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1 1st Order Systems 

1.1 First Order Time Constant 

This problem concerns the first-order response shown in Figure 1.1.1. 
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Figure 1.1.1: Plot of Response 

(a) What is the time constant of this response? (You can work directly on the given time response 
plot and turn this in as part of your homework.) 

(b) Show us a mechanical system which will give this response, under the assumption that the 
indicated response is angle in radians. What are possible numerical values of the system 
parameters and initial conditions that go with this response? Be sure to show your reasoning. 
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1.2 Rise and Settling Times 

Consider the first-order system 
τ ẏ + y = u 

driven with a unit step from zero initial conditions. The input to this system is u and the output 
is y. Derive expressions for the 10–90% rise time tr and the settling time ts, where the settling is 
to within an error ±Δ from the final value of 1. How many time constants are required in order to 
settle to within an error of Δ = 10−6? 
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1.3 First Order System Response 

You are given an equation of motion of the form: 

ẏ + 5y = 10u 

(a) What is the time constant for this system? 

(b) If u = 10, what is the final or steady-state value for y(t)? Now assume that u = 0 (no input) 
and the system was started at some initial position yo, which you do not know. But, you do 
know that 0.5 seconds later it was at a position y(0.5) = 2. 

(c) What was the initial condition y(0) that would lead to this result? 

(d) Sketch as accurately as you can, the time response for case (c) starting from t = 0 until the 
response is nearly zero, and indicate where the one data point at t = 0.5 would lie. 

(e) When does the response reach 2% of the initial value? 

(f) When does the response reach a value of 0.02? 
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2 2nd Order Systems 

2.1 Second-Order System Response 

For a system described by the homogenous equation: 

20ÿ + 160 ̇y + 8000y = 0 

Determine the solution y (t) for three different initial conditions: 

(a)	 y(0) = 0
 
ẏ(0) = 10
 

(b)	 y(0) = 10
 
ẏ(0) = 0
 

(c)	 y(0) = 1
 
ẏ(0) = 10
 

(d) For all three cases, create a separate plot of y(t) using MATLAB, but be sure to use the same 
scale on all three plots. 

(e) Compare the time for each of the three plots to reach steady-state.	 Comment on how you 
can make this comparison and why the three answers do or do not differ. 
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2.2 Second Order Responses 

This problem concerns the second-order response shown in Figure 2.2.1. 
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Figure 2.2.1: Second Order Response
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Figure 2.2.2: Zoomed Second Order Response
 

(a) What are the natural frequency and damping ratio of this response? (You can work directly
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on the given time response plot and turn this in as part of your homework paper.)
 

(b) Show us a mechanical system which will give this response, under the assumption that the 
indicated response is position in millimeters. What are possible numerical values of the system 
parameters and initial conditions that go with this response? Be sure to show your reasoning. 
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2.3 Second Order Derivation
 

The supplemental notes handed out in class give results for the position response of a second-order 
system to an initial condition of x0 = 0 and v0 = 1 for the underdamped, critically damped, and 
overdamped cases, in Equations (15), (16), and (17), respectively. However, these results are given 
without showing the derivation. Carry out the detailed calculations to verify these homogeneous 
responses. 
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2.4 Second Order Derivation Continued
 

Repeat the results of Problem 2.3 for the different initial condition x0 = 1 and v0 = 0, showing 
the details of your derivation, as well as an expression for the position as a function of time for the 
underdamped, critically damped, and overdamped cases. Use Matlab to plot the resulting position 
as a function of time for each of the parameter sets of values used in Figures 15, 16, and 17. 
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3 Higher Order Systems 

3.1 Structure of Higher Order System Solutions 

As we will see later in the term, the ship roll stabilizer problem can lead to an equation of motion 
that is 4th order: 

d4 d3 d2 d2x x x x 
a4 + a3 + a2 + a2 + a0x = bu(t)
dt4 dt3 dt2 dt2 

Where x would be the roll angle and u the desired stabilizer fin angle. Right now all we want 
to do is understand the basic nature and range of possible homogeneous solutions for this type of 
equation. For this problem we will not use LaPlace transforms, but instead rely on what we already 
know about homogeneous solutions for linear ordinary differential equations. Assuming that u=0, 
consider three different sets of parameters . a = a4 a3 a2 a1 a0 [ ]: Case I: . a = 1 10 35 50 24 [ 
] Case II: . a = 1 8 42 85 50 [ ] Case III: . a = 1 7 135 550 2500 [ ] Assuming that only x(0) is 
non-zero: 

(a) For each case, write out the basic form of the homogeneous solution where m is the number 
of complex conjugate root pairs and n-2m is the number of real distinct roots, leaving any 
real coefficients as undetermined variables. 

(b) Describe (Briefly in words!) the resulting characteristic response. 

(c) Sketch an approximation of what it will look like, but do not solve for the ci or cj coefficients. 

HINT: You might find it useful to use the MATLAB command roots(a), which will find the roots 
of a polynomial whose coefficients are in a vector a. 
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3.2 Structure of Higher Order System Solutions 

As we will see later in the term, the ship roll stabilizer problem can lead to an equation of motion 
that is 4th order: 

d4 d3 d2 d2x x x x 
a4 + a3 + a2 + a2 + a0x = bu(t)
dt4 dt3 dt2 dt2 

where x would be the roll angle and u the desired stabilizer fin angle. Right now all we want 
to do is understand the basic nature and range of possible homogeneous solutions for this type of 
equation. For this problem we will not use LaPlace transforms, but instead rely on what we already 
know about homogeneous solutions for linear ordinary differential equations. Assuming that u=0, 
consider three different sets of parameters. a = [a4, a3, a2, a1, a0] : 

Case I: a =[1 10 35 50 24] 
Case II: a = [1 8 42 85 50] 
Case III: a = [1 7 135 550 2500] 

Assuming that only x(0) is non-zero: 

(a) For each case, write out the basic form of the homogeneous solution where m is the number 
of complex conjugate root pairs and n-2m is the number of real distinct roots, leaving any 
real coefficients as undetermined variables. 

(b) Describe (briefly in words!) the resulting characteristic response. 

(c) Sketch an approximation of what it will look like, but do not solve for the ci or cj coefficients. 
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4 Mechanical Systems 

4.1 Balloon 

A string dangling from a helium-filled balloon has it’s free end resting on the floor as shown in Fig. 
4.1.1. As a result the balloon hovers at a fixed height off the floor and when it is deflected a little 
from that height it oscillates up and down for a while, eventually returning to the same height. 
Develop the simplest mathematical model competent to describe the vertical motion of the balloon. 
You may take all the elements of your model to be linear. Show that your model is competent to 
describe the observed hovering behavior. 

Figure 4.1.1: Hovering Balloon 

(a) Show that your model has a steady state. 

(b) Show that displacement from the steady state evokes a restoring force.What is the equivalent 
stiffness parameter? 

(c) Show that your model could predict oscillation about the steady state. 

(d) Show that your model predicts that the motion will eventually approach the steady state. 

The balloon is released from rest at a small distance a above its steady-state height of 3.0 feet. 
After the first half-cycle of oscillation, which takes 1.5 seconds, the balloon is at a point 0.2a below 
the steady-state height,with an instantaneous velocity of zero. The string is known to weigh 0.5 
ounces per foot. Use these data to estimate the following behavioral parameters: 

(e) the damping ratio ζ; 

(f) the undamped natural frequency ωo; 

and the following model element parameters: 

(g) the effective mass m; 
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(h) the effective damping coefficient b; 

(i) the effective stiffness k. 
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4.2 Bungee Jumper 

A bungee jumper weighs 150 pounds. Bungee cords attached to her ankles have a slack length of 
100 feet. She dives off a high tower, the elastic cords extend and instantaneously arrest her motion 
at a lowest point A (well above the ground). The cords then retract and she bounces through 
several cycles before finally coming to rest at a point B, where her ankles are 120 feet below the 
upper attachment point of the bungee cord. 

(a) Estimate the location of the low-point A. 

(b) During the portion of her jump from the initial take-off to the point A, estimate her maximum 
downward acceleration? 

(c) During the portion of her jump from the initial take-off to the point A, estimate her maximum 
upward acceleration. 

(d) Briefly explain the assumptions made in obtaining the previous estimates. 

Seeking an ever-greater thrill the jumper doubles the slack length of the bungee cords(the new 
lowest point A’ of her jump is still comfortably above the ground). For this second jump 

(e) Estimate the location of the low-point A’. 

(f) Estimate the location of B’ where she finally comes to rest. 

(g) During the portion of her jump from the initial take-off to the point A’, estimate her maximum 
downward acceleration? 

(h) During the portion of her jump from the initial take-off to the point A’, estimate her maximum 
upward acceleration? 

(i) Make a careful sketch of the time histories of vertical position during the initial downward 
phase (from initial take-off to point A , or A’) for the two jumps.Use the same time and 
position axes for both curves. 
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4.3 Elevator Model
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Figure 4.3.1: Elevator Dynamics 

An elevator (Fig.4.3.1) is designed to move between floors as follows: starting at rest it accelerates 
to a speed of 3 feet/second in 1 second, then moves at a constant speed until it decelerates to rest 
in 1 second. Would it be reasonable to design the structure supporting the winch motor (and hence 
the elevator) without considering dynamic forces? That is, does dynamics matter in this situation? 
Provide a quantitative justification for your answer. Work in SI units. 
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4.4 Hoisting for Engineers
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Figure 4.4.1: Hoisting Mechanism 

Figure 4.4.1 shows a mechanism for hoisting a mass M up a plane inclined at an angle β to the hor­
izontal. The massless hoisting cable rolls with no slip over a pulley P and over two drums (of radii 
r1 and r2) attached rigidly to a gear of radius R. The combined inertia of the gear and the drums is J. 

A motor drives the pinion of radius r with an input torque τ . The transmission ratio of the gear 
drive is Ng/Np, where Ng and Np are the number of teeth on the gear and the pinion respectively. 
Note that this ratio is the same as R/r. 

The system is mounted on a rigid base fixed to the ground. To simplify our model, we neglect (i) 
friction, (ii) inertia of the motor and the pinion and (iii) mass and inertia of the pulley P. The 
cable remains under positive tension at all times. X is positive when measured upward along the 
inclined plane as shown in the figure. Gravity acts on the system in the downward direction. 

(a) If the pinion rotates by an angle θ in the clockwise direction as shown in the figure, show that 
the mass M moves up the inclined plane by a distance X given by 

X = 
1 
2 

(r1 + r2) 
r 
R 
θ (1) 

Clearly show your reasoning. 

(b) Derive the equation of motion for the system. Use and show appropriate free body diagrams 
showing all the forces and torques acting on 

(i) the pinion 

(ii) the gear and drum unit 
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(iii) the pulley P and (iv) the mass M.
 

Your answer must be a differential equation in X alone, with τ and g as inputs. 

(c) Given the values R = 400 mm, r2 = 300 mm, r1 = 200 mm, r = 50 mm, M = 50 kg, g = 
9.8 m/s2 , β = 30◦, and J = 5 kgm2, what value of torque τ should be applied to the pinion 
by the motor so that the mass M has an acceleration of 0.1g up the inclined plane? 

(d) Now consider the system in Part (d) without the gear transmission drive.	 The drums are 
driven directly by the motor in this new system. J, in this case, is the combined inertia of 
the motor and the drums. If the value of J remains unchanged, calculate the value of torque 
τ that should be applied to the drums by the motor to achieve the same acceleration of 0.1 g 
for the mass M. 

(e) Assuming that the cost of a motor is proportional to its torque output rating, does your 
answer in Part (d) support the use of the gear transmission drive? Explain. 
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4.5 Blocked Springs 

Figure 4.5.1 depicts the main components of the suspension for one wheel of an automobile. To 
change the ride and handling qualities, automobile enthusiasts sometimes insert ”blocks” between 
some of the coils of the spring to prevent that part of it from deflecting. Consider the case where 
“blocks” are added to immobilize exactly half of the coils of each spring. Assume that: 

coi l  spr ing

shock absorber

wheel hub

t i r e

point of  at tachment
to car body

z

Figure 4.5.1: Automobile Suspension 

All four wheels are identical and have identical suspensions.
 

The car moves vertically as a rigid body.
 

The tire deflections are negligibly small compared to the spring deflections.
 

The shock absorbers exhibit linear viscous behavior.
 

(In practice these assumptions are not especially accurate but they will keep the analysis simple 
and provide insight to the behavior of the suspension.) 
It is known that the vehicle weighs 2,500 pounds, and that before the blocks were added the 
suspension was critically damped (ζ = 1). After the blocks were added, the ride height was changed 
by 2.5 inches. Use these data to estimate the following parameters. Work in SI units. 

(a) The suspension stiffness before, and after, the blocks were added. 

(b) The undamped natural frequency of oscillation before, and after, the blocks were added. 

(c) The suspension damping coefficient before the blocks were added. 
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(d) The suspension damping ratio after the blocks were added. 

Write state equations and output equations to compute the response to an abruptly applied vertical 
load of 1,000 pounds. Adapt the MATLAB scripts below to provide plots of the vertical displace­
ment of the vehicle from its resting height vs. time, for (i) the suspension without blocks, and for 
(ii) the suspension with blocks added. 
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4.6 Engine Vibration 

A single piston weighs 1 pound and oscillates at frequency Ω with a total stroke (top to bottom of 
piston travel) of 2 inches. 

(a) Assuming that the piston motion is sinusoidal, calculate the amplitude of the sinusoidal force 
that is required to move the piston at the following crankshaft speeds in revolutions per 
minute (rpm): 

N = 1500 rpm 

N = 3000 rpm 

N = 6000 rpm 

The piston in (a) is assumed to be part of an engine, which weighs 200 pounds,and which is sup­
ported on a fixed frame by mounts which have an effective stiffness (for vertical motion) of 18,000 
pounds/inch, and an effective linear damping coefficient of 2pounds/inch/sec. The oscillating forces 
considered in (a) are forces acting on the piston. By Newton’s law of action and reaction, equal and 
opposite forces act on the engine block whenever the crankshaft rotates at the speeds considered. 
The rest of the problem is devoted to estimating how much vibration of the engine block results 
from the action of one piston. 

(b) Formulate an equation of motion for the engine block in which the output is the displacement 
of the engine block, and the input is the reaction force from the motion of one piston. 

(c) Derive expressions for the amplitude and phase of the steady-state displacement response to 
piston reaction forces of the form f(t) = fa sin Ωt. 

(d) Estimate the amplitude of the engine block displacement, due to the motion of one piston, 
when the engine operates at 

N = 1600rpm 

N = 1800rpm 

N = 2000rpm 

(e) If these three speeds are generated by starting with the engine block at rest,in equilibrium, 
and then immediately rotating the crankshaft at the full indicated speed,estimate how long 
it would take the engine block, in each case, to reach steady state vibration. 

31
 



4.7 Garage Door
 

pulley
pulley

coil spring

door in four
hinged segments

cable attached to
lowest door segment

cable attached to fixed support

Side View of Garage Door support

track to guide
door segments

chain drive to raise
door not shown

Figure 4.7.1: Schematic of Garage-Door-Support System 

Figure 4.7.1 shows a side view of one side of the support mechanism used in many garage-door 
openers. On each side of the garage door a portion of the weight of the door is supported by a 
long coil spring attached to the door through a cable and pulley system. It was observed, after the 
mechanism was recently serviced and freshly lubricated, that the suspended door had a tendency 
to oscillate up-and-down when disturbed. 

k

m/2

••

g

Figure 4.7.2: Simplified Schematic of Garage-Door-Support System
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Figure 4.7.2 shows a simplified schematic of one-half of the door support system. Half of the total 
door inertia is coupled to one of the overhead springs by the pulley system . Take the total weight 
of the door to be 200 pounds and the stiffness of each spring to be 5 pounds/inch. 

(a) Formulate a model to analyze the oscillations of the door. 

(b) Estimate the frequency, in Hz, of the oscillations. 

(c) List the main assumptions underlying your model. 
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4.8 Rotating Damped
 

Consider the rotor with moment of inertia I rotating under the influence of an applied torque T and 
the frictional torques from two bearings, each of which can be approximated by a linear frictional 
element with coefficient B (Fig. 4.8.1). 

T

I

B Bω

Figure 4.8.1: Rotating Inertia 

(a) Formulate the state-determined equation of motion for the angular velocityω as output and 
the torque T as input. 

(b) Consider the case where: 

I = 0.001 kg-m2 

B = 0.005 N-m/r/s 

What is the steady-state velocity ωss when the input is a constant torque of 10Newton-meters? 

(c) When the torque T varies sinusoidally at a frequency Ω, the steady-state angular velocity 
also varies sinusoidally at frequency Ω. Derive a formula for the steady-state angular velocity 
when T = Ta sin Ωt. Evaluate the steady-state angular velocity response for the following 
cases: 

(i) T = 10 sin(50t) Newton-meters 

(ii) T = 10 sin(5t) Newton-meters 

(iii) T = 10 sin(0.5t) Newton-meters 

(d) Consider the amplitudes A(Ω) of the steady-state angular velocity response as the frequency 
Ω approaches zero. What is the limiting amplitudeAo as Ω → 0? Evaluate the ratio A(Ω)/Ao 

for Ω = 50 rad/sec, Ω = 5 rad/sec, and Ω = 0.5 rad/sec. 

(e) What is the break frequency of this system? 

(f) Make an accurate, labeled, sketch of the Bode plots for the amplitude ratioA(Ω)/Ao and the 
phase angle φ(Ω) of this system. 
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4.9 Car Suspension 1 

For the second-order car suspension model shown in Figure 4.9.1, perform the following tasks: 

(a) Solve for the unit step response from zero initial conditions.	 Write an expression for the 
response as a function of time, and use Matlab to graph this response. For this problem, use 
the parameters: m = 500 kg, k = 5 × 104 N/m, and c = 2 × 103 Ns/m. 

(b) For these parameters, the system will be underdamped.	 What are the values ofωn, ζ, ωd, 
and σ? 

(c) Comment on the quality of the response to the step. Will the passengers like this ride? For 
what value of c would the system have critical damping? Recalculate the step response for 
this critical value of damping, and compare the maximum resulting acceleration experienced 
by the passengers to the underdamped case. 

(d) Compare the 5% settling time for both cases. 

(e) Use a Laplace transform approach to solve for the time response. Of course, this result should 
be the same as what you found in part (a). 

coi l  spr ing

shock absorber

wheel hub

t i r e

point of  at tachment
to car body

z

Figure 4.9.1: Car Suspension
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4.10 Disk Drive
 

Read HeadArm Assembly

Voice Coil Motor

Spindle

Disk

Figure 4.10.1: Picture of Hard Disk drive 

A hard disk drive as shown in Figure 4.10.1 has two main components: 

1. The head/arm assembly which moves the read/write heads laterally over the disk surface to 
the desired tracks. The arm is driven by a voice coil motor. 

2. The spindle/disk assembly which is driven by a permanent magnet spindle motor which 
rotates at near constant speed. 

This problem studies the spin-up/spin-down transients of the spindle assembly. Assume that the 
spindle assembly has a rotational inertia J, and that the motor acts as a source of torque τm, which 
is constant independent of speed. Further assume that we can model the air drag acting on the 
spindle as linearly dependent upon the angular velocity ω, with a rotational damping coefficient b. 

(a) For this system draw a free body diagram for the spindle inertia J showing the torques acting 
on it. 

(b) Use this free body diagram to derive a differential equation in terms of the spindle angular 
speed ω, an input torque τm, and using the parameters given above. 

(c) Now assume that the spindle inertia is 10−3 kgm2 . (This is a big disk drive from an older 
computer!) We experimentally observe that the disk spins down with a time constant τ = 0.5 
sec. What is the numerical value of the associated damping term b? 

(d) Finally, assume that the disk is initially at rest at t = 0, is spun up by the motor using a 
constant torque of 0.5 Nm. What is the resulting transient ω(t)? Make a dimensioned graph 
of this response. 
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(e) After a long time, at t = t1, the motor is turned off and exerts no torque on the spindle. 
Write an expression for ω(t) for t > t1, and make a dimensioned graph of the response. 
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4.11 Crashworthiness
 

m

k

b

vo

Figure 4.11.1: Model of Vehicle Impacting a Barrier 

A vehicle weighing 1 ton is driven into a fixed concrete barrier at 10mph. The vehicle’s fender, 
which strikes the barrier first, is of the type that can deform under this load and return to its 
original shape (undamaged) when it is unloaded. If the fender were unable to dissipate energy, its 
maximum deflection would be 6 inches. 

(a) Estimate the effective stiffness of the fender. 

(b) Estimate the peak deceleration of the vehicle in SI units. 

To absorb collision energy, linear dampers are added to the fender. Write state equations and 
output equations to predict the dynamics of the vehicle-fender system while the fender is in contact 
with the barrier. The outputs should include: 

(i) The deflection of the fender. 

(ii) The deceleration of the vehicle. 

(iii) The total force exerted on the barrier. 

Adapt the MATLAB script “pos2.m” and “eqpos2” shown below to integrate these state equations 
to find the response of these outputs starting from the moment the fender first contacts the barrier. 
Make plots of the time histories of these three outputs for the following values of the damping ratio 
ζ: 

(c) ζ = 0.25 

(d) ζ = 0.50 

(e) ζ = 0.75 

(f) ζ = 1.00 

(g) In which, if any, of the cases (c) through (f) does the fender remain in contact with the barrier 
after the impact is over? 

(h) Can the peak deceleration of a vehicle with a fender with damping ever be greater than the 
peak deceleration of a vehicle with an undamped fender? Give a brief physical explanation 
for your answer. 

(i) In which of the cases (c) through (f) is the peak deceleration the greatest? 

(j) Estimate the value of the damping ratio ζ which would minimize the peak deceleration. 
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4.12 Nonlinear Rotational System 

Figure 4.12.1 shows a rotational inertia and damper system. The moment inertial of the rotor is 
I. The damping torque from the damper is a nonlinear function of angular velocity,Tc(ω) = aω3 . 
For each of three inputs (i) τ1 = 1, (ii) τ2=8 and (iii) τ3=64 

(a) Find the equilibrium point ω 

(b) Derive a linearized model about the equilibrium point 

(c) Solve for roots and plot them on the complex place. 

(d) Plot the response of ω for step input τ = τi(1 + 0.01us(t)). 

C

I

ω, outputτ, input

Figure 4.12.1: Nonlinear Rotational System
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4.13 Developing Differential Equations
 

C C

J

, output, input

C C

M

X, output

 F, input

K K

(i): Rotational system

(ii): Translational system

Figure 4.13.1: System Figures 

For each of the systems shown in Figure 4.13.1: 

(a) Separate the system at a node or nodes into a free body diagram to show the forces acting 
on each element. 

(b) Use the free body diagram to develop a differential equation describing the system in terms 
of the indicated input and output. For each system, what is the system order? 
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4.14 Mass Spring System Frequency Response
 

F

m

k

x

Figure 4.14.1: Mass Spring System 

In this problem, m = 1 [kg], k = 100 [N/m] and F (t) = sin ωt [N]. 

(a) Calculate an expression for the steady-state response x(t) = M sin(ωt + φ), with expressions 
for M(ω) and φ(ω). 

(b) Make hand sketches of M(ω) versus ω on log-log coordinates and φ(ω) versus ω on semi-log 
coordinates (linear in phase and log in frequency). 
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4.15 Modeling Practice 

This problem concerns the spring-mass-damper system shown in Figure 4.15.1. 

�

c1 k1

c2 k2

M

g

Mass position x(t)

F

Position input w(t)

Figure 4.15.1: Sprin-Mass-Damper System 

In this figure, gravity acts on the mass in the downward direction as shown. The position of the 
mass in the downward direction is x(t). A force F acts on the mass in the upward direction. The 
upper spring and damper are connected to a position source w(t). That is, the position w(t) is 
specified as in independent input. The position x is defined to be zero when gravity is not acting 
on the mass, and when the applied inputs are zero. 

(a) Draw a free-body diagram for the mass which shows all the forces and associated reference 
directions acting on the mass. Be sure to label the forces with their dependence on the system 
position/velocity variables (if any). 

(b) Use this free-body diagram to derive a differential equation in terms of x and the system 
parameters and inputs which describes the dynamics of this system. 

42
 



4.16 Small Motion Transfer Function
 

For the system shown in Figure 4.16.1, calculate the transfer function X(s)/F (s), under the as­
sumption of small motions. Clearly show the steps in your derivation. The massless linkage has 
lever arms l1 and l2 as shown. 

Figure 4.16.1: Small Motion System
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4.17 Mass Spring Damper System Frequency Response 1
 

k b

m
1

F

x

Figure 4.17.1: Mass Spring Damper System 

In this problem, m = 1 [kg], k = 100 [N/m], b = 1 [Ns/m] and F (t) = sin ωt [N]. 

(a) Calculate an expression for the steady-state response x(t) = M sin(ωt + φ), with expressions 
for M(ω) and φ(ω). 

(b) Make hand sketches of M(ω) versus ω on log-log coordinates and φ(ω) versus ω on semi-log 
coordinates (linear in phase and log in frequency). 
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4.18 Mass Spring Damper System Frequency Response 2 

Consider the mechanical system shown in Figure 4.18.1. Note that F acts on m1 in the direction 
of x1. 

k
1

b
1

m
1

F

k
2

b
2

m
2

x
1

x
2

Figure 4.18.1: Mass Spring Damper System 

(a) Calculate the transfer functions H1(s) = X1(s)/F (s) and H2(s) = X2(s)/F (s) in terms of 
the given parameters. 

(b) Now let m1 = 25 [kg], m2 = 1 [kg], k1 = 100 [N/m], k2 = 104 [N/m] and b1 = b2 = 1 
[Ns/m]. Use MATLAB to plot the Bode plots for H1 and H2. Also plot the poles/zeros for 
both transfer functions. Relate features on the Bode plots to the pole/zero locations and the 
damping ratio of the poles and zeros. For a unit sinusoidal input F (t), at what frequency 
is the motion on m1 a relative maximum? What is the magnitude of motion on m2 at this 
frequency? For a unit sinusoidal input F (t), at what frequency is the motion on m1 a relative 
minimum? What is the magnitude of motion on m2 at this frequency? 
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4.19 Propeller Shaft Vibration
 

This is a different kind of vibration problem for the light aircraft engine we have been considering. 
Previously, we considered uniaxial translation of the engine block due to the inertia loading from 
accelerating pistons. We now consider oscillations in the rotational speed of the propeller due to 
torsional vibration of the short elastic coupler shaft connecting the propeller to the crankshaft. The 
source of the oscillation is the fluctuating speed generated by the reciprocating engine. 
Periodic firing of the cylinders in an internal combustion engine causes its rotational speed to vary 
periodically. One stroke of a piston is one move from top dead center to bottom dead center (or 
from bottom to top). In a four-stroke engine, three strokes are used to clear out the products of 
combustion from the previous firing, let in fresh air and fuel, and compress the mixture prior to 
firing. It is only in the fourth stroke that the explosion occurs and a very large force on the piston 
exerts torque around the axis of the crankshaft. Ina four-cylinder engine the resulting torque on the 
crankshaft is smoothed out considerably by arranging it so that one cylinder fires on every stroke. 
The remaining fluctuation in torque, when applied to the inertia of the crankshaft, results in a 
fluctuation in the output speed of the engine, which varies in an approximately sinusoidal manner 
at the firing frequency, which is half the rotational frequency of the crankshaft. It is this periodic 
engine speed fluctuation which excites the torsional vibration. 
Consider the case of a four-cylinder 150 horsepower engine which operates between 500 and 2700 
rpm. The moment of inertia of the two-bladed propeller can be estimated to be the same as that of 
a uniform solid rod of aluminum, six feet long and two inches in diameter (the density of aluminum 
is 2.72grams/cc). It is observed that the steady-state oscillations of propeller speed at the firing 
frequency reach a peak amplitude when the engine runs at2200 rpm. Furthermore the magnitude 
of the oscillation at 2200 rpm is four times larger than the magnitude at 500 rpm. 

(a) Develop a model to describe the steady-state fluctuations in propeller speed(output) in re­
sponse to the fluctuations in engine speed (input). To keep the analysis simple, assume that 
the amplitude of the engine-speed fluctuations delivered to the coupler shaft are independent 
of the engine speed, so that in the steady state the angular position θeng and the angular 
speed ωengof the engine can be assumed to take the form 

Ω 
θeng = Ωt + E sin t

2 

E Ω 
ωeng = Ω(1 + cos t)

2 2 

(b) Use your model to estimate the torsional stiffness K of the elastic coupler shaft. 
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4.20 Safe Packaging
 

A packing crate was designed to protect a fragile instrument during shipment. Assuming that the 
packing material can be modeled as an ideal linear spring of stiffness, k , in parallel with an ideal 
linear damper, b , and that the instrument and crate are of mass, m1 and m2 , respectively, the 
system can be modeled as shown in Figure 4.20.1A. 

Instrument

Crate
Packing
Material

b k

g
m1

m2

Lo

h
b k

m1

L(0)=Lo

v(0)=Vo

g

A B C

Figure 4.20.1: Shows actual system and two models of the situation. 

The packing crate (with instrument inside) is dropped from a height, h , as shown in Figure 4.20.1B. 
The height is sufficiently large that by the time the crate hits the ground, the spring is fully extended 
to its unloaded length, Lo , as shown in Figure 4.20.1C. Note that the crate hits the ground with 
velocity, Vo , and in the presence of gravity. 

(a) Derive the differential equation for the system.	 Clearly indicate the initial conditions, and 
any inputs present. 

(b) For what values of, b , will the instrument oscillate? 

(c) Assuming that the instrument does oscillate, derive an analytical expression for the complete 
solution. 

47
 



4.21 Sliding Damped
 

Consider the mass m sliding horizontally under the influence of the applied force f and a friction 
force which can be approximated by a linear friction element with coefficient b (Fig. 4.21.1. 

m

v

f
Friction, b

Figure 4.21.1: Sliding Mass 

(a) Formulate the state-determined equation of motion for the velocityv as output and the force 
f as input. 

(b) Consider the case where: 

m = 1000 kg 

b = 100 N/m/s 

What is the steady-state velocity vss when the input is a constant force of 10Newtons? 

(c) When the force f varies sinusoidally at a frequency Ω, the steady-state velocity also varies 
sinusoidally at frequency Ω. Derive a formula for the steady-state velocity when f = fa sin Ωt. 
Evaluate the steady-state velocity response for the following cases: 

(i) f = 10 sin(0.5t) Newtons 

(ii) f = 10 sin(0.05t) Newtons 

(iii) f = 10 sin(0.005t) Newtons 

(d) Consider the amplitudes A(Ω) of the steady-state velocity response as the frequency Ω ap­
proaches zero. What is the limiting amplitude Ao as Ω → 0? Evaluate the ratio A(Ω)/Ao for 
Ω = 0.5 rad/sec, Ω = 0.05 rad/sec, and Ω = 0.005 rad/sec. 

(e) What is the break frequency of this system? 

(f) Make an accurate, labeled sketch of the Bode plots for the amplitude ratioA(Ω)/Ao and the 
phase angle φ(Ω) of this system. 
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4.22 Toy Flywheel 

A toy consists of a rotating flywheel supported on a pair of bearings as shown in Figure 4.22.1. 
The flywheel is connected to a pulley , around which is wrapped a flexible but inextensible cable 
connected to a spring. In operation, the flywheel is initially at rest, the string made taut, and at 
t = 0, the input xs(t) undergoes a step change in position of magnitude x0. 

x(t) x  (t)s

t=0

t=0
r J

c
t

flywheel

bearings

pulley

t

x  (t)s

xo

Figure 4.22.1: Flywheel Diagrams 

Assume that the flywheel-shaft-pulley unit has rotational inertia, J. The bearings can be modelled 
as a viscous rotational damper of coefficient, ct. the pulley is of radius, r. The spring is an ideal 
linear spring with spring constant, k. 

(a) Write the system equation as a differential equation in x(t), the length of cable unwound from 
the pulley, as well as system parameters, J, r, and k. [Note that x(0) = 0] 

(b) For what range of values of ct (expressed in terms of system parameters J, r, and k) will the 
cable never go slack? 

(c) Assuming that ct has some non-zero value such that the cable does go slack, write an expres­
sion (in terms of system parameters J,r, and k) for the response x(t), i.e. the length of cable 
unwound from the pulley. Sketch the response, x(t). Carefully indicate the time over which 
the expression and the sketch are valid. 

(d) Assume that ct is zero. Write an expression (in terms of system parameters J, r, and k) for 
t, the time at which the cable first goes slack. 
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4.23 Truck Shocks
 

At a tailgate party, it was observed that when Uncle Massive, a sprightly 250-pounder,hopped up 
on the back of his pick-up truck, the truck suspension bounced for more than 5clearly defined cycles 
(it has been some time since Uncle Massive has replaced his shock-absorbers) at a frequency of 2 
Hz. When the vibration stopped it was noted that the back of the truck was one inch lower than 
it was before Uncle Massive sat down. 

(a) Estimate the effective mass of the back end of the truck. 

(b) Briefly explain any assumptions you have made in arriving at your estimate. 
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4.24 Car Suspension 2
 

A simplified model for a car suspension is shown in Figure 4.24.1. Here, the road position is r(t), 
and the car body position is x(t). A force F is applied to the body mass. Assume r(t) = 0 
throughout this problem. We also let the force be a step function F (t) = 500us(t) [N]. 

(a) Solve for the resulting step response x(t) from zero initial conditions. Write an expression for 
the response as a function of time, and use Matlab to graph this response. For this problem, 
use the parameters: m = 500 kg, k = 5 × 104 N/m, and b = 2 × 103 Ns/m. 

(b) For these parameters, the system will be underdamped. What are the values of ωn, ζ, ωd, 
and σ? 

(c) Comment on the quality of the response to the step. Will the passengers like this ride? For 
what value of b would the system have critical damping? Recalculate the step response for 
this critical value of damping, and compare the maximum resulting acceleration experienced 
by the passengers to the underdamped case. 

(d) Compare the 5% settling time for position x(t) for both cases. 

Figure 4.24.1: Car suspension quarter model
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4.25 Kid-Skid
 

You have a great new business idea! Sick and tired of seeing kids injured when their friends jump 
off the see-saw (teeter-totter, etc), you invent the Kid-Skid R @ is simply a spring @. The Kid-Skid R
damper mechanism that insures a soft landing if the friend on the other end jumps off. A schematic 
is shown in Figure 4.25.1: 

b k

Kid-Skid®

h

Figure 4.25.1: Kid-Skid R@ Schematic 

Assuming that the see-saw has an length L, and a mass ms, and that the kid on the right hand 
side is of mass mk: 

(a) How would you model this system, for the case where the nasty kid on the left jumps off while 
the poor kid on the right is at the full height h above the ground. Since we do not know how 
to model impact(wait until 2.004 for that), assume that the Kid-Skid R@ is massless. 

