in the sinusoidal steady state considered the complex waves
decay away from the region of excitation. Show that all spatial modes are indeed evanescent, thus

justifying the identification of spatial modes used in Sec. 5.17. Consider in particular the two
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Prob. 11.12.2 (continued)

dominant modes represented by the long-wave dispersion equation, Eq. 5.17.11, and show the loci of
complex k as w is varied (a = wr-jo, a increasing from mo+o).

For Section 11.13:

Prob. 11.13.1 For the subelectric second order system (IM < i1, P> 0), evaluate the asymptotic response
by integrating Eq. 11.13.1 on the contour shown in Fig. 11.13.4.

Prob. 11.13.2 A flexible tube is the conduit for liquid having an average velocity U. The tube is
immersed in a viscous liquid which dampens transverse (kinking) motions. Its walls are elastic and
(perhaps due to the viscous shear stresses from the liquid flowing within) under tension. A model
for transverse motions pictures the tube as a string under tension. Because most of the inertia is
due to the moving fluid within, the inertial term in the equation of motion is a convective deriva-
tive. But, because damping of transverse motions is largely due to the stationary external fluid,
the damping force per unit length is proportional to the rate of change of the deflection at a given
location, z. Thus, the equation of motion is

+U E+= V2 - C
2  ataz

where V is the wave-velocity associated with the tension and mass per unit length and v is the damping
coefficient per unit length divided by the effective mass per unit length.

(a) Show that, ifjUl>V, the tube is subject
to kinking motions that are unstable.

(b) Show that if IUj>V, this instability is
convective.

(c) Argue the result of part (b) using the
method of characteristics.

For Section 11.14: Fig. P11.13.2. Mechanical system
exhibiting resistive wall instability.

Prob. 11.14.1 In the configuration of Fig. 11.14.1,
the lower fluid has a charge relaxation time that is short compared to times of interest, while the

upper one is a good insulator, having uniform permittivity E. The channel walls are metal and have

a potential difference, V. Thus, with the interface flat, there is an x-directed uniform electric

field in the upper fluid, Eo = V/a.

(a) Show that a stationary equilibrium exists, much as for the mechanical configuration. What

is the stationary pressure difference across the interface under equilibrium conditions?

(b) For a perturbation having a given real wavenumber, k, what streaming velocity is required to

produce instability? Discuss the conditions for instability in the short-wave and long-wave

limits.

(c) Is this electromechanical Kelvin-Helmholtz type instability absolute or convective?

Prob. 11.14.2 In the configuration of Fig. 11.14.1, the lower fluid is perfectly conducting in the

MQS sense while the upper fluid is a perfect insulator. The channel walls are also perfectly conduct-

ing. In a state of stationary equilibrium, much as for the mechanical system considered in Sec. 11.14,

the region occupied by the upper fluid is also filled by an initially uniform z-directed magnetic field

intensity Ho .

(a) What are the static pressures in each fluid under the stationary equilibrium conditions?

(b) For a given perturbation wavenumber, k, what velocity is required to produce instability? Does

the magnetic field tend to stabilize the interface against Kelvin-Helmholtz instability?

(c) Are instabilities convective or absolute?

Prob. 11.14.3 A z-theta pinch has the configuration shown in Fig. 8.12.1. However, rather than

having a static equilibrium, the perfectly conducting column now has a stationary equilibrium in

which it streams in the z direction with a uniform velocity, U. Also, it is now surrounded by an

insulating fluid having a mass density, Pv, that is appreciable. In the stationary equilibrium,

the column has a uniform radius, R, and the surrounding fluid is static. For temporal modes,

having given real wavenumber and mode number (k,m), what velocity U is required to produce

instability?
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Prob. 11.14.4 The configuration shown in Fig. 8.14.2 is revised by having the upper uniformly
charged fluid stream in a direction parallel to the equilibrium interface with a velocity U.

(a) Determine the dispersion equation for perturbations of the interface.

(b) Determine the velocity required to induce instability of a perturbation having a given wavenumber,
k.

For Section 11.15:

Prob. 11.15.1 Streams described by Eqs. 11.15.1 and 11.15.2 have equal and opposite velocities.
That is, M 1 = -M2 = M.

(a) Determine the dispersion equation and show that it is biquadratic in both W and k.

(b) To describe temporal modes, make plots of complex w for real k in the electric and
magnetic cases.

(c) Are these instabilities absolute or convective?

For Section 11.16:

Prob. 11.16.1 Figure 11.16.4 shows the eigenfunctions implied by the first three longitudinal modes.
Given the eigenfrequencies, describe how these functions would be obtained.

Prob. 11.16.2 Counterstreaming continua described by Eqs. 11.15.1 and 11.15.2 have equal and opposite
velocities, and hence a dispersion equation as derived in Prob. 11.15.1.

(a) For M< 1, argue that boundary conditions consistent with causality are E (0,t) = 2 (0,t) = 1 (£k,t) =

E2 (k,t) = 0. What is the eigenfrequency equation? In the limit M+0, what are the solutions to
this expression?

(b) For M> 1, argue that boundary conditions consistent with causality are E1 = 0 and 3 1 /az = 0 at z =
0 and = 0 and DE 2/3z = 0 02 at z = k. What is the eigenfrequency equation?

For Section 11.17:

Prob. 11.17.1 Figure P11.17.1 shows distributed series of coils, each having n turns, lying in the
y-z plane. Each coil is of dimension Ay in the y direction; Ay is small compared to other dimensions
of interest shown. The system of coils is connected to a transmission line. Insofar as distances in
the x direction are concerned, the coils comprise a thin sheet and are connected to the line outside
the volume of interest. Hence, their effect on an MQS system is to be represented by the boundary
conditions. Represent the circuit by an inductance and a capacitance per unit length, L and C
respectively, and show that (with the understanding that Bx is continuous through the sheet) the
coils are represented by the boundary conditions

8v ai aBx
= L - nw

y at at

ai av
-y = C --
ay at

[HyI n

Prob. 11.17.2 In what might be termed

a magnetoquasistatic resistive wall inter-
action, the resistive wall moves and the
continuum of "oscillators" remains fixed.
Thus, the thin conducting sheet of Sec. 6.3
is backed by a perfectly permeable material
and moves in the y direction with a velocity
U. In a plane parallel to that of the sheet
is the system of distributed coils of Prob.
11.17.1, connected to the transmission line
as shown in Fig. P11.17.1. These coils com-
prise the "stator" structure, and are backed -- y--

by an infinitely permeable material. There Fig. P11.17.1
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Prob. 11.17.2 (continued)

is an air gap of thickness a between the moving sheet and coils.

(a) Find the dispersion equation describing the coupled transmission-line waves and convective
magnetic diffusion modes.

(b) Show that the equation is cubic in W, and discuss the temporal modes. Instability implies
that, in a rotating configuration, the system could be used as a generator. Indeed, the
foregoing is a distributed form of a self-excited induction generator. More conventionally,
such generators are made by tuning the stator windings of a machine like that of Sec. 6.3.

(c) In a system that is infinite in the y direction, is the instability absolute or convective?

Prob. 11.17.3 Electrodes lying in the y-z plane, as shown in Fig. P11.17.3, have a length w in
the y direction and are segmented in the z direction. Connected to the ends of the segments is a
transmission line, having capacitance and inductance per unit length C and L respectively. The width
of the segments in the z direction is short compared to lengths of interest in that direction. For an
EQS system in which these electrodes appear as a plane having upper and lower surfaces denoted by a and
0 respectively, and hence where Oa = 0- E v, show that the jump conditions relating variables on the
two sides are

av ai
az at

aa,
-- C C- -w-az at at

af - xD]

Prob. 11.17.4 As a model for a traveling-
wave electron-beam amplifier, consider the
,lanar - -oss-electron beem as shown in 

section by Fig. 11.5.1. Two traveling-
wave structures, described in Prob. 11.17.3,
are coupled to this beam by placing the seg-
mented electrodes in the planes (c) and (i).
Respectively aboveand below these planes
are parallel perfectly conducting sheets
having spacings d from the planes of the ·
segmented electrodes. / Az z

(a) For the even motions described in
Sec. 11.5, determine the dispersion Fig. P11.17.3
equation for the interaction.

(b) Take the long-wave limit of this expression to obtain a polynomial in W and k.

(c) Show that there can be unstable temporal modes.

(d) Are these modes absolutely or convectively unstable?

Prob. 11.17.5 The cross-section of a magnetoquasistatic candidate for a resistive-wall amplifier is
shown in Fig. P11.17.5. In a state of stationary equilibrium, a perfectly conducting inviscid incom-
pressible fluid, having a thickness 2b and mass density p, streams to the right. The adjacent gaps
are filled by an insulating fluid of negligible mass density. At distances a from the jet surfaces
are walls composed of thin conducting sheets having surface conductivity as, backed by highly perme-
able materials. Uniform surface currents flow in these sheets and on the free surfaces so as to give
rise to uniform magnetic fields, Hoiy, in the gaps. There is no equilibrium magnetic field in the jet
or in the highly permeable backing materials. Effects of gravity are absent, but those of surface ten-
sion y are included.

(a) Show that the stationary equilibrium is possible.

(b) Now consider kinking motions of the stream, in which the transverse displacement of both interfaces
are upward and of equal magnitude. Determine the dispersion equation.

(c) Take the longwave limit of this result and plot complex w for real k. Assume that U>V where V

(d) If U>V, can the system be unstable and, if so, is the instability convective or absolute?

Problems for Chap. 11 11.78



Prob. 11.17.6 Electron beams having equilibrium
velocities U1 and U2 in the z direction share the same
space. They have equilibrium number densities nol and
no 2 respectively, and only interact through the macro- tý= ýý .. =. M o W 0 - C

scopic electric field t = -Vq. I-aY I I 

(a) Use the EQS equations of motion for the two species 7 ~ 7 Ho d
suggested by Eqs. 11.10.1 - 11.10.4 to show that the
dispersion equation for one dimensional motions is :. .'... . . . .· ,o ..-.:-oo : .... y

- - ' . - - "~ ( ' - '-.W . -
2 2

i = •pl - --------------- *---- - --
+ p2

h(o-kU) 2 (w-kU
2 NO

o Hi
where - 00 --

e2o m no2e2/o m

Fig. P11.17.5
p2= no2 /m

(b) In the limit U2 = 0, this is the dispersion equation for an electron beam interacting with a
stationary cold plasma. Show that the system is unstable and that the instability is convective.

(c) With Ul = -U2 , what is described is the interaction of counterstreaming beams. Show that in this
case the system is absolutely unstable.

Problems for Chap. 1111.79





Appendix A

Differential Operators in
Cartesian, Cylindrical and
Spherical Coordinates
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Appendix B

Vector and Operator Identities



+ 4 +- 4 4

Ax B C =A B x C (1)

+ ( 4+ 4 +. 4 4 +

Ax (B x C) = B(A C) - C(A B) (2)

V(Q + ') = Vý + Vi (3)

V (A + B) = V A + V * B (4)

Sx (A + B) = xA + V x B (5)

V( r) = ýVW + pVp (6)

V* (wA) = A w V + vV A (7)

V * (Ax B) = B x A - A V xB (8)

V * V = (9)

4.

V * VxA = 0 (10)

V x VW = 0 (11)

V x (V x A) = V(V A ) - V 2 (12)

+ + + + -* (13)
( x A) x = ( )A - 1/2 V(A * A)

V(A .B) = ( A V)B+ (B * V)A + Ax (V x B) + B x (V x A) (14)

V x 4(A) = Vý x A + pV x A (15)

V x (A x B) = A(V B) - B(V * A) + (B * V) A - (A *V)B (16)



Appendix C

Films



Developed for educational purposes with the support of the National Science Foundation at the
Education Development Center, films cited fall in one of two series.

Produced by the National Committee for Fluid Mechanics Films and distributed by Encyclopedia
Britannica Educational Corp., 425 N. Michigan Ave., Chicago, Illinois (60611) are:

(1) Channel Flow of a Compressible Fluid
(2) Current-induced Instability of a Mercury Jet
(3) Eulerian and Lagrangian Descriptions in Fluid Mechanics
(4) Flow Instabilities
(5) Fundamentals of Boundary Layers
(6) Low-Reynolds Number Flows
(7) Magnetohydrodynamics
(8) Pressure Fields and Fluid Acceleration
(9) Surface Tension and Fluid Mechanics

(10) Waves in Fluids

Produced by the National Committee for Electrical Engineering Films and distributed by Education
Development Center, 39 Chapel Street, Newton, Mass. 02160 are:

(11) Complex Waves I and Complex Waves II
(12) Electric Fields and Moving Media
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Abl ,, l ..- .. , .. i -- ,- .
so ute rom convect ve nUstLaLU.LiLy, Boundary condition, thin conductor, 6.4
distinguishing, Boundary condition, thin permeable

Absolute instability, 11.32 sheet, 6.35
Absolute instability, boundary con- Boundary conditions, causality

ditions and, 11.41 and, 11.35, 11.40, 11.45
Accelerator, linear particle, 4.18 Boundary conditions, electromag-
Accelerator operation, d-c machine, 4.39 netic, 2.14, 2.19
Acoustic dynamics, nonlinear, 11.16 Boundary conditions, fluid
Acoustic guides, 7.15 mechanics, 7.8
Acoustic impedance, numerical Boundary conditions, magneto-
values of, 7.14 quasistatic, 2.18, 2.19

Acoustic surface waves, 7.48 Boundary layer, Blasius, 9.18
Acoustic transmission lines, 7.15, 7.17 Boundary layer, irrotational force
Acoustic velocity, ideal gas, 7.40 density and viscous, 9.18
Acoustic velocity, numerical Boundary layer, linear viscous, 9.17

values of, 7.14 Boundary layer, magnetic, 6.22
Acoustic wave spatial modes, 7.17 Boundary layer, stress-constrained, 9.20
Acoustic wave transit time, 1.5 Boundary layer, viscous diffusion, 9.16
Acoustic wave velocity, 7.13 Boundary layer equations, 9.16
Acoustic waves, 7.13, 7.15 Boundary layer equations, integration
Acoustic waves in solids, 7.48 of, 9.18
Aerosol, dynamics of stratified Boundary layer equations, stream-

charged, 8.46 function form of, 9.17
Aerosol, impact charging of, 8.50 Brake, d-c electric ohmic, 5.43
Aerosol, space-charge static Brake, Hartmann magnetic, 9.28

equilibrium of, 8.8 Brake, unipolar electric, 5.22
Agglomeration, self-, 5.27 Brake operation, d-c machine, 4.39
Alfvyn waves, 8.16 Breakdown strength of gases, 4.55
Alfvyn waves, demonstration of, 8.20 Bulk electromechanical interactions,
Alfvyn waves, effect of finite con- homogeneous, 8.16

ductivity and viscosity on, 8.16 Buoyancy, 10.12
Ampere's law, differential Busch's theorem for electron

form of, 2.2 beam, 11.2
Amplifying from evanescent modes,

distinguishing, 11.46 Capacitance, 2.1, 2.20
Amplifying wave, 11.32, 11.41, 11.44 Capillary instability of cylindrical
Amplitude parameter expansion (see jet, 8.53, 8.73

also linearization), 1.4 Capillary ripples, 7.4
Anemometer, ion drag, 5.7 Capillary rise, demonstration of, 7.6
Anisotropic conductor, charge Capillary static equilibrium, 7.10

relaxation in deformable, 8.20 Cauchy integral theorem, 5.66
Antiduals, 8.12 Causality, characteristics and
Applications, 1.2 boundary conditions, 11.27
Atomization, 8.37 Causality and boundary conditions,
Average of periodic functions, 2.31 two-stream systems, 11.35
Averaging theorem, complex Cellular convection, magnetic field-

amplitude, 2.31 induced liquid metal, 9.23
Averaging theorem, Fourier series, 2.31 Channel flow, compressible fluid, 9.41
Axisymmetric spherical creep flow, 7.33 Channel flow of a compressible fluid,

film Reference 1, Appendix C, 9.45
Bsnard instability, hydromagnetic, 10.15 Channel flows, 9.35
Bernoulli's equation, 7.9 Characteristic equations, 11.13, 11.16,
Bernoulli's equation, streamline 11.21, 11.23

form of, 7.9 Characteristic equations, charge relaxa-
Bessel functions, 2.36 tion in terms of, 5.39
Bessel functions modified, 2.36 Characteristic equations, determinantal
Biharmonic equation, 7.32 conditions, 11.14
Biological locomotion, 10.32 Characteristic equations, first and
Bipolar migration, 5.26 second, 11.14
Bipolar migration, laws for, 5.27 Characteristic equations, first order
Blasius boundary layer, 9.18 systems, 5.5, 5.7, 5.17, 5.26, 5.33,
Boltzmarnn constant, 5.3 5.38
Boundary condition, thin conducting Characteristic equations, method of un-
permeable sheet, 6.35 determined coefficients, 11.14



Characteristic time, capillary, 9.1 Charge relaxation time, particle, 5.76
Characteristic time, charge Charge relaxation transmission line, 4.51

relaxation, 2.3, 8.23 Charged aerosol equilibrium, stability
Characteristic time, electro- of, 8.9

inertial, 8.49, 9.32 Charged drop dynamics, 8.44
Characteristic time, electro- Charged particle beam, kinematics

viscous, 8.23, 9.8 of, 4.17
Characteristic time, gravity, 9.1 Charged particle migration, 5.5
Characteristic time, Hartmann flow Charged particles in vacuum, 11.1

establishment, 9.31 Charging diagram, negative ion
Characteristic time, magnetic impact, 5.13
diffusion, 6.3, 8.11, 9.25 Charging diagram, positive ion

Characteristic time, magneto- impact, 5.12
inertial, 8.17, 9.25 Charging of macroscopic particle, ion

Characteristic time, migration, 10.19 diffusion, 10.19
Characteristic time, molecular Choking, compressible channel flow, 9.44
diffusion, 10.3, 10.19 Chu formulation, 2.1