(b) If you want to write the equation of motion for the kid-seesaw–Kid-Skid R@ system once contact 
has been made, what would the equation be, and what would be the initial conditions. (Be 
specific about the initial conditions, and express them in terms of the system parameters 
given.) 

(c) If the Kid-Skid R = ymax, how would you ensure that it was not @ has a full range of motion
 
exceeded given the parameters above?
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4.26 Rolling Machine
 

Figure 4.26.1: Rolling Machine Schematic 

A model of a commercial rolling machine (for metals processing) has been created and is shown 
above. The model comprises a cylinder with a mass, m, with a radius, r = 0.5 m, that spins about 
an axle. The cylinder rolls without slip on the lower surface. Attached to the axle housing are a 
damper, b, a spring, k = 200 N/m, and a force source, f . In testing the machine, to impose a step 
on the force source f , and measure the following response for the horizontal motion of the axle, x. 

Figure 4.26.2: System Step Response 

Using the given parameters and the measured step response in Figure 4.26.2, 

(a) Show the a free body diagram of the mass/inertia, and determine the equation of motion for 
x(t) 
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(b) From the data determine the damping constant, b, and the equivalent mass, meq, where meq 

is mass equivalent of the combined rotational inertia and linear mass. 

(c) If the cylinder has a m = 3 kg, determine the inertia of the cylinder. 

54
 



4.27 Sunday Bike Ride 

A couple is out for a Sunday bike ride. The guy (weighing 200 lbs) is on a 30 yr old, all steel (very 
heavy) 10 speed, and his wife (weighing 100 lbs) is on a lightweight racing bike with high-pressure 
tires, aluminum rims; etc. They are riding alongside each other when they reach a significant 
downhill. They agree to coast and not pedal or brake on the hill. At the bottom, the guy ends up 
very far ahead of his wife. They are both confounded; why spend $1000 on her fancy bike if this is 
going to happen? 

You must explain it using system dynamics. 

(a) Create a model for the bike that will lead to a first order equation of motion (even though 
it has two rotating wheels with inertia + the inertia of the frame and rider1). Consider all 
sources of friction or drag on the bike as it is pulled downhill. 

(b) Draw the free body diagram for the bike that will show all forces acting on it. 

(c) Write the equation of motion and justify the assumption that the system is linear. 

(d) Based on the description of the bikes and the riders, use the model to show why the hefty 
guy on a clunky bike ends up going faster at the bottom of the hill. 

1Remember we said we could only deal with ”fixed axes of rotation” using 2.003 
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4.28 Compound Mass Spring Damper System 1
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Figure 4.28.1: Mass Spring Damper System 

Refering to Figure 4.28.1 and neglecting gravity, please do the following: 

(a) Draw free body diagrams for the mass m, and each of the nodes n1 and n2. 

(b) Derive the 2nd order differential equation for the position x(t) of the mass m. 

(c) Using the following parameters 

m = 1[kg] 
k1 = k2 = 10000 [N/m] 

k3 = 5000 [N/m] 
b1 = b2 = 10 [Ns/m] 

b3 = 5 [Ns/m] 

give values for the damped natural frequency ωd and the damping ratio ζ. Plot the poles of 
this system on the complex s-plane. 

(d) Using MATLAB, plot the response of this system for the following inputs and initial condi­

56
 



tions:
 

x(0) = 10−2 [m] 
ẋ(0) = 0 [m/s] 

F1 = F2 = 0 [N] 
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4.29 Compound Mass Spring Damper System 2
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Figure 4.29.1: Mass Spring Damper System 

This problem is a continuation of Problem 4.28. You should use the solutions for that problem to 
aid you in this problem. Use the same parameters for the mass, damping coefficients and spring 
constants. Referring to Figure 4.29.1 and neglecting gravity, solve x(t) and sketch the solution by 
hand using the following parameters: 

F1 = 10 [N] 
F2 = 0 [N] 

x(0) = ẋ(0) = 0 
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4.30 Wind Induced Building Vibrations 

Tall buildings are often subject to noticeable ”sway” or horizontal motion at the upper floors. This 
sway is driven by wind pressure variations on the building. The building itself is an interconnected 
set of columns and beams, all with continuously distributed mass and elasticity. Assume that we 
want to create a simple, lumped parameter model of this building to capture the sway motion 
dynamics. 
A measurement was made of this motion along with wind velocity, and the data is shown in 
Figures 4.30.1 and 4.30.2. 

(a) Propose a mechanical model to describe the motion that would lead to the equation: 

ẍ+ aẋ+ bx = cu 

where x is the sway motion of the building and u is the force from the wind. Be sure to provide 
a simple sketch of your equivalent mechanical model and the resulting free body diagram. 

(b) From the data, which of the parameters of the equation (a, b and c) could you determine? 
(Or in other words, why can’t you determine all three?) 

(c) For this data, determine: ωn, ζ, σ, and ωd. 

(d) Plot the roots of the characteristic equation for this system on an s-plane.	 A highly paid 
consultant has said that she can double the damping of the building with a feedback control 
system. 

(e) On the s-plane plot from d) show where the new roots would end up if she succeeds. 

(f) Describe how the building would have reacted to the increased damping,	 and sketch the 
response on a plot with scales similar to Fig. 2. Please make your description in terms of 2nd 
order system transient characteristics. 
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Figure 4.30.1: Wind pressure versus time. (Note the wind stops suddenly at t = 50.)
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Figure 4.30.2: Building Motion (x(t)) vs. time.
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5 Electrical Systems 

5.1 Camera Flash Circuit 

This problem considers further the flash circuit described in class. Suppose that the capacitor has 
a value C = 120µF, and the battery voltage is Vbat = 1.2V. Also suppose that the largest inductor 
you can use is L = 1 mH, and that this inductor has a maximum current limit of 0.1 A. 

(a) How much energy can be transferred from the inductor to the capacitor in one cycle? 

(b) How many cycles would be required to charge the capacitor from 0 to 300 volts?	 What 
frequency of charging (in inductor charge/discharge cycles per second) would be required to 
do this in one second? 

(c) What is the maximum charging frequency in cycles per second which is possible given the 
parameters for L, C, and Vbat above? Explain your reasoning. What changes could you make 
to the components to allow faster charging? 
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5.2 Batteries and Capacitors
 

With terminals shorted, a battery has a short circuit current defined as Isc. With its terminals 
open, it has an open-circuit voltage defined as Voc. For example, a 1.5V AA cell as shown in the 
figure 5.2.1 

Figure 5.2.1: AA Battery 

can be modeled internally as a 1.5 V voltage source in series with an internal resistance Rb as 
shown in the figure 5.2.2 
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Figure 5.2.2: AA Battery Schematic 

If we eliminate the packaging details, this circuit appears more simply as figure 5.2.3, where Vb is 
the voltage appearing at the battery terminals. 

-

+

+

-

Figure 5.2.3: Simplified battery circuit 

(a) With a short briefly applied to such a 1.5	 V battery, I measured a current out of the + 
terminal and back into the - terminal of Isc = 5.7A. What is the value of Rb? 

(b) In the experiment above, how much power is the battery voltage source supplying? Where 
is it being dissipated? (Batteries are really not happy having a short-circuit applied to them 
for any significant time, as they can dangerously overheat due to the internal dissipation.). 

An electrolytic capacitor, as shown in the picture 5.2.4, allows a relatively large amount of 
capacitance in a small package as compared with other types of capacitors. These capacitors 
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are polarized, in the sense that they should only have voltage applied of the indicated polarity. 
Reversal of voltage can be hazardous, and cause failure or explosion. 

Figure 5.2.4: Electrolitic capacitor of a single use flash camera 

The capacitor shown is used to provide a pulse of current used to fire a flash lamp in a single 
use camera. 

After the capacitor is charged, we observe that the capacitor voltage bleeds away to zero over 
the course of about 30 minutes. This internal loss can be modeled by including a leakage 
resistor Rl in parallel with the capacitor as shown in figure 5.2.5. 

+

Figure 5.2.5: Electrolitic capacitor model
 

If we eliminate the packaging details, this circuit appears more simply as in figure 5.2.6.
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+

-

Figure 5.2.6: Electrolitic capacitor circuit 

The + sign is usual to indicate that this is an electrolytic capacitor, as well as its associated 
allowed polarity. 

(c) Suppose that C = 120uF , and that we observe that from an initial charge it takes 10min for 
the capacitor voltage to fall to 37 percent of its initial value. What is the value of the leakage 
resistor Rl? 

Now, we want to study using the battery to charge the capacitor. At t = 0, the battery is 
connected to the initially uncharged capacitor. 

(d) Draw a circuit diagram showing this connection. 

(e) Write a differential equation which discribes the behavior of the circuit in this connection. 
The differential equation should be written in terms of the capacitor voltage vc. 

(f) From the initially uncharged state at t = 0, write a solution vc(t) for this charging process. 
What is the associated time constant? Make a dimensioned graph of vc(t) and show the time 
constant on this graph. Where is the system pole located? Make an s-plane sketch showing 
this pole location. 

After charging for a long time, the capacitor voltage reaches a final, or steady state value. 
Then, at time t1, the battery is disconnected from the capacitor. 

(g) Write a differential equation which describes the behavior of the capacitor voltage vc(t) in 
this disconnected condition. Solve the differential equation for vc(t), t > t1, and make a 
dimensioned sketch of vc(t). Where is the system pole located? Make an s-plane sketch 
showing this pole location. 
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5.3 Loaded Motor
 

This problem considers the motor system shown below.
 

Figure 5.3.1: Loaded Motor 

The motor in Figure 5.3.1 is driven by a voltage source V through a switch, which can be opened 
and closed. The motor internal coil resistance is modeled by the resistor R as shown. The motor 
itself is ideal and described by the relations τ = Ki, and e = Kω, where τ is the torque applied 
to the load, and ω is the load speed. The load consists of a rotary inertia J , and a rotational 
damper b. 

(a) Suppose the system is initially at rest. At t = 0 the switch is closed. Solve for the resulting 
rotor speed as a function of time, and write an expression for ω(t) in terms of the system 
parameters. Clearly show the steps in your solution. Make a labeled and dimensioned sketch 
of ω(t). 

(b) After the switch has been closed for a long time, the switch is opened. Let’s call this opening 
time t1. Solve for the resulting rotor speed as a function of time for t > t1, and write an 
expression for ω(t) in terms of the system parameters. Clearly show the steps in your solution. 
Make a labeled and dimensioned sketch of ω(t). 

(c) Solve for the value of the coil current i as a function of time throughout the motions deter­
mined above, and write an expression for i(t) in terms of the system parameters. Clearly 
show the steps in your solution. Make a labeled and dimensioned sketch of i(t). 
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6 Fluid Systems 

6.1 Rotational Fluid System 
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Figure 6.1.1: Cross-Sectional and Top view 

This problem considers the rotational mechanical system shown in Figure 6.1.1. 

The setup is similar to the one used in Lab 2. The central shaft rotates at an arbitrary velocity 
Ω1(t) in a fluid filled cup, which is fixed. Unlike Lab 2, there is an intermediate ring, of inertia J. 
This ring is supported on bearings which are not shown in the figure. The ring rotates with angular 
velocity Ω2(t) as shown. 

The fluid-filled annuli create a damper c1 between the shaft and the ring, and a damper c2 between 
the ring and the cup. Assume that any other damping is negligible. 

(a) Draw a free-body diagram for the ring showing the torques acting on the ring. 

(b) Use this free-body diagram to derive a differential equation in terms of Ω1(t) and Ω2(t) which 
describes this system. Note that Ω1(t) is an arbitrary velocity which is externally specified. 

(c) Assume that Ω1(t) is a step, i.e., Ω1(t) = us(t), and that Ω2(0) = 0. solve for the resulting 
motion Ω2(t) for t ≥ 0. 

(d) In steady-state, what torque must be exerted on the input shaft? Why? 
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6.2 Fluid Leak
 

Figure 6.2.1: Diagram of Fluid Problem 

You must read the Fluid Example on the webpage before starting this problem. Imagine 
that in the system in Figure 6.2.1 the valve is shut so that there is no flow at t = 0 and that Ps(t) 
leaks down from 3 ·105 Pa very rapidly after the valve is closed, ie. Ps(0−) = 3 ·105 and Ps(0+) = 0. 

(a) Solve for Pc(t). 

(b) At what time is Pc(t) at it’s minimum value? 

(c) How long does it take this system to settle withen Pc(t) = 300 Pa? 
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6.3 Where’d the water go? 

This problem extends the plumbing example presented in the supplementary notes. The figure 
from the notes is repeated below. 

Figure 6.3.1: Shower Figure 

You are upstairs taking a shower while your 9 year old daughter is downstairs skating madly around 
in the basement on her in-line skates with a hockey stick. (Why indoors? Why in the basement? 
Why with a hockey stick? Why didn’t she ask if this was a good idea? If these questions haven’t 
occurred to you, you aren’t a parent yet.) 

Anyway, taking an especially sharp turn, she slides out skates first into the pipes where they connect 
to the pressure tank which breaks them off essentially instantaneously. With calm engineering 
detachment, we will model this “event” as taking the pressure rapidly to zero, i.e., as Ps(t) = 
3 × 105(1 − us(t)) [Pa]. 

P
s
(t) [Pa]

t [s]

3 . 10
5
 [Pa]

Figure 6.3.2: Pressure function
 

(a) Use the model and parameters from the example problem. Develop an analysis which predicts 
the resulting pressure and flow at the shower nozzle. Sketch these two functions. About how 
long does it take for the shower flow to go to zero? 
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(b) So now you’re standing there naked in the shower with soap in your hair and no water flow 
wondering what happened, when you hear your kid screaming that the basement is starting 
to fill up with water. (The water pump is valiantly trying to restore pressure to Ps = 3 · 105 

Pa). We leave the next steps to your imagination... 

(c) If all of this seems a bit rigorous, perhaps you lack the stern constitution required for parent­
hood? 

(d) (Adapted from a true story). 
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7 Thermal Systems 

7.1 Thermal Block Question 

A block of copper is brought out of an oven at an initial temperature of 1000 K, and allowed to 
cool to the ambient temperature of 300 K. The graph below shows data which might represent this 
experiment. The copper block has a mass of 0.1 kg. Given that copper has a specific heat of 385 

J 
kgoC , propose a thermal model of this experiment, and write the equation of motion. Given the 
experimental data, determine the value of thermal resistance to ambient. Clearly show the steps 
in your derivation. 
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Figure 7.1.1: The block temperature (Tblock) is plotted against time (t). The ambient temperature 
is given by Tamb. 
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7.2 The Hot Copper Block 1
 

This problem considers the thermal dynamics of water and a copper block inside a vacuum bottle. 
A diagram for the system is shown below in Figure 7.2.1. 

Figure 7.2.1: Copper block and water thermal system 

Initially, a 100 gm copper block is heated outside the bottle in an oven to a temperature of 95◦C. 
We are not concerned with the heating process. The water in the vacuum bottle has been there for 
a long time and is equilibrated to the ambient temperature Ta = 25◦C. 

At t = 0, the stopper is removed, the copper block is lowered into the bottle, and the stopper is 
replaced. Now we would like to develop a model which can describe the temperature dynamics as 
a function of time. 

The system parameters are as follows: The copper block has a mass of 100 gm; copper has a specific 
heat of 0.385 J/gm◦C= 385J/kg◦C. The bottle contains 1 liter of water; water has a specific heat 
of 4.2 J/gm◦C= 4200J/kg◦C. 

The temperature of the block is defined as Tb. The water is assumed uniform in temperature, with 
a value of Tw. 

The heat flow from the block to the water is defined as qbw [W]. The heat flow from the water 
to ambient is defined as qwa [W]. These flows are modeled as passing through thermal resistances 
Rbw = 0.1◦C/W and Rwa = 17◦C/W, respectively. Note: Take a look at the 2nd order ther­
mal example on the course web page before attempting this problem. 
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(a) Write the governing differential equations for the system in state-space form as 

dTw = f1(Tw, Tb, Ta)
dt 
dTb = f2(Tw, Tb)
dt 

where f1 and f2 are linear functions. 

(b) Convert this representation to a 2nd order differential equation in Tw(t). You may assume 
that the ambient temperature is constant, and thus dTa = 0. dt 

(c) Solve for the response Tw(t) for t ≥ 0. What are the system natural frequencies? Plot the 
system poles on an s-plane plot. 

(d) Use Matlab to plot	 Tw(t), and its two constituent modes, over an interesting time range. 
You may need to use two plots with different time scales to capture the dynamics. Explain 
qualitatively why the plot looks as it does. Can you show us the effect of the system time 
constants? 

(e) Suppose the block were initially at only 60◦C. Make a sketch on your time response plot of the 
resulting Tw(t). Explain your reasoning. (Hint: If you exploit linearity, this should require 
no new calculations.) 
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7.3 The Hot Copper Block 2
 

This problem is a continuation of Problem 7.2. Reconsider the system of Problem 7.2, but with 
an electrical heater added to the inside of the copper block. The heater provides an input power 
qin = 4 W. This new system is shown in Figure 7.3.1. The system starts at t = 0 in a rest state 
with Tb = Tw = Ta = 25◦C. At t = 0, the heater is turned on. 

q
in

Figure 7.3.1: Copper block and water thermal system with heater 

(a) Write the governing differential equation in terms of water temperature Tw. 

(b) Solve the differential equation for Tw(t), with the numerical values given in Problem 7.2. 

(c) Use MATLAB to plot Tw(t) over both a short and long time interval to show the interesting 
parts of the graphs. What is the steady-state value of Tw? What is the 10% to 90% rise time 
tr? How long does the response take to settle within 1% of the final value? 
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7.4 Transistor on heat sink
 

Figure 7.4.1 is a schematic cross-section of a power transistor mounted on a heat sink. The tran­
sistor itself is fabricated on a thin piece of silicon, perhaps 5mm x 5mm x 0.5mm. This device 
is mounted within a package (case) which provides mechanical protection as well as electrical and 
thermal connections to the outside world. The case is mounted on a finned heat sink in order to 
transfer heat dissipation in the transistor into the ambient air. 

Figure 7.4.1: Transistor Schematic 

The case of most transistors needs to be electrically insulated from the heat sink. This is ac­
complished with the indicated thermal washer, which has the conflicting requirements of thermal 
conduction and electrical insulation. 

We define the device temperature as Td, the case temperature as Tc, and the heat sink temperature 
as Ts. The ambient temperature is Ta = 25◦C. The thermal resistance between the device and case 
is Rdc, between the case and heat sink is Rcs, and between the heat sink and air is Rsa. 

The transistor is used as an electrical switch or amplifier. In the process electrical power is converted 
to heat. The heat flow needs to be managed without allowing the device to become too hot 
(generally the device temperature should stay below 100◦C). 

(a) Assume	 Rdc = 0.1◦C/W, Rcs = 0.2◦C/W, and Rsa = 0.5◦C/W. Further assume that in 
steady-state the transistor is dissipating 50W. What are the steady-state values of Td, Tc, 
and Ts? 

(b) Now assume the heat sink is constructed with 500gm of aluminum, which has a specific heat 
of 0.90 J/g◦K. The system is operating in the steady-state condition above when, at t = 0 the 
transistor is pulsed with 500W of power dissipation for 1 second, and returns to dissipating 
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50W. Write expressions for Td(t), Tc(t), and Ts(t) for t ≥ 0, and make plots of these functions. 
Assume that the device and case have zero thermal capacitance. What is the peak device 
temperature in this linear model. Will it likely survive the transient? Would a bigger heat 
sink help? 
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8 Circuits 

8.1 RC Transfer Function 

This problem considers the circuit shown in Figure 8.1.1. 

Figure 8.1.1: RC Circuit 

(a) Calculate the transfer function Vo(s)/Vi(s). 

(b) For the values R1 = 3kΩ, R2 = 12kΩ, and C = 10 µF, solve for the pole and zero of the 
system, and plot these on the s-plane. 

(c) For the values given in part (b), calculate the transfer function magnitude and phase as a 
function of frequency for a sinusoidal input. Make an accurate hand-sketch of the Bode plot 
for this transfer function, i.e., the magnitude and phase as a function of the input frequency ω. 
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8.2 RLC Transfer Function
 

This problem considers the circuit shown in Figure 8.2.1.
 

Figure 8.2.1: RLC Circuit 

(a) Calculate the transfer function Vo(s)/Vi(s). 

(b) Let L = 0.01 H. Choose the remaining parameters of the circuit such that ωn = 105 and 
ζ = 0.05. Plot the poles of the system, indicating the pole positions in rectangular coordinates 
and polar coordinates. 

(c) For these parameters, make a carefully-dimensioned sketch of the response to a unit step in 
input voltage. Specifically, show the overshoot value, the time to the peak, and the time-scale 
for each of the next 3 peaks in the response. What is the time required to settle to 5%? 

(d) For these parameters, make an accurate sketch of the Bode plot for the transfer function in 
part (a). 
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8.3 Bandpass Filter 

The circuit shown in Figure 8.3.1 acts as a bandpass filter, in that input frequencies will only sig­
nificantly propagate to the output if they are near the filter resonant frequency. Input components 
away from the resonant frequency will be attenuated; the degree of attenuation will depend upon 
the separation between the driving and resonant frequencies. 
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Figure 8.3.1: Bandpass Filter Circuit 

An example of the use of such a filter would be at the front end of a radio. Here the filter is used 
to select a particular radio station carrier frequency for listening, and to attempt to reject other 
radio station carrier frequencies. In this situation, the current i would represent current from the 
antenna attached to the radio, and the output signal vR would represent a voltage used in the radio 
for further processing. 

In this problem, the numerical values have been selected to tune the filter to a Boston-area FM 
radio station. We ask you to work out the frequency response function for the filter and then 
consider how much an adjacent station’s signal is attenuated. For the purposes of this problem, 
assume that radio stations emit a pure sinusoidal signal at their carrier frequency. So, for example, 
a station such as WBCN operates at 104.1 MHz (104.1 × 106 Hz). Although the real signal consists 
of a band in the vicinity of this frequency, we will assume that the station puts out a pure sine 
wave at 104.1 MHz, and that this is what the filter is processing. In this problem, be careful to 
keep track of what frequencies are in Hz and what frequencies are in rad/sec. 

(a) Solve for the differential equation which relates the input current Is to the output voltage vR. 
Show the steps in your derivation. 

(b) Use the results of a) to derive the transfer function from input I(s) to output VR(s). 

(c) In terms of the circuit parameters, what are the values of the natural frequency ωn and the 
damping ratio ζ? What are the locations of the system poles and zeros? 

(d) In the following parts of the problem assume the components take the values:R = 50 kΩ, 
C = 10−11 F = 10 pF, and L = 3.14815 × 10−7 H. (Caution: The values chosen must be used 
with all given digits to guarantee a sufficiently accurate answer.) For these parameter values, 
what are the numerical values of ωn and ζ? 

79
 



(e) Use the MATLAB bode command to plot the frequency response magnitude and phase for 
this filter. Can you see why it is called a bandpass filter? What is the center frequency of 
the filter in MHz? What Boston-area radio station operates at this frequency? 

(f) In a given area, radio stations are generally spaced in frequency by at least 400 kHz.	 Use 
the frequency response function to determine how much attenuation will be experienced by a 
signal at 400 kHz above the filter resonant frequency. Show this frequency and the resulting 
attenuation on a Bode plot zoomed in on the relevant frequency region. 
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8.4 

Consider the circuit in Figure 8.4.1 

LC Circuit Differential Equations 

L

C
+

 _
vi vo

+

 _

Figure 8.4.1: LC Circuit 

(a) Write the governing differential equation for this circuit. 

(b) The input is a unit step vi(t) = us(t). Calculate vo(t), t > 0, assuming initial rest. Write an 
expression for vo(t), and make a properly labeled sketch of vo(t). 
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8.5 Equivalent Impedance
 

Calculate the equivalent impedance, Zeq, at the indicated terminal pair in Figure 8.5.1. 

R1

L

R2

C1 C2Zeq

Figure 8.5.1: LRC Circuit
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8.6 Circuit Response
 

For each of the circuits below, derive the differential equation which relates input to output, and 
solve for the unit step response for the listed initial conditions. Note that some of the circuits use 
a current source input. In each case, make a sketch of the output vs. time. 

a) Solve for ic as output 

-

+

+

-

Figure 8.6.1: Circuit for Part (a) 

(b) Solve for vL as output 

-

+ +

-

Figure 8.6.2: Circuit for Part (b) 

(c) Solve for vL as output 

i in
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Figure 8.6.3: Circuit for Part (c) 

(d) Solve for vc as output 
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Figure 8.6.4: Circuit for Part (d) 

(e) For parts (a) − (d), use impedance techniques to directly find the appropriate transfer func­
tions. 
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8.7 LRC Circuit 1
 

This problem studies the circuit shown below.
 

-

+

Ω

Ω

Figure 8.7.1: LRC Circuit 

(a) For t<0, what are the values of v1, v2, iL, and ic 

(b) What are the initial conditions at t = 0+, i.e., the values of v1(0+) and dv1 (0+)? Be sure to dt 
show how you derived these results. 

(c) For t ≥ 0 a differential equation describing this circuit in terms of v1 is 

d2 dv1v1 + 2 + 2v1 = 0. 
dt2 dt 

Write the solution of this equation as a function of time for T ≥ 0. Show carefully how you 
derived the solution and satisfied the initial conditions from the previous section. If you were 
not able to derive the initial conditions, you can write your solution in terms of v1(0+) and 
dv1 (0+).dt 
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8.8 LRC Circuit 2
 

This problem studies the circuit shown below. Note that the circuit is driven by an “unstep” func­
tion is(t) = 1 − us(t), and thus the input is 1 [A] for t < 0 and 0 [A] for t > 0. 

v1

i  =1-u
s
(t)s 1Ω

1Ω v2

1 F 1 H

ic iL

Figure 8.8.1: LRC Circuit 

(a) Write node equations at v1 and v2 to derive a differential equation describing the circuit. The 
differential equation should be in terms of v1 and is (that is v2 should be eliminated). 

(b) For t < 0, what are the values of is, v1, v2, iL, and ic? 

(c) Use Laplace transform techniques to develop a solution v1(t) for this system for t ≥ 0. 

(d) Make a hand sketch of this solution. 

(e) Calculate V1(s) and IL(s) 
Is(s) Is(s) 
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8.9 LR Circuit Step
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Figure 8.9.1: Circuit Diagram 

(a) Derive a differential equation which describes the circuit behavior in terms of the variables 
Vo(t) and Vi(t). Plot the system pole on the complex plane. 

(b) For this section of the problem, let R2 = 1k. The output Vo(t) in response to a unit step 
input, from zero initial conditions is shown below. Determine the values of L and R1 that 
correspond to this response. Be sure to show your reasoning. 
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Figure 8.9.2: Step Input Response from zero initial conditions
 

(c) Now let the input the to circuit be a sinusoid Vi(t) = sin ωt. In steady-state, the output will 
have the form Vo(t) = M sin(ωt + φ). Using the numerical values of the circuit elements you 
derived above, calculate expressions for M and φ as a function of ω. 
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(d) Make plots by hand of M(ω) and φ(ω). For the plots, use logarithmic axes for ω, log axes 
for M , and linear axes for φ. That is, the magnitude is displayed on a log-log plot, and the 
phase is displayed on a semi-log plot. What is the DC gain of this circuit? What is the 
high-frequency asymptotic gain? 
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9 Op Amps 

9.1 Opamp Arithmetic 

Design an opamp circuit that realizes the following input-output relationship 

vo = 5v1 + 3v2 − 10v3 

where v1, v2, and v3 are three indepdent output voltages. Use the minimum number of opamps 
that you find possible, and assume that the opamps follow the ideal infinite gain model. Explain 
your thinking. 
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9.2 Inverting Op-Amp 

The circuit shown in Figure 9.2.1 is an inverting op amp connection, with a capacitor C ' connected 
between the inverting input and ground. As we saw in lecture, adding a capacitor in this location 
can have a significant effect on the stability of the op amp connection. This problem explores such 
an effect. 

Figure 9.2.1: Inverting Op-Amp Circuit 

(a) For this connection, draw a block diagram representing the circuit. 

(b) Let the components take the values Ri = Rf = 10 kΩ, C = 10 µF, and a(s) = 2π106/s. 
Calculate the transfer function Vo/Vi. What are the closed-loop damping ratio and natural 
frequency? 
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9.3 Opamp Transfer Function 

Design an opamp circuit that realizes the following input-output transfer function 

Vo(s) 10−3s + 1 
= 100 . 

Vi(s) s(10−4s + 1)

Clearly show your thinking. You can design this circuit using only resistors, capacitors, and op 
amps. Assume that the opamps follow the ideal infinite gain model. Explain your thinking. 
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9.4 Op-Amp Differentiator 1 

The circuit in Figure 9.4.1 acts approximately as a differentiator. 
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Figure 9.4.1: Op-Amp Differentiator 

The second amplifier just acts as an inverter to cancel out the inverter associated with the first 
stage. For the values R1 = R2 = 100 kΩ, R = 10 kΩ, and C = 20 µF, and assuming the op-amp is 
modeled as ideal with infinite gain, 

(a) Calculate the pole and zero locations. 

(b) Calculate the magnitude and phase of the transfer function Vo(jω)/Vi(jω) as a function of ω. 

(c) Use MATLAB to plot the step response of this circuit. Does it act as a differentiator? How 
is the response non-ideal? 

(d) Use MATLAB to generate the Bode plot for this transfer function.	 Indicate the breakpoint 
frequency on the Bode plot. How is this related to the pole location? 
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9.5 Op-Amp Proportional plus Integral Controller 

The circuit in Figure 9.5.1 can be used as a proportional plus integral controller. 
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Figure 9.5.1: Op-Amp PI Circuit 

For the values Ri = 10 kΩ, Rf = 100 kΩ, and C = 10 µF, and assuming the op-amp is modeled as 
ideal with infinite gain, 

(a) Calculate the pole and zero locations. 

(b) Calculate the magnitude and phase of the transfer function Vo(jω)/Vi(jω) as a function of ω. 

(c) Use MATLAB to plot the step response of this circuit.	 Does it act as a proportional plus 
integral (PI) filter? How so? 

(d) Use MATLAB to generate the Bode plot for this transfer function.	 Indicate the breakpoint 
frequency on the Bode plot. How is this related to the zero location? 
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9.6 Op-Amp Circuit Design 1 

Design an op-amp circuit that realizes the following input-output relationship 

vo = 5v1 + 3v2 − 10v3 

where v1, v2, and v3 are three independent output voltages. Use the minimum number of op-amps 
that you find possible, and assume that the op-amps follow the ideal infinite gain model. Explain 
your thinking. 
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9.7 Op-Amp Block Diagram 

In the op-amp circuit shown in Figure 9.7.1, the op-amp has a transfer function a(s) from the 
differential input to the output voltage. 
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a(s)

Figure 9.7.1: Op-Amp Circuit 

(a) Draw a block diagram representing the circuit.	 Your block diagram should show the vari­
ables Vin, Vo, v+, and v−. Be sure to show how the block diagram was derived. 

(b) Let a(s) = g/s. What is the transfer function from input Vin to output Vo, in terms of the 
given system parameters? 
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9.8 Op-Amp Circuit Design 2 

Design an opamp circuit that realizes the following input-output transfer function 

Vo(s) 10−3s + 1 
= 100 . (1)

Vi(s) s(10−4s + 1)

Clearly show your thinking. You can design this circuit using only resistors, capacitors, and op 
amps. Assume that the opamps follow the ideal infinite gain model. Explain your thinking. 
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9.9 Op-Amp Differentiator 2 

The circuit in Figure 9.9.1 is the circuit from Problem 9.4. 
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Figure 9.9.1: Op-Amp Differentiator 

The second amplifier just acts as an inverter to cancel out the inverter associated with the first 
stage. For the values R1 = R2 = 100 kΩ, R = 10 kΩ, and C = 20 µF, and assuming the op-amp is 
modeled as ideal with infinite gain, 

(a) Draw a block diagram for the circuit of Figure 9.9.1 in which the op amp is modeled as having 
dynamics. That is, the op-amp output voltage is Vout = A(s)(v+ − v−). 

(b) Solve for the input-output transfer function for this circuit configuration in the case where 
A(s) = g/s and g = 2π107, and using the numerical values of the parameters given above. 

(c) Plot the poles and zeros of the transfer function from part (b). What dynamics can you 
estimate will dominate the step response? Make a sketch of the step response that would 
result from these dominant dynamics. 

(d) Enter the exact transfer function into MATLAB, and thereby plot the exact step response. 
How does this differ from the response calculated in Problem 9.4? How are the dominant 
dynamics of part (c) evident in this step response? 
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9.10 RC Op-Amp Frequency Response
 

(a) For the circuit shown below calculate the transfer function Vo/Vin under the assumption that 
the op amp has infinite differential gain as shown. 
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Figure 9.10.1: RC Op-Amp Circuit 

(b) Now let the resistor R1 = 10 [kΩ]. Choose the other components such that the input/output 
transfer function Bode plot has the asymptotic magnitude shown in Figure 9.10.2. Explain 
your calculations. With the indicated slopes, it is possible to determine the value of A as 
shown on the plot. What must this value be? 
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Figure 9.10.2: Asymptotic Magnitude of Bode plot
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10 Differential Equations 

10.1 Differential Equations 1 

Here we consider a system described by the differential equation 

500 ̇y + 1000y = 0. 

(a) Plot the system pole on the complex plane. 

(b) Suppose that y(−3) = 10. Write an expression for y(t) valid for all time. Show your reasoning. 
Sketch this response. 

(c) At what time does the response fall below a value of 10−6? 

(d) Use Matlab to plot the response in the range −4 ≤ t ≤ 1. 

(e) Design a mechanical system which will have the differential equation given above.	 Clearly 
indicate the physical variable that y represents, as well as the numerical values of the me­
chanical system parameters. Note that there are many possible systems which will have the 
same differential equation. 
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10.2 Differential Equations 2 

Here we consider a system described by the differential equation 

ÿ + 10ẏ + 10000y = 0. 

(a) What are the values of the natural frequency ωn, the damping ratio ζ, and the damped natural 
frequency ωd? Plot the system poles on the complex plane. 