Characteristic time, reciprocal Classification, energy converter, 4.3
cyclotron frequency, 11.4 Coefficient of heat transfer, surface, 10.11

Characteristic time, reciprocal Coenergy, electroquasistatic, 2.24
plasma frequency, 11.10, 11.23 Coenergy, magnetoquasistatic, 2.28

Characteristic time, thermal Coenergy density, electroquasistatic, 2.24
diffusion, 10.2, 10.13 Coenergy density, magnetoquasistatic, 2.28

Characteristic time, thermal Coenergy function, electrocapillary, 10.29
relaxation, 10.13 Collision frequency, 3.2

Characteristic time, viscous Combustor, energy conversion cycle, 9.53
diffusion, 7.27, 7.32, 7.42, 8.17, Complex amplitudes, definition of, 2.29
8.23, 9.25 Complex amplitudes, polyphase currents

Characteristic time, viscous represented by, 4.21
relaxation, 7.42 Complex waves, 11.37

Characteristic times, 1.4, 1.5 Complex waves, second order, 11.37
Characteristic times, ambipolar Complex waves I, film Reference 11,

diffusion and, 10.4 Appendix C, 11.42
Characteristics, boundary condition Complex waves II, film Reference 11,

and, 5.6 Appendix C, 8.32, 11.43, 11.44
Charge, 2.1 Compressibility constitutive law, weak, 7.13
Charge, conservation of, 2.2, 5.2 Compressible channel flow, conservative
Charge, lumped parameter variable transition in, 9.44

of, 2.20 Compressible channel flow, electrogas-
Charge conservation boundary con- dynamic, 9.48, 9.62

ditions, 5.44, 5.45, 5.50 Compressible flow, channel, 9.41
Charge conserving continua, 8.8, 8.57 Compressible flow, free surface flow
Charge conserving continua, transfer analogous to, 9.43, 9.60

relations for, 8.46 Compressible flow, velocity-area
Charge conserving interfacial diagram, 9.44, 9.45

dynamics, 8.54 Compressible fluid, weakly, 7.13
Charge convection, 5.1 Compressible quasistatic, 7.42
Charge convection, instability Compressible quasistatic limit (CQS), 7.16

and, 8.49 Compressional waves, 8.25
Charge density, free, 2.1 Compressional waves in solids, 7.48
Charge density, magnetic, 2.13 Compressional waves, magnetization, 8.27
Charge density, polarization, 2.12 Conduction, electrical, 3.2
Charge diffusion, heterogeneous Conduction machines, 4.33

ohmic, 5.56 Conductivity, evolution of bipolar, 5.33
Charge generation, 5.2 Conductivity, numerical values of
Charge migration, 5.1 electrical, 6.3
Charge monolayer driven convection, 9.7 Conductivity, surface electrical, 5.44,
Charge monolayer induced cellular 5.45, 6.4

convection, 9.24 Conductivity, temperature dependent
Charge recombination, 5.2 electrical, 10.3, 10.8
Charge relaxation, 5.1 Confinement, plasma, 8.40
Charge relaxation, deforming ohmic Conservation of energy, internal and

conductor, 5.38 kinetic energy combined, 7.39
Charge relaxation, heterogeneous Conservation of energy, surface, 7.5

system of uniform conductors, 5.56 Conservation of free charge, boundary
Charge relaxation temporal modes, 5.54 condition for, 2.17, 2.19
Charge relaxation time, 1.5, 2.3, 5.34 Conservation of internal energy, highly
Charge relaxation time, imposed field compressible fluid, 7.38

flow approximation, 9.32

Index



Conservation of internal energy, D-c machine, magnetic, 4.33
lumped parameter, 7.37 D-c machine, model for, 4.33

Conservation of kinetic energy, D-c machine, unipolar electric, 5.22
fluid, 7.25 D-c machine, winding for, 4.35

Conservation of mass, fluid, 7.1 D-c machines, classification of, 4.2
Conservation of momentum, fluid, 7.2 D-c pump, unipolar electric, 5.22
Conservative transition, compressible Debye length, 10.22

flow, 9.44 Diffuser, compressible flow, 9.44
Conservative transitions, piecewise Diffusion, ambipolar, 10.3
homogeneous flow, 9.37 Diffusion, charged particle, 5.2

Constitutive laws, polarization, 3.9 Diffusion, magnetic traveling wave, 6.18
Continua, current conserving, 8.70, 8.71 Diffusion, migration relative to, 5.3
Convection, natural, 10.10 Diffusion, transient magnetic, 6.25
Convection, rotor model for Diffusion, unipolar ion, 10.19

thermal, 10.10 Diffusion charging of macroscopic
Convective derivative, 2.6, 2.7 particle, 10.20
Convective derivative, fluid Diffusion coefficient, mobility related

acceleration and, 7.2 to, 5.3
Convective from absolute instabilities, Diffusion coefficient, numerical values

distinguishing, 11.54 of molecular, 10.4
Convective instability, 11.32 Diffusion equation, magnetic, 6.2
Convective magnetic diffusion, 6.2 Diffusion time, numerical values of
Convective magnetic diffusion, skin- magnetic, 6.4

effect approximation to, 6.21 Diffusion time, viscous, 7.27
Coordinates, Eulerian, 2.6 Diffusion wave, phase of, 6.18
Coordinates, Lagrangian, 2.6 Dimensionless numbers, 1.5
Corona discharge, electrostatic Dipole, force on, 3.7

precipitator, 5.9 Direction cosine, 3.16
Couette flow, generalized, 9.6 Dissipation, calculation of elec-
Couette mixer, electrohydro- trical, 6.20

dynamic, 8.24 Dissipation, relation of magnetic
CQS (see compressible quasi- stress to, 6.22

static) Dissipation density, electrical, 9.39
Creep flow, 7.27 Dissipation density, electrical to
Creep flow, cellular electro- thermal, 10.5
mechanical, 9.22 Dissipation density, fluid, 7.25

Critical angle, particle Dissociation, formation of charge
charging, 5.13 by, 5.27

Critical charge (also saturation Dorn effect, 10.27
charge), 5.10 Double layer, 2.15, 10.21

Critical depth of gravity flows, 9.40 Double layer, boundary conditions
Critical flow, free surface, 9.39 for, 2.16, 2.19
Critical lines (or points), charge Double layer, ideally polarized, 10.11,

trajectory, 5.8, 5.17 10.32
Current, 2.1 Double layer charge conservation,
Current, electroquasistatic ideally polarized, 10.33
lumped parameter, 2.20 Double layer incremental capacitance, 10.30

Current, Hall, 3.3 Double layer surface force density, 3.20
Current-charge relation, lumped 10.31
parameter, 2.20 Drag, rigid sphere viscous, 7.36

Current conserving continua, 8.70, 8.71 Drag, Stokes's, 7.36
Current density, free, 2.1 Drag-cup tachometer, 6.11
Current-induced instability of a Drop charging, ion impact, 5.10
mercury jet, film Reference 2, Drop formation, 8.53
Appendix C, 8.51 Drop formation, electric field and, 8.73

Current tube, 2.26 Dynamical processes, characteristic
Curvature, radius of, 7.5 times and, 1.4
Cyclotron frequen.cy, 11.4 Dynamics in space and time, 11.13
Cylindrical shell, boundary condition

for rotating conducting, 6.5 EGD (see electrogasdynamic)
Cylindrical shell, boundary condition EHD (see electrohydrodynamic)

for translating conducting, 6.5 Eigenfrequencies, temporal mode Alfvyn
wave, 8.20

D-c interactions, conditions for, 4.5 Eigenfrequencies, integral condition
D-c interactions, magnetohydro- on, 8.66

dynamic, 9.45 Einstein relation, 5.3
D-c interactions, ohmic electric, 5.42 Elastic modulus, numerical values of, 7.46
D-c machine, energy conservation Elastic properties, numerical values

in, 4.39 of, 7.46
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Electric displacement, definition Electroquasistatic jump conditions, 2.14

of, 2.1, 2.2 Electroquasistatics, 2.3

Electric field intensity, 2.1 Electrostatic precipitator, 5.9

field intensity, break- Electroviscous time, 1.5, 5.76, Electric 8.23, 9.8
Energy, conservation of, 2.22down, 4.55

limits Energy, electroquasistatic, field intensity, 2.22Electric 
on, 4.53 Energy, gas internal, 7.36

Energy, magnetoquasistatic, 2.28Electric fields and moving media,
Energy and coenergy, relationfilm Reference 12, Appendix C,

between, 2.245.53, 8.5, 9.9
Energy conservation, electrocapillaryElectric Hartmann number, 1.5,

5.76, 9.9 surface, 10.29

Prandtl 5.76 Energy conservation, electroquasi-Electric number, 
number, 1.5, 9.8 static subsystem, 2.25Electric Reynolds 

Energy conservation, lumped parameterElectric Reynolds number, uni-
electroquasistatic, 2.24polar, 5.20, 5.23

energy subsystem, 8.60 Energy conservation, magnetoquasi-Electrical 
Electrical dissipation, magneto- static, 2.26

Energy conservation, magnetoquasi-quasistatic ohmic, 6.19
7.39 static subsystem, 2.28Electrical dissipation density, 

Electrification, thunderstorm, 5.10 Energy conversion, d-c machine, 4.39

compressional Energy conversion Electro-acoustic limitations, 4.53

waves, 8.25 Energy conversion limitations, electro-

Electro-acoustic velocity, 8.26 gasdynamic, 9.53

Electrocapillarity, 10.27 Energy conversion limitations, magneto-

Electrocapillary mobility, 10.40 hydrodynamic, 9.48

Electrocapillary motions of Energy conversion processes, 1.3
Energy converters, classificationdrop, 10.32

Electrodynamic laws, differ- of, 1.4
Energy density, ential, 2.1 electroquasistatic, 2.24

Electrogasdynamic compressible Energy density, magnetoquasistatic, 2.28
Energy equation, energy converter, 9.48 electron beam, 11.2
Energy function, permanent polari-Electrohydrodynamic imposed field

9.32 zation, 4.12approximation, 
time, 1.5, Energy Electro-inertial state equation, fluid, 7.37

Enthalpy, electrical power generated8.23, 8.49
10.23, 10.25 and change in, 9.48, 9.55Electrokinetics, 

Enthalpy, specific, 7.38Electromagnetic flight, 6.23
Entropy, 7.37Electromagnetic wave transit
Entropy, MHD generator increase in, 9.48time, 1.5, 2.3
Entropy, specific, 7.38Electromagnetic waves, quasi-
Entropy flow, 7.40statics and, 1.1
EQS (see electroquasistatic)Electromagnetics, branches
Equation of state, mechanical fluid, 7.37of, 1.1
Equations of elasticity, 7.46, 7.47Electromechanical coupling,
Equations of motion for inviscidthermal or molecular subsystem

fluid, 7.2and, 10.1
Equivalent circuit, charge relaxationElectromechanical energy con-

diffusion line, 5.56
version configurations, 4.3

Equivalent circuit, magnetic inductionElectromechanical kinematics, 1.1,
machine, 6.102.1, 4.1

Error function, solution to diffusionElectron beam, equation of
equation, 6.24motion for, 11.1

Eulerian and Lagrangian coordinates, 2.48Electron beam, magnetic confine-
Eulerian and Lagrangian descriptions inment of, 4.17

fluid mechanics, film Reference 3,Electron beam, resistive wall
Appendix C, 2.7amplification on, 11.68

Eulerian coordinates, 2.6
Electron beam, transfer rela-

Evanescent from amplifying modes, dis-tions for, 11.10
tinguishing, 11.46

Electron beam, traveling-wave
Evanescent wave, 11.37, 11.41, 11.42interaction with, 11.78
Exchange modes, MHD, 8.40

Electron beam devices, 4.17
Exchange of stabilities, smoothly inhomo-

Electron beam dynamics, non-
geneous temporal modes, 8.66linear, 11.23

Expansion, space-rate, 4.41Electron beam energy con-
verters, 4.56

Electro-osmosis, 10.23, 10.24
Electrophoresis, 10.25

Index



Faraday's integral law, ohmic deform- Force density, incompressible electri-
able media and, 6.2 cally linear electroquasistatic,

Faraday's law, Chu formulation, 2.14 3.12, 3.18
Faraday's law, differential form Force density, incompressible electri-
of, 2.1 cally linear magnetoquasistatic,

Ferrofluid, 8.35 3.15, 3.18
Ferrofluid, demonstration Force density, incompressible electro-

illustrating, 8.7 quasistatic, 3.11, 3.18
Ferrofluid interfacial Force density, Kelvin magnetiza-

instability, 8.37 tion, 3.8, 3.18
Flow, low magnetic Reynolds number, Force density, Kelvin polariza-

9.2, 9.10, 9.14, 9.17, 9.25 tion, 3.7, 3.18
Flow development, Hartmann mag- Force density, Korteweg-Helmholtz

netic, 9.28 electroquasistatic, 3.9, 3.11, 3.18
Flow development, temporal, 9.13 Force density, Korteweg-Helmholtz,
Flow instabilities, film Reference 4, magnetoquasistatic, 3.13, 3.18

Appendix C, 10.16 Force density, Lorentz, 3.1
Flows, electromechanical, 9.1 Force density, macroscopic vs. micro-
Flows, fully developed, 9.5, 9.6, scopic, 3.1

9.7, 9.11, 9.26, 9.28, 9.33 Force density, magnetic irrota-
Flows, imposed surface and volume tional, 9.2

force density, 9.5 Force density, magnetoquasistatic
Fluid interface, Eulerian descrip- density dependent, 3.15, 3.18

tion of, 7.3 Force density, magnetoquasistatic
Fluid mechanics, laws of, 7.1 free current, 3.4
Fluid mechanics boundary and jump Force density, quasistatic, 3.4

conditions, 7.8 Force density, rotational, 9.3
Fluid power flow, 7.25 Force density, viscous, 7.24
Flux, lumped parameter variable Force-energy relations, electro-

of, 2.21 quasistatic, 3.5
Flux conservation, surface of fixed Force-energy relations, magneto-

identity and, 6.2 quasistatic, 3.6
Flux conservation in conducting Force equation, fluid, 7.2

fluid, 8.16 Force equation, isotropic perfectly
Flux conserving continua, elastic solid, 7.47

compressible, 8.25 Force equation for viscous fluid, 7.24
Flux conserving continua, homo- Forces, electromagnetic, 3.1

geneous bulk, 8.16 Forces, lumped parameter, 3.4
Flux conserving continua, static Fourier amplitudes, definition of, 2.30

equilibrium of, 8.11 Fourier amplitudes, synchronous machine
Flux conserving continua, application of, 4.9

z-theta pinch, 8.40 Fourier averaging theorem, synchronous
Flux-potential transfer machine application of, 4.10

relations, 2.16 Fourier series, 2.30
Force, 2.1 Fourier series complex amplitudes, time
Force, Lorentz, 3.1 average of, 5.60
Force, time-average, 5.60 Fourier transform complex amplitudes,
Force, time-average in time average of, 5.60

induction machine, 6.8, 6.16 Fourier transforms, definition of, 2.30
Force coenergy relations, Frozen charge model, 8.57

electroquasistatic, 3.5 Fully developed flow, mass conservation
Force coenergy relations, in, 9.7
magnetoquasistatic, 3.6 Fully developed flows, surface

Force densities, electromag- coupled, 9.7
netic, 3.1 Fundamentals of boundary layers, film

Force densities, tenuous Reference 5, Appendix C, 9.19
dipole, 3.6 Fusion experiments, 8.40

Force density, 2.1
Force density, electroquasistatic Galilean transformation, 2.7

density dependent, 3.12 Gas constant, 7.37
Force density, electroquasistatic Gas constant, specific heats and, 7.38

free-charge, 3.4 Gasdynamic energy converters, 9.41
Force density, flows with irrota- Gasdynamic flows, 9.41

tional, 9.2 Gauss' integral theorem, 2.9
Force density, gradient of Gauss' law, differential form of, 2.2

"pressure" as, 7.9 Gauss' law, multiple charge species
Force density, gravitational, 7.9 and, 5.3
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Gauss' theorem, tensor form, 3.15 Incompressible quasistatic, 7.42
Generalized Leibnitz rule, 2.10 Independent variables, electroquasi-
Generating systems, open cycle, 9.53 static, 3.5
Generation, bipolar, 5.33 Inductance, 2.1, 2.21
Generation, charge, 5.2 Inductance matrix, 2.21, 4.21, 4.32
Generator, d-c electric ohmic, 5.43 Induction heating, thermal response
Generator, Hartmann magnetic, 9.28 to magnetic, 10.5
Generator, inviscid magnetohydro- Induction interactions, magnetic, 6.1

dynamic, 9.4 Induction machine, balanced two-
Generator, magnetohydrodynamic phase, 6.8

gas-dynamic, 9.46 Induction machine, end effect in
Generator, unipolar electric, 5.22 magnetic linear, 6.36, 6.37
Generator, variable capacitance, 4.45 Induction machine, single-phase
Generator operation, d-c machine, 4.39 magnetic, 6.10
Glass thickness control, 8.2, 8.10 Induction motor, deep conductor, 6.15
Gradient field stabilization, 8.38 Induction motor, electroquasistatic, 5.46
Gradient integral theorem, 2.9 Induction motor, magnetic, 6.6
Gravitational force density, 7.9 Induction pump, liquid metal mag-
Gravitational subsystem, 8.60 netic, 9.11
Gravity-capillary dynamics, 8.28 Intertial quasistatic
Gravity-capillary modes of charge laws, 7.42

monolayer, 8.56 Inertial reference frame, 2.7
Gravity-capillary spatial Inhomogeneity, modes, 8.31 mass density, 7.1
Gravity-capillary wave, phase Initial value problem, method of

velocity, 8.30 characteristics and, 11.16
Gravity-capillary waves, dispersion Initial value problem, single

equation for, 8.29 stream, 11.30
Gravity flow, 9.35 Ink jet printing, 8.44

Instability, Green's function field representa- absolute, 11.32, 11.37, 11.41
Instability, tions, 4.40 bulk electrohydro-

dynamic, 8.24
Hall current, 3.3 Instability, convective (also, amplifying
Hankel functions, 2.36 wave), 11.32, 11.37, 11.41, 11.46, 11.54