(b) Suppose that y(0.1) = -3, and that ẏ(0.1) = 0. Write an expression for y(t) valid for all time. 
Show your reasoning. Sketch this response. 

(c) Use Matlab to plot this response in the range −0.5 ≤ t ≤ 1. Indicate on your plot that the 
auxilary conditions are met. 

(c) At what time is the value of the response guaranteed to be below 10−3? Do not calculate the 
exact time value when this occurs, but provide a bound using the exponential envelope of the 
waveform. 

(d) Design a mechanical system which will have the differential equation given above. Clearly in­
dicate the physical variable that y represents, as well as the numerical values of the mechanical 
system parameters. 
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10.3 Differential Equations 3
 

Here we consider a system described by the differential equation 

ÿ + 200ẏ + 10000y = 0. 

(a) What are the values of the natural frequency ωn, the damping ratio ζ, and the damped natural 
frequency ωd? Plot the system poles on the complex plane. 

(b) Suppose that y(0) = 1, and that ẏ(0) = 1. Write an expression for y(t) valid for all time. 
Show your reasoning. Sketch this response. 

(c) Use Matlab to plot this response over an interesting range of time values.	 Indicate on your 
plot that the auxilary conditions are met. 
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10.4 Euler’s Theorem 1
 

(a) Use Euler’s theorem to demonstrate the following equivalence 

jωt + c ∗ −jωt ce e = A cos ωt + B sin ωt 

where c = α+jβ is a complex number and A and B are real. What is the resulting relationship 
between c and A and B? 

(b) Given A = 7, B = 2, and ω = 100, what is the corresponding value of c? 

(c) Use Matlab to plot three cycles of the vaveform defined in part b), and hand in the resulting 
plot. 
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10.5 Euler’s Theorem 2
 

(a) Use Euler’s theorem to demonstrate the following equivalence 

A cos ωt + B sin ωt = M cos(ωt + φ) 

where A, B, M , and φ are real. What is the resulting relationship between A,B and M , φ? 

(b) What is the relationship between M , φ, and c as defined in Problem 10.4? How are these 
related to the amplitude of the waveform you plotted in Problem 10.4? 
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10.6 Force Steps 

Assume that we apply a unit step in force separately to a mass m, a dashpot c, and a spring k. 
The mass moves in inertial space. The spring and dashpot have one end connected to inertial space 
(reference velocity = 0), and the force is applied to the other end. Solve for and plot the resulting 
velocity and position of the mass, and the velocity and position of the free ends of the spring and 
damper under this step in force. 

Recall that the unit step function uS (t) is defined as uS(t) = 0; t < 0 and uS (t) = 1; t ≥ 0. We 
will also find it useful to introduce the unit impulse function δ(t) which can be defined via � t
 

uS (t) = δ(τ ) dτ
 
−∞ 

This means that we can also view the unit impulse as the derivative of the unit step: 

duS (t)
δ(t) = 

dt 
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10.7 Input for Zero Output 

A system with an input u and an output y is described by 

d2u du 
y = + 2 − 15u (1)

dt2 dt 

What is the most general input u(t) applied for all t which yields y(t) = 0? Show your reasoning, 
and verify by direct substitution into (1). 
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10.8 Zero Input Response 

For each of the systems shown in Figure 10.8.1, suppose that the indicated input is set equal to 
zero. That is, we will solve for the zero input response(ZIR). Don’t use Laplace techniques to find 
the requested solution. 

C C

J

, output, input

C C

M

X, output

 F, input

K K

(i): Rotational system

(ii): Translational system

Figure 10.8.1: System Diagrams 

(a) For the rotational system, solve for θ(t) with the initial conditions θ(0) = θ0 and θ̇(0) = ω0. 
Write expressions for the system time constants. 

(b) For the translational system, solve for x(t) with the initial conditions x(0) = x0 and ẋ(0) = v0, 
under the assumption that the system is under-damped. Write expressions for the system 
natural frequency, damped natural frequency and damping ratio. 
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10.9 Zero Step Response 1
 

C C

J

, output, input

C C

M

X, output

 F, input

K K

(i): Rotational system

(ii): Translational system

Figure 10.9.1: System Diagrams 

For each of the systems shown in Figure 10.9.1, suppose that the initial state is equal to zero, and 
that the input is active. That is, solve for the zero state response(ZSR). Specifically assume that 
the input is a step, i.e., 

(i) τ(t) = us(t); θ(0) = θ̇(0) = 0. 

(ii) F (t) = us(t); x(0) = ẋ(0) = 0. 

Now solve for the resulting output variable as a function of time. Again, in the case of the trans­
lational system, you may assume that it is under-damped. 
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10.10 Zero Step Response 2 

Now assume the following numerical parameters for the systems in Problem 10.9 

(i) J = 0.1 kg-m2; C1 = 10−3 N-m-s/rad; C2 = 3 × 10−3 N-m-s/rad. 

(ii) M = 10kg; K1 = 105N/m; K2 = 8 × 105N/m; C1 = C2 = 300N-s/m. 

(a) For these parameters, write expressions for θ(t) and x(t) for the zero state response of Problem 
10.9, and make hand-sketches of these responses. 

(b) Use Matlab to plot the responses of Part a. 
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10.11 Nonlinear String System 

Figure 10.11.1 shows a mass M supported by the constant force string, which has constant tension 
force no matter how much it is stretched. The mass is attached to the center point of the string. 
L = 0.5 m. T=100 N. For each of three cases (i) M1 = 10 kg, (ii) M2 = 14.5 kg and (iii) M3 = 17.7 
kg. 

(a) Find the equilibrium point X. 

(b) Derive a linearized model about the equilibrium point. 

(c) Solve for roots and plot them on the complex place. 

(d) Plot the zero input response from zero initial velocity and the initial position is 1cm above 
the equilibrium point, i.e. X(0) = X − 0.01m. 

Μ

ΤΤ

2L

X

gravity

Figure 10.11.1: Nonlinear String System
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10.12 Homogenous and Particular Solutions 

For this problem, we use the rotational system of Lab 2, seen in Figures 10.12.1 and 10.12.2. Refer 
to Prelab 2 for more details. In the prelab, you are asked to calculate the moment of inertia for the 
shaft with and without the flywheel, and to use the video shown on the course web page to extract 
an estimate of the damping coefficient c resulting from the honey in the cup at the bottom of the 
shaft. Note that in the video the flywheel is attached to the shaft, and so for this problem you will 
use the inertia value with the flywheel present. Use the following values in this problem: 

K = 10−2Nm , I = 0.000317kg − m2 and c = 0.0011N-m-sec/rad 

Flywheel

Airbearings

Cup with
viscous fluid

Shaft

Figure 10.12.1: Rotational System
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Figure 10.12.2: Lumped System Model
 

(a) Assume that the Lab 2 system is driven by an input torque Tin acting on the rotating shaft, 
and has a resulting angular velocity ω. Write a differential equation which describes the 
system with the given torque input. 
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(b) Now assume that the torque is a step of magnitude K, i.e., Tin = Kus(t), and that the shaft 
has an initial angular velocity ω(0) = ω0. Find the particular and homogeneous solutions and 
combine these to write an expression for the total solution. Given the input magnitude K, 
for what initial velocity will the solution reach final value in zero time, i.e., there will be no 
transient? 

(c) Accurately sketch the solutions for K = 10−2 Nm, and for each of the following initial angular 
velocities: ω0 = 0 rad/sec; ω0 = 40 rad/sec. 

(d) Now we change the torque source to a sinusoidal input Tin = us(t)K cos Ωt . Again the system 
has an initial angular velocity ω(0) = ω0. Note that the step function us(t) which multiplies 
the cosine function “turns on” the input at t = 0.The homogeneous solution will have the 
same form as in part b), so you will not need to repeat this calculation. We ask you to find 
the particular solution in two ways. The first is by using only trigonometric functions, and 
no complex variable representations. The second approach is by writing the input as the real 
part of a complex exponential. 

(i) Solve for the particular solution ωp(t) to the cosinusoidal drive without making use of 
complex notation. You’ll need to work through some trigonometric identities to work 
out the solution. 

(ii) Solve for the particular solution ωp(t) to the cosinusoidal drive by using complex nota­
tion. That is, we recognize that the input can be expressed as Tin = Re{us(t)KejΩt}. 
Then because the system is linear, we can first solve for the particular solution for a 
complex-valued input Tin = us(t)KejΩt, taking the real part of the solution at the end 
to find the particular solution for the original real-valued input. The solution should be 
the same as you found in part i). As you’ll see, the math is simpler via this path than 
for the solution taken in i) by using trigonometric identities. As the system order grows 
larger than this first-order example, this simplification becomes more significant. 

(e) Assume that the initial shaft velocity is zero, i.e., ω0 = 0. For the particular solution to the 
sinusoidal drive that you found above, what homogeneous solution is required to satisfy this 
initial condition? Use Matlab to plot the total solution for K = 10−2, and for the following 
two values of input frequency: Ω = 0.5 rad/sec; Ω = 20 rad/sec. How do these two solutions 
differ in appearance? Specifically, how significant is the homogeneous solution in these two? 
Also, what effect does the system have on the output sinusoidal magnitude and phase relative 
to the input? 
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11 Frequency Response 

11.1 Circuit Bode Plots 

For each of the circuits shown in Figure 11.1.1 

(a) Determine the associated transfer function. 

(b) Accurately sketch the associated Bode plots (magnitude and phase). 

Figure 11.1.1: Circuits for analysis
 

112
 



11.2 Sketch Bode Plots
 

Using the appropriate graph paper, sketch the Bode plots for the following transfer functions: 

(a) G(s) =
5s+1 
s+10 

(b) G(s) = 
5s+1 

s2+3s+1 

(c) G(s) = 
s+10 

(s+2)(s2+10s+100) 
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11.3 LC Circuit Frequency Response
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Figure 11.3.1: LC Circuit 

(a) Derive a differential equation which describes the circuit behavior in terms of the input Is(t) 
and taking the output as Vc(t). What are the values of ωn, ωd, σ, and ζ for this circuit? Plot 
the poles/zero on the complex plane. 

(b) Calculate and make a carefully labeled graph of the response to a unit step current input 
Is(t) = us(t), from non-zero initial conditions vc(0) = 0 [V] and iL(0) = −1 [A]. 

(c) Now let the input the to circuit be a sinusoid Is(t) = sin ωt. In steady-state, the output will 
have the form Vo(t) = M sin(ωt + φ). Calculate expressions for M and φ as a function of ω. 

(d) Make plots by hand of M(ω) and φ(ω). For the plots, use logarithmic axes for ω, log axes for 
M , and linear axes for φ. That is, the magnitude is displayed on a log-log plot, and the phase 
is displayed on a semi-log plot. You should find that magnitude response has an infinite peak √ 
at ω = 1/ LC. Thus this circuit can be used as a band-select filter, predominantly passing 
a single frequency. Such a filter is useful for instance in a radio tuner to select a particular 
station. 
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11.4 LRC Circuit Frequency Response
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Figure 11.4.1: LRC Circuit 

(a) Derive a differential equation which describes the circuit behavior in terms of the input Is(t) 
and taking the output as Vc(t). What are the values of ωn, ωd, σ, and ζ for this circuit? Plot 
the poles/zero on the complex plane. 

(b) Now let the circuit parameters have the values L = 5 [mH], C = 0.02 [µF], and R = 2.5 [kΩ]. 
Calculate and make a carefully labeled graph of the response to a unit step current input 
Is(t) = us(t), from zero initial conditions vc(0) = 0 [V] and iL(0) = 0 [A]. 

(c) Now let the input the to circuit be a sinusoid Is(t) = sin ωt. In steady-state, the output will 
have the form Vo(t) = M sin(ωt + φ). Calculate expressions for M and φ as a function of ω. 

(d) Make plots by hand of M(ω) and φ(ω). For the plots, use logarithmic axes for ω, log axes for 
M , and linear axes for φ. That is, the magnitude is displayed on a log-log plot, and the phase 
is displayed on a semi-log plot. You should find that magnitude response has a finite peak. 
What is the peak frequency? How is the peak magnitude related to the circuit parameters? 
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11.5 Pole-Zero Plots
 

For the pole-zero plots shown in Figure 11.5.1: 

(a) Determine the associated transfer function, under the assumption that the magnitude of the 
Bode plot passes through 1 at ω = 1. 

(b) Accurately sketch the associated Bode plots (magnitude and phase), under the assumption 
from (a). 

Figure 11.5.1: Pole Zero Plots
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12 Signals, Transforms, and Transfer Functions 

12.1 First Order Zeros 

This problem considers the effect of zeros on the step response of a first-order system. Specifi­
cally,consider a system with input u and output y described by the differential equation 

τ ẏ + y = au̇+ u 

Note that this system has a pole at s = −1/τ and a zero at s = −1/a. 

(a) Write an analytical solution for the response of this system to a unit step, assuming zero 
initial conditions. Use impulse matching to work through the transient at t = 0, and use the 
approach of particular and homogeneous solutions to solve the problem. Do not use Laplace 
transform techniques. 

(b) We now want to study the step response for a number of values of the parameter a. Let τ = 
0.1 sec,and sketch the step response for each the following values: a = 0.05, 0.09, 0.11, 1, −1, −.1. 
You should be able to sketch the response by hand, without any need for computational as­
sistance. Along with the step response, include a pole-zero plot showing the locations of the 
pole and zero on thes-plane. 

(c) Collocated poles and zeros in some sense cancel each other. Argue that if we let a = τ = 
0.1 sec, then the system reverts a simple gain of 1 from input to output, that is, from a 
condition of initial rest, the output at all times equals the input. What is the step response 
for this choice of parameters? Show that your response in part b) above approaches this 
response in the limit a = τ . Can you see this asymptotic behavior in the step responses 
you’ve plotted in part b)? 

(d) Another way to think about zeros is that they allow properly chosen exponential inputs with 
s1tno corresponding output. Specifically, assume that the input takes the formu(t) = e . Show 

that by the proper choice of s1, the driven output is identically zero. How is this value of s1 

related to the zero location? 

(e) Solve for the step response from a zero initial condition via Laplace techniques.	 This should 
yield the same result as you found in part (a). 
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12.2 Laplace Practice 

A signal w(t) is defined as 
w(t) = us(t) − us(t − T ) 

where T is a fixed time in seconds and us(t) is the unit step. Compute the Laplace transform W (s) 
of w(t). Show your work. 
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12.3 Step-Zero 

This problem studies the effect of a real-axis zero on the step response of a second-order system. 
Specifically, consider the transfer function 

s/αζ + 1 
H(s) = . 

s2 + 2ζs + 1

Note that we have normalized by choosing ωn = 1. This is the same as allowing a non-unity value 
of ωn and making all plots with respect to ωnt. For this transfer function: 

(a) Plot on the s-plane the poles and zero as a function of α for the values α = 0.1, 1, 10,and 
for ζ = 0.01, 0.1, 0.7. Make a separate plot for each value of ζ, showing the effect of α on 
the zero location. Clearly label the pole and zero locations on the real and imaginary axes. 
Note that you cannot use a linearly scaled pole/zero plot if you want to show the pole and 
zero locations with adequate resolution. 

(b) Use Laplace techniques to derive an analytical expression for the response of this system y(t) 
to a unit step u(t) = uS (t) from initial condition y(0) = ẏ(0) = 0. Carefully show all steps. 
Be sure to include an expression which gives the output transform Y (s) in terms of the 
input transform U(s). Expand this expression in terms of given entries in a table of Laplace 
Transforms, performing inversion from the Laplace Transform to a function of time. 

(c) Use Matlab to plot the response function you have derived versus time and for the values of α 
and ζ listed in part a). Include separate plots for each value of ζ, which overlay the variation 
with α. How does the zero location affect the step response? Can you see that the term s/αζ 
contributes a derivative effect in the step response? Explain. 
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12.4 Laplace to Time 

For each Laplace Transform Y (s), find function y(t): 

(a)
 

1
 
Y (s) = 

(s + a)(s + b) 

(b) 

s 
Y (s) = 2s + 2ζ s + 1 

ω2 ωnn 
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12.5 Time to Laplace
 

For each of the functions y(t), find the Laplace Transform Y (s): 

−at(a) y(t) = e

(b) y(t) = e−σt sin ωdt 

(c) y(t) = e−σt cos ωdt 
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12.6 Laplace Transform
 

A signal has a Laplace transform 
a 

X(s) = b + 
s(s + a) 

where a, b > 0, and with a region of convergence of |s| > 0. Find x(t), t > 0. 
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12.7 Signal in Time and Frequency Domain
 

A signal x(t) is given by   
x(t) = (e −t − e −1) us(t) − us(t − 1)

(a) Sketch this signal as a function of time. 

(b) Calculate X(s). Clearly show the steps in your calculation. 
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12.8 

(a) Calculate the transfer function vo(s)/vi(s) for the circuit shown in Figure 12.8.1 

Transfer Function and Time Constants 

C1

+

 _
vi vo

+

 _

R1

R2

C2

Figure 12.8.1: Electrical Circuit 

Write this transfer function in the form
 

τ1s + 1
 
K 
τ2s + 1 

Write expressions for K, τ1, and τ2. Use Laplace initial and final value theorems to calculate 
vo(0+) and v(∞). Plot the pole and zero of this system on the s-plane. What happens when 
R1C1 = R2C2? 

(b) Let vi(t) = us(t), a unit step. Assuming initial rest conditions, calculate an expression for the 
step response vo(t). Make sketches of vo(t) for the following three sets of parameter values: 

(i) R1 = 1kΩ, R2 = 9kΩ, C1 = 1µF , C2 = 9µF 

(ii) R1 = 1kΩ, R2 = 9kΩ, C1 = 9µF , C2 = 1µF 

(iii) R1 = 9kΩ, R2 = 1kΩ, C1 = 9µF , C2 = 1µF
 

Also plot the pole/zero diagram for each set of parameters.
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12.9 Fourier Series Input

A common periodic signal is a triangle wave similar to that shown below. It can be thought of as a
series of ramps repeating at a frequency of ωo. The purpose of this problem is to see how different
dynamic systems, each with a different transfer function G(s), will react to that signal. To do this,
we can make use of the Fourier series, that states that any periodic function f(t) can be described
by an infinite series:

f(t) =
1
2
ao +

∞∑
n=1

[an cos (nωot) + bn sin (nωot))]

where:

an =
2
T

∫ t1+T

t1

f(t)cos (nωot) dt

bn =
2
T

∫ t1+T

t1

f(t)sin (nωot) dt

where ωo is the fundamental frequency of the waveform.

(a) Using references you might have from 18.01/2/3, determine the appropriate Fourier Series for
the triangle wave shown below

(b) For each of the transfer functions below, sketch (not using MATLAB) the Bode diagram.
G1(s) = K

τs+1 with K = 10, τ = 20.

G2(s) = K
(τ1+1)(τ2+1) with K = 1, τ1 = 5, and τ2 = 10.

G3(s) =
sω2

n

s2+2ζωns+ω2
n

with ζ = 0.5 and ωn = 50.

G4(s) = K
τs+1

s2+2ζzωzns+ω2
zn

s2+2ζωns+ω2
n

with K = 1, τ = 0.01, ζ = 1.0, ωn = 100, ζz = 0.05, and
ωzn = 10.

(c) Using the diagram only, write the steady-state output y(t) that would result if the triangle
wave u(t) of Figure 12.9.1 were applied to the input of each transfer function. For this
equation, consider only the first 5 terms of the series in your answer.

(d) Using MATLAB, plot 2 full cycles of the following:

(i) u(t)

(ii) u(t) with only 3 term in the series included

(iii) y(t) for G1 AND G2 based on the series solutions from part C)

(e) Now consider that we would like to have the output of the transfer function, y(t), be a ”pure”
sine wave of frequency 3 ∗ ωo. (In other words we want to ”tune in” the frequency 3 ∗ ωo and
”tune out” all the others.) Propose a transfer function that will come close to this and then
check how it does using the above procedure.
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Figure 12.9.1: Triangle wave u(t) with T = 0.628 sec.
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12.10 Spring Mass System
 

Consider the simple spring mass system shown in Figure 12.10.1 subjected to a force F(t) that is 
a “pulse” as shown in Figure 12.10.2. 

2.003 Spring 2004 Assignment 1

Page 2 of 2

Problem 2  LaPlace Transforms

Ogata Problems

B-2-1

B-2-7

B-2-12

B-2-13

B-2-23 – and provide a sketch of x(t)

B-2-24 – and provide a sketch of x(t)

Problem 3

Consider a simple spring mass system

that is subjected to a force F(t) that is a “pulse” given by:

If m= 1; k = 1 and b = 1:

a) Show how you would model the F(t) using LaPlace transforms. (I.e. find F(s).)

b) Using Laplace Transforms, find the solution of x(t) in response to F(t) for 0 < t<20.

c) Using MATLAB, plot x(t).

d) Describe why the response look as it does.

e) How would it change if the pulse were 2 seconds wide instead of 8?

m

b

k
F(t)

               2         10                      time
(sec)

F(t)
   1.0

Figure 12.10.1: Spring Mass System
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B-2-23 – and provide a sketch of x(t)

B-2-24 – and provide a sketch of x(t)

Problem 3

Consider a simple spring mass system

that is subjected to a force F(t) that is a “pulse” given by:

If m= 1; k = 1 and b = 1:

a) Show how you would model the F(t) using LaPlace transforms. (I.e. find F(s).)

b) Using Laplace Transforms, find the solution of x(t) in response to F(t) for 0 < t<20.

c) Using MATLAB, plot x(t).

d) Describe why the response look as it does.

e) How would it change if the pulse were 2 seconds wide instead of 8?

m

b

k
F(t)

               2         10                      time
(sec)

F(t)
   1.0

Figure 12.10.2: Force Pulse 

If m= 1; k = 1 and b = 1: 

(a) Show how you would model the F(t) using Laplace transforms. (i.e. find F(s).) 

(b) Using Laplace Transforms, find the solution of x(t) in response to F(t) for 0 ≤ t ≤ 20 sec. 

(c) Using MATLAB, plot x(t). 

(d) Describe why the response look as it does. 

(e) How would the response change if the pulse were 2 seconds wide instead of 8? Just describe 
qualitatively and make a sketch of what you’d expect. Do not recompute the response. 
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12.11 Transfer Function
 

Given the transfer function 

X(s) s3 + 110s2 + 1100s + 1000 
G(s) = = (1)

U(s) s4 + 2s3 + 52s2 + 51s + 50 

(a) Find the poles and zeros (you can use the MATLAB roots() command for this). 

(b) Plot these poles on a s-plane. 

(c) Based on the location of these poles, describe the expected response to a step input. Please 
explain your reasoning. 

(d) Using the MATLAB step command, create a plot of x vs. t to see if your prediction was OK, 
and compare. 
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13 Controls
 

13.1 Rooftop Antenna 

(The following problem is adapted from Roberge, J.K., Operational Amplifiers, Wiley and Sons, 
1975, problem P2.9.) A negative-feedback system used to rotate a rooftop antenna is shown in 
Figure 13.1.1(a). The total inertia of the output member (antenna, motor armature, and poten­
tiometer wiper) is 2kg-m2. The motor can be modeled as a resistor in series with a speed-dependent 
voltage generator as shown in Figure 13.1.1(b). 

Figure 13.1.1: Antenna Diagram 

The torque provided by the motor that accelerates the total output-member inertia is 10 Nm per 
ampere of motor current Ia. The polarity of the motor dependent generator is such that it tends 
to reduce the value of Ia as the motor speed increases. The scale factor is such that Ia becomes 
zero for a motor shaft velocity equal to Vm/10 rad/sec. 

(Note: There are a number of repeated analyses in this problem. You will want to use Matlab to 
automate these. The problem shows some of the key tradeoffs associated with feedback control, 
so please do think carefully about what you observe as the controller gain is changed through the 
values 10, 100, and 1000.) 

(a) Draw a block diagram that relates θo to θi. You may include as many intermediate variables 
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as you wish, but be sure to include Vm and Ia in your block diagram. Calculate the transfer 
function θo/θi.
 

Also include in your block diagram a torque disturbance Td applied to the antenna shaft. For
 
instance, this torque disturbance might represent the effect of wind on the antenna. Calculate
 
the transfer function θo/Td which represents the response to such a disturbance.
 

(b) Plot the system poles in the s-plane. Calculate the response in θo to a 1 rad step input θi. 
Plot this response showing relevant time scales. 

(c) Generate the Bode plot for θo/θi. 

(d) Calculate the unit step response and Bode plots for the disturbance transfer function θo/Td. 

(e) Calculate the transfer function of the negative of the loop transmission for this feedback loop. 
Plot a Bode plot for this transfer function. What are the crossover frequency and phase 
margin for this loop? (These terms have been discussed in lecture.) 

(f) Now change the gain of the differential amplifier in the loop from 10 to 100. (This will increase 
the loop transmission magnitude by a factor of 10.) Repeat parts (b), (c), (d), and (e) with 
this new value of loop gain. Comment on the effect of this larger loop gain on the system 
closed-loop dynamics exhibited in the speed and damping of the step response, Bode plots, 
command following ability, and the ability to reject a disturbance torque. How do the poles 
move as the gain is increased? 

(g) Repeat the analysis of part (f) for an amplifier gain of 1000. 
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13.2 Lead Controller
 

We now extend the laboratory system to consider position control, and the design of a lead con­
troller. The system transfer functions used in the lab all refer to the motor output shaft angle θm. 
We will define the potentiometer shaft angle as θp. The potentiometer is geared down from the mo­
tor by 6:1. That is, nd = 6np, and thus 6θp = θm. Further, the potentiometer outputs Vpot = ±10 V 
for a potentiometer shaft rotation of θp = ±π rad. 

(a) Show that the relationships above imply that Vpot = Kpotθp, where Kpot = 10/π V/rad. Note 
that we have defined Kpot as depending linearly upon θp. 

(b) Modify the block diagram of Fig. 2 of the prelab to include the motor angle	 θm, the po­
tentiometer angle θp, and the potentiometer gain Kpot. Use this modified block diagram to 
calculate the transfer function Vpot/Vin. (Recall that Vin is the amplifier input voltage as 
shown in the prelab.) Sketch the poles of this transfer function as well as its Bode plot. 

(c) Now assume that the motor position controller is a lead controller of the form 

Vin(s) 10τs + 1 
= K . 

E(s) τs + 1 

Here E(s) = R(s) − Vpot(s), where R(s) is a position reference voltage, and E(s) is thus 
the position error. The controller is embedded in the position feedback loop as shown in 
Figure 13.2.1. 

Figure 13.2.1: Block Diagram 

Choose the controller parameters K and τ to achieve a loop crossover frequency ωc = 
100 rad/sec, and phase margin φ ≥ 45◦ . Explain how you developed a design satisfying 
these design values. Include a Bode plot of the negative of the loop transmission which 
shows that you have achieved these design values. Also include a plot of the closed-loop pole 
locations. 
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13.3 Third Order
 

Consider the mechanical drive of Problem 14.1 with the load free to move. The model parameters 
have the following values: 
Irotor = 5e-5 kg-m2 

Bmotor = 1e-4 N-m-s/r 
Bcoupler = 2e-5 N-m-s/r 
Kcoupler = 1.24e-2 N-m/r 
Iload = 5e-5 kg-m2 

Bload = 1e-4 N-m-s/r 
This is a system with fairly special symmetry. Note that Imotor = Iload = I,and that Bmotor = 
Bload = B. For this special case, develop a model to predict the angular velocity of the load in 
response to an applied motor torqueTm. 

(a) Use the variables: 

Δθ, relative angular displacement of motor with respect to load,
 

ωm, motor angular velocity, and
 

ωl, load angular velocity,
 

as the state variables for this model in a state-determined system. Construct the state 
equations for this model. 

(b) Consider a change of variables to the following three variables: 

ωm + ωlΔθ, Δω = ωm − ωl, and ωavg = 
2
 

Express the variables ωm and ωl in terms of the variablesΔω, and ωavg.
 

(c) Re-write the state-determined system using Δθ,Δω, and ωavg as state variables. Show that 
the dynamic behavior of the system may be viewed as a combination of a first-order system 
with state variable ωavg and a second-order system with state variables Δθ, and Δω. Note 
that both sub-systems are excited by the motor torque Tm but are otherwise independent of 
one another. 

(d) Evaluate the first-order behavioral parameter:	 the decay time-constantτ . Estimate the 
steady-state speed ωss when Tm = 6.0e-3 N-m. 

(e) Evaluate the second-order behavioral parameters: the undamped natural frequency ωo, and 
the damping ratio ζ. 
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13.4 Error Constants
 

Figure 13.4.1: 
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13.5 System Type
 

Using the same controller form as above, you are given a transfer function

G(s)
400

s(s2 10s 400)

By the above definitions, this is a type 1 system, and should have zero error to a step (or 
“displacement”) input.   However, the velocity error (that resulting from a ramp input) 
will not be zero.   Indeed our goal is to achieve a velocity error of < 2%. 

For this we can explore two different approaches. 

a) First plot a bode diagram of G(s)  

b) From that diagram, what will be the velocity error if the closed-loop system has a 
phase margin of 50º?  (That is, after you have found a loop gain to achieve the phase 
margin) 

c) Since the error is too large, a former 2.003 student tells you simply to increase the 
system type from 1 to 2 and all your problems will be over:  just look at the error table! 

Good advice or not?  - Please explain by looking at the resulting open loop bode 
diagram.

Now look at the alternative of using a lag compensator.  

d) Given that we want a velocity error < 2%, design a lag compensator that will achieve 
that result without changing the phase margin at the crossover frequency you found in 
part b).  Show the final Bode plot to confirm the result 

e) Now plot the resulting step response of the system designed in part d)  How does it 
compare to the expected values? 

f) Looking at the closed-loop system response to a ramp input, confirm that you have 
achieve a steady-state velocity error of 1% 

Where G(s) is the loop transfer function and K is the DC loop gain. 

KG(s)
R(s) Y(s)E(s)

Figure 13.5.1: 

134
 



13.6 Unity Feedback
 

Consider the feedback system of Figure 13.6.1 in block diagram form where G(s) = 1/s.
 

Kc G(s)
-

R(s) Y(s) 

Figure 13.6.1: System with unity feedback 

(a) Determine the closed-loop transfer function T (s) = Y (s)/R(s) for this system. 

(b) Find the gain	 Kc that will result in a closed-loop step response with a settling time of 1 
millisecond. 

(c) On a single Bode magnitude plot, show the following: 

– G(s) 

– T1(s) for K = 1 

– T2(s) for K = 10 

– T3(s) for K = 100
 

Be sure to label each plot clearly.
 

(d) If we define bandwidth as the range of frequencies over which the magnitude is > 0.5, what 
are the corresponding bandwidths of the three T (s) plots in part (c)? Recall that we said a 
true model of an op amp is: Ga(s) = K/s where K ≈ 106 

(e) Given this information, what is the expected step response of a unity-gain op-amp? 

(f) What is the corresponding bandwidth of that op-amp? 
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13.7 P and PI Controllers
 

In the lab this week, you are designing P and PI controllers for the motor velocity. This problem 
refers to the designs you’ve developed for the lab. Please use the results from your Prelab 9 
calculations to work this problem. 

(a) For the proportional velocity loop, write an expression for the transfer function of the negative 
of the loop transmission. Plot the Bode plot for this transfer function. What are the crossover 
frequency and phase margin for this loop? What is the closed-loop pole location? How does 
this compare with the crossover frequency? 

(b) For the proportional-integral velocity loop, write an expression for the transfer function of 
the negative of the loop transmission. Plot the Bode plot for this transfer function. What 
are the crossover frequency and phase margin for this loop? Also plot the closed-loop poles. 

(c) For the proportional-integral velocity loop, the controller has the form 

τs + 1 
K . 

s 

In the prelab, you have calculated values of K and τ to locate the poles with ζ = 0.5 and 
ωn = 30. In part b) above, you have looked at this design from a loop transmission perspec­
tive. Now we want to consider the design as it is affected by the loop phase margin. 

In this section, modify the PI controller so that you achieve a crossover frequency of 200 
rad/sec, with a phase margin of 15 degrees. What values of K and τ result? Be sure to 
explain how you arrived at these parameter values. Plot the closed-loop poles that result. 
What are the values of ζ and ωn associated with these new root locations? How do these root 
locations compare with the values in part b)? What root parameter seems to be associated 
with the crossover frequency, and what parameter seems to be associated with the phase 
margin? 
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14 Motors and Transformers 

14.1 Locked Load 

The sketch (Fig. 14.1.1) depicts a common mechanical drive configuration discussed in class. To 
identify parameters of the motor and coupler it is often useful to conduct a test of the locked-load 
dynamic response. The load is immobilized; a step change in motor torque is applied; and the 
resulting motion of the motor is observed. 

motor flexible
coupler load

bearings

Figure 14.1.1: Mechanical Drive 

(a) Assuming that all model elements have linear constitutive equations, develop a model to 
predict the angular position of the motor in response to an applied motor torque Tm. Express 
this model as a state-determined system. 

(b) Calculate 

(i) the damped natural period, and 

(ii) the decrement ratio for the oscillatory response, when the model parameters have the 
following values: 
Irotor = 5e-5 kg-m2 

Bmotor = 1e-4 N-m-s/r 
Bcoupler = 2e-5 N-m-s/r 
Kcoupler = 1.24e-2 N-m/r 
Tm = 4e-3 N-m abruptly applied constant torque 
ω(0) = 0 initial angular velocity 
θ(0) = 0 initial displacement 

(c) A proportional velocity feedback controller is added to the uncontrolled system described in 
(b) above. The motor angular speed is sensed and used in the control algorithm 

Tm = G1(r1 − ωsensed) (1) 
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where r1 is a reference speed parameter, and G1 is a gain parameter. In what units should 
G1 be expressed? Analyze the closed-loop system and construct a state-determined system 
which describes its dynamic behavior. Calculate the controller gain, G1, required to yield a 
critically-damped locked-load response. 

(d) A proportional position feedback controller is added to the uncontrolled system described in 
(b) above. The motor angular position is sensed and used in the control algorithm 

Tm = G2(r2 − θsensed) (2) 

where r2 is a reference position parameter, and G2 is a gain parameter.In what units should G2 

be expressed? Analyze the closed-loop system and construct a state-determined system which 
describes its dynamic behavior. Derive algebraic expressions which show how the following 
closed-loop behavioral parameters depend on the feedback gain, G2: 

(i) The locked-load undamped natural frequency ωO. 

(ii) The locked-load damping ratio ζ. 

(e) The usual implementation of the control algorithms (1) and (2) is with electronic signal pro­
cessing and amplification. It is however theoretically possible to implement these algorithms 
mechanically by interpreting the control algorithms as constitutive equations for elements 
connected between the motor rotor and a reference rotor which is driven with the desired 
motion. Can you identify the type of mechanical element which is represented by: 

(i) The algorithm (1)? 

(ii) The algorithm (2)? 
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14.2 Motoring with a Capacitor 

This problem concerns the motor connection shown in Figure 14.2.1. In this system, we assume 
that the motor torque is related linearly to current τm = Kim, and thus that the motor voltage is 
given by vm = Kωm. We further assume that the motor coil has zero resistance R = 0 and zero 
inductance L = 0. The capacitor C is connected to the motor terminals as shown. The motor rotor 
has a moment of inertia J . 

Assume that the motor is driven with a torque source, i.e., that τin is specified as an external input 
independent of the shaft speed. The shaft of the torque source is rigidly connected to the motor 
output shaft as shown in the figure. The torque source is massless. 

Note that we have defined the reference direction for motor speed ωm to be the same as that for 
the source speed ωin. Further note that with these definitions the motor torque is applied to the 
rotor in the same direction as the reference for ωm. 

ω

Motor, 
with rotor
Inertia J 

vm
+

-
C

im inτ   , ω inm

Torque
Source

Figure 14.2.1: Motor Diagram 

(a) Draw a free body diagram for the motor rotor showing the torques acting on it.	 Write 
Newton’s second law for this free body. Note that continuity requires that ωin = ωm. 

(b) How are the motor voltage and current related in light of the capacitor connection? 

(c) Use the information gathered above to write a differential equation for this system with τin 

as the input and the resulting speed ωin as the output. Be sure to show the steps you used 
to develop this differential equation. The electrical variables should be eliminated in your 
differential equation. 

(d) What is the equivalent mechanical model seen by the input torque source? Why? 

(e) Let the torque take a step from 0 to A Nm at t = 0 with zero initial rotor velocity. What is 
the resulting velocity ωin as a function of time? 
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14.3 Leadscrew with Translating Stage 

The system shown in Figure 14.3.1 has a translational stage of mass M which moves on friction­
less bearings. The stage is coupled to a lead-screw via the nut shown; the lead screw has a pitch 
of 10−2 m/revolution, and is fixed in the x-direction by the bearings shown, but is free to rotate 
about its axis. The lead screw has a moment of inertia J about this axis. The mass of the nut is 
included in M . The stage is connected to translational spring K2 and damper c2. The lead screw 
is connected to rotational spring K1 and rotational damper c1. 

Write the transfer function X(s)/F (s) where F is an input force driving the stage, and x is the 
stage position. 

Figure 14.3.1: Leadscrew
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14.4 Mass Pulley System
 

This problem concerns the mechanical system shown below.
 

2.003 Problem Set 4

Assigned: Fri. Sept 26, 2003
Due: Fri. Oct 3, 2003, in recitation, or in the drop box outside 35-014 by 3pm
Reading: Ogata Ch. 4

Note: This problem set is quite Matlab-intensive. If you are not yet comfortable with the use of
Matlab, .m files, and functions, you will need to review the tutorial materials available via the
course web page. This week, we add the use of the Matlab linear system functions such as step,
sys, and tf. These and others are presented in some detail in the reading assignment in the text.
You will need to master the use of these functions for this and future assignments.

Ogata B-3-17 Be sure to show a clearly labeled free body diagram for the forces applied to the
pulley. Also label these forces with their dependence on the system variables.

Ogata B-4-5 Use the derived transfer function and the Matlab step command to calculate and
plot the response of this sytem to a unit step input.

Ogata B-4-10 Plot the transfer function poles and zeros on the s-plane. The Matlab roots
command will allow you to find the poles.

Ogata B-4-12 Explain physically the character of the step response in terms of the system com-
ponents and topology. For instance, what components set the value of the response at t = 0+?
What components set the final value of the response (t→∞)? Why?

Problem 1 This problem concerns the mechanical system shown below.

As shown in the figure, the system has a force input F which acts on the pulley carrier. The
position of the carrier is x2. The pulley has a radius R, moment of inertia J , and mass M2.
The carrier is included in M2. The angular rotation of the pulley is θ, as shown.

1

Figure 14.4.1: Pulley System 

As shown in the figure, the system has a force input F which acts on the pulley carrier. The
 
position of the carrier is x2. The pulley has a radius R, moment of inertia J , and mass M2. The
 
carrier is included in M2. The angular rotation of the pulley is θ, as shown.
 
A mass M1 hangs on a string which is wrapped around the pulley as shown, and anchored to ground.
 
The position of M1 is x1. Note also that gravity acts on the system in the downward direction. We
 
assume that the motions of the system are such that the string remains under positive tension.
 

(a) What is the relationship between x2 and θ? Show your reasoning. 

(b) What is the relationship between x2 and x1? Show your reasoning. 

(c) Now we ask you to develop a dynamical relationship between the applied force F, the gravity 
load(s), and the resulting motion x2. That is, write a differential equation that describes the 
motion of the system with F and g as inputs, and with only x2 as the dependent variable. 
The variables x1 and θ should not appear in your equation. Clearly show your reasoning in 
developing this model. Be sure to include relevant free-body diagrams, and other figures that 
explain the steps in your development. 
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14.5 DC Motors
 

Consider the DC motor shown below. It is connected to a rudimentary circuit with only a single 
resistor, which follow Ohm’s Law : e = Ri where R is the circuit resistance. 

Figure 14.5.1: DC Motor with resistor 

(a) Given the motor constant Km and the circuit as shown find the relationship between T and 
Ω as seen at the motor shaft. Be careful with signs and look at your answer critically to be 
sure you got it right. 

Figure 14.5.2: DC Motors connected together 

(b) Now consider the system shown in Figure 14.5.2, where two motors are connected together 
as shown. Assuming negligible mechanical friction and inertia in the motors, find the overall 
transformer relationship θ1/θ2 and T1/T2 as a function of Km1 , Km2 and R. 

(c) What would be a purely mechanical equivalent of this? 
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14.6 Gear Train
 

For the system shown below with k = 10 [Nm/rad], J = 1 [Nm s2/rad] and b = 1.25 [Nms/rad]: 

Figure 14.6.1: System Diagram 

(a) Find the basic dynamic properties ζ and ωn as seen at θ2. 

(b) Now reflect these properties back to the input shaft.	 What are the basic properties ζ and ωn 

as seen at θ1. 

(c) Sketch the response of θ1 and θ2 to a unit step in T1 in the same plot. 

(d) What effect does the gear train have on the characteristic dynamics of this system? Please 
explain your answer. 
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14.7 Non-Ideal Transformer
 

For the system shown in the figure below, we cannot ignore the dynamic properties of the trans­
former and must try to account for them in our model. 

Bearings

Figure 14.7.1: Diagram of Non-Ideal Transformer 

Assuming that k1 is very large, the load inertia is large but of the same order of magnitude as J1 

and J2, and that the bearings exert a viscous drag on the shaft. 

(a) Write the equation of motion for each important mass in this system. 

(b) Express each of those equations in terms of appropriate input/output transfer functions. 

(c) Using a block diagram, show how these transfer functions combine to give us the overall 
transfer function G(s) = θ2/T1. 

(d) Now using block diagram algebra, derive the overall transfer function for this system explicitly. 
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14.8 Equivalent Mass and Inertia
 

(a) Derive an expression for the equivalent mass at the point of application of the force in Fig­
ure 14.8.1. 

m

f

v
a b

Figure 14.8.1: Mass on cantilever. 

(b) Derive an expression for the equivalent mass at the point of application of the force in Fig­
ure 14.8.2. Assume that each wheel has a mass, m , and a rotational inertia of J . Assume 
there is no energy loss due to bearings and that the wheels do not slip. 

m,J
f

v

M

Figure 14.8.2: Cart of mass M and wheels each of inertia J. 

(c) Derive an expression for the equivalent rotational inertia in Figure 14.8.3.	 Assume that the 
two pulleys have negligible inertia, there are no losses due to bearings and that the flywheel 
has inertia, J . 

r1
r2

J

T,ω

Figure 14.8.3: Pulley System
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14.9 Inertia in Geartrain
 

This problem considers the system shown in Figure 14.9.1 in which two rotational inertias J1 and 
J2 are connected by a gear train. 

 
Figure 14.9.1: Rotational inertias connected through a gear train. 

The rotational speed of J1 is ω1 and the rotational speed of J2 is ω2. An input source of torque τ1 

is applied to J1 in the direction of ω1. As shown in Figure 14.9.1, the gear train has a ratio of 
N : 1; that is, ω2 = Nω1. 

(a) Assume that the input torque source has a constant value of τ = τ0. What value of N will 
maximize the acceleration of the load ω̇2? 

(b) For this acceleration-optimum gear ratio, what is the equivalent inertia of J2 as seen by J1 

looking through the gear train? That is, what is the reflected inertia of J2 on the J1 side? 
How does this compare with J1? 

(c) The power input to the system is Pin = τ1ω1. For the optimum gear ratio calculated above, 
make a plot of Pin(t) assuming that the load starts at rest at t = 0. 
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14.10 Motor Driving Inertia Through Gear Train
 

This problem focuses on the motor connected to a load as shown in Figure 14.10.1. The motor is 
driven by an input voltage V in series with a coil resistance R. The motor is assumed ideal, with 
no energy storage or losses inside the motor. The motor is connected to a load inertia J > 0 and 
rotational damper b ≥ 0. The motor shaft and load rotate at angular velocity ω. The motor applies 
a torque to the load τ = Ki in the direction of ω; correspondingly, the back emf is e = Kω. 

 

Figure 14.10.1: Motor driving a rotational inertia and damper. 

(a) Write a differential equation describing the system in terms of the input voltage V (t) and the 
output speed ω(t). Write an equivalent differential equation with input V (t) and output i(t). 

(b) Assume that the system is initially at rest, and that at t = 0 the input voltage takes a step 
V (t) = V0us(t). Solve for the resulting transient in i(t) and ω(t), and make a plot of these 
two quantities as a function of time. 

(c) What are the steady-state values of i and ω? In steady-state, write an expression for the 
power being dissipated on the mechanical side in the load damper b, and on the electrical side 
in the resistor R. How much power is being supplied in steady-state by the voltage source? Is 
this in balance with the dissipation? In this steady-state, how much kinetic energy is stored 
in the load inertia J? 

(d) Make a plot of steady-state load power dissipation as a function of load damping b for b ≥ 0. 
What value of b results in maximum power dissipation in the load? How does this compare 
with the electrical equivalent damping term K2/R? For this maximum power value of b, how 
much power is being dissipated in the resistor R? 

(e) Finally, suppose we allow negative values of the load damping. Note that a negative damper 
will supply power to the load. For what range of b < 0 will the system be stable? For what 
range of b < 0 will the system be unstable? 
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15 MATLAB and Simulink
 

15.1 Matlab Spirograph 

Your instructor has written a small Matlab m-file called spirograph.m which he claims makes 
spirograph plots. This file is listed below, and is available for download from the course web site. 
Most of you have probably played with a simple spirograph made from a sheet of plastic. In such 
a device, an inner gear of some radius rolls inside an internal gear of larger radius. A pencil is 
inserted in the inner gear in one of a number of possible locations. As the inner gear rolls, the pencil 
thus traces out a trajectory on a piece of paper lying under the spirograph. The spirograph has a 
number of choices for the sizes of the inner and outer gears, which result in interesting variations 
in the generated patterns. 

Unfortunately, the instructor was too lazy to add much in the way of comments when he wrote the 
file. Your job is to look through this file to understand the underlying geometry and computations. 
Specifically, we ask you to: 

(a) Develop a diagram which explains the geometry which is being computed.	 Be sure this 
diagram includes all three of the radii r0, r2, and r3, as well as the angles θ1 and θ3. 

(b) Draw a diagram of the gear system, showing how this relates to the geometry above. 

(c) Explain the operation of the program and the function of each line of code, by annotating a 
listing of the m-file. 

(d) Run the m-file in Matlab by choosing some values for the parameters in the edit window, 
saving the file, then typing the name spirograph at the Matlab command line. Find some 
interesting values for the choice of radii and include the resulting plots. Can you explain the 
essential features of the plots on the basis of the chosen radii? 

(e) Rewrite the file as a Matlab function which can be called with the three radii as arguments. 
Include a listing of your function. To find out more about Matlab m-files and functions, 
review the material on Matlab in Ch. 1 of the text. You can also use the on-line Matlab help 
system. 
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15.2 MATLAB Plotting 

Use MATLAB to plot the following signals. Choose the appropriate time range and sampling 
points. 

(a) 10 sin 100t 

(b) e−t cos 100t 

(c) Re{est}; s = −1 + 10i 

−10t(d) 5e

10t(e) 5e

−100t − 5e−1000t(f) 8e
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15.3 Simulink Introduction
 

 Page 1 of 2 

Fun and games with SIMULINK

The purpose of this short but sweeeeet assignment is to learn about the block diagram language within 
MATLAB know as SIMULINK.  SIMULINK lets you create block diagrams of dynamic systems, invoke 
feedback control designs and then “run” the system to see the predicted performance. 

To get started, simply type “Simulink” in the MATLAB command window.  The GUI will then include a 
menu of various block options, along with a model window in which you build the system.  For example, 
the simple velocity servo we have discussed in class would look like this in SIMULINK: 

1
s   +as2

Transfer Fcn

time

To Workspace1

output

To Workspace

Sum
Step

Scope

K

Gain

Clock

And if I set K=5 and a = 1 in the command window, the simulation (using default simulation parameters) 
becomes: 

Figure 15.3.1: 
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For this assignment I encourage you to look at the various blocks in SIMULNIK and to run some of the 
DEMOS.  

 In addition, please look at the following: 

Consider the problem we have done in class:  The PI control of the velocity servo. However, here we 
address the problem of noise in the velocity measurement.  This is typically done with a tachometer (really 
a generator) and leads to high frequency noise from the brushes in the generator.  As a result, we often 
place a “low pass filter” in the feedback loop.  Thus: 

H (s)
K f

f s 1

Let’s look at this effect by using both analysis and SIMULINK simulation: 

a) First create the model of the PI controller for the velocity servo: 

Sum
Step

Kp
s+a

Plant

s+z
s

PI Controller

Kc

Gain

b) Calculate analytically the values for Kc  and z  (for the PI controller) that will give a critically damped 
response with a settling time of 0.5 second.   (Assume a=Kp=1) 

c) Now implement those gains in SIMULINK and see if it agrees with expectations.   If there is any 
discrepancy, please explain it. 

d) Now add the feedback filter H(s) to the SIMULINK diagram. Assume that Kf = 1 and that the filter time 
constant ( f = 0.5 sec).  Without changing Kc  or z, run the simulation again, and plot the result.  What 
happened and why?   

e) Now go ahead and vary the gain Kc until you get critically damped response again as seen by the 
simulation response.   (Try to keep track of how many simulations you have to do until you get the “right” 
answer.) What is the settling time for this case? 

Figure 15.3.2:
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15.4 Wackygraph 

Your instructor has written a small Matlab m-file called wackygraph.m which he claims makes 
interesting plots. This file is listed below, and is available for download from the course web site. 

% wackygraph
 
% DL Trumper 9/9/02
 

r0 = 10;
 
r2 = 1;
 
N = 10;
 

g1 = 40;
 
g2 = 0.2*r0;
 

theta1 = [0:pi/1000:100*pi];
 
theta3 = -g1*theta1;
 

r1	 = r0 + g2*sin(N*theta1);
 

position = (r0+r1).*exp(j*theta1) + r2*exp(j*theta3);
 
figure(1)
 
plot(position)
 
axis equal
 

Unfortunately, the instructor was too lazy to add much in the way of comments when he wrote the 
file. Your job is to look through this file to understand the underlying geometry and computations. 
Specifically, we ask you to: 

(a) Develop a diagram which explains the geometry which is being computed.	 Be sure this 
diagram includes all three of the radii r0, r1, and r2, as well as the angles θ1 and θ3. What 
are the effects of the parameters g1, g2, and N? 

(b) Write expressions for the real part of the position variable, and the imaginary part of the 
position variable, i.e., Re{position} and Im{position}, respectively. 

(c) Explain the operation of the program and the function of each line of code, by annotating 
a listing of the m-file. Note the use of the .* operator which does element by element 
multiplication. Why did the program use this. What happens if the regular * operator is 
used? 

(d) Run the m-file in Matlab by chosing some values for the parameters in the edit window, 
saving the file, then typing the name wackygraph at the Matlab command line. Find some 
interesting values for the choice of parameters and include the resulting plots. Can you explain 
the essential features of the plots on the basis of the chosen parameters? 

(e) Rewrite the file as a Matlab function which can be called with the three radii and three 
parameters as arguments (6 total arguments). Include a listing of your function. To find out 
more about Matlab m-files and functions you can use the on-line Matlab help system. 
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16 Case Studies 

16.1 CD Player 1 

In a typical CD player the disc is mounted directly on the shaft of an electric motor. The rotor of 
the motor has a moment of inertia Ir and experiences a frictional retarding torque which can be 
modeled by a linear damper with damping coefficient Bm. 

(a) The mass of a compact disc is 0.028 kg, and its diameter is 0.120meters. The diameter of the 
hole in the center is 0.015 meters. Calculate the moment of inertia Il of the CD. 

(b) Assume that the electric motor, when it is powered, produces a constant torque Tm inde­
pendently of the rotational speed ωm. It is observed that,after an initial starting transient, 
the steady-state rotor speed ωss is the same, whether a CD is mounted or not. The start-up 
transients are, however, different. With no disc mounted, the rotor spindle-speed reaches 
95% ofωss in 0.30 seconds, but when a disc is mounted it takes 2.0 seconds toreach that same 
speed. Assuming that this behavior can described by a simple linear model, estimate the 
value of the damping coefficient Bm, 

(i) when there is no disc mounted, and 

(ii) when a CD is mounted. 

(c) Estimate the moment of inertia of the motor rotor Ir. 

(d) Construct a state-determined representation of your linear model for the system with the CD 
mounted. Take Tm to be the input and ωm to be the output. 
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16.2 CD Player 2 

A common design for a speed controller uses simple proportional velocity feedback. The actual 
speed of the disc is sensed from information written onto the disc. The motor torque Tm is then 
generated according to the following control algorithm 

Tm = G(r − ωsensed) 

where r is a constant reference speed, and G is a constant gain. 

(a) What are the dimensions of the gain parameter G? What would be the units for G in the SI 
system of units? 

(b) Consider that this controller is applied to the CD player modeled in Problem 16.1 (d). Con­
struct a state-determined representation of a linear model for the controlled system with r as 
the input and ωm as the output. 

(c) Compare the inputs required to achieve a steady-state disc rotation speed of 4.0 revolutions 
per second for the uncontrolled open-loop system of Problem1 and for the controlled closed-
loop system of the present Problem: 

(i) What is the magnitude of the constant, suddenly applied, motor torqueTm required to 
reach the desired steady-state speed in the uncontrolled system. 

(ii) Obtain a formula (involving the gain parameter G) for the magnitude of the constant, 
suddenly applied, reference speed r required to reach the desired steady-state speed in 
the controlled system. 

(d) Design the controller; i.e., choose the value of G, such that the time to reach 95% of the steady-
state speed for the controlled system is 1/5 of thecorresponding time for the uncontrolled 
system. 

(e) Write a MATLAB script which can integrate the equation (or equations) ofPart (b) and plot 
the time history of the motor torque Tm during the startingtransient of the controlled sys­
tem. Compare the magnitude of the maximum motortorque in the controlled case with the 
magnitude of the constant torquefound in (c{i}) for the uncontrolled case. 
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16.3 CD Player 3 

In a CD player the disc with moment of inertia Id is mounted directly on the shaft of an electric 
motor, whose rotor has a moment of inertia Ir. The unit experiences a frictional retarding torque 
that can be modeled by a linear damper with damping coefficient Bm. The parameter values for 
the system are estimated to have the following values: 

Id = 5e-5 kg-m2 

Ir = 9e-6 kg-m2 

Bm = 9e-5 N-m/rad/sec 

Formulate the state-determined equation of motion for rotation with the angular velocityωm as the 
output and the motor torque Tm as the input. 

(a) Consider the steady-state sinusoidal oscillation of ωm in response to an input torque of the 
form Tm = Ta sin Ωt. Calculate the response amplitude and phase angle for three frequencies: 

Ω = 1rad/sec 
Ω = 5rad/sec 
Ω = 15rad/sec 

for each of the following cases: 

(i) No disc mounted on the motor spindle 

(ii) A disc is mounted on the spindle 

(b) Evaluate the break frequency for each of the following cases: 

(i) No disc mounted on the motor spindle 

(ii) A disc is mounted on the spindle 

(c) Make an accurate, labeled, sketch of the Bode plots for amplitude ratio and phase angle for 
each of the following cases: 

(i) No disc mounted on the motor spindle 

(ii) A disc is mounted on the spindle 

(d) If the input torques are applied to the rotor initially at rest, estimate how long it takes to reach 
the steady state (for most practical purposes, steady state may be assumed to be reached at 
the end of 4 decay time-constants, when 98% of the transienthas decayed). Do this for each 
of the three values of Ω, for each of the followingcases: 

(i) No disc mounted on the motor spindle 

(ii) A disc is mounted on the spindle 

155
 



16.4 Pinewood Derby 1
 

16 feet

6 inches

3 
fe

et

alpha

Figure 16.4.1: Pinewood Derby 

Referring to the Pinewood Derby (Fig. 16.4.1), answer the following questions: 

(a) In SI units, how much energy is available to move the race car? 

(b) A typical Derby car is 6 inches long. If there were no friction of any kind,what would be the 
maximum speed (in SI units) a race car could attain if all its weight were concentrated at the 
front end of the car? 

(c) What would be the maximum speed if all its weight were concentrated at the rear end of the 
car? 

(d) In case (c) how long does it take the car to reach the bottom of the inclined section of track? 
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16.5 Pinewood Derby 2 

Consider adding a viscous friction retarding force ‘bv’ to the previous model. With such a retarding 
force which increases with velocity, the speed of the car, even on an inclined track of infinite length, 
is limited by the speed at which the retarding force just balances the accelerating force. If this 
limiting speed is twice the velocity obtained in part (c) of Problem 16.4, what is the value (in SI 
units) of the viscous friction parameter ‘b’? 
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16.6 Pinewood Derby 3 

The two MATLAB scripts which follow permit you to integrate the equation of motion for a racecar 
on a long incline with angle ‘alpha’, subjected to a viscous friction force. Study the programs and 
experiment with them , using the Pinewood Derby parameters and the friction parameter ‘b’ 
obtained in Problem 16.5. 

(a) Plot a graph of the racecar speed vs.	 time for a car starting at rest, over the time period 
obtained in Problem 16.5, part (d). 

(b) With a long incline the speed of the car is asymptotic to the limiting speed described in 
Problem 16.5. Use the scripts to determine how long it takes for the speed to reach 99.9% of 
the limiting speed. 
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16.7 Pinewood Derby 4 

In Problem 16.4 a Pinewood Derby race car was analyzed under the assumption that its motion 
was opposed by linear viscous friction with a constitutive relation 

fviscous = bv 

(a) Formulate a revised model in which the viscous friction element is replaced by a model of air 
resistance (sometimes called form drag) with a constitutive equation 

fdrag = ACdv|v| = ACdv 2sgn(v) 

where A is the frontal area of the car and Cd is a drag coefficient that depends on the car’s 
geometry; i.e., on its form. 

(b) What are the dimensions, in SI units, of the drag coefficient Cd in the above constitutive 
relation? 

(c) Derive a mathematical expression for the time-history of the speed of the car, on a horizontal 
track, if it starts at t = 0 with initial velocity vo. 
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16.8 Pinewood Derby 5 

Formulate a differential equation for the velocity of a race car in a model in which the car of mass 
m descends a very long inclined track with angle (alpha), under the influence of gravity and a 
formdrag, which has the constitutive equation described in Problem 12.8. 

(a) Show that this model predicts a terminal velocity	 vss on an infinitely long track.Derive a 
formula for vss in terms of the parameters m, (alpha), g, A, and Cd. 

(b) If, for the same parameter values considered in Assignment 1 (m = 0.1418 kg, (alpha) = 
10.81degrees), the terminal velocity is the same as it was for viscous friction (vss = 8.60 m/s), 
what is (are) the parameter value(s) in the form-drag model? 

(c) Study the MATLAB scripts ‘car2.m’ and ‘car form.m’ which can be used to explore the 
model described in this Problem. Determine the time T it takes for the car starting at rest 
to accelerate to 99.9% of the terminal velocity. 

(d) Compare the result of 2(c) with the corresponding result in 4(b) of Problem 16.7.	 Which 
friction model has a quicker approach to the terminal velocity? Give a physical and/or 
graphical explanation for this result. 
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16.9 Engine Block Vibration 1 

Consider uniaxial vibration of an engine block that weighs 200 pounds and is supported on mounts 
that have an effective stiffness of 18,000 pounds per inch. and an effective linear damping coefficient 
of 2 pounds per inch per second, and is subjected to an oscillating force of the form 

f(t) = fa sin Ωt 

where the amplitude fa equals 2 pounds. Derive an equation of motion for the displacement y(t), 
of the engine block from its equilibrium position. 

(a) Write an expression for the complex amplitude A of the steady-state displacement response. 

(b) Obtain: 

(i) the low-frequency asymptote for the complex amplitude (a); 

(ii) the high-frequency asymptote for the complex amplitude (a); 

(iii) the break frequency Ωbreak where the magnitudes of (i)and (ii) are equal. 

(c) Evaluate the input frequency Ωpeak at which the engine displacement amplitude has the 
greatest magnitude. 

(d) Evaluate the ratio |A(Ωpeak)/A(0)| where A(0) is the limit of A(Ω) as Ω → 0. 

(e) Use MATLAB to make Bode plots for: 

(i) the magnitude of the ratio A(Ω)/A(0); 

(ii) the phase of the complex amplitude A(Ω). 

Use a logarithmic scale for frequency Ω which extends at least one decade below, and one decade 
above, the break frequency. Express the magnitude scale in decibels; i.e., plot 10 log10(magnitude)2 . 
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16.10 Engine Block Vibration 2 

Reconsider Problem 16.9 for the same engine block and mounts, but instead of the input force 
with constant amplitude fa = 2 pounds, consider the amplitude of the input force f(t) = fasinΩt 
to increase with the square of the frequency, as it does when the force is a reaction to the force 
required to accelerate a mass m = w/g which oscillates at frequency Ωwith displacement amplitude 
r. Take fa = (w/g)rΩ2, where (w/g)r = (1.93/386)(1) = 0.005 pound-sec2 . 

(a) Write an expression for the complex amplitude A of the steady-state displacement response. 

(b) Obtain: 

(i) the low-frequency asymptote for the complex amplitude (a); 

(ii) the high-frequency asymptote for the complex amplitude (a); 

(iii) the break frequency Ωbreak where the magnitudes of (i) and (ii) are equal. 

(c) Evaluate the input frequency Ωpeak at which the engine displacement amplitude has the 
greatest magnitude. 

(d) Evaluate the ratio |A(Ωpeak)/A(∞)| where A(∞)is the limit of A(Ω) as Ω →∞. 

(e) Use MATLAB to make Bode plots for: 

(i) the magnitude of the ratio A(Ω)/A(∞); 

(ii) the phase of the complex amplitude A(Ω). 

Use a logarithmic scale for frequency Ω which extends at least one decade below, and one decade 
above, the break frequency. Express the magnitude scale in decibels; i.e., plot 10 log10(magnitude)2 . 
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16.11 Engine Block Vibration 3 

Reconsider Problem 16.9, but now with emphasis on the start-up transient. Cast the equations of 
motion in the standard form for state-determined systems: 

d 
dt x	 = Ax + Bu 

y	 = Cx + Du 

with the force f(t) as input and the displacement y(t) as the output. Consider that the engine is at 
rest in its equilibrium position untilt = 0. Take the force f(t) to be an abruptly initiated sinusoidal 
force of the form
 ⎧⎨
 

⎫⎬
0, t < 0
 
f(t) =
 ⎩
 fa sin Ωt, t > 0 ⎭
 

with fa = 2 pounds. 

(a) Write a MATLAB script to integrate the state equations from the given initial condition. The 
script should have the capability of accepting an arbitrary value of the forcing frequency Ω. 

(b) The MATLAB solution for	 x is a two-column matrix consisting of the functions y(t) and 
v(t) = dy/dt(t) evaluated at the many intermediate t-values listed in the one-column t-
matrix. Write some additional script to make MATLAB construct three one-column matrices 
of the following power quantities evaluated at the same set of intermediatet-values: 

(i)	 Pin(t) = f(t) ∗ v(t), the power transmitted to the vibratory system by the input force 
f(t). 

(ii)	 Pdiss(t) = ffric(t) ∗ v(t) = bv2(t), the power dissipated by the damping element. 

(iii)	 Pstored(t) = Pin(t) − Pdiss(t), the power transmitted to the storage elements where it is 
continually shifted back and forth from kinetic energy of the engine block to potential 
energy of the suspension springs. 

(c) Have MATLAB make the following four plots:
 

Engine block displacement y(t) vs. t;
 

Power input Pin(t) vs. t;
 

Power dissipated Pdiss(t) vs. t;
 

Power stored Pstored(t) vs. t;
 

for each of three input frequencies:
 

(i) Ω = 1/3Ωbreak; 

(ii) Ω = Ωbreak; 

(iii) Ω = 3Ωbreak. 

In order to see both the transient response and the steady state response in the plots, the time 
span in the plots should be at least ten times longer than the system decay time-constant. 
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16.12 Plate On Springs 1
 

m yk

kc kc

Figure 16.12.1: Steel Plate on Springs 

In class a model of the vertical motion of a steel plate mounted on four springs (Fig. 16.12.1) 
analyzed. Consider the limiting case where all friction is absent. Derive an equation for the dis­
placement history of the plate when it starts at t = 0 from its equilibrium position with the initial 
velocity vo. 
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16.13 Plate On Springs 2 

Consider the experiment demonstrated in class, in which a textbook is dropped on the spring-
supported plate. Again, for simplicity, consider the limiting case where all friction is absent. Take 
the mass of the textbook to be one half the mass of the plate, and assume that during the motion 
the textbook remains in contact with the plate. There are two cases to be considered. In Case I 
there is a “zero height drop”in which the book is released from rest when just in contact with the 
plate. In Case II the drop is from a non-zero height such that the book strikes the motionless plate 
with a downward velocity of vo. In both cases the motion begins at t = 0, at the instant when the 
book contacts the plate. 

(a) What is the ratio of the frequency of oscillation in Case I to the frequency of free oscillation 
of the unloaded plate? 

(b) What is the ratio of the frequency of oscillation in Case II to the frequency of free oscillation 
of the unloaded plate? 

(c) Locate the equilibrium position of the (book + plate) system with respect to the equilibrium 
position of the unloaded plate . 

(d) Determine the initial conditions for yk and vk for Case I. 

(e) Determine the initial conditions for yk and vk for Case II. 

(f) For each case write a mathematical expression for the vertical motion of the book and plate 
for t > 0. 
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16.14 Mousetrap Dynamics 1 

This problem makes use of the mouse traps which were handed out in class. The problem is inten­
tionally open-ended; we haven’t told you what methods to use to find the requested information. 
Think physically about the problem, and develop the simplest methods which will allow you to 
answer the questions which we pose with reasonable accuracy. In your answers, we expect you to 
provide a good description of the experiments you conducted and the assumptions made in devel­
oping answers. Relevant and clear sketches, figures, and experimental data clearly presented will 
greatly help in telling us what you did. We will come back to this problem over the course of the 
next few weeks, so please retain copies of your data and calculations for later reference. We will 
not provide solutions for this problem, so it is up to you to develop a solid understanding now so 
that you will be able to effectively answer later modeling questions. 

You are welcome to work in groups of your own creation for solving the experimental parts of this 
problem. However, it is up to you to be sure whatever collaboration you undertake is effective 
for increasing your own learning. The mousetraps are yours to keep, so feel free to drill holes, tie 
on strings, etc., if that will facilitate your experiments. Just be sure that your trap can remain 
functional. If you are working in a group, you can take one of your traps completely apart if that 
helps. We recommend putting some super glue on the two staples in the base where these enter the 
base in order to glue them into the base. Otherwise the staples have a tendency to pull out in about 
20-30 triggers of the trap. Safety note: Parts of the trap attain significant velocities when 
the trap is triggered.Thus, you must wear the provided safety glasses at all times when 
you are conducting experiments on the trap! Your vision is a precious commodity! 
Please return the safety glasses to us when requested at the close of this experiment. 

To have a common vocabulary, we will use the following terminology: The trap is built on a wood 
piece we will call the base. We will refer to the main pivoting wire portion of the trap as the bail. 
The bail is driven by the main spring wrapped around its pivot point. When cocked, the bail is 
retained by a wire that we will call the trigger bar.The bait is placed on a piece of metal we will call 
the trigger plate. When cocked, the trigger bar is captured by the trigger plate, and then released 
when the trigger plate is touched with sufficient force.Please answer the following questions. Think 
carefully about how to develop these answers in a accurate,efficient manner. Use fundamentals to 
guide your thinking! 

(a) Define the cross-bar as the portion of the wire bail at the largest radius from the pivot, i.e., 
the portion of the wire that hits a pencil when the trap is triggered. What is the force 
acting on the crossbar when the trap is cocked, i.e., how much force is required to keep the 
trap in the cocked position? What element supplies this force to the cross-bar? How is 
this force transferred to the base?About what fraction of the force is carried by the trigger 
plate? Include a diagram to explain your thinking.Devise a means to measure this hold-open 
force to an accuracy on the order of a fraction of a Newton. Tell us how you made your 
measurements, and why they should be valid. What provides the weight calibration? Include 
relevant diagrams and experimental data. 

(b) When the trap is in the closed position (i.e., in its resting state), there is still a torque acting 
on the bail. For example, when the cross-bar is resting on a pencil, a force is exerted on the 
pencil,forcing it against the base. We will call this the resting-state force. Devise a means to 
measure this resting-state force to an accuracy on the order of a fraction of a Newton. Tell us 
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how you made your measurements, and why they should be valid. What provides the weight 
calibration? Include relevant diagrams and experimental data. 

(c) Use the force measurements you made above to develop a model for the spring torque as a 
function of opening angle, under the assumption that the force, and thus the torque, varies 
linearly with opening angle. As a convention, assume that the resting-state angle is0 radians, 
and thus that the hold-open angle (i.e., when the trap is cocked) is π radians. Express your 
torque model in units of Nm/rad. What is the angle at which zero torque is exerted (it’s not 
0 rad,since there is still a significant torque at this angle)? Make a sketch of the torque as a 
function of angle. 