Instability, Hartmann channel flow, 9.26 critical conditions
Hartmann flow, electrohydro- for, 8.36

dynamic, 9.33 Instability, electrohydrodynamic equi-
Hartmann layer, 9.29, 9.59 potential surface, 8.37
Hartmann number, Alfvyn waves and Instability, heavy fluid on top of

magnetic, 8.18 light, 8.30
Hartmann Instability, number, electric, 1.5, incipience of, 8.36

Instability, 9.9, 9.34 internal, 8.62
Hartmann number, ideally polarized Instability, Kelvin-Helmholtz type, 11.56

double layer, 10.35 Instability, nonlinear stages of
Hartmann number, magnetic, 1.5, 9.27 surface, 8.31, 8.32, 8.37
Hartmann Instability, profile, magnetic, 9.27 Rayleigh-Plateau, 8.53
Hartmann Instability, type flows, magnetic, 9.25 self-field inter-

facial, Hartmann velocity profile, 8.33
Instability, electric, 9.34 two-stream, 11.34
Instability, Head diagram, free surface flow, 9.39 z-pinch at low magnetic

Heat conduction and convection, Reynolds number, 8.54
Instability imposed dissipation, 10.5 of glycerin interface

10.1 stressed Heat transfer, by electric field, 8.37
Integral Helmholtz equation, 4.16 law, mass conservation, 7.1
Integral Hyperbolic systems, streaming, 11.27 law, momentum conservation, 7.2
Integral Hysteresis loop, 6.30 laws, electroquasistatic, 2.10

Hysteresis motor, 6.30 Integral laws, magnetoquasistatic, 2.10
Integral theorem, Gauss', 2.9
Integral Ideal gas equations theorem, of state, 7.37 generalized

Impact Leibnitz, charging of macroscopic 2.9
Integral theorem, particles, 5.9 gradient, 2.9
Integral Impedance, acoustic, 7.18 theorem, Stokes's, 2.9, 3.26
Integral Imposed vs. self-fields, 8.38 theorem, Stokes's type, 3.25

Imposed Interface, gradient surface inter- fluid, 7.3
Interface, actions, 8.38 fluid velocity at an, 7.4

Incompressibility, Interfacial fluid, 7.1 coupling, charge mono-
Incompressible elastic solid, 7.48 layer, 8.54

Internal Incompressible inertialess energy, specific, 7.37
solid, 7.49 Internal energy differential law 7.39
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Internal energy integral law, 7.39 Lagrangian and Eulerian coordinates, 2.48
Internal energy of gas, 7.36 Lagrangian coordinates, 2.6
Internal energy storage, weakly Lagrangian coordinates, electron motion

compressible fluid, 7.26 in, 11.1
Internal instabilities, 8.62 Langevin recombination coefficient, 5.26
Internal waves, 8.62 Laplace-Fourier transform represen-
Inviscid fluid, equations of tation, 11.47
motion for, 7.2 Laplace's equation, irrotational flow

Inviscid irrotational flow, 9.2 and, 7.10
Ion diffusion time, 5.34 Laplace's equation, numerical solution
Ion drag anemometer, 5.7 of, 8.14
Ion drag brake, 5.22 Laval nozzle, 9.44
Ion drag generator, 5.22 Legendre functions, associated, 2.40
Ion drag pump, 5.22, 9.33 Legendre polynomials, 2.40, 7.34
Ion mobility in gases, 5.4 Leibnitz rule, generalized line
Ion mobility in liquids, 5.4 integral, 2.49
Ionization, liquid, 5.27 Leibnitz rule, generalized surface
IQS (see inertial or incompressible integral, 2.49
quasistatic) Lens, electric electron, 11.6, 11.8

Irrotational flow, fluid, 7.9 Lens, magnetic electron, 11.6, 11.8
Irrotational force densities, homo- Levitation, magnetic, 6.24, 8.2

geneous flows and, 9.2 Levitation force, relation of dissipa-
Isentropic flow through nozzles tion to, 6.22

and diffusers, 9.42 Linearized model, limitations of
Isotropy relations, stress-strain- acoustic wave, 11.20

rate, 7.23 Linearized models, 4.42
Lippmann equation, electro-

capillary, 10.30
Jump conditions, electro- Liquid metal, motions in uniform mag-

magnetic, 2.14, 2.19 netic field, 8.16
Jump conditions, fluid Liquid metal, static equilibrium of

mechanic, 7.8 of, 8.11
Jump conditions, magnetoquasi- Liquid metal levitation, 8.2

static, 2.18, 2.19 Liquid metal z-pinch, 8.51
Longitudinal coordinate, 1.6, 4.53,

Kelvin and Korteweg-Helmholtz 9.35
force densities compared, 8.4 Long-wave free surface models, 9.35

Kelvin force density, static equi- Long-wave model, 4.42
librium in terms of the, 8.4 Long-wave model, field coupled

Kelvin-Helmholtz type in- membrane, 11.37
stability, 11.56 Long-wave models, 1.4

Kelvin magnetization force density Lorentz force, 3.1
interaction between dipoles, 3.15 Lorentz force density, 3.1

Kelvin polarization force Low Reynolds number cellular con-
density, 3.7, 3.12, 3.18 vection, 9.22

Kelvin polarization force density, Low Reynolds number flow, 7.27
interaction between dipoles Low Reynolds number flow, velocity-
and, 3.12, 3.18 stress functions in, 7.35

Kelvin theorem, Busch's theorem Low Reynolds number flow in
and, 11.2 spherical coordinates, 7.33

Kinematics, electromechanical, Low Reynolds number flows, film
1.1, 2.1, 4.1 Reference 6, Appendix C, 7.32

Kinematics, mechanical, 2.1 Lumped parameter forces, 3.4
Kinetic energy storage, Lumped parameters, electroquasi-

fluid, 7.25 static, 2.19
Kinetic energy subsystem, 8.60 Lumped parameters, magnetoquasi-
Klystron, 11.24 static, 2.20
Korteweg-Helmholtz and Kelvin

force densities compared, 8.4 Mach number, 1.5, 9.1
Korteweg-Helmholtz electroquasi- Mach number, channel flow, 9.43

static force density, 3.9, Mach number, streaming membrane, 11.29
3.11, 3.18 Magneplane, 6.24

Korteweg-Helmholtz magnetoquasi- Magnetic diffusion, 6.1
static force density, 3.13, 3.18 Magnetic diffusion, boundary layer

Kronecker delta, 3.17 and, 6.22
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Magnetic diffusion, conducting sheet Magnetohydrodynamic energy conver-

and, 6.4, 6.6 sion, 9.41, 9.45
Magnetohydrodynamic Magnetic diffusion, deep con- flow develop-

ment, 9.28ductor, 6.15
Magnetic diffusion, instanta- Magnetohydrodynamic induction

neous, 8.50 pump, 9.11

Magnetic diffusion, laws of, 6.1 Magnetohydrodynamics, film Reference 7,

Magnetic diffusion, temporal modes Appendix C, 8.20, 9.3

of, 6.28 Magneto-inertial time, Alfven wave and

Magnetic diffusion, thick conductor the, 8.18

translation and rotation, 6.12 Magnetoquasistatic jump conditions,

diffusion, vector poten- 2.18, 2.19Magnetic 
tial and, 6.13 Magnetoquasistatics, 2.3

Magnetic diffusion equation, Magneto-viscous time, 1.5

normalized, 6.3 Magnetron flow, 11.3

Magnetic diffusion time, 1.5, 2.3, Mass conservation, fluid, 7.1

6.3, 9.25 Mass conservation, free surface quasi-

Magnetic diffusion time, Alfven one-dimensional, 9.36

waves and the, 8.17 Mass conservation, incompressible, 7.2

Magnetic diffusion transfer Mass conservation jump condition, 7.8

relations, 6.12 Mass density, numerical values of, 7.14

Magnetic drag, boundary layer Mass density, numerical values of

and, 6.23 fluid, 7.19

Magnetic field intensity, 2.1 Mass density, solids, 7.46

Magnetic flight, 6.24 Mass density, surface, 10.13

Magnetic flux, 2.1 Maxwell's capacitor, bipolar model

Magnetic flux density, 2.1 for, 5.35

Magnetic flux density, definition Maxwell's equations, Chu formulation

of, 2.1, 2.2 of, 2.1

Magnetic flux density, limits Mechanical kinematics, 2.1

on, 4.53 Mercury drop electrocapillary

Magnetic Hartmann number, 1.5 migration, 10.27

Magnetic lift, boundary layer Mercury-electrolyte double layer, 10.28

and, 6.23 Method of characteristics, 11.13

Magnetic propulsion, rail, 6.24 Method of characteristics, first order

Magnetic systems, Reynolds 5.5, 5.7, 5.17, 5.26,number, 1.5,
6.3, 9.12 5.33, 5.38