(d) On the course web site there are several high-speed videos which show the trap being triggered. 
The video labeled mtrap1 shows a pencil triggering the trap. The frame rate of this video is 
1000frames/sec. On the basis of your observation of the video, about how long does it take 
for the trap to close after it is triggered? What is approximately the highest velocity in m/sec 
attained by any part of the trap? About how fast is the cross-bar going in m/sec when it hits 
the base after being triggered?Explain how you developed these estimates. To give a sense of 
scale, an arrow shot from a modern bow goes about 100 m/sec, and a bullet from a rifle goes 
about 1000 m/sec. 

167
 



16.15 Mousetrap Dynamics 2
 

This problem further considers the mousetrap system. Now we develop a model which will predict 
the closing time of the trap. 

(a) From the geometry of the bail, and using the density of steel of about 8 × 103/m3, calculate 
the moment of inertia of the bail about the pivot point, in units of kg-m2 . 

(b) Last week you measured the force of the bail in the open and closed positions, and thereby 
developed a model of the torque acting on the bail as a function of angle. For the rest of 
this week’s problem, we will assume that the torque does not vary as a function of angle, but 
rather has a constant value equal to the open position torque. This will allow us to simplify 
the analytical calculation of the trap closing time. What is the value of this constant torque 
in N-m? 

(c) Use the simplified constant spring torque model developed above as part of an analysis which 
will predict the time required for the trap to close when triggered. Clearly describe your 
thinking in developing this model. Please provide plots of the angular velocity and position 
as a function of time as well as the magnitude of the velocity of the cross-bar as a function of 
time. What is the velocity of the cross-bar when it reaches the closed position (θ = 0)? How 
long does it take the trap to close from when it is triggered? 

(d) Compare your predicted transition time and velocity with data that you extract from the 
high-speed video which we have placed on the web. Tell us how you made this comparison. 
How might your model need to be modified in order to match the measured data on the 
video? 
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16.16 Mousetrap Dynamics 3 

This problem revisits the continuing saga of mousetrap dynamics. In our last exciting installment, 
you calculated the time to close under the assumption that the torque is constant with angle. This 
allowed a fairly simple analysis to predict the closing time with reasonable accuracy. This week, 
we will allow the torque on the bail to vary linearly with angle. With this linear variation, and 
assuming no damping, the mousetrap is really a second-order oscillator, with a pair of poles on 
the imaginary axis during the time that the bail is closing. Nonlinearity manifests itself in a very 
strong fashion when the bail hits the wood part of the trap. However, the closing motion can be 
well-predicted by this linear model. Specifically, we ask you to: 

(a) Recall your earlier results to write a model for the spring torque as a function of angle in the 
form
 

τ = K(θ + θ0).
 

Here τ is the torque in Nm applied to the bail from an external source, K is the spring 
constant in Nm/rad, θ is the rotational angle of the mousetrap, and θ = −θ0 is the angle at 
which the torque applied to the bail is zero. 

(b)	 Use this spring model along with the value of moment of inertia that you computed last week 
to write an undamped second-order differential equation describing the mousetrap motion in 
the form 

Jθ ̈= K(θ + θ0). 

In the open position, we have defined θ = π. From this initial condition, solve for the motion 
assuming that the bail is released at t = 0. Be clear as to how you handle the θ0 term. 

How long does it take for the bail to reach the closed position θ = 0? You may assume for 
the purposes of this analysis that the motion comes to an instantaneous stop when the angle 
reaches 0. Solve for and write an expression for the force required to arrest this motion in 
zero time. 

(c)	 Use Matlab to make a plot of θ(t) during the closing event based upon your solution above. 
Also plot on the same axes the function θ(t) based upon last week’s analysis in which the 
torque was constant as a function of angle. How do these two solutions differ? Why? 

(d)	 Use the high-speed video of the mousetrap to develop a measure of θ(t) for all the frames 
during the closing event. Overlay this experimental data on your plot from part c). How 
does this data differ from the analytical results? Why? How might you refine your analysis 
to better model the event? You do not need to carry out this analysis, just tell us what 
additional elements or analysis might be added. 
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16.17 Mousetrap Dynamics 4 

Trigger your mousetrap with a wood pencil, and notice the dent that appears in the pencil. In this 
last installment of the mousetrap problem, we ask you to develop a calculation which will predict 
the force experienced by the pencil, and the approximate time-scale in which this force is applied. 

(a) Take a look at the high-speed video on the web of the mousetrap being triggered with a 
pencil. On the basis of the 1000 frame per second rate of the video, what can you say about 
an upper bound on the time in which the pencil is dented? 

(b) Observe and estimate the depth of the dent in the pencil.	 In the simplest of models, we 
might assume that this dent is made at constant force. Under this assumption, you can 
readily calculate the force and duration of the denting process. You will need to rely on 
the values of angular velocity and moment of inertia that you developed earlier. Show your 
assumptions and calculations, and make a graph of your estimated force as a function of time. 
How does this estimate compare with the upper bound that you established in part a)? 

(c) During the denting process, what is the instantaneous power flow as a function of time? 
That is, what is the time rate of energy transfer from the kinetic energy of the bail to the 
mechanical deformation of the pencil? Express this result in watts. Also, convert this power 
to units of horsepower. How does this power flow compare to typical devices such as light 
bulbs, lawn mower engines, etc.? 
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16.18 Hydraulic Elevator Design
 

For buildings of moderate height, passenger elevators are frequently driven by hydraulic actuators. 
Such elevators also include some form of spring/damper assembly in the bottom of the elevator 
shaft to catch the elevator in the event of a failure in the hydraulic drive or in the elevator control 
system. This problem studies an idealized model of the design of this crash stop. Specifically, 
suppose we model the elevator as a lumped mass m = 2000 kg. This mass (the car) rides in a 
vertical shaft, driven from the bottom by a hydraulic cylinder. At the bottom of the shaft are a 
spring and damper which form the crash stop. Define motion in the vertical direction as x. Assume 
that at t = 0, with the bottom of the elevator at a height of 10 m above the crash stop, and with 
the elevator at zero velocity, a valve fails in the hydraulic cylinder. The elevator begins falling 
under the influence of gravity. During the fall, the oil remaining in the cylinder sprays out of the 
failed valve, and acts as a damper with a damping coefficient c = 2000 Ns/m. 

(a) Develop a model to predict the motion of the elevator during the fall.	 Make plots of the 
elevator position and velocity as a function of time during the fall. What is the total force 
exerted on a passenger during the fall? For this purpose, we model the passenger as a rigid 
mass of 100 kg (already included in the total m = 2000 kg). 

(b) After falling 10 m, the bottom of the elevator contacts the crash stop. Your job is to design the 
crash stop so that the elevator comes to rest in a manner which is safe for the passengers and 
which also doesn’t use up too much space in the building.Develop a model for the behavior 
of the elevator system after it hits the crash stop. In your model, assume that the damping c 
from the oil cylinder is present throughout the motion. You may also assume that the crash 
stop mass is insignificant.Use this model to choose the values of the crash spring kr and 
damper cr to meet the following specifications: 

(i) The maximum acceleration d2x/dt2 on the car must be less than 20 m/s2 at all times. 

(ii) The maximum deflection of the crash stop is to be minimized. 

(iii) The settling time will be defined as the time from initial contact with the crash stop 
until the time that the elevator velocity remains below 0.1 m/sec. The settling time 
should be made small. 

Develop a model and analyses which allow you to meet the specifications above. Clearly show 
the key steps, assumptions, and results. Note that this is a typical design problem in that 
there is no one right answer, only degrees of goodness in satisfying the specifications. Tell us 
how you attempted to solve this problem. Be sure to include plots of the car position and 
velocity as a function of time, the deflection of the crash stop, and the force exerted on a 
100 kg passenger. Also show on your plots the peak acceleration of the car and the time at 
which it occurs, the maximum deflection of the crash stop and the associated time, and the 
time at which the car velocity meets the settling specification. 
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16.19 Servo Position Control
 

Figure 16.19.1: 
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16.20 Servo Frequency Compensation 

This problem is a continuation of Problem 16.19. 

Figure 16.20.1:
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16.21 Servo Torque Disturbance 

This problem is a continuation of Problems 16.19 and 16.20. 

b)  By starting with a bode diagram of the open – loop system, design the compensator to 
achieve the following specification for the system: 
 - settling time = 0.8 sec. 
 - minimum damping ratio = 0.5 

c) For your specific design, plot the resulting closed – loop step response using 
MATLAB and comment on how well it conforms to your predictions.  Please explain any 
divergence from what you expect. 

d)  How does the response of part c) compare to that you would expect from using 
the velocity feedback block show above?  (You should not need to do a complete design 
but rather just look at the possible closed-loop transfer function for this case.) 
______________________________

Problem  3 Effect of a Torque Disturbance 

Now we encounter a true disturbance: the application of some “unknown” and 
undesirable torque on the motor shaft.  Our design goal will be to completely reject this 
disturbance, and to do so we must make use of more complex controller forms.  

For the moment keep Kp at the value used in Problem 1b), but now assume r = 0 and Td
is a unit step. 
a) What is the disturbance transfer function 

Td

for this system? 

b) Sketch the expected response to the step in Td based on this transfer function..

c) What will be the steady-state error to this disturbance? 

Now, to completely eliminate this error, we’ll try an integral controller of the form  

Gc= Kp/s.

With this new controller: 

d) Explain why this controller form will not yield an acceptable control system by 
reference to the bode plot for this new system. 

As a remedy to this problem, we could replace the integral controller with a proportional 
integral (PI) controller of the form: 

Gc(s) = Kp KIs

that can be re-written as: 

 Gc(s) = 
Kc(s )

s

Figure 16.21.1:
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16.22 Plate On Springs Damped 1
 

m yk

kc kc
bc bc

f(t)

Figure 16.22.1: Plate On Springs With Damper 

Consider the vertical oscillations of a 5-pound steel plate supported on springs, as demonstrated 
in class (Fig. 16.22.1). Begin by formulating a simple linear model for the motion of the plate in 
response to an applied force f(t). Your job is to use the MATLAB scriptsMassSprgDmpr1, 2 & 
3 based on closed form analytical solutions, of the type developed in class, to obtain twelve plots 
of the time history of response for twelve different sets of model parameters. In every case the 
plate is at rest in its equilibrium position, when, att = 0 a constant force of 5 pounds is suddenly 
applied in the direction of positive displacement. In each case you must select the model stiffness 
and damping parameters to achieve the specified behavioral parameter values. 

(a) In each of the first four plots the undamped natural frequency is 5 Hz(cycles/second), and 
the damping ratios have the following values: (i) ζ = 0.1; (ii)ζ = 0.5; (iii) ζ = 1.0; (iv) 
ζ = 1.5. You must choose the model parameters to insert in the MATLAB scripts to get 
the time histories of response corresponding to these combinations of ωo and ζ. The script 
’MassSprgDmpr1.m’ must be used for Cases(i) and (ii). The script ’MassSprgDmpr2.m’ must 
be used for Case (iii), and the script ’MassSprgDmpr3.m’ must be used for Case (iv). For 
Cases (i), (ii), and (iii) take the total duration of the time history to be equal to 5 times the 
decay time constant. In Case(iv) take the total duration of the time history to be 5 times the 
longest time constant. 
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Figure 16.22.2: Figure 1
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Figure 16.22.3: Figure 2 

(b) In each of the next four plots, the damped natural frequency is 5 Hz, and the damping ratios 
have the following values: (i) ζ = 0.1; (ii)ζ = 0.3; (iii) ζ = 0.5; (iv) ζ = 0.7. Again choose 
model parameters to get the time histories of response corresponding to these combinations 
of ωd and ζ.Here all cases can be run with ’MassSprgDmpr1.m’. In each case take the total 
duration of the time history to be equal to 5 times the decay time constant. 
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Figure 16.22.4: Figure 3
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Figure 16.22.5: Figure 4 

(c) In the final four plots the decay time constant is fixed at τ = 0.10seconds, and the damping 
ratios have the following values: (i) ζ = 0.3; (ii)ζ = 0.5; (iii) ζ = 0.7; (iv) ζ = 0.9. Choose 
model parameters to get the time histories of response corresponding to these combinations 
of decay time constant and ζ. In each case take the total duration of the time history to be 
equal to 5 times the decay time constant. 
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Figure 16.22.6: Figure 5
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16.23 Plate On Springs Damped 2 

Make a careful sketch of the complex plane showing the location of the eigenvalues, λ corresponding 
to the twelve parameter sets used to produce the time histories in Problem 16.22. 
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16.24 Plate On Springs Damped 3 

Reconsider the spring-supported plate of Problem 16.22, but now take the motion to be caused by 
a 2-pound rubber ball which strikes the plate and bounces away. Assume that the plate is at rest in 
its equilibrium position, when it is struck by the ball at t = 0. Assume the ball is falling vertically 
with a velocity of 10 feet/second and rebounds with an upward velocity of 3 feet/second, and that 
it does not impact the plate again. 

(a) Determine the initial velocity of the plate, immediately after the impact. 

(b) Select the model stiffness and damping parameters so that the damped natural frequency is 
5 Hz, and the damping ratio ζ is 0.3. 

(c) Insert the model parameters in ’MassSprgDmpr1.m’ and plot the displacement response of 
the plate for an interval equal to 5 times the decay time constant. 

(d) What is the relationship between the time history in Problem 16.23 Part (c) and the time 
history in the plot for b(ii) in Problem 16.22? 
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16.25 Plate On Springs Damped 4 

A rigid plate supported on four identical springs, like the system in Problem 16.22, has unknown 
model parameters, m, k, and b. A dynamic test is performed in which a constant force of 1.0 
Newton is suddenly applied at t = 0. The measured displacement response is displayed in Fig. 
16.25.1 
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Figure 16.25.1: Response to 1.0 Newton Step-Force 

Your job is to use the data revealed in this Figure to estimate: 

(a) The effective stiffness k of the four springs; 

(b) The effective mass m of the plate; 

(c) The effective damping coefficient b of the system. 
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16.26 Plate On Springs Damped 5
 

Each, of two identical plate-on-springs assemblies, like those of problem 16.22,is accurately rep­
resented by a model with m = 2.0 kg, k = 2000 N/m, and b = 20N/m/s. Consider the system 
obtained by placing the two individual units face-to-face, with the first plate resting on a firm 
table with its springs extending upward, and the second plate reversed, so that its springs extend 
downwards and are connected to the springs of the first plate. Your job is to derive a differential 
equation for free vertical motion of the second plate, and: 

(a) Evaluate the undamped natural frequency ωo for the model of the combined system; 

(b) Evaluate the damping ratio ζ for the model of the combined system; 

(c) Evaluate the decay time constant τ for the model of the combined system. 
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16.27 Plate On Springs Damped 6
 

The steel plate on springs shown in Problem 16.22 has been modeled by the differential equation
 

d2y dy 
m + b + ky = f(t)
dt2 dt 

Remodel this as a state-determined system with the force f(t) as the input and the vertical position 
and velocity of the plate as the outputs. 

(a) The effective stiffness of the springs is known to be 3000 N/m.	 Choose the mass parameter 
m and the damping parameter b such that the steady state deflection of the plate under its 
own weight is Δ = 7 millimeters and the damping ratio isζ = 0.5. 

(b) Write a MATLAB script to integrate the state equations for the case where,at	 t = 0, an 
abruptly applied force equal to the weight of the plate is applied in the upward direction. 

(c) Write a MATLAB script to produce plots of the first two seconds of transient response in (b). 
Produce plots of the following forms: 

(i) position vs. time 

(ii) velocity vs. time 

(iii) velocity vs. position 
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16.28 Shipping Crate 1
 

Sensitive machinery and instruments are typically packed with shock-absorbing material for ship­
ping. Fig. 16.28.1 shows a plan view sketch of a 500-pound engine in a shipping crate with packing 
material at each end. In reality packing material is provided on all sides, but to keep things simple 
we only consider the end-to-end horizontal translation of the engine with respect to the crate. As­
sume that the packing material at each end can be adequately modeled as a linear elastic element 
with stiffness k combined with a linear friction element with damping parameter b. 

Crate

Engine

Packing Material

Figure 16.28.1: Engine in Shipping Crate 

(a) Derive a differential equation for the end-to-end motion of the engine with respect to a 
stationary crate. 

(b) Specify the values of k and b required to provide a damped natural frequency of 1 Hz and a 
damping ratio of 0.707. 
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16.29 Shipping Crate 2
 

Reconsider the 500-pound engine with shock-absorbing packaging in a shipping crate of Problem 
16.28. Take the packing material at each end to have an effective stiffness k of 100 pounds/inch, 
and an effective damping parameter b of 150 pounds/inch/second. Now suppose the crate is placed 
on a flat-bed truck so that the end-to-end orientation of the crate is parallel to the direction of 
motion of the truck. The crate is secured to the truck so that there is no relative motion of the 
crate with respect to the truck. However, because of the shock-absorbing packaging, the engine 
may move with respect to the crate when the truck accelerates and decelerates. 

(a) Formulate a mathematical model to describe the longitudinal motion of the engine with respect 
to the crate in response to longitudinal motion of truck. 

(b) Derive a single ordinary differential equation relating the (input) absolute velocity of the 
truck vtruck(t) to the the (output) relative velocity of the engine to the crate vengine(t). 

(c) Derive a state-determined system in which vtruck(t) is the input andvengine(t) is the output. 
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17 Quiz Problems
 

17.1 Fun with Block Diagrams 

(a) Reduce the block diagram in Figure 17.1.1 to derive the transfer function for the system. 
Find the value of K that will result in a critically damped response. 

K
s(s+20)

+

-

X(s) Y(s)

Figure 17.1.1: Block diagram for part (a) 

(b) Derive the transfer functions Vout(s) and Vout(s) for the block diagram shown in Figure 17.1.2. V1(s) V2(s) 

(Hint: you can always label individual positions along the block diagram with variable names 
and write out and solve the relevant algebraic equations.) 

6s+1
14s+8

s+3
+

-

+
+

++V1

V2

Vout

Figure 17.1.2: Block diagram for part (b) 

(c) Write the complete differential equation for Vout(t) in terms of V1(t) and V2(t). 
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17.2 Complex Translation 

This problem concerns the translational mechanical system shown in Figure 17.2.1 

c 2

FinM2

M1

c1

k1k2

x1x2

xin

Figure 17.2.1: Translational Mechanical System 

The system is driven by two inputs, a force input Fin, and a position input xin. The damper c1 

shown acts between the masses M1 and M2. The mass M1 rolls on the ground surface without 
friction. 

(a) Draw free body diagrams for the two masses, clearly labeling the forces and associated ref­
erence directions which act on the mass. The functional dependence of these forces on the 
system variables should be indicated. 

(b) Use the free body diagrams developed above to write the governing system differential equa­
tions in the form: 

M1ẍ1 = 

M2ẍ2 = 

where you supply the right hand side of the equations. You do not need to further reduce 
the form of the system equations. 
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17.3 Cylinder Step Response
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Figure 17.3.1: System Model 

You have been given the system illustrated in Figure 17.3.1. The system consist of a cylinder with 
a mass m with a radius r = 0.5 m which spins about an axel. The cylinder rolls without slip on the 
ground. Attached to the axel housing are a damper c, a spring k = 200 N/m, and a force source f . 
You measure the following response x(t) to a step input of the force source. 
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Figure 17.3.2: Step Response
 

(a) Using the provided parameters and the step response, determine the damping constant c and 
the equivalent mass meq, where meq is mass equivalent of the combined inertia and mass. 

(b) If the cylinder has a m = 3 kg, determine the inertia of the cylinder. 
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17.4 JKC Frequency Response 1
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Figure 17.4.1: Rotational System Model
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Figure 17.4.2: Bode Plot 

You perform a frequency analysis of the system shown in Figure 17.4.1 and obtain the bode plot 
shown in Figure 17.4.2. The inertia J = 15 N/m2 . 

(a) Using the data in the bode plot determine, ζ and ωn for this system. 

(b) Using J and the values determined in part (a), determine c and k for the system. 

(c) Determine an expression for the system output θ(t) when φ(t) = sin (ωt) and ω = 1.1, 10, 
and 20 rad/s. 
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17.5 Mass Spring Damper Dynamics 

A second-order system is driven with a position source xin. 

c

M

k

xin

x

Figure 17.5.1: Mass Spring Damper System 

The mass position is x(t). There is no gravity acting in this problem. 

(a) Write the governing differential equation for this system with an input xin, and an output x. 
Clearly show the steps in your solution. 

(b) Now let the parameters take the values M = 0.1 kg, k = 10 N/m, and c = 0.2 Ns/m. What 
are the values of ζ and ωn? 

(c) Assume the system is in a condition of initial rest. The input position is given to be a unit 
step, xin(t) = us(t) m. Solve for the mass position x(t) as a function of time. Clearly show 
the steps in your solution. 

(d) Make a carefully labeled and dimensioned sketch of x(t). 
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17.6 Op-Amp Analysis
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Figure 17.6.1: Op-Amp Circuit, R1 = 1MΩ, Rf = 100kΩ, C1 = 1µF , C2 = 1nF 

(a) Derive the Transfer function H(s) relating Vo to Vi (assume the Op-Amp acts as an infinite 
gain). 

(b) Derive the expressions for the magnitude and phase as a function of frequency. 

(c) Make a bode plot of the system indicating the major points. 

(d) Determine the pole and zero locations(s) and plot them on the s-plane. 
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17.7 RLC Circuit Analysis
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Figure 17.7.1: RLC Circuit 

(a) Write the transfer function,Vout(s) , for the circuit shown above. Vin(s) 

(b) Given C = 1 × 10−6 F , find the values of R and L such that ζ = 0.707 and the undamped 
natural frequency is 5 kHz. (Don’t forget to convert to rad/sec!!!) 

(c) Using the same values of	 L and C from part(b), find the locations of any system pole(s) 
and zero(s) given R = 1000Ω. Sketch the unit step response, clearly indicating the time and 
magnitude scaling. (Hint: use a dominant pole approximation.) Use the IVT and FVT to 
show that your response starts and ends at the appropriate values. 

(d) Sketch the log Magnitude vs log frequency, and linear phase vs log frequency (Bode plot) for 
this system based on your calculated poles from part 3. Show that your plot approaches the 
correct values of magnitude both as ω → 0 and ω →∞. 

(e) Again using C = 1 × 10−6 F and R = 1000Ω, now let L = 0 H. (i.e. Remove the inductor 
from the circuit) Calculate the location of the pole and compare this to the dominant pole 
found in part 2. 

(f) Write the transfer function, Vout(s) , for the two circuits shown below. Vin(s) 
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Figure 17.7.2: RLC Circuit
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17.8 Sailing for Engineers 

A sailing ship of mass m is initially at rest, i.e. v(0) = 0. At time t = 0, a strong wind arises of 
magnitude Vo = 10 m/s. 

Figure 17.8.1: Sailboat Diagram 

Assume that the force of the wind on the sails in the direction of travel is given by Fw(t) = 
Bw[Vo − v(t)]. Assume that the viscous drag of the water on the ship is given by Fb(t) = Bdv(t) 

(a) Formulate a differential equation that describes the ship’s velocity v(t). 

(b) Solve the differential equation from (a) and write an expression for the ship’s velocity v(t). 

(c) Sketch the response v(t). 

(d) Write an expression for the steady-state velocity vss in terms of system parameters. 
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17.9 Second Order Step Response 

The following plot represents the step response of a second order system, starting from zero initial 
conditions. 
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Figure 17.9.1: Step Response Plot 

(a) From the plot, find the 10%-90% rising time tr, the peak time tp, the 1% settling time ts and 
the overshoot Mp. 

(b) Estimate the natural frequency ωn and the damping coefficient ζ. 

(c) Write down the ODE corresponding to the plot. 
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17.10 Spring Damper Dynamics 

This problem studies the spring-damper arrangement shown in Figure 17.10.1. The spring and 
damper are joined by a massless link, which has a vertical position x. A force F acts on this link. 

c k

F
x

Figure 17.10.1: Spring Damper System 

(a) Make a sketch of the pole location in the s-plane. 

(b) The input force has the following form, valid for all time 

F (t) = 10 + 3δ(t − 1), 

where δ(t) is the unit impulse. Note that the driving impulse δ(t − 1) is delayed by 1 second. 
Be sure you see that this input is for all time, not just after t = 0. 

Calculate the link position x as a function of time, and give an expression for this position 
valid for all time. Clearly show your thinking and the steps in your calculation. Your result 
should be in terms of the parameters of the system, as we have not given numerical values 
for these parameters. 

(c) Make a carefully labeled and dimensioned sketch of x(t). Again, this sketch should be dimen­
sioned in terms of the system parameters. 
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17.11 Derive Blocks for Op-amp Circuit
 

Consider the Op-amp circuit shown below.
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Figure 17.11.1: Op-Amp Circuit. 

(a) An incomplete block diagram for this circuit is shown on the next page. Develop expressions 
for each of the transfer functions in the blocks of this block diagram, and fill them in on the 
block diagram. Carefully note the system variables already shown on the block diagram, and 
fill in the transfer functions appropriately. 

(b) Set Vr to 1 [V]. What are the steady state values of Vo and Va? 
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17.12 Automobile Fender Spring/Damper System 

A fender is mounted on an automobile though dampers (to absorb collision energy) and springs 
(so that the fender can recover after low-speed collisions). During a crash-test, the automobile is 
moving at 2 m/s when its fender strikes a concrete barrier. The vehicle mass, m, is 1,000 kg. (In 
comparison, the fender itself is essentially massless.) The springs that mount the fender have a 
stiffness, k, of 1,000,000 N/m. 

m

c

k

y

barrier

Figure 17.12.1: 

(a) Write a differential equation for the deflection of the springs when the fender is in contact 
with the barrier. (We define y = 0 at the point of first contact.) 

(b) If the damping coefficient, c, is 30,000 N-s/m, what is the damping ratio of the mass-spring­
damper system when the fender is in contact with the barrier? 

(c) Is there any value of the damping coefficient, c, that would yield no rebound of the vehicle 
from the barrier? If so, what it is? If not, why not? 
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17.13 Cu Flywheel with Eddy Current Damper
 

The figure below shows a stylized picture of the copper flywheel, eddy current damper, and mass 
used in Laboratory 2. 

M

x
g

ω

b

J

R2
R1

pulley

Figure 17.13.1: Stylized version of Lab 2 setup. 

(a) Sketch two free body diagrams for the flywheel and hanging weight respectively, detailing 
all the forces or torques acting on these elements. In developing these free body diagrams, 
express the tension in the string as T . Note that T = mg in general. 

(b) Write the equations of motion for each of your free body diagrams.	 Eliminate T and x 
to combine these into one first-order differential equation in terms of the flywheel angular 
velocity ω. To eliminate x, note that ẋ = ωR1. 

(c) Write the characteristic equation for the system in terms of the given system parameters. 
What is an expression for the time constant? 

(d) At	 t = 0, with the system initially at rest, the mass is released and begins to accelerate 
downward. Make a plot of the resulting flywheel angular velocity ω(t). What is the final 
angular velocity as t →∞? 
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17.14 Current Driven RC Circuit
 

This problem considers the circuit shown below
 

Is Vc Vr

Ic

C R

+ +Ir

Figure 17.14.1: RC circuit driven by current source. 

(a) Note that the circuit is driven with a current source Is(t). Write a differential equation for 
this circuit in terms of the capacitor voltage Vc(t), and with input Is(t). Clearly show the 
steps in your development. 

(b) Show that with the values R = 1 kΩ, and C = 1 µF, the differential equation becomes 

10−3V̇ 
c(t) + Vc(t) = 10−3Is(t) 

We assume that the input current takes the form of a 0.1 A step Is(t) = 0.1us(t) [A], and that 
the system is initially at rest. Write an expression for the resulting output Vc(t) for t > 0, 
and make a properly-dimensioned plot of this response. 
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17.15 Driven Mass Spring System 

Consider the mechanical system shown below. 

k
m

F

x

Figure 17.15.1: 3.0in 

(a) Write the governing differential equation in terms of F and x. 

(b) The input is a unit step F (t) = us(t). Calculate x(t) for t > 0, assuming initial rest. Write 
an expression for x(t), and make a properly dimensioned sketch of x(t). 
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17.16 Flywheel Driven by Hanging Mass 

Consider the mechanical system shown below. 

Figure 17.16.1: 

In this system, a flywheel of inertia J [kgm2] is constrained to rotate about the indicated axis. A 
torsional spring k [Nm/rad] is attached to the flywheel. A weight of mass m hangs on a massless 
string which is wrapped around a hub of radius R on the flywheel. The force of gravity mg acts on 
the weight in the downward direction. In the absence of any torque on the spring, the weight sits 
at the position x = 0, and x increases as the weight moves down from this position. There is no 
damping in the system. 

(a) Write a differential equation describing the dynamics of this system in terms of the motion of 
the weight x, with input force mg. The variable θ should be eliminated from this equation. 

(b) Assume that the weight is initially supported at the position x = 0 by a shelf. At t = 0 this 
shelf is removed. Write an expression for the resulting motion x(t) for t > 0, and make a 
dimensioned graph of this motion as a function of time. 

204
 



17.17 Homogeneous Second Order DE 

Consider the homogeneous differential equation 

d2y dy
+ 2 + (1 + 100π2)y = 0. 

dt2 dt 

This has poles at s1 = −1 + j10π and s2 = −1 − j10π. 

(a) What are the values of the damped natural frequency	 wd, the natural frequency wn, the 
attenuation σ, and the damping ratio ζ? 

(b) The homogeneous solution is of the form 

s2t y(t) = c1e 
s1t + c2e . 

For the initial values of y(0) = ẏ(0) = 1, what are the numerical values of c1 and c2? 

(c) The solution can be written in the form 

y(t) = Me−σt cos(ωdt + φ). 

What are the numerical values of M and φ? 

(d) Make a reasonably accurate plot of y(t), indicating key values on the time and magnitude 
axes. 
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17.18 Match Pole/Zero Plots with Step Response
 

Six pole/zero plots labeled A-F are provided below. The following page has eight step response 
plots labeled 1-8. Match each of the six pole/zero to its corresponding step response. Your solution 
should include a list of A through F with the corresponding number directly next to it. Note the 
time and amplitude scales are not necessarily the same in each figure. No partial credit will be 
given. 
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Figure 17.18.1:
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17.19 Opamp Block Transfer Functions
 

This problem considers the op amp circuit shown below
 

Figure 17.19.1: Op amp circuit. 

(a) The circuit can be represented by the block diagram given on the next page. You are to fill 
in each of the blocks with the correct transfer function on that page, and return the page still 
attached to the quiz. Show the relevant calculations in your quiz book. 

(b) Suppose that the input is Vi = 1 V, and that this has been applied for a long time. What is 
the value of Vo? Explain your reasoning. 
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Figure 17.19.2:
 



17.20 Piston with 2nd Order Translation
 

Hydraulic Piston

P,Q
A

M

x

K

B
Rollers

Figure 17.20.1: Mass Spring Damper System with Hydraulic Piston 

The figure above shows a large stage with mass M (kg) driven by a hydraulic piston. The hydraulic 
piston is driven by a pressure source P(t) (N/m2) with a volume flow Q(t) (m3/s) (the flow resistance 
of the piping is ignored). The piston has a force/pressure relationship of F=P*A, and thus Q = Aẋ. 

(a) Find the differential equation for this system in terms of an input P(t) and an output x. Note: 
Ignore the roller dynamics. 

(b) Given M=5000 kg, K=250,000 N/m , B=75,000 N*s/m , and A=0.1 m2 show that the transfer 
function from the pressure input P to flow Q (the fluidic admittance) is given by 

Q 0.01s
(s) = 

P 5000s2 + 75, 000s + 250, 000 

(c) The system has been held in equilibrium with P = 500 kPa = 500,000 N/m2 when the pressure 
is removed suddenly at t=0. That is, P(t)=P0(1-us(t)). Find and make a dimensioned plot 
of Q(t). Use the transfer function from part b) for this calculation even if you were not able 
to derive it. 
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17.21 Pole Zero Bode Matching
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Six pole/zero plots labeled A-F are shown below.   The following page has eight Bode plots labeled 1-8.
Match each of the six pole/zero plots to its corresponding Bode plot.  Your solution should consist of
a list of letters A through F with the corresponding Bode plot number directly next to it.
No partial credit will be given.

Figure 17.21.1: 
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17.22 Power Semiconductor Thermal Problem
 

The thermal system shown below represents large power semiconductor device which is captured 
between two plates. The device has a thermal capacitance C1[J/K], and its temperature is T1[K]. 
Thermal resistances R1[K/W ] and R2[K/W ] connect the device to the upper and lower plates 
respectively. These plates are maintained at ambient temperature TA[K]. Power dissipation in the 
device is modeled as heat flow qin[W ] into the device. Assume no heat flow occurs through the side 
walls of the device. 

Figure 17.22.1: Schematic of thermal configuration. 

(a) Write the governing differential equation in terms of T1 and qin. 

(b) Assume that in steady state,	 qin = qo, a constant. What is the steady state temperature 
T1ss? 
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17.23 Submersible Capsule Hoist System
 

A submersible capsule requires in case of malfunction a rescue hoist system, as shown in Figure 
17.23.1. The capsule mass is M , and the hoist cable stiffness is assumed constant and of value K. 
The drum has inertia J , and radius r. The drum is driven by a velocity source w(t). The capsule 
is subject to a drag force equal to Fb = bv(t) and to a flotation force Fw. Note: The system is 
designed in a way that the hoist cable will be always in tension, under normal operation. 

Figure 17.23.1: Capsule hoist system 

(a) When the capsule is at rest the cable is extended by an amount e. Find e as a function of M 
and Fw. 

(b) Find the transfer function V(s)/W(s). 

(c) Given M = 10000 [kg] and the bode plot shown on Figure 17.23.2, try to find the values 
of J , r, K, and B. Use the correct units for all values, and indicate what value cannot be 
determined. 
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Figure 17.23.2: Bode Plot of V (s)/W (s)
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17.24 Transfer Function from Pole Zero Plot
 

Consider the following pole-zero plot:
 

1. Consider the following pole-zero plot:

The DC gain for the system is 10.

(a) Derive the system’s transfer function.

(b) Sketch the system’s Bode plots.

1

Figure 17.24.1: System Bode Plot. 

The DC gain for the system is 10. 

(a) Derive the system’s transfer function. 

(b) Sketch the system’s Bode plots. 
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17.25 Vaccine Cooler
 

You’re a 2.009 student trying to verify the feasibility of a portable vaccine cooler. The vaccine 
chamber of the cooler is in the shape of a cube and is shown below in Figure 17.25.1. The vaccines 
within the chamber have mass m and specific heat c. The combined effective resistance of all six 
walls is given by R. Tvac is the temperature of the vaccines within the cooler, and Tamb is the 
temperature outside the cooler. The heat flow into the vaccine chamber due to the cooling system 
is given by qin. The width of each surrounding wall is L. 

qin

Tamb

m c

R

Tvac qout

Figure 17.25.1: Cross-section of a cubical portable vaccine cooler 

(a) Derive the ordinary differential equation that describes this system. 

(b) You are told that the mass of the vaccines is 1 kg, their specific heat is 4.2 kJ/(kgK), and 
the total effective thermal resistance resistance around the vaccine chamber is given by the 
following equation:   

K 
R = 40 L

Wm

If the width of the surrounding walls is 2.5 cm, the ambient temperature is 25 ◦C, the vaccine 
chamber is initially 2 ◦C, and the cooling system is off, how long will it take for the vaccine 
chamber to reach a temperature of 10 ◦C? 

(c) You’ve been swamped with work for 2.003, and your 2.009 team makes an incredible amount 
of progress without you. You come back 2 weeks later and find an almost working prototype 
cooler. The cooler uses a non-linear on/off controller with a dead band. On a workbench 
you see the following plots. What wall thickness did your teammates choose for your cooler? 
When the cooling system is turned on, what is the value for qin? Please use appropriate units. 
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Figure 17.25.2: Prototype Cooler Tests. The top plot shows the cooling system being run continu­
ously. The bottom plot shows the cooling system being run with the non-linear controller. 
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17.26 Voltage Driven RRC Circuit 

Consider the circuit shown below. 

R

R C1

+

 _
Vin

+
Vo

Figure 17.26.1: Voltage divider with capacitor in parallel 

(a) Derive the differential equation describing Vo(t) in terms of Vi(t). 

(b) The output Vo(t) is given by 
Vo(t) = 1; t <= 0
 

Vo(t) = 2e −10t − 1; t > 0
 

This waveform is sketched below
 

Vo (t)

t (sec)

t =-ln(1/2)/10=0.0693 sec

1

-1

Figure 17.26.2: Sketch of Vo 

What is the input vi(t) for all t? Explain your reasoning, and make a sketch of vi(t). 
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17.27 Linear Mechanical System with Position Input 

Consider the mechanical system shown in Figure 17.27.1, where w(t) is an input position source, 
and x(t) is the mass position. 

m
k1 k2

b1 b2

w(t) x(t)

Figure 17.27.1: Linear mechanical system with two springs, two dampers, and a position source 
input, w(t). 

(a) Draw a free body diagram for the mass m, showing forces acting on the mass, as a function 
of the displacements w(t) and x(t) and in terms of the system parameters. 

(b) Write a differential equation for the system, in terms of input w(t) and output x(t). 

(c) Let m = 10 kg, k1 = 30 N/m, k2 = 10 N/m, b1 = 2 Ns/m, b2 = 6 Ns/m, with w(t) = 1us(t) [m] 
(a unit step). Plot the system poles in the s-plane. Solve for x(t), t > 0, from rest initial 
conditions. 

(d) Plot x(t), using accurate dimensions, and units. Also indicate the overshoot value, with its 
associated peak time, as well as the 10–90 % rise time. 
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17.28 Tank with Pump Inlet Lower than Outlet 

This problem considers the system shown in Figure 17.28.1. 

Figure 17.28.1: Diagram of tank configuration. 

As shown in the figure, a pump acts as a source of flow qp(t) into the cylinder; that is the pump flow 
is a specified constant independent of load pressure. The cylinder is of cross-sectional area A [m2]. 
At a height ho [m] from the bottom of the cylinder, we connect a fluid resistance R [Pa · sec/m3]. 
The entire system is exposed to atmospheric pressure Patm. 

At t = 0, the cylinder is empty (h = 0), and the pump is turned on at constant flow rate qo = 
10−6 m3/sec, and so the cylinder begins to fill up. The fluid height above the bottom of the cylinder 
is defined as h(t) [m]. Note that no flow enters the resistance R until h(t) ≥ ho. The liquid in the 
system is water with ρ = 103 kg/m3 . The height of the fluid is recorded as a function of time, and 
the data is plotted as shown below. 

221
 



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t [seconds]

]srete
m[ )t(h

hf

ho

t1

Figure 17.28.2: Fluid height as a function of time. 

Note that the fluid height reaches the height of the resistance at t = t1 = 30 sec; that is h(t1) = 
ho = 0.1 m. For t > t1, the height exponentially approaches a final value of hf = 0.2 m. 

(a) Using the data for 0 ≤ t ≤ t1, what is the value of A in [m2]. 

(b) Using the data for t > t1, what is the value of R in [Pa · sec/m3]? (This can be answered 
relatively easily if you think about it correctly.) What is the time constant τ [sec] associated 
with the response for t > t1? (It is acceptable to determine this either graphically or via an 
appropriate calculation.) 

(c) A long time later at t = t2 >> t1, the pump flow is set to zero, qp = 0. Make a dimensioned 
sketch of h(t), t > t2. 

222
 



17.29 Thermal Power Chip Analysis
 

A power electronic chip is attached to a substrate and also exposed to air as shown in Figure 17.29.1. 
Heat is lost to the air through a thermal resistance R1 [◦K/W ] and to the board through a thermal 
resistance R2 [◦K/W ]. The air and circuit board are at ambient temperature TA [◦K]. The chip 
has a thermal capacitance of C [J/◦K] and is at temperature Tc [◦K]. Power dissipation in the 
chip is modeled as heat flow in, qin [W ]. 

Figure 17.29.1: 

(a) Write the governing differential equation for this system in terms of Tc and qin. 

(b) For R1 = 90 ◦K/W , R2 = 10 ◦K/W , and C = 1 J/◦K, solve for Tc(t) and plot Tc as a 
function of time for qin = 10 W from rest initial conditions where Tc(0) = TA. Be sure to 
label and dimension your time and temperature scales. 

(c) If the maximum allowable steady-state temperature of the chip is 100 ◦K above ambient, 
what is the maximum allowable power the chip can dissipate? 
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17.30 Current Divider in Simple Network
 

For the resistive circuit:
 

800 Ω 

3 kΩ 2 kΩ
+

 _
10 V

i

Figure 17.30.1: Simple circuit 

What is the value of i? Show the steps in your derivation. 
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17.31 Voltage and Current Source Driving network
 

The following circuit has two inputs, a voltage source vin and a current source iin. We have also 
defined the common terminal as shown, and the node voltage v. 

R 

+

 _
vin CL iin

v

Figure 17.31.1: Network driven by a current source and a voltage source. 

Write a differential equation in v for the circuit with inputs vin and iin. Show the steps in your 
derivation. 
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17.32 Rotary Motor with Damper
 

A rotary motor has an internal coil resistance R [Ω] and a torque constant K [Nm/A]. The manu­
facturer’s data sheet for the motor provides a steady-state torque-speed curve for the motor under 
the condition that the applied voltage is 10 V. Here τ [Nm] is defined as the motor output torque 
applied to a load, and ω [rad/s] is the test load angular velocity. 

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

ω [rad/s]

τ [Nm]

V
m = 10 V

Figure 17.32.1: Motor torque speed curve. 

(a) What are the numerical values of K and R? Be sure to show the steps in your derivation. 

Now the rotary motor output shaft is connected to a load rotational damper b = 0.03 Nms/rad. 

(b) Draw the rotational damper torque-speed curve on the graph above, and hand in with your 
quiz paper. 

(c) With this load, what will be the steady-state operating speed? 

(d) In steady-state with the load attached, how much power is being provided by the voltage 
source driving the motor? How much power is being dissipated in the motor? How much 
power is being dissipated in the load? 
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17.33 Patient Rehabilitation
 

Robot arms can be used to provide a controlled motion for exercises, for example in rehabilitation 
of stroke victims. This problem considers a single-link arm as shown below. 

Figure 17.33.1: Schematic of single link arm. 

The arm rotates about the indicated axis, with an arm angle of θ0. The arm is driven by an input 
angle source θi through a thin drive shaft, which has a torsional spring constant ka [Nm/rad]. The 
arm has a moment of inertia J [kgm2] about the axis of rotation. 

We model the patient, who is gripping the arm at a radius R, by the spring kp [N/m] and a damper 
bp [Ns/m]. For this problem, all rotations are small, and gravity is neglected. 

a) Draw the free body diagram for the arm showing all applied torques and indicating their 
dependence on system motion. 

b) Use this free body diagram to write a differential equation for the system in terms of θ0(t), 
with input θi(t). 

c) Now, let the numerical parameters take the values: 

2J = 0.25 kg − m
ka = 72 Nm/rad 

R = 0.5 m 

kp = 288 N/m 

bp = 0.12 Ns/m 

Assume initial rest conditions. For an input step θi(t) = 0.1us(t) [rad], sketch the output θ0(t) as 
a function of time. Be sure to show relevant parameters of the response. 
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17.34 Delay Transfer Function
 

The system shown below delays its input u(t) by T seconds to produce the output y(t).
 

2.003 Quiz 3 April 27, 2005

Name:
Please be sure to put your name on the quiz on the line above, and to return this quiz
with your exam booklet. The quiz is closed-book, but you may reference three pages of notes
(both sides) that you have prepared. The three problems are equally weighted.

Problem 1 (15 points) Consider the transform

X(s) =
10

(s+ 3− j4)(s+ 3 + j4)
(1)

a) Write X(s) in a partial fraction expansion as

X(s) =
A1

s+ 3− j4
+

A2

s+ 3 + j4
(2)

What are the values of A1 and A2?

b) Take the inverse Laplace transform of the partial fraction expansion to find an expression for
x(t), t ≥ 0; this must be simplified to purely real terms.

c) Make an accurately dimensioned sketch of x(t) as a function of t.

Problem 2 (15 points) The system shown below delays its input u(t) by T seconds to produce
the output y(t).

Delay by T
u(t) y(t)

a) Write an expression for y(t) in terms of u(t).

b) What is the transfer function H(s) = Y (s)
U(s) for this system?

c) Make an accurately dimensioned sketch of the Bode plot magnitude and phase for this system
on the standard loglog and semi-log axes, respectively.

1

Figure 17.34.1: Block diagram of delay. 

a) Write an expression for y(t) in terms of u(t). 

b) What is the transfer function H(s) = Y
U(

(
s
s
)
) for this system? 

c) Make an accurately dimensioned sketch of the Bode plot magnitude and phase for this system 
on the standard loglog and semi-log axes, respectively. 
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17.35 Laplace and Complex Numbers 

Consider the transform 

X(s) = 
10 

(s + 3 − j4)(s + 3 + j4) 
(1) 

a) Write X(s) in a partial fraction expansion as 

X(s) = 
A1 

s + 3 − j4 
+ 

A2 

s + 3 + j4 
(2) 

What are the values of A1 and A2? 

b) Take the inverse Laplace transform of the partial fraction expansion to find an expression for 
x(t), t ≥ 0; this must be simplified to purely real terms. 

c) Make an accurately dimensioned sketch of x(t) as a function of t. 
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17.36 Mechanical Stiffness
 

The stiffness of a mechanical system at a point is defined as 

F (s)
S(s) = 

X(s) 

where x(t) and f(t) are the motion of the point, and the force applied to the system at that point, 
respectively, as shown below: 

x(t)

Mechanical 
System

f(t)

Figure 17.36.1: Illustration of stiffness definition.
 

To make things specific, consider the second-order mechanical system shown below:
 

x(t)

m
f(t)

k

b

Figure 17.36.2: Mass, spring, and damper system. 

(a) Write an expression for 
F (s)

S(s) = 
X(s)
 

in terms of the system parameters. Show your reasoning.
 

(b) Assume the system has a damping ratio of ζ = 0.05 and a natural frequency ωn = 100 [rad/sec]. 
Make an accurately-dimensioned sketch of |S(jω)| and ∠S(jω) in a Bode plot format. What 
is the DC gain of this system? What are the values of the magnitude and phase at ω = 
500 [rad/sec]? 
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18 Math Techniques
 

18.1 Complex Expression Reduction 

(a) Reduce the following expressions to a single complex number in rectangular form: 

1. (2 + 3i) ∗ (4 − 5i) 

2. (2 + 3i)/(4 − 5i) 

3. (−6 + 7i) ∗ (3 + 7i) 

4. (−6 + 7i)/(3 + 7i) 

(b) Express all above complex numbers in polar form, then calculate the final result in the polar 
formats. 
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18.2 Complex Expressions
 

(a) Reduce the following expressions to a single complex number in rectangular form: 

(i) (1 + 2i) ∗ (3 − 4i) 

(ii) (1 + 2i)/(3 − 4i) 

(iii) (−6 + 4i) ∗ (5 + 7i) 

(iv) (−6 + 4i)/(5 + 7i) 

(b) Express all above complex numbers in polar form, then calculate the final result in the polar 
formats. 
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18.3 Matrix Operation Practice
 
2Assume X = [1 2 3 ]' , Y = [9 8 0]' and Z = [s s 1]', where ' denotes transpose operation. Calculate 

the following expressions: 

(a) −5X; 

(b) X ' Y ; 

(c) XY ' ; 

(d) Find the roots of the equation X ' Z = 0 
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19 Recitation Problems
 

19.1 Recitation 1 Problem 

Just how effective are snow banks at stopping a sliding car? We can model the system and study 
its dynamic and static behavior. 

2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation 1 - February 4, 2005    
Discussion Problem 
 
Just how effective are snow banks at stopping a sliding car? We can model the system 
and study its dynamic and static behavior. 
 

b

m

x
0

x

F

 
 

Consider the model shown in the figure. A mass m, initially at rest, is subject to a 
constant applied force F. After the mass has traveled a distance 0x  it impacts a damper 
with damping coefficient b. Assume the surface is frictionless. 
 

(a) Formulate the first order differential equation describing the velocity of the car as 
a function of time, before the collision. 

 
(b) What is the velocity at the collision? 

 
 
(c) Formulate the first order differential equation describing the system after the 

collision. 
 

(d) What is the time constant for the system? How long will it take to stop the car? 
 

(e) What is the peak force? As a function of 0x ? What if 0x  is 0? What if b is ∞ ? 
 

(f) Solve the problem again using energy methods. 

Figure 19.1.1: Sliding Car Model 

Consider the model shown in Figure 19.1.1. A mass m, initially at rest, is subject to a constant 
applied force F . After the mass has travelled a distance xo it impacts a damper with damping 
coefficient b. Assume the surface is frictionless. 

(a) Formulate the first order differential equation describing the velocity of the car as a function 
of time, before the collision. 

(b) What is the velocity at the collision? 

(c) Formulate the first order differential equation describing the system after the collision. 

(d) What is the time constant for the system? How long will it take to stop the car? 

(e) What is the peak force? As a function of xo? What if xo is 0? What if b is ∞? 

(f) Solve the problem again using energy methods. 
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19.2 Recitation 2 Problem
 

2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation 2 - February 11, 2005  
Discussion Problem  

b

m

k

x

 
 
The suspension for an automobile can be modeled by the spring-mass-
damper system shown in the figure with mass kgm 500= , spring constant 

mNk /104 3×= , and damper mNsb /3102×= . 
  

1) Determine the characteristic equation for the system. What is the form 
of the homogeneous response to an initial condition 00 =x  and 10 =x ? 
To an initial condition 10 =x  and 00 =x ? 

 
2) Find the damping ratioζ , undamped natural frequency nω , damped 

natural frequency dω , attenuation σ , and the time constant of the 
exponential envelope τ . 
 

Hint:       
km
b

2
=ζ       m

kn =ω        

 
3) Is the system undamped, underdamped, critically-damped, 

overdamped (or just right)? 
 

4) From the homogeneous response determine if the system is stable, 
marginally stable, or unstable. Does this match your physical 
intuition? 

  
5) What if the shock absorber is leaky? Discuss what happens to the 

system as b changes. 
 

Figure 19.2.1: Automobile Suspension Model 

The suspension for an automobile can be modeled by the spring-mass-damper system shown in the 
figure with mass m = 500[kg], spring constant k = 4 × 103 [N/m], and damper b = 2 × 103 [Ns/m]. 

(a) Determine the characteristic equation for the system. What is the form of the homogeneous 
response to an initial condition x0 = 0 and ẋ0 = 1? To an initial condition x0 = 1 and 
ẋ0 = 0? 

(b) Find the damping ratio ζ, undamped natural frequency ωn, damped natural frequency ωd, 
attenuation σ, and the time constant of the exponential envelope τ . 

Hint:  
b	 k 

ζ = √ and ωn =
2 km	 m 

(c) Is the system undamped, underdamped, critically-damped, overdamped (or just right)? 

(d) From the homogeneous response determine if the system is stable,	 marginally stable, or 
unstable. Does this match your physical intuition? 

(e) What if the shock absorber is leaky? Discuss what happens to the system as b changes. 

(f) What happens when you drive down Massachusetts Avenue and hit a pothole? Think about 
the forced response. 

(g) If you were designing the suspension for a car, which damping behavior (undamped, under-
damped, critically-damped, overdamped) would you choose and why? For a sports car? For 
grandma’s Cadillac? For a pickup truck? 
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19.3 Recitation 3 Problem
 

Consider a swinging door, such as you might find at the entrance to the kitchen in a restaurant or 
at the front door to a saloon in the Wild West. These types of doors don’t slam; they can overshoot 
and oscillate. The schematic representation of the door is shown in the Figure 19.3.1. 

Discussion Problem
Recitation 3 - February 18, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 

Consider a swinging door, such as you might find at the entrance to the 
kitchen in a restaurant or at the front door to a saloon in the Wild West. 
These types of doors don’t slam; they can overshoot and oscillate.  The 
schematic representation of the door is shown in the figure. 

b
J

k

T(t)
The system rotates about a central shaft with angular displacement ,
moment of inertia J , spring constant k , and damping constant b . When 
someone pushes on the door, they apply a torque T. 

1) Determine the characteristic equation for the system.

2) Find the damping ratio , undamped natural frequency n , and 
damped natural frequency d .

Remember the standard form:   )(21
2

tf
nn

3) Sketch the response of the system to a step torque of the form 

)()( 0 tuTtT s

 with initial conditions 0)0(,0)0( . Use 2.0 , 1n rad/sec.

4) Define the maximum value of the angular displacement . Add it to 
the sketch. 

5) Define rise time. Show rise time on the sketch. 

6) Define settling time. Show settling time on the sketch. 

7) How does the above forced response of a second-order system 
compare to the homogeneous response? 

Figure 19.3.1: Swinging door model 

The system rotates about a central shaft with angular displacement θ, moment of inertia J , spring 
constant k, and damping constant b. When someone pushes on the door, they apply a torque T . 

(a) Determine the characteristic equation for the system. 

(b) Find the damping ratio ζ, undamped natural frequency ωn, and damped natural frequency 
ωd. Remember the standard form: 

¨ f(t) = 
1 
θ +

2ζ
θ̇ + θ 

ω2 
n ωn 

(c) Sketch the response of the system to a step torque of the form 

T (t) = T0us(t) 

with initial conditions θ0 = 0, θ̇0 = 0. Use ωn = 1 [rad/sec]. 

(d) Define the maximum value of the angular displacement θ. Add it to the sketch. 

(e) Define rise time. Show rise time on the sketch. 

(f) Define settling time. Show settling time on the sketch. 

(g) How does the above forced response of a second-order system compare to the homogeneous 
response? 
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19.4 Recitation 4 Problem
 

Two identical tanks with cross sectional area A are partially filled with a volume V of incom­
pressible fluid of density ρ. The fluid flows between the two tanks through a short tube with a 
small diameter which can be modeled as a lumped resistance, R. The top of tank 2 is open to the 
atmosphere (with pressure Pa). 

Initially, the top of tank 1 is closed and the pressure at the top of tank 1 is set so that the level of 
the fluid in the first tank, h1 is substantially higher than the level of the fluid in the second tank, 
h2. At time t = 0, the top of tank 1 is opened to the atmosphere. 19.4.1 shows the system just 
after the top is opened. 

Discussion Problem  
Recitation 4 - February 25, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
 
Two identical tanks with cross sectional area A are partially filled with a 
volume V of incompressible fluid of density ρ . The fluid flows between the 
two tanks through a short tube with a small diameter which can be modeled 
as a lumped resistance, R. The top of tank 2 is open to the atmosphere (with 
pressure aP ). 

Initially, the top of tank 1 is closed and the pressure at the top of tank 1 is set 
so that the level of the fluid in the first tank, 1h  is substantially higher than 
the level of the fluid in the second tank, 2h . At time t=0, the top of tank 1 is 
opened to the atmosphere. The figure shows the system just after the top is 
opened. 

 

        

h1

h2R
A,ρ A,ρ

Pa

Pa

Tank 1 Tank 2  
  
 

1) How many independent variables as a function of time do you need to 
completely describe the state of the system? 

 
2) What do you expect the system to do physically? Before making any 

calculations, sketch the height of the fluid in tank 1 and the height of 
the fluid in tank 2 as functions of time. 

 
3) Find a relationship between the height of the fluid in tank 1 to the 

height of the fluid in tank 2. 
 

Figure 19.4.1: Tank Setup 

(a) How many independent variables as a function of time do you need to completely describe 
the state of the system? 

(b) What do you expect the system to do physically? Before making any calculations, sketch the 
height of the fluid in tank 1 and the height of the fluid in tank 2 as functions of time. 

(c) Find a relationship between the height of the fluid in tank 1 to the height of the fluid in tank 
2. 

(d) What is the pressure P1 at the bottom of tank 1? What is the pressure P2 at the bottom of 
tank 2? 

(e) Find a constitutive relationship for the lumped resistance in the tube. 

(f) Find the differential equation in h1 for the system. 

(g) Sketch the height of the fluid in the tank 1 and tank 2 as a function of time, given initial 
conditions h1(0) and h2(0). Will this system oscillate? 

(h) Does the time constant of the system τ depend on the amount of fluid? What could you do 
to make the system respond twice as quickly? 

(i) This system is first-order, but the demonstration we saw in class on Wednesday of water 
flowing through a tube was a second-order system. Why are these systems different? 
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19.5 Recitation 5 Problem
 

Discussion Problem  
Recitation 5 – March 04, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
 

T(t)

bt

bω

J

R

x

m kt

θ

 
 
A rack and pinion converts rotational motion to translational motion and 
vice-versa. The tracking mechanism in the CD player passed around in class 
contained a rack and pinion.  
 
The figure shows a lumped model where the angular position of the pinion 
gear is given by θ . The combined shaft and gear inertia is given by J, the 
rotational damping on the shaft is given by ωb and the applied torque T(t) is a 
function of time. The rack position is x, the mass of the rack is m, the linear 
damping acting on the rack is given by tb , and the linear spring constant is 
tk . Assume that there is adequate room for the rack to roll back and forth.      

  
(a) What is the relationship between x and θ ? 
 
(b) For each lumped element in the system find the energy stored or 

power dissipated. Compare it to the constitutive relationship. For 
example, the potential energy stored in the spring is:    2

2
1 xkPE t=  

The constitutive relationship for the spring is:       xkF
tk =  

 
(c) Determine the total kinetic energy, potential energy and power 

dissipated for the system. Express them as a function of θ  (Use part 
(a) to eliminate x). 

Figure 19.5.1: Rack and Pinion 

A rack and pinion converts rotational motion to translational motion and vice-versa. The tracking 
mechanism in the CD player passed around in class contained a rack and pinion. 

The figure shows a lumped model where the angular position of the pinion gear is given by θ. The 
combined shaft and gear inertia is given by J , the rotational damping on the shaft is given by bω 

and the applied torque T (t) is a function of time. The rack position is x, the mass of the rack is m, 
the linear damping acting on the rack is given by bt, and the linear spring constant is kt. Assume 
that there is adequate room for the rack to roll back and forth. 

(a) What is the relationship between x and θ? 

(b) For each lumped element in the system find the energy stored or power dissipated.	 Compare 
it to the constitutive relationship. For example, the potential energy stored in the spring is: 
PE = .5ktx

2 The constitutive relationship for the spring is: Fk = ktx 

(c) Determine the total kinetic energy, potential energy and power dissipated for the system. 
Express them as a function of θ (Use part (a) to eliminate x). 

(d) Use the energy equations to find the second-order differential equation for the system as a 
function of θ. 

(e) What is the equivalent inertia, equivalent damping coefficient, and equivalent spring constant 
for the system? Is the equivalent inertia for the system larger or smaller than J? 

(f) Find the damping ratio ζ, undamped natural frequency ωn as functions of the system param­
eters. Remember the standard form: 

1 2ζ¨ f(t) = 
ω2 θ + θ̇ + θ 

n ωn 

(g) If the radius of the gear R is increased, what happens to the damping ratio ζ and undamped 
natural frequency ωn? 
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(h) Rewrite the equations as a function of x instead of θ. What happens to the damping ratio ζ 
and undamped natural frequency ωn? 

(i) Assume the system is underdamped and sketch the response of θ to a step torque of the form: 

T (t) = T0us(t)
 

with zero initial conditions θ(0) = θ̇(0) = 0.
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19.6 Recitation 6 Problem
 

The circuit in the figure consists of a voltage source, a capacitor and three resistors.
 

Discussion Problem  
Recitation 6 – March 11, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
 

CR2

R1

Vin

+

-
-

+

νο

R3

 
 
The circuit in the figure consists of a voltage source, a capacitor and three 
resistors.  
 

(a) Find the differential equation for this circuit in terms of oν . 
 
(b) Find oν  as a function of time, if inV is a step input and 0)0( =oν . 

 
(c) What is the equivalent resistance for the circuit? 
 

 

Figure 19.6.1: RC Circuit 

(a) Find the differential equation for this circuit in terms of vo. 

(b) Find vo as a function of time, if Vin is a step input and vo(0) = 0. 

(c) What is the equivalent resistance for the circuit? 
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19.7 Recitation 7 Problem
 

Discussion Problem  
Recitation 7 – March 18, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 

V
+

-

R L

i b
J

ωT

+

-

e Motor
K

 
 
The figure shows an ideal motor connected to a load rotating with angular 
velocity ω . The motor’s resistance is lumped into the element R.  This 
motor also has non-negligible inductance given by L. The motor is driven by 
an input voltage V . The motor applies a torque to the load iKT = . The 
motor’s back emf is ωKe = . The combined motor and load inertia is given 
by J and the load is also subject to a rotational damper b. 
 

(a) Find a differential equation for the rotational load in terms of T and ω . 
 
(b) Find a differential equation for the circuit in terms of e ,V and i . 

Remember that the elemental equation for an inductor is: 
dt
diLV

L
=  

 
(c)  Combine parts (a) and (b) to find a differential equation for the 

system in terms of ω  and  (Eliminate T and e ). What is the steady 

state behavior of this system? 
inV

 
(d)  When can the inductance L be neglected? What happens as L goes to 

zero? Does the steady state behavior of the system change? 
 

(e) With L=0, think about the torque input T to the rotational load. If the 
input voltage V is a step, would you also expect the torque T to be a 
step?  

Figure 19.7.1: Motor Circuit 

Figure 19.7.1 shows an ideal motor connected to a load rotating with angular velocity ω. The 
motor’s resistance is lumped into the element R. This motor also has non-negligible inductance 
given by L. The motor is driven by an input voltage V . The motor applies a torque to the load 
T = Ki. The motor’s back emf is e = Kω. The combined motor and load inertia is given by J and 
the load is also subject to a rotational damper b. 

(a) Find a differential equation for the rotational load in terms of T and ω. 

(b) Find a differential equation for the circuit in terms of e, V and i. Remember that the elemental 
= L diequation for an inductor is VL .dt 

(c) Combine parts (a) and (b) to find a differential equation for the system in terms of ω and Vin 

(Eliminate T and e). What is the steady state behavior of this system? 

(d) When can the inductance L be neglected? What happens as L goes to zero? Does the steady 
state behavior of the system change? 

(e) With L = 0, think about the torque input T to the rotational load. If the input voltage V is 
a step, would you also expect the torque T to be a step? 
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19.8 Recitation 8 Problem
 

Discussion Problem  
Recitation 8 – April 1, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 

J

θT

b

 
The figure shows a rotational system whose angular position is θ and 
angular velocity is θω = . The load has inertia J and rotates on bearings 
which are modeled as an ideal rotational damper with coefficient b. A torque 
T is applied to the load. The initial velocity is 0)0( ωω = . 
 

(a) Write the differential equation for the system in terms of T andω . 
 
(b)  Find the Laplace transform for the differential equation.  

 
(c)  If the input torque is a unit step )()(

0
tuTtT

s
=  (with constant 

magnitude 
0
T ), what is )(sΩ ? 

 
(d) How would you solve for the angular velocity as a function of 

time )(tω ? 
 

(e) What is the transfer function
)(
)(
sT
sΩ ? 

 

Figure 19.8.1: Rotational System 

Figure 19.8.1 shows a rotational system whose angular position is θ and angular velocity is ω = θ̇. 
The load has inertia J and rotates on bearings which are modeled as an ideal rotational damper 
with coefficient b. A torque T is applied to the load. The initial velocity is ω(0) = ω0. 

(a) Write the differential equation for the system in terms of T and ω. 

(b) Find the Laplace transform for the differential equation. 

(c) If the input torque is a unit step T (t) = T0us(t) (with constant magnitude T0), what is Ω(s)? 

(d) How would you solve for the angular velocity as a function of time ω(t)? 

(e) What is the transfer function Ω(s) ?T (s) 
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19.9 Recitation 9 Problem
 

Discussion Problem  
Recitation 9 – April 8, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 

v
+

-

R

i
J

θτ

+

-
e Motor

k

Km

b
 

 
The figure shows a motor connected to a rotational load. The motor’s 
resistance is given by R and the motor’s inductance is negligible. The motor 
is driven by an input voltage v which generates a current i  in the circuit.  
The combined motor and load inertia is given by J. The angular position of 
the load is θ . Flexibility in the load is modeled as rotational spring with 
constant k. Rotational damping from the motor and the load is lumped into 
the element b. The system is initially at rest. 
 
The motor applies a torque to the load:    iK

m
=τ  

The motor’s back emf is:        θ
m
Ke =   

 
(a) Find the ordinary differential equation (ODE) for the motor circuit in 

terms of v, τ  and θ . Laplace transform this equation and put it in the 
form:  

)()()()()(
21

ssHsTsHsV Θ+= . 
 

(b)  Find the ODE for the load in terms of τ  andθ . Find the transfer 

function: 
)(
)()(

3 sT
ssH Θ= . 

 
(c) Combine the results of parts (a) and (b) to find the system transfer 

function from v to θ : 
)(
)()(
sV
ssH Θ=

θ
. How would you find the transfer 

function from v to τ ? Determine
)(
)()(
sV
sTsH

T
=  

Figure 19.9.1: Motor with Rotational Load 

Figure 19.9.1 shows a motor connected to a rotational load. The motor’s resistance is given by R 
and the motor’s inductance is negligible. The motor is driven by an input voltage v which generates 
a current i in the circuit. The combined motor and load inertia is given by J . The angular position 
of the load is θ. Flexibility in the load is modeled as rotational spring with constant k. Rotational 
damping from the motor and the load is lumped into the element b. The system is initially at rest. 

The motor applies a torque to the load: τ = Kmi 

The motor’s back emf is: e = Kmθ̇ 

(a) Find the ordinary differential equation (ODE) for the motor circuit in terms of v, τ and θ. 
Laplace transform this equation and put it in the form: 

V (s) = H1(s)T (s) + H2(s)Θ(s) 

(b) Find the ODE for the load in terms of τ and θ. Find the transfer function: 

Θ(s)
H3(s) = 

T (s) 

(c) Combine the results of parts (a) and (b) to find the system transfer function from v to θ: 
Hθ(s) = Θ(s) . How would you find the transfer function from v to τ? Determine HT (s) = T (s) 

V (s) V (s) 

(d) If v(t) is a unit step voltage with magnitude V0, use the final value theorem to solve for the 
steady state value θ(∞). What is the steady state angular velocity θ̇(∞)? What is the steady 
state torque τ (∞)? 

(e) Find the power dissipated by the rotational damper at steady state. Is this surprising? How 
would you determine when the power reached its maximum? Where is the power coming 
from? 

(f) Repeat part (d) for a ramp input. What is the power dissipated by the rotational damper at 
steady state for this case? 

(g) How would you redesign this system to get better behavior? 
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(h) If H(s) can be written in the form 

0.7 
Hθ(s) = 

s2 + 62 + 25 

sketch the poles and zeros of H(s) in the s-plane. Based on your pole-zero sketch, how would 
you expect the system to respond to a step input? 

holy crap you are a big pain in the ass what the hell is happening to the red sox they are totally 
sucking some major ass and i hate it. 
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19.10 Recitation 10 Problem
 

Construct Bode plots for the frequency response function 

2 
G(jω) = 

jω(1 + jω/2)(1 + jω/5) 
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19.11 Recitation 10A Problem
 

Consider the following feedback control system.
 

+

 
_

H(s)A
s

x
ref

+ B

PI controller system

x

Figure 19.11.1: Feedback Control System Block Diagram 

1(a) Let H(s) = . Choose A and B such that the closed-loop system has poles at s = s+1 
−10 ± 100j. 

1(b) Let H(s) = . Using the same values of A and B from part (a), compute the 
(10−4s+1)(s+1) 

closed loop transfer function and find its poles. 

(c) Sketch the bode plots and step response for the systems from part (a) and (b). 
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19.12 Recitation 11 Problem
 

Construct the asymptotic Bode plots for the frequency response function 

1 + s/2 + (s/2)2 

G(s) = 
s(1 + s/0.5)(1 + s/4) 
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19.13 Recitation 12 Problem
 

Discussion Problem  
Recitation 12 – April 29, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 

 

kb

xm

y

z = x - y

 
The figure shows a seismograph which measures ground displacement 
during earthquakes. The inertial position of the mass m is given by x. The 
mass is suspended by a damper b and spring k. The inertial displacement of 
the case (and ground) is given by the input y which is approximated as a sine 
wave tAty ωsin)( = . The seismograph measure the relative displacement 
between x and y, so the output of the system is yxz −=  . 
 
(a) Find the transfer function between Z(s) and Y(s).  
 
(b) Sketch the magnitude and phase Bode plots for the system. 
 