Magnetic Reynolds number, free Method of characteristics, higher order
surface flow with low, 9.38 systems, 11.21

Magnetic Reynolds number, MHD MHD (see magnetohydrodynamic)
flow and, 9.48 Microwave generator, magnetron, 11.3, 11.5

Magnetic saturation, magnetization Migration, bipolar, 5.26
force density with, 8.6 Migration, diffusion relative to, 5.3

Magnetic-viscous Prandtl Migration, electrochemically induced, 10.32
number, 1.5 Migration, imposed field and flow, 5.5,

Magnetization continua, com- 5.7, 5.9
pressible, 8.27 Migration time, 5.34

Magnetization continua, insta- Migration time, imposed field flow

bility of bulk, 8.27 approximation, 9.32

Magnetization density, 2.1, 2.13 Migration time, particle, 1.5

Magnetization dilatational Migration with convection, 5.6

waves, 8.27 Migration with convection, quasi-

Magnetization force density, stationary, 5.7
static equilibrium with, 8.6 Mixing, electrically induced, 8.24

Magnetization hysteresis Mobility, diffusion coefficient

motor, 6.30 relative to, 5.3

Iagnetization of moving Mobility, electrocapillary, 10.40

media, 2.13 Mobility, macroscopic particle, 5.3, 5.4

Magnetization surface insta- Mobility in gases, ion, 5.4

bility, 8.33 Mobility in liquids, ion, 5.4

Magnetization surface interaction Models, charge conserving, 8.1

dispersion equation, 8.35 Models, electromechanical, 8.1

Magneto-acoustic velocity, 8.26 Models, flux conserving, 8.1, 8.2

Magneto-acoustic waves, linear, 8.25 Models, instantaneous charge relaxa-

Magneto-acoustic waves, non- tion, 8.1, 8.2

linear, 11.21 Models, instantaneous magnetic

Magnetohydrodynamic compressible diffusion, 8.1

flow, 9.45, 9.61 Molecular diffusion, 10.1, 10.19
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Molecular diffusion, neutral Permanent polarization motor, 6.30
particle, 10.2 Permeability, free space, 2.1

Molecular diffusion time, 1.5, Permittivity, free space, 2.1
10.3, 10.19 Phase-plane, electron beam pictured in, 11.27

Molecular Peclet number, 1.5 Phase velocity, 2.30
Molecular-viscous Prandtl Piecewise homogeneous systems, 8.28

number, 1.5 Pinch, instantaneous magnetic
Momentum conservation, fluid, 7.2 diffusion, 8.50
Momentum conservation jump con- Pinch, low magnetic Reynolds

dition, 7.9 number, 8.50
Motor operation, d-c machine, 4.39 Pinch, MHD z-theta, 8.40
Moving media, Ohm's law and, 6.1 Pinch, sheet, 8.72
MQS (see magnetoquasistatic) Planar sheet conductor, boundary con-

dition for translating conducting, 6.5
Navier-Stokes equation, 7.24 Plasma, cold, 11.10
Normal vector, surface deforma- Plasma column, stability of, 8 40

tion related to, 7.7 Plasma frequency, 11.10, 11.23
Normal vector, surface geometry Plasma stability, z-theta pinch, 8.40

and, 7.3 Poiseuille flow, generalized, 9.6
Normalization, convention for Poisson's equation, Green's function

equations, 2.3 for, 4.40
Normalization, convention for Poisson's equation, particular solutions

symbols, 2.2 of, 4.13, 4.14
Nozzle, compressible flow, 9.44 Poisson's equation, scalar, 4.13
Numerical integration by method Poisson's equation, transfer relations

of characteristics, 5.30, 5.36, for vector, 4.26
11.30, 11.32 Poisson's equation, vector, 2.45

Numerical solution, superposition Poisson's ratio, numerical values
integral approach to, 8.14 of, 7.46

Polarization, moving media, 2.11
Ohmic conduction transfer Polarization charge, conservation of, 2.12

relations, 5.44 Polarization charge density, 2.12
Ohmic conduction with convec- Polarization current density, 2.12, 2.13

tion, 5.42 Polarization density, 2.1, 2.12
Ohmic conductor, constitutive Polarization force density, illustration

law for moving, 5.38 of, 8.5
Ohmic conductor, dynamics of, 5.38 Polarization stabilization of Rayleigh-
Ohmic limit, bipolar, 5.33 Taylor instability, 8.31
Ohmic model, hierarchy of character- Polarization surface instability, 8.33

istic times for, 5.35 Polarization surface interaction dis-
Ohm's law, moving conductor, 3.3 persion equation, 8.35
Ohm's law, moving media and, 6.1 Pollution control, 8.44
Orthogonal modes, representation Potential, velocity, 7.10

of source distributions, 4.16 Potential conserving continua, charged
Orthogonality, Helmholtz drop, 8.44

equation and, 4.16 Potential conserving continua, compres-
Orthogonality, magnetic temporal sible, 8.25
mode, 6.29 Potential conserving continua, homogeneous

Orthogonality, principal anisotropic bulk, 8.20
axes, 7.22 Potential conserving continua, static

Overview, text, 2.1 equilibrium of, 8.11
Overview of energy conversion Potential well, magnetron, 11.4

processes, 4.53 Power conversion, electromagnetic-to-
internal, 7.39

Paint spraying, electrostatic, 8.44 Power dissipation, vector potential
Paraxial ray equation for electron magnetic field intensity evaluation
beam, 11.6 of, 6.20

Particle charging, impact, 5.9 Power flow, electroquasistatic, 2.24
Particle charging, ion diffusion, 10.19 Power flow, magnetoquasistatic, 2.28
Particular solution, Poisson's equa- Power flow density, magnetoquasi-

tion, 4.13, 4.14 static, 2.29
Particular solution, vector Poisson's Power flux density, electroquasi-

equation, 4.26 static, 2.25
Peclet number, molecular, 1.5, 10.3 Prandtl number, 10.13
Peclet number, thermal, 1.5, Prandtl number, magnetic-viscous, 1.5

10.2, 10.9 Prandtl number, molecular-viscous, 1.5
Periodic systems, stress, force and Prandtl number, numerical values of

torque in, 4.1 molecular, 10.4
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Rayleigh-Taylor instability, 8.30
Prandtl number, thermal magnetic, 10.13

Raylaigh-Taylor instability, polarization
Prandtl number, thermal viscous, 1.5

stabilization of, 8.38
Precipitator, electrostatic, 5.9

Rayleigh-Taylor instability in smoothly in-
Precipitator, space-charge, 5.20

homogeneous systems, 8.57
Pressure, force density and, 7.3

Rayleigh waves, 7.48
Pressure, irrotational flow and, 7.10

Rayleigh's limit of charge on a drop, 8.44
Pressure, stress tensor and, 7.3

Reciprocity, rotating machine model
Pressure fields and fluid acceleration,

and, 4.12
film Reference 8, Appendix C, 7.10

Reciprocity and energy conservation in
Pressure in inviscid fluid, 7.3

smooothly inhomogeneous systems, 8.60
Pressure-velocity transfer rela-

Reciprocity conditions, inductance matrix
tions for inviscid fluid, 7.11

and the, 4.26
Principal axes of tensor, 7.22

Reciprocity relations, lumped parameter
Principal coordinate relations,

electroquasistatic, 3.5
stress-strain-rate, 7.23

Reciprocity relations, lumped parameter
Principal mode, acoustic wave-

magnetoquasistatic, 3.6guide, 7.18
Recombination, bipolar, 5.26, 5.33Principle of virtual power, 3.21
Recombination, charge, 5.2

Pump, d-c electric ohmic, 5.43
Red Sea, Moses' parting of, 8.1Pump, Hartmann electric, 9.33
Reentrant flows, turn-on transient, 9.13

Pump, Hartmann magnetic, 9.28
Reflection coefficient, acoustic, 7.18Pump, inviscid magnetohydro-
Residue theorem, Cauchy, 5.66

dynamic, 9.4
Resistive wall electron beam amplifica-

Pump, ion drag, 9.33
tion, 11.68Pump, traveling-wave surface MHD

Reynolds number, 1.5, 7.27
and EHD, 9.10

Reynolds number, boundary layer and, 9.16Pumpimg, electroquasistatic
Rotating incompressible inviscid

backward, 5.51
fluid, 7.45Pumping, electroquasistatic

Rotational flow, magnetohydrodynamic, 9.3
thermally induced, 10.8

Rotor model, MHD thermal convection,
10.10, 10.37Quasi-one-dimensional model,

Rotor model, natural convection, 10.10,
boundary layer as a, 9.16

10.37
Quasi-one-dimensional model,

Rotor model, single-phase induction
compressible flow, 9.41

machine, 6.10, 6.37
Quasi-one-dimensional model,

Rotor model, two-phase induction
electrogasdynamic generator,

machine, 6.89.48, 9.62
Rotor model, Von Quincke's, 5.49, 5.75

Quasi-one-dimensional model,
electrokinetic, 10.23

Salient pole machines, 4.3, 4.5Quasi-one-dimensional model,
Salient pole machines, force from

free surface, 9.35, 9.37, 9.60
stress tensor in, 4.6Quasi-one-dimensional models, 4.41