(c) Show that the seismograph measures the displacement of the case y 

accurately if nωω >>  
 
 
 

Figure 19.13.1: Seismograph Diagram 

The figure shows a seismograph which measures ground displacement during earthquakes. The 
inertial position of the mass m is given by x. The mass is suspended by a damper b and spring k. 
The inertial displacement of the case (and ground) is given by the input y which is approximated 
as a sine wave y(t) = A sin ωt. The seismograph measure the relative displacement between x and 
y, so the output of the system is z = x − y. 

(a) Find the transfer function between Z(s) and Y (s). 

(b) Sketch the magnitude and phase Bode plots for the system. 

(c) Show that the seismograph measures the displacement of the case y accurately if ω >> ωn. 
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19.14 Recitation 13 Problem
 

Discussion Problem  
Recitation 13 – May 06, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
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1
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+sτ

 
 
Sketch the open and closed-loop Bode plots for the system given above. 
 
 
 

Figure 19.14.1: System Block Diagram 

Sketch the open and closed-loop Bode plots for the system given above. 
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20 Recitation Quizzes 

20.1 Recitation 1 Quiz 

The snow from last week’s storm on the flat roof of Building 3 has melted all at once, and now 
physical plant wants to know how long it will take for all that water to drain. We can model this 
as a first order system and calculate the time constant. 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 1  
February 4, 2005    
 
The snow from last week’s storm on the flat roof of Building 3 has melted all at once, 
and now physical plant wants to know how long it will take for all that water to drain. We 
can model this as a first order system and calculate the time constant. 

h

R q
p

A,�

 
 
Consider the system shown in the figure, which consists of a fluid tank filled to a height h. 
Water is draining out of the tank at a rate q through an opening with resistance R.  
The volume in the tank, V, is equal to the area A times the height  AhV = .  

The change in volume is thus:  
dt
dhA

dt
dV

=  

From conservation of mass, we know that the change in volume of liquid in the tank is 
equal to the outflow (note the sign is negative because the water is flowing out): 

dt
dVq −=  

The pressure p at the bottom of the tank is: hgp ρ=  
where ρ is the (incompressible) fluid mass density and g is acceleration due to gravity. 
The linear fluid resistance can be written as:       Rqp =  
 

(a) Formulate the first order differential equation describing the height of the water as 
a function of time: 

 
 
 
 

(b) What is the time constant for the system? 
 
 
 

(c) If the initial height of the water is 0h , what will the height of the water be after one 
time constant? After 2.3 time constants? 

Figure 20.1.1: Fluid Model 

Consider the system shown in Figure 20.1.1, which consists of a fluid tank filled to a height h. 
Water is draining out of the tank at a rate q through an opening with resistance R. The volume 
in the tank, V , is equal to the area A times the height V = Ah. The change in volume is thus: 

dV dh 
= A 

dt dt 

From conservation of mass, we know that the change in volume of liquid in the tank is equal to the 
outflow (note the sign is negative because the water is flowing out): 

dV 
q = − 

dt 

The pressure p at the bottom of the tank is p = ρgh where ρ is the (incompressible) fluid mass 
density and g is acceleration due to gravity. The linear fluid resistance can be written as p = qR. 

(a) Formulate the first order differential equation describing the height of the water as a function 
of time. 

(b) What is the time constant for the system? 

(c) If the initial height of the water is h0, what will the height of the water be after one time 
constant? After 2.3 time constants? 
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20.2 Recitation 2 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 2  
February 11, 2005    
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Consider the plot shown above of the homogeneous response of a second-order system: 
 

02 2 =++ xxx nn ωζω  
 

Estimate the undamped natural frequency nω , the damping ratioζ , and the initial 
position x(0).  
 
 
 
 
 
 
 
 
 
Is this system undamped, underdamped, critically-damped, or overdamped? 

Figure 20.2.1: Second Order Response 

Consider the plot shown above of the homogeneous response of a second-order system: 

ẍ+ 2ζωnẋ+ ω2 x = 0 n

Estimate the undamped natural frequency ωn, the damping ratio ζ, and the initial position x(0). 
Is this system undamped, underdamped, critically-damped, or overdamped? 
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20.3 Recitation 3 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 3  
February 18, 2005    

b
m

x

F

 
 

The system shown in the figure has the first-order differential equation: 
  
   Fbvvm =+  
 
where m  is the mass, b  is the damping coefficient, x  is the displacement of 
the mass, xv =  is the velocity of the mass, and the force F is given by a step 
function: 

)()( 0 tuFtF s=  
 

with magnitude 0F  constant. Assume zero initial position ( 00 =x ) and zero 
initial velocity ( 00 =v ). 
 

(a) Sketch the velocity of the mass as a function of time: 
 
 
 
 
 
 
 
 
 
 
 
 

(b) What is the velocity of the mass at steady state? 

Figure 20.3.1: Cart System 

The system shown in the figure has the first-order differential equation: 

mv̇ + bv = F 

where m is the mass, b is the damping coefficient, x is the displacement of the mass, v = ẋ is the 
velocity of the mass, and the force F is given by a step function: 

F (t) = F0us(t) 

with magnitude F0 constant. Assume zero initial position (x0 = 0) and zero initial velocity (v0 = 0). 

(a) Sketch the velocity of the mass as a function of time. 

(b) What is the velocity of the mass at steady state? 
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20.4 Recitation 4 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 4  
February 25, 2005
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The mechanical system shown in the figure consists of a pulley of radius R 
suspended from the ceiling by a spring and a damper. A cable runs over the 
pulley and is attached to ground on the right and a hanging mass m on the 
left. The vertical position of the center of the pulley is x, the vertical position 
of the mass is y, and the rotational angle of the pulley is θ . Note also that 
gravity acts in a downward direction. 
 
Assume that the mass of the pulley, cable and support is negligible, the 
pulley rotates without friction, and that there is no slip between the pulley 
and the cable. 
 

(a) Draw a free body diagram for the pulley. 
 
 
 
 
 
 
 
 

(b) What is the relationship between x and y? 

Figure 20.4.1: Pulley System 

The mechanical system shown in Figure 20.4.1 consists of a pulley of radius R suspended from the 
ceiling by a spring and a damper. A cable runs over the pulley and is attached to ground on the 
right and a hanging mass m on the left. The vertical position of the center of the pulley is x, the 
vertical position of the mass is y, and the rotational angle of the pulley is θ. Note also that gravity 
acts in a downward direction. 

Assume that the mass of the pulley, cable and support is negligible, the pulley rotates without 
friction, and that there is no slip between the pulley and the cable. 

(a) Draw a free body diagram for the pulley. 

(b) What is the relationship between x and y? 
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20.5 Recitation 5 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 5  
March 04, 2005 
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A rack and pinion converts rotational motion to translational motion and 
vice-versa. The tracking mechanism in the CD player passed around in class 
contained a rack and pinion.  
 
The figure shows a lumped model where the angular position of the pinion 
gear is given by θ . The combined shaft and gear inertia is given by J, the 
rotational damping on the shaft is given by ωb and the applied torque T(t) is a 
function of time. The rack position is x, the mass of the rack is m, the linear 
damping acting on the rack is given by tb , and the linear spring constant is 
tk . Assume that there is adequate room for the rack to roll back and forth. 

 
(a) Draw free body diagrams for the rack and for the pinion. 

 
 
 
 

(b) What is the relationship between x and θ ? 
 
 
 
 

(c) Find the second-order differential equation for the system as a 
function of θ  (Use part (b) to eliminate x). 

Figure 20.5.1: Rack and Pinion System 

A rack and pinion converts rotational motion to translational motion and vice-versa. The tracking 
mechanism in the CD player passed around in class contained a rack and pinion. 
Figure 20.5.1 shows a lumped model where the angular position of the pinion gear is given by θ. 
The combined shaft and gear inertia is given by J , the rotational damping on the shaft is given 
by bω and the applied torque T (t) is a function of time. The rack position is x, the mass of the 
rack is m, the linear damping acting on the rack is given by bt, and the linear spring constant is 
kt. Assume that there is adequate room for the rack to roll back and forth. 

(a) Draw free body diagrams for the rack and for the pinion. 

(b) What is the relationship between x and θ? 

(c) Find the second-order differential equation for the system as a function of θ (Use part (b) to 
eliminate x). 

254
 



20.6 Recitation 6 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 6  
March 11, 2005 

  

CR2

R1

Vin
+

-

-

+

νο

 
 
The circuit in the figure consists of a voltage source connected to two 
resistors in parallel and a capacitor. Find the differential equation for this 
circuit in terms of oν . 

Figure 20.6.1: RC Circuit 

The circuit in the figure consists of a voltage source connected to two resistors in parallel and a 
capacitor. Find the differential equation for this circuit in terms of vo. 
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20.7 Recitation 7 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 7  
March 18, 2005 
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The figure shows an ideal motor connected to a load rotating at angular 
velocity ω . The motor’s resistance is lumped into the element R.  The motor 
is driven by an input voltage V . The motor applies a torque to the load 

iKT = . The motor’s back emf is ωKe = . The combined motor and load 
inertia is given by J and the load is also subject to a rotational damper b. 
 
Without working through the mathematics, select the differential equation 
which best represents this system:  
 

(a) ωω 









+−=
R
KbJV

R
K 2

 

(b) ωω 









++=
R
KbJV

R
K 2

 

(c) ωω 









++=
R
KbJV

R
K 2

 

 
Justify your answer (think of transient and steady state response, the physics 
of the system, etc.)  

Figure 20.7.1: RC Circuit 

Figure 20.7.1 shows an ideal motor connected to a load rotating at angular velocity ω. The motor’s 
resistance is lumped into the element R. The motor is driven by an input voltage V . The motor 
applies a torque to the load T = Ki. The motor’s back emf is e = Kω. The combined motor and 
load inertia is given by J and the load is also subject to a rotational damper b. 

Without working through the mathematics, select the differential equation which best represents 
this system: 

(a) 

K 
V = J ω̇ − 

� 

b + 
K2 � 

ω 
R R 

(b) 

K K2 

V = Jω̇ + b + ω 
R R 

(c) 

K K2 

V = Jω̈ + b + ω̇
R R 

Justify your answer (think of transient and steady state response, the physics of the system, etc.) 
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20.8 Recitation 8 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 8  
April 1, 2005   
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The voice coil shown above is driven with an input voltage inV . We are 
interested in the motion of the load m, which moves with velocity xv = .  
 
Consider the voice coil to be ideal, with lumped resistance R. Neglect the 
voice coil inductance, voice coil inertia, and any translational damping. 
The voice coil equations are: iKF =  

veKe =  
where the direction of the applied force F on the mass is the same as x.  
(Please keep the notation for the back emf constant eK  different than the  
voice coil constantK .) 
 
Find the differential equation for the system in terms of inV  and v  (eliminate 
e  and i ). 
 

Figure 20.8.1: Voice Coil Circuit 

The voice coil shown above is driven with an input voltage Vin. We are interested in the motion of 
the load m, which moves with velocity v = ẋ. 

Consider the voice coil to be ideal, with lumped resistance R. Neglect the voice coil inductance, 
voice coil inertia, and any translational damping. The voice coil equations are: 

F = Ki 

e = Kev 

where the direction of the applied force F on the mass is the same as x. (Please keep the notation 
for the back emf constant Ke different than the voice coil constant K.) 

Find the differential equation for the system in terms of Vin and v (eliminate e and i). 
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20.9 Recitation 9 Quiz
 

2(s + 2) 
H(s) = 

s2 + 7s + 12 

The transfer function H(s) given above is the ratio of two polynomials. Use partial fraction expan­
sion to rewrite the transfer function as the sum of the ratio of two smaller polynomials. 
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20.10 Recitation 10 Quiz
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 10  
April 15, 2005    

kb

xm

F

 
 

The input force F to the mass spring damper system shown above  
is ttF ωsin)( = . The output position steady state response is 

)sin()( φω += tMtx . Let m=1, b=1, k=1.  
 
Find M and φ  for 1=ω . 
 
 

Figure 20.10.1: Mass Spring Damper System 

The input force F to the mass spring damper system shown above is F (t) = sin ωt. The output
 
position steady state response is x(t) = M sin ωt + φ. Let m = 1, b = 1, and k = 1.
 

Find M and φ for ω = 1.
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20.11 Recitation 10A Quiz 

Consider the following feedback control system. 

+

 
_

H(s)1
s

x
ref

+ F(s)

control open-loop system

x

Figure 20.11.1: Feedback Control System Block Diagram 

Show that if the open-loop transfer function H(s) has no zeros at the origin, then the DC gain for 
the closed-loop system is 1. 
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20.12 Recitation 11 Quiz
 

Sketch the magnitude and phase Bode plots for the transfer function G(s) 

10 
G(s) = 

0.5s + 1 
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20.13 Recitation 12
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 12  
April 29, 2005  
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The Bode plots above were generated from the transfer function G(s). 
Find the magnitude and phase for 1=ω . 
 
Magnitude = _________________ 
 
Phase         = _________________         
 

f(t) = sin(ωt)
G(s)

x(t)

 
 
If the input to this linear time-invariant system is )sin()( ttf ω= , what is the 
output )(tx  for 1=ω ? 
 

)(tx  = _______________________ 

Figure 20.13.1: Bode Diagram for part (a). 

(a) The bode plots above were generated from the transfer function G(s). Find the magnitude 
and phase for ω = 1. 

(b) The figure below shows the block diagram for this system.	 If the input to this linear time-
invariant system is f(t) = sin ωt, what is the output x(t) for ω = 1? 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 12  
April 29, 2005  

 

Bode Diagram
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The Bode plots above were generated from the transfer function G(s). 
Find the magnitude and phase for 1=ω . 
 
Magnitude = _________________ 
 
Phase         = _________________         
 

f(t) = sin(ωt)
G(s)

x(t)

 
 
If the input to this linear time-invariant system is )sin()( ttf ω= , what is the 
output )(tx  for 1=ω ? 
 

)(tx  = _______________________ 

Figure 20.13.2: Block Diagram
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20.14 Recitation 12
 

Name _____________________________________________        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 13  
May 06, 2005    
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Derive the transfer function for the given block diagram.  

Figure 20.14.1: Block Diagram 

Derive the transfer function for the given block diagram. 
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Chapter 

Solutions 
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1 1st Order Systems 

1.1 First Order Time Constant 

The solution for this problem is not available. 
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1.2 Rise and Settling Times 

We are given the first-order transfer function 

1 
H(s) = (1)

τs + 1 

The response to a unit step with zero initial conditions will be y(t) = 1 − e−t/τ . To determine the 
amount of time it take y to settle to within Δ of its final value, we want to find the time ts such 
that y(ts) = 1 − Δ. Thus, we obtain 

−ts/τΔ = e (2) 
ts = −τ lnΔ (3) 

The 10-90% rise time tr may be thought of as the difference between the 90% settling time (Δ = 0.1) 
and the 10% settling time (Δ = 0.9). 

tr = tΔ=0.1 − tΔ=0.9 (4) 

Therefore, we find tr = 2.2τ . For Δ = 10−6 , ts = 13.82τ . 
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1.3 First Order System Response
 

Figure 1.3.1:
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Figure 1.3.2:
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2 2nd Order Systems 

2.1 Second-Order System Response 

Figure 2.1.1:
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Figure 2.1.2:
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Figure 2.1.3: 
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Figure 2.1.4:
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Figure 2.1.5:
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Figure 2.1.6:
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2.2 Second Order Responses
 

(a) From the figures in the problem set, it can be estimated that the period T = 0.1sec and the 
time constant τ = 0.35 sec. ωd = 2π/T = 62.8. Since the system is slightly damped, the 
estimated damping ratio 

1 1 1 
ζ = ≈ = = 0.045 (1)

τωn τωd 0.35 × 63  
Further the natural frequency ωn = ωd/ 1 − ζ2 = 62.8 

(b) A mechanical mass-spring-damper system will give this response. K = Mω2 , C = 2ζωnM .n

For example, M=1kg, K= 62.82 = 3944 N/m, C= 2 ∗ 0.045 ∗ 62.8 ∗ 1 = 5.6520 N-sec/m. 
The initial position x(0) = 0 mm, v(0) ≈ Aωn = 300mm∗62.8rad/sec= 18850mm/sec = 
18.85m/sec, where A is the initial amplitude of response. 
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2.3 Second Order Derivation 

The solution for this problem is not available. 
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2.4 Second Order Derivation Continued 

The solution for this problem is not available. 

277
 



3 Higher Order Systems 

3.1 Structure of Higher Order System Solutions 

The solution for this problem is not available. 
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3.2 Structure of Higher Order System Solutions
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Figure 3.2.1: Sketch Solution for Case I
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Figure 3.2.2: Sketch Solution for Case II
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Figure 3.2.3: Sketch Solution for Case III
 

(a) Case I 
s1 = −4, s2 = −3, s3 = −2, and s4 = −1 

−t x(t) = C1e 
−4t + C2e 

−3t + C3e 
−2t + C4e 

Case II
 
s1 = −1, s2 = −2, s3,4 = −2.5 ± 4.33j → ωn = 5,
 

1 
x(t) = C1e 

−t + C2e 
−2t + C3 √ e −2.5t cos(4.33t + φ3)

1 − 0.52 

Case III
 
s1,2 = −1 ± 9.95j → ωn = 10, s3,4 = −2.5 ± 4.33j → ωn = 5
 

1 1 
x(t) = C1 √ e −t cos(9.95t + φ1) + C2 √ e −2.5t cos(4.33t + φ2)

1 − 0.12 1 − 0.52 

(b) Case A - This is a summation of four 1st order responses. Thus the system does not have 
an oscillation. Because all the terms are first order, the system will not overshoot the final 
value. 

Case B - This is a summation of 2 first order response and a decaying sinusoid. Since the 
decay constant of the sinusoid is faster than the slower first order terms, the sinusoid will 
appear in the initial response but decay to a simple first order response. Depending on the 
magnitude of the sinusoid it is possible for the system to overshoot. 

Case C - This is the summation of two decaying sinusoids. Since the time constant of the 
decay envelope of the 4.33 r/s sinusoid is faster than the 9.95 r/s sinusoid, the response will 
initially be a combination of the two sinusoids decaying to just the 9.95 r/s sinusoid. This 
system can overshoot the final value. 

(c) To sketch the responses for each of these systems, we need to make a couple of assumptions. 
One assumption I made was that all of the coefficients were equal to 1 (Reasonable for this 
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case). The 2nd assumption I made was that φn = 0. Figures 3.2.1-3.2.3 show the responses 
for the three cases. The left plot shows the individual components, while the right plot shows 
the total response (x1 +x2...+xn). Normally, we are interested in the system response to a set 
of initial conditions or an input force, in which case the φn = 0 and c1 = c2.... For reference, 

...
I have included the system response for the initial conditions x(0) = 1, ẋ(0) = ẍ(0) =x (0) 
(Note: the number of initial conditions for the system is equal to the order of the system thus 
a first order system needs one initial condition, a 2nd order system needs 2 IC, ect.). Figures 
3.2.4-3.2.6 show the results. 
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Figure 3.2.4: Solution for Case I
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Figure 3.2.5: Solution for Case II
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4 Mechanical Systems 

4.1 Balloon 

Assume hovering balloon has mass m and is subject to a buoyancy force B which tends to lift the 
balloon. Consider only vertical motion of the balloon. Let the length of the string between the 
balloon and the floor be y. Assume the string has mass/unit length ρ so that a string mass of ρy 
must move whenever the balloon moves. Both the balloon mass and the string mass experience 
gravitational attraction pulling them down. Assume that there is no tension in the string at the 
point where the string meets the floor. Finally assume there are damping mechanisms ( air drag and 
losses associated with coiling and uncoiling the string on the floor) which can be approximately 
modeled by a linear damping force fd = bdy/dt opposing the velocity dy/dyt. These forces are 
displayed in the free body diagram in Fig. 4.1.1. 

y

B

mg

ρyg

m fd

Figure 4.1.1: Free-Body Diagram of Hovering Balloon 

To construct a model we consider (i) geometric compatibility requirements, (ii) constitutive equa­
tions, and (iii) force-balance requirements. 

(i) The displacement of the balloon is y(t). The velocity and acceleration are
 

dy dv d2y
 
v = a = = 

dt dt dt2 

(ii) The constitutive equations are 

fm = 
d 

[(m + ρy)v] fd = bv fgravity = (m + ρy)g
dt
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(iii) The force-balance requirement is 

fm = B − fgravity − fd 

An equation of motion for the model is obtained by substituting the constitutive equations into the 
force-balance requirement to get 

d 
dt

[(m + ρy)v] + b
dy 
dt 

+ (m + ρy)g = B (1) 

(a) In a steady state y has a fixed value yo and all time derivatives. When we set the time 
derivatives equal to zero in (1) we find that the equation is satisfied if 

B − mg 
y = yo = 

ρg 

The variable mass term in (1) makes the equation nonlinear. It can be approximated by 
a linear equation if the varying mass of the string, ρy is replaced by the fixed mass ρyo of 
the string in its equilibrium position. This is a reasonable approximation for studying small 
oscillations about the equilibrium position. The dynamics of such oscillations are clarified if 
we introduce the displacement z = y − yo of the balloon from its equilibrium position. After 
inserting y = yo + z in (1) we find 

dv dz 
(m + ρyo) + b + ρgz = B − (m + ρyo)g = 0 

dt dt 

Finally, introducing the total mass M = m + ρyo and putting v = dy/dt = dz/dt, we obtain 

d2z dz 
M + b + ρgz = 0 (2)
dt2 dt 

This is the standard form for free oscillation of a linear second-order system. 

(b) Physically, when the balloon rises above its equilibrium position it lifts additional string whose 
weight tends to lower the balloon, and when the balloon descends below its equilibrium 
position it carries a lighter load of string which tends to drive the balloon upward. The 
equivalent stiffness in the equation of motion (2) is k = ρg. This is the weight per unit length 
of the string. This example illustrates the fact that restoring-force elements do not always 
look like springs. 

(c) The second-order equation of motion (2) predicts oscillation if the damping is light enough 
to produce a critical damping factor ζ smaller than unity. 

(d) A free vibration governed by (2) will eventually decay to zero if there is a positive damping 
parameter b. 

To obtain the behavioral parameters ζ and ωo we use the equations 

LDR2 ωd 2π 
ζ2 = and ωo = , with ωd = 

π2 + LDR2 1 − ζ2 Td 
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(e) From the given data we see that the ratio of successive peak amplitudes is 0.2. Thus the LDR 
is ln(0.2) = -1.609, and the damping ratio is 

(1.609)2 1/2 

ζ = = 0.456 
π2 + (1.609)2 

(f) From the given data we see that the damped natural period Td is 3.0 seconds, so that the 
damped natural frquency is ωd = 2π/Td = 2.094 rad/sec, and 

2.094 
ωo = = 2.35 rad/sec 

1 − (0.456)2 

To obtain the model parameters, we begin with the effective stiffness k which is the weight per 
unit length of the string. This is given as 0.5 ounces per foot which is 0.03125 pounds/foot in the 
English system or 

4.448 
k = 0.03125 · = 0.456 Newtons/meter 

0.3048 

(g) The effective mass M of the balloon plus the equilibrium length of string, is given by 

k 0.456 
M = = = 0.0826 kg 

ω2 (2.35)2 
o 

in the SI system. In the English system 

W W 0.03125 
M = = = = 0.00566 pound sec2/ft 

g 32.2 (2.35)2 

from which we find W = 0.1823 pounds or 2.92 ounces. The weight of 3 feet of string is 1.5 
ounces so the weight of the balloon is 1.42 ounces. In the SI system, the mass of 3 feet of 
string is 3(0.3048)(0.456)/9.81 = 0.0425 kg, so the mass of the balloon is m = 0.0826 - 0.0425 
=0.0401 kg. 

(h) The effective damping coefficient b = 2ζωoM is 

b = 2(0.456)(2.35)(0.0826) = 0.1770 N/m/s 

in SI units, or
 
b = 2(0.456)(2.35)(0.00566) = 0.0121 pounds/ft/sec
 

(i) The effective stiffness was previously obtained as 0.456 Newtons/meter in SI units or 0.03125 
pounds/foot in English units. 

285
 

( )

√

http:3(0.3048)(0.456)/9.81


 

4.2 Bungee Jumper
 

Initially the bungee jumper free-falls under the influence of gravity and air resistance, then when 
the slack is taken up in the elastic cord, the cord exerts an increasing retarding force which reduces 
her velocity to zero at level A, after which she bobs up and down with decreasing amplitude until 
she comes to rest at the equilibrium position at level B. For the purposes of a preliminary estimate 
of the conditions up to instant at which level A is reached, neglect the effects of air resistance and 
damping in the cord. Under this assumption energy is conserved. In the first jump the equilibrium 
position B is 20 feet below the point where the cord begins to stretch. The stiffness of the cord is 
then estimated as 

W 150 
k = = = 7.5 pounds/foot 

Δ 20 
The undamped natural frequency of the mass-spring system consisting of the jumper and cord is   

k k 7.5 
ωo = = = = 1.269 rad/sec 

m W/g 150/32.2 

Let the elevation of the upper attachment point of the cord be denoted by ho, the elevation of the 
point where the slack is taken up and the cord begins to stretch be denoted by h1, the elevation 
of the equilibrium point B be denoted by hB, and the elevation of the point A where the jumper’s 
velocity first vanishes be denoted by hA. 

(a) In the first jump, ho − h1 = 100 feet, and ho − hB = 120 feet. The level A can be located by 
equating the potential energy lost in the fall to the elastic energy in the cord. 

1 1 
W (ho − hA) = kΔ(ho − hA) = k(h1 − hA)2 = k[(ho − hA) − 100]2 

2 2


This reduces to a quadratic equation for (ho − hA) whose solutions are
 

(ho − hA) = 120 ± 66.3 feet 

The physically significant root is (ho − hA) = 186.3 feet. The low point A is 66.3 feet below 
the equilibrium level B, or 186.3 feet below the upper attachment point. 

(b) The maximum downward acceleration is 32.2 feet/sec2 during the initial free fall. 

(c) The maximum upward acceleration occurs at point A and is 

amax = (Max displacement from equilibrium)ω2 = (66.3)(1.269)2 = 106.8ft/sec2 
o 

which is 3.32 times the acceleration of gravity. 

(d) The primary assumption made is that dissipation of energy has been neglected. The cord has 
been assumed to behave like a linear spring. 

(e) In the second jump the slack length is doubled which cuts the stiffness in half, and doubles 
the distance Δ to 40 feet. The natural frequency is reduced to 0.897 rad/sec. The location of 
the new low point A’ is obtained by solving a similar quadratic equation with the new values 
of h0 − h1 = 200 feet, ho − hB' = 240 feet, and Δ = 40 feet. The result is 

(ho − hA' ) = 240 ± 132.7 feet 

The physically significant root is (ho − hA) = 373 feet. The low point A is 132.7 feet below 
the equilibrium level B’, or 373 feet below the upper attachment point. 
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(f) The level of the equilibrium point B’ is 240 feet below the attachment point. 

(g) The maximum downward acceleration is still 32,2 feet/sec 

(h) The maximum upward acceleration is 

amax = (Max displacement from equilibrium)ωo 
2 = (132.7)(0.897)2 = 106.8ft/sec2 

Although the jump involves a longer free fall and a greater extension of the cord the maximum 
acceleration does not change! 
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Figure 4.2.1: Time Histories of Bungee Jumps 

(i) The time histories of the two jumps are shown in Fig.	 4.2.1. For plotting purposes the 
elevation of the upper attachment point was (arbitrarily) assigned the value 400 feet. The 
trajectory of free fall is indicated by the dashed-line parabola. With 100 feet of slack the 
jumper’s trajectory departs from the free-fall parabola at h = 300 ft and begins to oscillate 
about the final equilibrium level B. With no damping the maximum excursion (and maximum 
acceleration) is at Level A. With 200 feet of slack the jumper’s trajectory departs from the 
free-fall parabola at h = 200 ft and begins to oscillate about the final equilibrium level B1. 
With no damping the maximum excursion (and maximum acceleration) is at Level A1. 
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4.3 Elevator Model
 

Consider a free-body diagram of the elevator of mass m when it is accelerating upward with accel­
eration dv/dt. The equation of motion is 

dv 
T − mg = m 

dt 

T

T

m

v
T

mg

O

3 ft/sec

1 sec Time

Velocity

Figure 4.3.1: Elevator Dynamics 

When the elevator is at rest, or traveling at constant velocity (dv/dt = 0), the tension T in the 
cable (and the load on the winch) would be simply the weight mg of the elevator and its cargo. 
Designing the winch structure on the basis of this load would be static design. Including the 
dynamic effect of accelerating the elevator results in T = mg + mdv/dt. To answer the question 
of whether dynamics matters, one must compare the magnitudes of the static load mg and the 
dynamic load mg + mdv/dt. The problem statement does not specify the explicit time behavior 
of dv/dt. It merely states that a total change of velocity of 3 feet/second is accomplished in one 
second. The sketch above shows two possible velocity histories. The slope of the velocity history is 
the acceleration dv/dt. With the dashed history the acceleration is uniform and has the magnitude 

dv 3ft/sec 
= = (3)(0.3048) = 0.914m/sec2 

dt 1sec 

This time history has the smallest maximum acceleration but the sharp corners at the beginning
 
and end of the one second acceleration are hard on the winch motor and are felt as jerks by
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the passengers. The time history suggested by the solid curve in the figure produces a smoother 
transition at the expense of a larger maximum acceleration. If the system is designed to accelerate 
according to the solid curve the maximum acceleration can be 50% to 100% larger than the uniform 
acceleration of the dashed history. In the latter case the ratio of the dynamic load to the static 
load would be 

g + (dv/dt)max 9.81 + 2(0.914)
= = 1.186 

g 9.81 

Here, dynamics does indeed matter! The dynamic load is 18.6% larger than the static load. 

Engineers often make preliminary design calculations to determine ball-park estimates of size, 
weight, and power. In these ‘back-of-the-envelope’ calculations it is common to omit effects with 
contributions of the order of five to ten percent. However, these effects must be included in final 
design calculations, which have to be defended in safety investigations. 
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4.4 Hoisting for Engineers 

The solution for this problem is not available. 
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4.5 Blocked Springs 

Let the effective combined stiffness of the four unblocked springs be ku, and let the effective com­
bined stiffness of the four blocked springs be kb. In both cases the vehicle weight mg is supported 
by the springs. Since only half of the spring is active in the blocked case the static deflection 
Δb = mg/kb in the blocked case will be half the static deflection Δu = mg/ku in the unblocked 
case. Since we are given that Δu − Δb = 2.5 inches, we deduce that Δu = 5.0 inches, and Δb = 2.5 
inches. 

(a) The effective stiffnesses are 

2500 2500 
ku = = 500 pounds/inch and kb = = 1000 pounds/inch 

5 2.5
 

in British units. In SI units
 

4.448) 4.448)
ku = 500 = 87, 560 Newton/meter and kb = 1000 = 175, 100 Newton/meter 

0.0254 0.0254 

(b) The undamped natural frequency ωo is given by ω2 = k/m where m is the mass of the vehicle. o 
In SI units m = 2500(0.4536) = 1134 kg. The natural frequencies are 

87, 560 175, 100
(ωo)u = = 8.787rad/sec and (ωo)b = = 12.437rad/sec 

1134 1134 

(c) We are given that the unblocked suspension is critically damped (ζu = 1.0). The effective 
damping coefficient is 

b = 2ζu(ωo)um = 2(1.0)(8.787)(1134) = 19, 930 Newtons/meter/second 

(d) Assuming that the shock absorbers are unchanged by the blocking operation, the damping 
coefficient remains b = 19, 930 N/m/s and the new value of ζ for the system with blocked 
springs is 

b 19, 930 
ζb = = = 0.7071

2(ωo)bm 2(12.437)(11340 

If y is measured vertically upward from the equilibrium position, and v = dy/dt, the constitutive 
equations are 

fm = m
dv
, fd = bv, and fk = ky 

dt 
with appropriate subscripts u and b for the unblocked and blocked cases, respectively. and the 
force-balance requirement is 

fm = f(t) − fd − fk 

where f(t) is the upward driving force applied to the vehicle. These model requirements can be 
organized into the following state equations for a state determined system with state variables y 
and v.
 ⎧⎨
 

⎫⎬
 
⎤⎡ 

0 1

⎧⎨
 

⎫⎬
 
⎧ ⎪⎨
 0
 

⎫ ⎪⎬
y
 y
d
 
=
 ⎢⎣
 

⎥⎦
 +
 ⎪⎩
 f(t)
k b
⎭
⎩
 ⎭
⎩
 ⎪⎭
dt
 − −
v
 v
 
m m m 
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The output equation for the displacement response y(t) is
 ⎧⎨
 
⎫⎬
y
 

y(t) = { 1 0 }
 ⎭
⎩
 v
 

The state equations can be integrated by adapting the scripts ‘pos.m’ and ‘eqpos.m’ for the Plate 
on Springs problem of Assignment 5 to apply to the present problem. The adaptation of ‘pos.m’ 
involved inputting the specific values of m, b, fa, xo, and vo and eliminating unecessary plots. The 
adapted version of ’pos.m’ is called ‘blockedspringssol.m’. It is located at the end of this solution. 
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Figure 4.5.1: Response of Unblocked Vehicle
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Figure 4.5.2: Response of Blocked Vehicle
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Figure 4.5.3: Comparison of Responses 

The adaptation of ‘eqpos.m’ involved only the name change to ‘Eqblockedspringssol.m’. 

Using these scripts with the stiffness inputs ku = 87560 N/m and kb = 175100 N/m, and an 
integration time of 1.0 second produced the response curve shown in Fig. 4.5.1 for the unblocked 
vehicle, and the response curve shown in Fig. 4.5.2 for the blocked vehicle. The two responses are 
compared in Fig. 4.5.3. Note the quicker response to a smaller deflection for the blocked vehicle. 
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4.6 Engine Vibration 

The solution for this problem is not available. 
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4.7 Garage Door
 

k

m/2

••

g

x

y

T

T
T

mg/2

Figure 4.7.1: Garage Door support System 

To model the pulley system, we assume that the inertia of the pulleys and cable is negligible in 
comparison with the mass of the garage door. Furthermore we assume that the cable is flexible 
(it bends easily) but stretches very little in comparison with the extension of the spring. Let x 
be the horizontal displacement of the pulley attached to the end of the spring, and let y be the 
vertical displacement of the door, both measured from the equilibrium position of the door hanging 
freely under the influence of gravity. In the equilibrium position, the tension To in the cables must 
equal the weight mg of the door. The total force in the spring is 2To which has produced an initial 
extension Δ of the springs, where Δ = 2To/k = 2mg/k. 