Salt in solvent, 5.27
Quasi-one-dimensional models,

Saturation charge (see also critical
streaming, 11.28, 11.32

charge), 5.10
Quasistatic, compressible, 7.42

Scrubbers, charged drop, 8.44
Quasistatic integral laws, 2.10

Seal, magnetic fluid, 8.2
Quasistatic laws, electromag-

Sedimentation potential, 10.25
netic, 2.2

Self-precipitation, 5.17Quasistatic laws, electromagnetic
Shear modulus, numerical values of, 7.46

differential, 2.5
Shear stress, electric bulk instability

Quasistatic limit, fluid compres-
and, 8.20

sible (CQS), 7.16
Shear stress, propagation of mag-

Quasistatics, electromagnetic waves
netic, 8.16

and, 2.3, 2.47
Shear waves in solids, 7.48

Quasistatics, fluid mechanics, 7.41
Sheets, boundary conditions for thin

Quasistatics, inertial, 7.42
conducting, 6.4

Quasistatics, instantaneous charge
Shell, heat balance in rotating, 10.11

relaxation, 4.51
Shells, boundary conditions for thin

Quasistatics, time-rate expansion
conducting, 6.4and, 2.2

Shock, compressible gas-dynamic, 9.45
Shock formation, 11.18

Radii of curvature, double layer
Similarity parameter, 6.24

surface force density and, 3.20
Similarity solution, boundary

Radii of curvature, interfacial, 7.5
layer, 9.18, 9.20

Rayleigh number, 10.13, 10.17
Similarity solution, linear dif-

Rayleigh number, magnetic, 10.13, 10.17
fusion, 6.24

Rayleigh-Plateau instability, 8.53
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Simple waves, method of characteristics State space integration, energy
and, 11.18 function, 3.5, 4.12

Skin depth, magnetic, 6.3 Static equilibria, capillary, 7.10
Skin depth, molecular, 10.3 Static equilibria, charge conserving, 8.8
Skin depth, moving frame of Static equilibria, conditions for, 8.1

reference, 6.16 Static equilibria, constant potential, 8.2
Skin depth, numerical values of Static equilibria, examples of, 8.2, 8.4,

magnetic, 6.4 8.6, 8.8, 8.10, 8.11
Skin depth, thermal, 10.2, 10.3 Static equilibria, flux conserving, 8.2,
Skin depth, viscous, 7.28, 9.16 Static equilibria, force density con-
Skin effect, 2.48 ditions for, 8.2
Skin effect, magnetic levitation Static equilibria, magnetization, 8.2,
and, 8.3 8.4, 8.6

Skin effect, moving conductor, 6.16 Static equilibria, numerical solution
Skin effect, transfer relations for of, 8.14

magnetic, 6.21 Static equilibria, polarization, 8.2,
Skin-effect induced cellular 8.4, 8.31

convection, 9.22 Static equilibria, stability of, 8.9
Skin-effect model, magnetic, 6.20 Static equilibria, surface force density
Skin-effect model, stress in mag- conditions for, 8.3

netic, 6.20, 6.25 Static equilibria, uniform current, 8.8
Smoothly inhomogeneous systems, 8.57 Static equilibria, viscous fluid per-
Solenoidal fields, representation turbations from, 7.27

of, 2.42 Stokes's drag, 7.36
Space-average theorem, force and Stokes's integral theorem, 2.9

torque from, 4.2, 4.4, 4.5, 4.7, Strain-displacement relations, 7.47
4.10, 4.19, 4.24, 4.30, 4.31, Strain rate, normal, 7.20
4.36, 4.47 Strain rate, shear, 7.20

Space-charge dynamics, particles in Strain rate, viscous stress and 7.18
vacuum, 11.10 Strain-rate principal axes same as

Space-charge dynamics, smoothly in- for stress, 7.22
homogeneous fluid, 5.17, 8.59 Strain rate proved a tensor, 7.32

Space-charge dynamics, unipolar Strain-rate tensor, 7.20
migration, 5.17 Straiii-stress relations, 7.47

Space-rate expansion, 1.4, 4.41 Stratified media, smoothly, 8.57
Space-rate expansion, boundary layer Stream functions, 2.42
and, 9.16 Stream functions, convective migra-

Space-rate expansion, free surface tion, 5.6
flow, 9.60 Stream functions, polar, 2.43, 5.6

Spatial modes, 5.61 Stream functions, spherical, 2.43, 5.6
Spatial modes, acoustic wave, 7.12 Streaming interactions, 11.1
Spatial modes, electron beam and Streaming potential, 10.25
cold plasma, 11.11 Streaming systems, single-stream proto-

Spatial modes, Fourier transform type models, 11.28
and, 5.66 Streaming systems, two-stream proto-

Spatial modes, gravity-capillary, 8.31 type models, 11.32
Spatial modes, internal charge con- Streamlines unaltered by irrotational
serving, 8.66 force density, 9.5

Spatial modes, internal mass con- Stress-energy conversion relations, 4.53
serving, 8.66 Stress-strain-rate relation for iso-

Spatial modes, moving charged thin tropic fluid, 7.24
sheet, 5.62 Stress-strain-rate relations, physical

Spatial modes, numerical solution motivation for, 7.19
for, 5.65 Stress-strain relations, 7.47

Spatial transients, sinusoidal Stress-strain relations, general
steady state, 5.61 linear, 7.21, 7.41

Specific entropy, ideal gas, 7.40 Stress tensor, components defined, 3.16
Specific heat, constant pressure, 7.38 Stress tensor, divergence of, 3.15
Specific heat, constant volume, 7.37 Stress tensor, force density related
Specific heat, numerical values, 10.2 to, 3.15
Specific heats, ratio of, 7.40 Stress tensor, force found from, 4.1
Specific volume, 7.40 Stress tensor, force in salient pole
Specific volume of fluid, 7.37 machine found from, 4.48
Spherical shell, boundary condition Stress tensor, physical significance

for rotating conducting, 6.5 of, 3.16
Stability, synchronous machine, 4.3 Stress tensor, torque found from, 4.1
State equation, isentropic, 7.40 Stress tensors, 3.15
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Synchronous machine, permanent mag-Stress tensors, electromagnetic, 3.1
net, 4.3Stress tensors, electromecha-

Synchronous machine, permanent polari-nical, 3.17
zation, 4.8Stress tensors, summary of electro-

Synchronous machine, salient pole, 4.3magnetic, 3.18
Synchronous machine, supercon-Subcritical free surface flow, 9.39

ducting, 4.28Subsystems, electrical, kinetic and
Synchronous machine, variablegravitational, 8.60

capacitance, 4.42, 4.44Superconducting machine, power
output of, 4.54

Tachometer, drag-cup, 6.11Supercritical free surface
Tachometer, electroquasi-flow, 9.39

static, 5.45Supercritical waves, 11.40
Tachometer, magnetic induction, 6.6,Superposition integral field

6.36solution, 4.40
Taylor pump, 9.9Surface acoustic waves, 7.48
Taylor wavelength, 8.30Surface charge density,
Temporal flow development, imposedfree, 2.1, 2.15

surface and volume forces and, 9.13Surface charge density, polari-
Temporal mode orthogonality, 6.29zation, 2.15
Temporal modes, charge relaxation, 5.54Surface coupling, shear-
Temporal modes, conducting fluid instress, 8.54
uniform field, 8.19Surface current density, 2.1

Temporal modes, constant potentialSurface dilatational modes of
continua, 8.23charge monolayer, 8.56

Temporal modes, eigenvalues of, 6.28Surface double layer density, 2.16
Surface energy conservation, 7.5

Temporal modes, electron beam andSurface force density, 3.19
cold plasma, 11.11Surface force density, double

Temporal modes, field-gradientlayer, 10.28
coupled interfacial, 8.39Surface force density, inter-

Temporal modes, gravity-facial curvature and, 7.5
capillary, 8.30Surface force density, surface

Temporal modes, hydromagnetictension, 7.4
Benard, 10.18Surface force density, Young

Temporal modes, internal charge con-and Laplace, 7.5
serving, 8.66Surface heat transfer co-

Temporal modes, magnetic diffusionefficient, 10.11
thick conductor, 6.27Surface shaping, magnetic, 8.11

Temporal modes, magnetic diffusionSurface tension, 7.4
thin sheet, 6.26Surface tension, clean interface

Temporal transient, Hartmann flowand, 7.4
established by, 9.30Surface tension, energy con-

Temporal transient, stress con-stitutive law for, 7.4
strained flow, 9.14Surface tension, nonlinear

Temporal transient, velocity con-static equilibrium with, 8.13
strained flow, 9.14Surface tension, numerical

Tensor, strain-rate, 7.20values of, 7.4
Tensor, transformation of, 3.17Surface tension in fluid mechanics, film
Tensor integral theorem ofReference 9, Appendix C, 7.6

Gauss, 3.15Surface tension surface force density,
Terminal relations, electric d-cdeformation related to, 7.6, 7.7
machine, 4.52Surface tension, voltage dependence

Terminal relations, electricalof Hg-KNO3 interface, 10.30 rotating machine, 4.11, 4.21, 4.31Surface torque density, 3.17
Terminal relations, Van de GraaffSynchronous alternator, power output
machine, 4.52of 4.54

Thermal conductivity, definitionSynchronous interactions, conditions
of, 10.1

for, 4.4
Thermal conductivity, numerical

Synchronous machine, classification
values of, 10.2of, 4.2

Thermal convection in a magneticSynchronous machine, exposed
field, 10.10, 10.15winding, 4.28

Thermal diffusion, 10.1, 10.5Synchronous machine, hysteresis, 6.30
Thermal diffusion time, 1.5, 10.2Synchronous machine, model
Thermal-electromechanical energyfor, 4.28

conversion, 9.53Synchronous machine, model for
Thermal energy conversionsmooth air-gap, 4.21

cycle, 9.53, 9.63
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Thermal diffusivity, definition Transfer relations, flux-potential

of, 10.1 planar layer, 2.33
Thermal energy conversion Transfer relations, flux-potential

efficiency, 9.55 spherical, 2.38

Thermal expansion, coefficient Transfer relations, half-space of

of, 10.15 viscous fluid, 7.31
Thermal expansion, numerical values Transfer relations, implications of

of coefficient of, 10.16 energy conservation for quasi-

Thermal generation time, 5.34 static, 2.40
Thermal Peclet number, 1.5 Transfer relations, imposed force
Thermal-viscous Prandtl density fluid, 7.49
number, 1.5 Transfer relations, incompressible

Thermal voltage, 5.3, 10.22 elastic solid, 7.48
Thermodynamics, electroquasi- Transfer relations, incompressible

static, 2.22 inertialess solid, 7.49
Thermodynamics, equilibrium, 7.38 Transfer relations, infinite half-
Thermodynamics, lumped parameter, space elastic material, 7.48

of highly compressible Transfer relations, inviscid fluid
fluid, 7.36 pressure-velocity, 7.11, 7.12

Thermodynamics, magnetoquasi- Transfer relations, Laplacian
static subsystem, 2.26 fields, 2.32

Thermonuclear experiments, 8.40 Transfer relations, low magnetic
Theta pinch, 8.43 Reynolds number, 8.52
Three-phase machine, 4.21 Transfer relations, low Reynolds
Thin sheet, charge relaxation number flow, 7.32, 7.33, 7.36
on, 5.45, 5.55 Transfer relations, magnetic

Thin-sheet limit, magnetic dif- diffusion, 6.12
fusion in the, 6.17 Transfer relations, magnetoquasi-

Thunderstorm electrification, 5.10 static, 2.16
Time-average force, 5.60 Transfer relations, method of denoting
Time-average force, spatial variables, 2.46

transient, 5.67 Transfer relations, ohmic con-
Time-average torque, 5.60 duction, 5.44
Time-rate expansion, 1.4, 2.2 Transfer relations, rotating in-
Time-rate parameter, 2.4 compressible inviscid fluid, 7.44
Time-rate parameter, acoustic, 7.42 Transfer relations, smoothly inhomo-
Torque, surface torque density geneous system, 8.57

and, 3.17 Transfer relations, thermal dif-
Torque, time-average, 5.60 fusion, 10.5
Torque-speed characteristic, Transfer relations, thermal diffusion

hysteresis motor, 6.33 with source, 10.6
Torque-speed characteristic, Transfer relations, uniformly charged

induction motor, 6.9, 6.10, 6.16 fluid layer, 8.46
Traction, 3.16 Transfer relations, vector potential
Transfer relations, 1.6, 2.46 Laplacian field, 2.42
Transfer relations, anisotropic Transfer relations, viscous dif-

ohmic conductor, 5.74 fusion, 7.28
Transfer relations, cold Transfer relations, viscous layer of

plasma, 11.10 arbitrary thickness, 7.30
Transfer relations, conducting Transfer relations, volume source, 4.13

fluid in magnetic field, 8.18 Transfer relations, weak compres-
Transfer relations, constrained sibility, 7.13

charge, 4.13 Transformation, Galilean, 2.7
Transfer relations, constrained Transformations, electroquasi-
current, 4.26 static, 2.9

Transfer relations, electromagnetic Transformations, magnetoquasi-
planar, 2.52 static, 2.9

Transfer relations, electron Transformations between frames of
beam, 11.10 reference, 2.7

Transfer relations, electro- Transverse coordinate, 1.6, 4.53, 9.35
quasistatic, 2.16 Traveling space-charge wave, kine-

Transfer relations, electro- matics of, 4.17
quasistatic inhomogeneous Traveling-wave amplifier, 4.18
dielectric planar, 2.53 Traveling-wave induced convec-

Transfer relations, flux- tion, 5.51, 5.53
potential, 2.16 Traveling-wave-induced convection,

Transfer relations, flux- surface, 9.10
potential cylindrical, 2.35 Turn-on transient, electron beam in

gap, 11.26
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Turn-on transient, reentrant Wall-less pipes, 9.35, 9.38
flow, 9.13 Wavelength, Taylor, 8.30

Two-phase surface currents, 6.6 Waves, acoustic, 7.13
Waves, Alfv6n, 9.8

Unipolar space-charge Waves, amplifying, 11.31, 11.37,
dynamics, 5.17 11.41, 11.42

Units, electromagnetic, 2.1 Waves, capillary-gravity
surface, 8.28

Van de Graaff generator, 4.49 Waves, charge conserving, 8.46
Van de Graaff machine, d-c Waves, charge monolayer

machines and 4.53 surface, 8.54, 8.75
Van de Graaff machine, energy con- Waves, complex, 11.37

version in, 4.53 Waves, current conserving, 8.71
Variable capacitance Waves, elastic isotropic solid, 7.48

machine, 4.42, 4.44 Waves, electro-acoustic, 8.25
Variable capacitance machine, Waves, evanescent, 11.31, 11.37,

output power of, 4.55 11.41, 11.42
Vector, transformation of, 3.16 Waves, field-coupled surface, 8.33
Vector potential, 2.42 Waves, imposed gradient polariza-
Vector potential, magnetic tion surface, 8.38

diffusion and, 6.12, 6.13 Waves, internal, 8.62
Vector potential, velocity, 7.26 Waves, internal charge and mass

Velocity potential, 7.10 conserving, 8.62
Virtual power, 3.21 Waves, internal magnetization, 8.77
Virtual work, 3.21 Waves, magnetic diffusion, 6.17
Viscometer, 7.18 Waves, magneto-acoustic, 8.25, 11.21
Viscosity, absolute, 7.19 Waves, magnetization dilata-
Viscosity, kinematic, 7.19 tional, 8.27
Viscosity, numerical values Waves, prototype single-stream, 11.27

of, 7.19 Waves, Rayleigh surface, 7.48
Viscosity, unit conversion Waves, shock, 9.45, 11.19

for, 7.19 Waves, space-charge gravity, 8.62

Viscous diffusion, 7.26 Waves, supercritical, 11.40
Viscous diffusion, Alfven waves Waves, surface Alfvyn, 8.40, 8.72

and, 8.18 Waves, thermal diffusion, 10.5
Viscous diffusion, boundary Waves, viscous diffusion, 7.26,

layer, 9.16 8.16, 9.13
Viscous diffusion time, 1.5, Waves in fluids, film Reference 10,

7.27, 7.42, 9.25, 9.32 Appendix C, 11.16
Viscous diffusion time, Alfven Weak-gradient imposed field
waves and, 8.17 model, 8.59, 8.64

Viscous diffusion transfer Wetting, surface tension and
relations, 7.28 liquid-solid, 7.6

Viscous dissipation Whipple and Chalmers model for
density, 7.25 particle charging, 5.9

Viscous force density, 7.24 Windings, two-phase, 6.6
Viscous relaxation time, 1.5,

7.42 Young and Laplace surface force
Viscous skin depth, 7.28 density, 7.5
Viscous skin depth, numerical

values of, 7.29 Zero-gravity liquid orienta-

Viscous stress, strain rate tion, 8.2
and, 7.18 Zeta potential, 10.22, 10.24

Voltage, 2.1 z pinch, MHD, 8.42
Voltage, lumped parameter vari- z-theta pinch, feedback stabiliza-

able of, 2.20 tion of, 8.44
Voltage-flux relation, lumped

parameter, 2.22
Von Quincke's rotor, 5.49
Von Quincke's rotor, equations

of motion for, 5.75
Vorticity, convective diffusion

of, 7.26
Vorticity, fluid, 7.9
Vorticity, generation of, 7.26

i·
Vorticity, surface of fixed

identity conservation of, 7.10

Index 1.14





7-