In a small oscillation about the equilibrium position, the displacements x(t) and y(t) oscillate 
about zero and the tension in the cable oscillates about the initial tension To = mg. When the 
cable remains taut, the displacements x and y are linked by the geometric compatibility requirement 
y = 2x. This is the crucial insight for this system, and it is not immediately obvious to all. One 
way to see it is to imagine that the door and the cables are temporarily frozen in position while the 
pulley attached to the spring is displaced a distance x to the left. An empty loop of cable appears, 
to the right of the pulley, with a straight length x in the upper cable and a straight length x in the 
lower cable. Now with the pulley fixed, gradually lower the door to take up the slack in the empty 
loop. It will be necessary to lower the door a distance y = 2x to make the cable taut again. 

(a) To formulate a model to analyze the door oscillations we need to assemble the geometric 
compatibility requirements, the constitutive equations, and the force balance requirements. 
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The geometric compatibility requirement is 

y = 2x 

The constitutive equations for the door and the spring are 

m d2y
fm = and 2T = k(Δ + x) = 2mg + kx 

2 dt2 

and the force balance requirement is 

fm = mg − T 

These relations constitute a mathematical model of the garage door system. They can be 
organized into a single differential equation for either x or y by inserting the constitutive 
equations for fm and T in the force balance equation and using the compatibility requirement 
to eliminate x in favor of y, or vice versa. The result is either 

d2y k	 d2x k 
m + y = 0 or m + x = 0 
dt2 2	 dt2 2 

Note that because the origins for the displacements x and y were established at the equilibrium 
position, the gravity force has canceled out of the equations of motion. 

(b) The undamped natural frequency ωo for the preceding equations is given by 

k kg 
ω2 = = o 2m 2W 

where W is the weight of the door and g = 386 in/sec2 is the acceleration of gravity. The 
frequency of oscillation fo in Hz is 

ωo 1 (5)(386)
fo = =	 = 0.350 Hz 

2π 2π 2(200) 

(c) It is assumed that the door only moves vertically in the small oscillation.	 The inertia of the 
pulleys, cable, and spring is neglected. The elasticity of the cable in tension is neglected, and 
it is assumed that the tension T is uniform throughout the length of the cable. 
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4.8 Rotating Damped 

A rotor with moment of inertia I and angular velocity ω is subjected to an accelerating torque T 
and two retarding friction torques, each modeled linearly as Bω. 

(a) The equation of motion is 

dω dω 2B 1 
I + 2Bω = T or = − ω + T (1)
dt dt I I 

(b) The steady-state angular velocity, when T = 10 Newton-meters, and I = 0.001 kg-m2, and 
B = 0.005 N-m/r/s is 

T 10 
ωss = = = 1000 r/s 

2B 2(0.005) 

(c) Consider the input T = Ta sin Ωt to be the imaginary part of the complex input Taexp(iΩt) 
and look for a complex solution of the form ω = Aexp(iΩt). After substitution in (2) we find 
that this is indeed a solution , if 

Ta Ta 1
A = =  exp(iφ)

2B + iIΩ 2B 1 + ( IΩ )2 
2B 

where the phase angle φ is fixed by the relation 

IΩ 
tan φ = −

2B 

The steady-state solution to the input T = Ta sin Ωt is then the imaginary part of the complex 
solution Aexp(iΩt), which is 

Ta 1
ω =  sin(Ωt + φ)

2B 1 + ( IΩ )2 
2B 

The magnitude of the response amplitude is 

Ta 1
M(Ω) =  

2B 1 + ( IΩ )2 
2B 

and the phase angle is
 

φ = − tan−1 

2
I

B 
Ω
 

For the case where Ta = 10 Newton-meters, the values of M(Ω) and φ(Ω) for the frequencies 
Ω = 50 rad/sec, Ω = 5 rad/sec, and Ω = 0.5 rad/sec are 

10 1(i) M(50) = q = 196.1 r/s, 0.01 (0.001)(50) 
1+( )2 

0.01 

φ(50) = tan−1(0.001)(50)/0.01 = 1.373r = 78.7 deg 
10 1(ii) M(5) = q = 894 r/s, 0.01 (0.001)(5) 

1+( )2 
0.01 

φ(5) = tan−1(0.001)(5)/0.01 = 0.463r = 25.6 deg 
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10 1(iii) M(0.5) = q = 999 r/s, 0.01 (0.001)(0.5)
1+( )2 

0.01 

φ(0.5) = tan−1(0.001)(0.5)/0.01 = 0.0500r = 2.86 deg 

(d) The limiting value of the magnitude of the response amplitude M(Ω) when Ω → 0 is Ao = 
Ta/2B = 1000 r/s. The ratio M(Ω)/Ao is 0.1961 when Ω = 0.5 rad/sec, 0.894 when Ω = 0.05 
rad/sec, and 0.999 when Ω = 0.005 rad/sec. 
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Figure 4.8.1: Magnitude of Response of Rotating Inertia
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Figure 4.8.2: Phase Angle of Response of Rotating Inertia 

(e) The low-frequency asymptote for M(Ω) is Ao = Ta/2B, while the high-frequency asymptote 
is Ta/IΩ. These asymptotes intersect at the break frequency Ωbreak = 2B/I = 10 rad/sec. 

(e) The Bode plots shown in Fig. 4.8.1 and Fig. 4.8.2 were obtaining by running a MATLAB 
script similar to that used in Problem 4.21. 
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4.9 Car Suspension 1 

The differential equation for the system is 

mẍ+ cẋ+ kx = cẋ0 + kx0, (1) 

where x0 stands for the ground waveform input. For step input, the particular solution will be: 

xp(t) = 1. (2) 

The homogenous solution has the form: 

xh(t) = Ae−ζωntsin(ωdt) + Be−ζωnt cos(ωdt) (3) 

To find the initial velocity, integrate equation 1 from 0− to 0+ , 

m(ẋ(0+) − ẋ(0−)) + c(x(0+) − x(0−)) + k × 0 = cx0(0+) − x0(0−) (4) 
mẋ(0+) = cx0(0+) (5) 

c c 
ẋ(0+) = x0(0+) = (6) 

m m 

Plugging the initial conditions into the full solution 

x(t) = Ae−ζωntsin(ωdt) + Be−ζωnt cos(ωdt) + 1 (7) 
x(0+) = 0 = B + 1 ⇒ B = −1 (8) 

c c ζωn 
ẋ(0+) = = Aωd − ζωnB ⇒ A = ( − ) (9) 

m mωd ωd 

For m = 500kg, k = 5 × 104N/m and c = 2 × 103 Ns/m, 

ωn = 
k 

= 10 (10) 
m 

c 
ζ = √ = 0.2 (11)

2 km 

ωd = ωn 1 − ζ2 = 9.8 (12) 
σ = ζωn = 2; (13) 

A = 0.2 (14) 
−2t x(t) = 0.2e −2tsin(9.8t) − e cos(9.8t) + 1 (15) 

The result is plotted in Figure 4.9.1. The passengers will not like this ride because there are too √ 
many oscillations. when c = 2 × km = 10000, the system will be critically damped, in this case 
the complete solution has the form: 

x(t) = 1 + Ae−ωnt + Bte−ωnt (16) 
x(0+) = 0 = A + 1 ⇒ A = −1 (17) 

c c 
ẋ(0+) = = −ωnA + B ⇒ B = − ωn = 10 (18) 

m m 
−10t x(t) = 1 − e −10t + 10te (19) 
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In order to find the acceleration for the under-damped case, reformulate equation 16, 

−2t x(t) = 0.2e −2tsin(9.8t) − e cos(9.8t) + 1 (20) 
= Re{1 − 1.02e −2t+j(9.8t+0.197)} (21) 

ẍ(t) = Re{−1.02(−2 + 9.8j)2 e −2t+j(9.8t+0.197)} (22) 
−2t ẍ(t) = 102e cos(9.8t + 0.6) (23) 

The maximum acceleration could happen at t=0+ and t=(π − 0.6)/9.8 = 0.26sec, 

ẍ(t = 0+) = 102cos(0.6) = 84 (24) 
−2∗0.26 ẍ(t = 0.26) = −102e = −60 (25) 

So the maximum acceleration is 84m/sec2 .
 
Similarly, for the critically damped case, differentiating equation 25 twice,
 

−10t ẍ(t) = −300e −10t + 1000te (26) 
ẍ(0+) = −300 (27) 

So the passenger will have bigger acceleration in the critically damped case. From the step response, 
the 5% settling time is 1.35sec in the under-damped case and 0.4sec in the critically-damped case. 
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Figure 4.9.1: Step Response
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4.10 Disk Drive
 

J

τm

τb

τb=bω

ω

Figure 4.10.1: Free body diagram of disk drive spindle 

(a) Figure 4.10.1 shows the free body diagram for the spindle. Note: that all constitutive equa­
tions are included with the diagram. 

(b) 

Jω̇ = τm − τb 

Jω̇ = τm − bω 
b τm

ω̇ + ω = 
J J 

(c) When the disk spins down τm = 0 therefore our equation of motion becomes 

b 
ω̇ + ω = 0 

J 

= Ae−t/τWe know that the solution for this must take the form ω(t) = Aest . If we substitute 
into the equation of motion we get 

b stAsest + A e = 0 
J 

b 
s = − 

J 
J J 

τ = → b = 
b τ 
0.001 kg m2 N m s 

b = = 0.002
0.5 s rad 
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Please note that angular velocity must always be in rad/s (the unit label rad=1) unless 
otherwise noted. 
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Figure 4.10.2: Plot ω vs time 

(d) To determine	 ω(t), we need to determine the final velocity of the disk. When ω̇ = 0 the 
characteristic equation become 

τm
bω = τm → ωf = = 250r/s 

b 

Since the initial velocity of the system is 0, we know the solution must be of the form 

−2t)ω(t) = ωf (1 − e −t/τ ) = 250(1 − e
 

Figure 4.10.2 shows the ω(t)
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Figure 4.10.3: Plot ω vs time 

(e)	 ω(t) for t > t1 is 

−2(t−t1)ω(t) = ωf e 
−(t−t1)/τ = 250e 

Figure 4.10.2 shows the time response of the disk. 
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4.11 Crashworthiness 

The sketch in Fig. 4.11.1 shows the linear model used to study crashworthiness. The mass m of 
the vehicle is (2000 pounds)(0.4536 kg/pound) = 907.2 kg and the vehicle speed at impact vo is (10 
mi/hr)(5280 ft/mi)(0.3048 meters/ft)/(3600 secs/hr) = 4.470 meters/sec. When there is no energy 
dissipation (b = 0) the displacement of the mass goes through a half-cycle of undamped vibration 
of the form 

x(t) = A sin ωot 

The vehicle then retreats from the barrier with velocity −vo. The amplitude A of the oscillation 
is given as 6 inches which is (6 in)(0.0254 meters/in) = 0.1524 meters, but the undamped natural 
frquency ωo is unknown. 

m

k

b

vo

Figure 4.11.1: Model of Vehicle Impacting a Barrier 

One way to calculate ωo is to set the velocity obtained by differentiating x(t) equal to vo at t = 0. 
This leads to 

vo 4.470 
ωo = = = 29.33 rad/sec 

A 0.1524 
Another way to obtain ωo is to use conservation of energy, 

1 2 1 
KE = mv = kA2 

o2 2

to get k, and then use ω2 = k/m to evaluate ωo.o 

(a) If the value of ωo is already known, then the effective stiffness k is obtained from
 

k = mω2 = (907.2)(29.33)2 = 780, 400 N/m
 o 

If ωo is not available, then the stiffness can be obtained directly from conservation of energy.  	  2 2 vo 4.470 
k = m = 907.2 = 780, 500 N/m 

A 0.1524 

(b) During the half-cycle of undamped sinusoidal motion	 x(t) = A sin ωot the acceleration is 
d2x/dt2 = −Aω2 sin ωot. The peak deceleration occurs at the instant of peak deflection of the o 
spring and has the magnitude
 

Decelpeak = Aω2 = (0, 1524)(29.33)2 = 131.1 meters/sec2
 
o 
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The geometric compatibility requirements are satisfied by taking x to represent the displacement 
of the mass and the deformation of the spring, and v = dx/dt to represent the velocity of the mass 
and the relative velocity across the damper. The constitutive equations are 

dv 
fm = m fd = bv and fk = kx 

dt 

and the force-balance requirement is 
fm = −fd − fk 

These model requirements can be used to construct the state equations for the state variables x 
and v
 ⎤⎡ 

0 1

⎧⎨
 x
 

⎫⎬
 
⎧⎨
 x
 

⎫⎬
d
 ⎢⎣
 
⎥⎦
=
 k b
⎭
⎩
 ⎭
⎩
dt
 − −
v
 v
 

m m 

The desired outputs are (i) the deflection disp = x of the fender, (ii) the deceleration of the vehicle 
decel = (k/m)x + (b/m)v), and (iii) the total force on the barrier fbarr = kx + bv. In matrix 
notation
 ⎤⎡⎫⎧ 

1 0
disp
 ⎧⎨
 x
 
⎫⎬
 ⎭
⎩
 

⎪⎪⎪⎨
 
⎪⎪⎪⎬
 

=
 
⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
decel
 k/m b/m
 ⎪⎪⎪⎩
 

⎪⎪⎪⎭
 v
 
fbarr k b
 

The state equations can be integrated by adapting the scripts ‘pos.m’ and ‘eqpos.m’. The adapta­
tion of ‘pos.m’ involved inputting the specific values of m, k, xo, and vo and letting the program 
ask for the desired value of ζ instead of the desired value of b. The adapted version of ’pos.m’ is 
called ‘crashworthinesssol.m’ and is found at the end of this solution. 
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Figure 4.11.2: Displacement Response for ζ = 0.5 

The script for the equation called for by ‘crashworthinesssol.m’ is called ‘Eqcrashworthinesssol.m’. 
It is similar to‘Eqblockedspringssol.m’ except that here there is no applied force fa. 
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Figure 4.11.3: Deceleration Response for ζ = 0.5 

Typical plots produced by ‘crashworthiness.m’ are shown in Figures 4.11.2-4.11.4, which were ob­
tained for ζ = 0.5. 
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Figure 4.11.4: Barrier Force Response for ζ = 0.5 

(g) The plots obtained are only valid during the interval in which the fender remains in contact 
with the barrier. In the undamped case, this period was a half cycle of sinusoidal oscillation. 
In the damped cases, the model results are valid only as long as the barrier force is compressive. 
If tension is required the fender separates from the barrier. For the case ζ = 0.5 we see that 
the model predicts tensile barrier force after t = 0.082 seconds. In all four cases there is 
separation of the vehicle from the barrier after the impact. 

(h) Peak decelerations are proportional to peak barrier forces (this is a consequence of Newton’s 
law F = ma). In the undamped case, the barrier force is delivered by the spring. Its 
magnitude is fbarr,u = mAω2 = mvoωo. In the damped case, the barrier force is delivered by o 
both the spring and the damper. At the initial instant of impact, when the fender begins to 
move with velocity vo, but hasn’t yet deflected the spring, the entire barrier force is delivered 
by the damper. Its magnitude is fbarr,d = bvo which can be made as large as desired by 
increasing the parameter b. This initial damping force will be the same as the peak undamped 
force if bvo = mvoωo. This occurs when ζ = 0.5. 

(i) The peak deceleration is greatest in Case (f), ζ = 1.0. 
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(j) By trial and error with ’crashworthinesssol.m’ one finds that ‘decel’ has a fairly flat minimum 
value of slightly more than 106 meters/second2 over the range 0.25 < ζ < 0.30. 
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4.12 Nonlinear Rotational System 

The solution for this problem is not available. 
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4.13 Developing Differential Equations 

We are interested in modeling the rotation system in Figure 4.13.1 and the translational system 
in Figure 4.13.2. The free-body diagram for the rotational system is given in Figure 4.13.3. The 
free-body diagram for the translation system is given in Figure 4.13.4. 

C C

J

, output, input

Figure 4.13.1: SDOF Rotational System
 

C C

M

X, output

 F, input

K K

Figure 4.13.2: SDOF Translational System
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Figure 4.13.3: Free-body diagram for the Rotational System
 

Figure 4.13.4: Free-body diagram for the Translational System
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Using the free-body diagram, the equation of motion for the rotational system is 

Jθ ̈+ (c1 + c2)θ̇ = τ 

The rotational system is a first-order system because we can rewrite the governing equation using 
the velocity (ω = θ̇)such that there is only a single derivative. 

Jω̇ + (c1 + c2)ω = τ 

The governing equation for the translational system is 

Mẍ+ (c1 + c2)ẋ + (k1 + k2)x = F 

This system is second-order. 
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4.14 Mass Spring System Frequency Response 

(a) The differential equation for this system is 

mẍ+ kx = F 

Take the Laplace transform and rearrange to obtain the transfer function 

X(s)(ms 2 + k) = F (s) 
X(s) 1 

= 
F (s) ms2 + k 

M is simply the magnitude of the transfer function evaluated at s = jω. 

X(s) 
        1
 

M =
 =
 
F (s)
 |100 − ω2|

The phase is
 
0 0 

φ = tan−1 − tan−1 

1 100 − ω2 

= 0◦, ω < 10 and − 180◦, ω > 10 

(d) The plot is shown in Figure 4.14.1. 
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Figure 4.14.1: Bode plot
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4.15 Modeling Practice 

The solution for this problem is not available. 
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4.16 Small Motion Transfer Function 

The solution for this problem is not available. 

318
 



         

4.17 Mass Spring Damper System Frequency Response 1 

(a) The differential equation for this system is 

mẍ+ bẋ+ kx = F 

Take the Laplace transform and rearrange to obtain the transfer function 

X(s)(ms 2 + bs + k) = F (s) 
X(s) 1 

= 
F (s) ms2 + bs + k 

M is simply the magnitude of the transfer function evaluated at s = jω. 

X(s) 1 
M = = 

F (s) (100 − ω2)2 + ω2 

The phase is 

0 ω 
φ = tan−1 − tan−1 

1 100 − ω2 

ω 
= − tan−1 

100 − ω2 

(d) The plot is shown in Figure 4.17.1. 
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Figure 4.17.1: Bode plot
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Figure 4.18.1: Bode plot for H1(s) 
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4.18 Mass Spring Damper System Frequency Response 2

(a) Begin by writing out two force balance equations, one for each mass. This will yield two
differential equations involving x1, x2 and F . These simplified equations are

m1ẍ1 + (b1 + b2)ẋ1 + (k1 + k2)x1 = b2ẋ2 + k2x2 + F

m2ẍ2 + b2ẋ2 + k2x2 = b2ẋ1 + k2x1

Next take the Laplace transform of each equation

X1(s)
(
m1s

2 + (b1 + b2)s+ (k1 + k2)
)

= X2(s) (b2s+ k2) + F (s)

X2(s)
(
m2s

2 + b2s+ k2

)
= X1(s) (b2s+ k2)

To obtain the desired transfer functions, simply substitute one equation into the other. After
a lot of messy algebra, this yeilds

X1(s)
F (s)

=
m2s

2 + b2s+ k2

m1m2s4 + (m2(b1 + b2) +m1b2)s3 + (m1k2 +m2(k1 + k2) + b1b2)s2 + (b1k2 + b2k1)s+ k1k2

X2(s)
F (s)

=
b2s+ k2

m1m2s4 + (m2(b1 + b2) +m1b2)s3 + (m1k2 +m2(k1 + k2) + b1b2)s2 + (b1k2 + b2k1)s+ k1k2

(b) The bode plots and pole/zero plots are shown in Figures 4.18.1-4.18.4.
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Figure 4.18.2: Pole/zero plot for H1(s) 
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Figure 4.18.3: Bode plot for H2(s) 
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Figure 4.18.4: Pole/zero plot for H1(s) 

For both bode plots, peaks appear at the frequencies of the pole locations, that is, the 
imaginary value of each pole. The imaginary value of a pole is simple the undamped natural 
frequency, and it makes sense that peaks would occur at damped natural frequencies. m1 is 
at a relative maximum at about 1.96 [rad/sec]. Both masses oscillate with a magnitude of 
-5.85 [dB]. m1 is at a relative minimum at about 100 [rad/sec], oscillating at -120 [dB]. m2 is 
oscillating at -80[dB], which is 100 times the amplitude of m1. 
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4.19 Propeller Shaft Vibration
 

Torsional vibration of coupler shaft between engine and propellor. Moment of inertia of propellor 
is estimated as I = mL2/12, where m is the mass of an aluminum rod, 2 inches (0.0508 meters) in 
diameter and six feet (1.829 meters) in length. The density of aluminum is 2720 kg/m3, so 

m = ρπr2L = 2720π(0.0254)2(1.829) = 10.08 kg 

and 
mL2 (10.08)(1.829)2 

I = = = 2.811 kg-m2 

12 12 

K

θe , ωe

θp , ωp

Figure 4.19.1: Torsional Vibration of Propellor Shaft 

(a) The input is the given angular displacement of the engine end of the shaft 

Ω 
θe = Ωt + E sin t

2 

Take the output to be the angular displacement θp and angular velocity ωp = dθp/dt of 
the propellor end of the shaft. Assume that the that the torque Tshaft transmitted to the 
propellor from the shaft and the torque Tfric applied to the propellor by the air resistance 
can be modelled by the linear relations 

Tshaft = K(θp − θe) and Tf ric = Bθp 

The torque balance requirement is 

dωp−Tshaft − Tfric = TI = I 
dt
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These relations can be combined in the standard form for a state-determined system
 

d
 
⎧⎨
 θp 

⎫⎬
 
⎧⎨
 θp 

⎧⎨
 
⎫⎬
 0
 

⎫⎬
 
⎤⎡ 

0 1
 K 
(Ωt + E sin
 

Ω
 
t)
⎦⎣ +
=
 

dt
 ⎩
 ωp 
⎭
 −K/I −B/I
 ⎩
 ωp 

⎩
⎭
 1
⎭
 I
 2
 

or in the form of a single second-order equation 

d2θp dθp Ω 
I + B + Kθp = K(Ωt + E sin t)
dt2 dt 2 

The input motion consists of a uniform rotation at angular rate Ω plus a sinusoidal oscillation 
at frequency Ω/2. Because the equation is linear the steady-state responses to these two inputs 
can be obtained separately and superposed to obtain the complete solution. For the uniform 
rotation, try a response of the form 

θp,unif = Ωt + Constant 

and find that it satisfies 

d2θp,unif dθp,unif
I + B + Kθp,unif = KΩt 

dt2 dt 

if the Constant = −BΩ/K. this means that, after an initial transient, uniform engine speed 
results in a uniform propellor speed with a constant twist in the shaft just large enough for 
the shaft torque to balance the friction torque. For the sinusoidal oscillation, the response 
θp,osc = ψ(t) must satisfy the equation 

d2ψ dψ Ω 
I + B + Kψ = KE sin t 
dt2 dt 2 

A solution is sought in the form 

Ω 
ψ = Im{A exp(i t)}

2 

The complex amplitude A must satisfy the relation 

A K ω2 
I o= = 

K − Ω
2 − Ω

2E + iBΩ ω2 + iζωoΩI 4 2I o 4 

where 

ω2 = 
K 

and 2ζωo = 
B 

o I I 
This result is very similar to the result obtained in Problem 16.9, with the exception that 
here the firing frequency Ω/2 plays the role of the driving frequency Ω in Problem 16.9. The 
ratio of the complex amplitude at frequency Ω/2 to the response when Ω → 0 is 

A(Ω/2) 1 
Z = = 

A(0) (Ω/2)2 (Ω/2)[1 − 
ω2 ] + i2ζ ωoo 

The peak value of |Z| is 
1 |Z|peak = 

2ζ 1 − ζ2 

and that the peak amplitude is realized when the forcing frequency is 

Ωpeak = ωo 1 − 2ζ2 

325
 

√
√



   

(b) To use the results of Problem 16.9, we need the ratio, |Z|peak, of the peak response to the 
zero-frequency response and the magnitude of the forcing frequency which produces the peak 
response. Here we know that peak response occurs when the engine speed is 2200 rpm. The 
corresponding forcing frequency is Ω/2 = 1100 rpm or 115.2 rad/sec. We do not know the 
zero-frequency response, but we do know that the ratio of the peak response, at 2200 rpm, to 
the response at 500 rpm is 4. We also know from Fig.2 that the response magnitude for low 
frequencies, well below the natural frequency, is not much greater than the zero-frequency 
response. Therefor we can take the given ratio of 4 as an estimate of the ratio |Z|peak. With 
these estimates, we can use the results of Problem 16.9 to obtain estimates of the behavioral 
parameters ωo and ζ. 

Ωpeak 115.2 1 
ωo = = and |Z|peak = 4 = 

1 − 2ζ2 1 − 2ζ2 2ζ 1 − ζ2 

The solution of these equations yields the estimates 

ζ = 0.1260 and ωo = 117.1 rad/sec 

from which follow
 
K = Iω2 = 2.811(117.1)2 = 38, 500 N-m/radian
 o 

and
 
B = 2ζωoI = 2(0.126)(117.1)(2.811) = 83.0 N-m/rad/sec
 

as estimates of the model parameters. 
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4.20 Safe Packaging 

The first two figures for this problem are completely irrelevant to the actual solution, they are only 
there to show the thought process you would go through if you were solving this problem on your 
own. 

f k
f b

x

f g

m1

Figure 4.20.1: Free Body Diagram of instrument. 

(a) From the FDB, 

ΣF = m1ẍ = fg − fk − fb 

Where fg = m1g 

fk = kx 

fb = bẋ

m1ẍ = m1g − bẋ− kx 

¨ (x) + 
b
ẋ+ 

k
x = g 

m1 m1 

with x0 = 0, ẋ0 = v0 

(b) For the system to oscillate ζ must be less than 1. 

k 
ω2 

n = 
m 

2ζωn = 
b 
m 

ζ = 
1 
2 
b 
m 

m 
k 

= 
b 

2 
√ 
km 

ζ < 1 √ 
b < 2 km 

(c) Since this is a pretty straight forward 2nd order system we can just add the forced and free
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responses
 

x(t) = xfree(t) + xforced(t)  
g 1 

xforced(t) = e −ζωnt sin (tωn 1 − ζ2 + φ) + 1
k 1 − ζ2 

v0 
xfree(t) = e −ζωnt sin (tωn 1 − ζ2)
 

ωn 1 − ζ2
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4.21 Sliding Damped 

A mass m is subjected to an accelerating force f and a retarding friction force, modeled linearly as 
bv. 

(a) The equation of motion is 

dv dv b 1 
m + bv = f or = − v + f (1)
dt dt m m 

(b) The steady-state velocity, when f = 10 Newtons, and m = 1000 kg, and b = 100 N/m/s is 

f 10 
vss = = = 0.10 m/s 

b 100 

(c) Consider the input f = fa sin Ωt to be the imaginary part of the complex input faexp(iΩt) 
and look for a complex solution of the form v = Aexp(iΩt). After substitution in (1) we find 
that this is indeed a solution , if 

fa fa 1 
A = = exp(iφ)

b + imΩ b 1 + (mΩ )2 
b 

where the phase angle φ is fixed by the relation
 

mΩ
 
tan φ = − 

b 

The steady-state solution to the input f = fa sin Ωt is then the imaginary part of the complex 
solution Aexp(iΩt), which is 

fa 1 
v = sin(Ωt + φ)

b 1 + (mΩ )2 
b 

The magnitude of the response amplitude is 

fa 1 
M(Ω) = 

b 1 + (mΩ )2 
b 

and the phase angle is
 

φ = − tan−1 mΩ
 
b 

For the case where fa = 10 Newtons, the values of M(Ω) and φ(Ω) for the frequencies Ω = 0.5 
rad/sec, Ω = 0.05 rad/sec, and Ω = 0.005 rad/sec are 

10 1(i) M(0.5) = q = 0.01961 m/s, 100 (1000)(0.5)
1+( )2 

100 

φ(0.5) = tan−1(1000)(0.5)/100 = 1.373r = 78.7 deg 
10 1(ii) M(0.05) = q = 0.0894 m/s, 

(1000)(0.05) 100 
1+( )2 

100 

φ(0.05) = tan−1(1000)(0.05)/100 = 0.463r = 25.6 deg 
10 1(iii) M(0.005) = q = 0.0999 m/s, 100 (1000)(0.005)

1+( )2 
100 

φ(0.005) = tan−1(1000)(0.005)/100 = 0.050r = 2.86 deg 
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(d) The limiting value of the magnitude of the response amplitude M(Ω) when Ω → 0 is Ao = 
fa/b = 0.10 m/s. The ratio M(Ω)/Ao is 0.1961 when Ω = 0.5 rad/sec, 0.894 when Ω = 0.05 
rad/sec, and 0.999 when Ω = 0.005 rad/sec. 

(e) The low-frequency asymptote for M(Ω) is Ao = fa/b, while the high-frequency asymptote is 
fa/mΩ. These asymptotes intersect at the break frequency Ωbreak = b/m = 0.10 rad/sec. 
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Figure 4.21.1: Magnitude of Response of Sliding Mass
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Figure 4.21.2: Phase Angle of Response of Sliding Mass 

(f) The Bode plots shown in Fig. 4.21.1 and Fig. 4.21.2 were obtained by running the MATLAB 
script ‘slidingsol.m’ 
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4.22 Toy Flywheel
 

r J

F
k

Tc
Tk

Figure 4.22.1: Cross-Sectional and Top view 

a) Figure 4.22.1 shows the free body diagram for this system. Summing the torques 

ΣT = Jθ ̈= Tk − Tc 

Tk = rFk 

Fk = k(xs − x) 
Tc = ctθ̇ 

so Jθ ̈+ ctθ̇ = rk(xs − x) 
Jθ ̈+ cf θ̇ + rkx = rkxs 

Recall that rθ = x ⇒ θ = 
x 
r 

Jso ẍ+ ct ẋ+ rkx = rkxs(t)r r 

This may be rewritten as 

ct r2k r2k 
ẍ+ ẋ+ x = xs(t)

J J J 

(b) For this part we note the following relationships 

2ζωn ≡ 
ct 
J 

r2k 
ω2 ≡n J 

For the string not to go slack the system must not overshoot x0, this means that ζ ≥ 1. For 
ζ ≥ 1 to be true 

√ 
ct ≥ 2 r2kJ 
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(c) For the string to go slack the system must be allowed to overshoot or ζ < 1. In the case of 
ζ < 1 

1 
x(t) = 1 − e ζωnt cos (ωdt − ψ)

1 − ζ2 

ωd = ωn 1 − ζ2 

ζ 
ψ = tan−1 

1 − ζ2 

This equation can be expressed in terms of the system variables by substituting for ωn and 
ζ from 3. Figure 4.22.2 shows the time response for this system where t ∗ indicates the time 
after which the response is not valid. 

0
0

t*

xo

Valid for t<t*

Figure 4.22.2: Time Response 

(d) When ct = 0, the expression for x(t) becomes 

x(t) = x0(1 − cos ωnt) 

As we saw in part 3, t ∗ is the time at which the response passes x0. In this case, it takes a 
quarter cycle to get to x0, thus
 

1 2π
∗ t =
4 ωn 

Figure 4.22.3 shows the response for this system. 
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t*=0.25*2* n

Figure 4.22.3: Step Response
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4.23 Truck Shocks
 

The basic assumption here is that the back of the truck can be modeled as a plate of mass M 
supported by an equivalent spring of stiffness k and damping parameter b, onto which hops Uncle 
Massive, of mass m, which applies a step-function of force to the system, while changing the total 
mass of the system to M + m. Under these assumptions the theory developed in class can be used 
to estimate the effective mass M of the back of the truck from the observed frequency of oscillation 
and static deflection. 

(a) The statement that the oscillation contained more than five clearly defined cycles is a tip-off 
that the system is lightly damped, which suggests that damping might be neglected in making 
a preliminary estimate. The static deflection Δ under a load of w = mg tells us that the 
equivalent stiffness k can be estimated from w = kΔ, or 

w 250 pounds 
k = = = 250 pounds/inch 

Δ 1.0 inch 

The observed oscillation frequency of 2 Hz can be taken as the undamped natural frequency, 
ωo/2π, of the system with mass M + m and stiffness k. The truck mass M can be estimated 
by using the relation 

k 
ω2 = o M + m
 

in combination with the preceding expression for k to obtain
 

M = 
mg − m (1)
Δω2 

o 

In the British system of units, mass is subordinate to force, and M is replaced by W/g where 
W is the equivalent weight of the back of the truck. To use British units, Eq.(1) is multiplied 
through by g = 386 in/sec2 to get 

wg (250)(386)
W = − w = − 250 = 361 pounds 

Δω2 (1)(4π)2 
o 

Alternatively the given data can be converted to SI units (Δ = 0.0254 m, and m = 113.4 
kg),and Eq.(1) used to obtain M = 163.8 kg whose weight, Mg = (163.8)(9.81) = 1607 
Newtons, is equivalent to the British weight of 361 pounds. 

(b) It is assumed that the truck oscillation is a primarily vertical motion of the effective mass 
of the rear end of the truck plus Uncle Massive on an effective vertical spring (the rear tires 
plus suspension). It is also assumed that the observed damped natural frequency is a good 
approximation for the undamped natural frequency required in the formulas above. 
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4.24 Car Suspension 2 

(a),(b) The differential equation for the system is 

mẍ+ bẋ+ kx = F, (1) 

The particular solution will be: 
xp(t) = F/k. (2) 

The homogenous solution has the form: 

xh(t) = Ae−ζωnt cos(ωdt) + Be−ζωnt sin(ωdt) (3) 

Plugging the initial conditions into the full solution 

x(t) = Ae−ζωnt cos(ωdt) + Be−ζωnt sin(ωdt) + F/k (4) 
0 = A + F/k (5) 
A = −F/k (6) 

−ζωnt ẋ(t) = e (−Aωd sin ωdt − Aζωn cos ωdt) + (Bωd cos ωdt − Bζωn sin ωdt) (7) 
0 = −Aζωn + Bωd (8) 

Aζωn
B = − (9)

ωd 

For m = 500kg, k = 5 × 104N/m and b = 2 × 103 Ns/m, 

ωn = 
k 

= 10 (10) 
m 

c 
ζ = √ = 0.2 (11)

2 km 

ωd = ωn 1 − ζ2 = 9.8 (12) 
σ = ζωn = 2; (13) 

A = −0.01 (14) 

B = 2.04 · 10−3 (15) 

x(t) = −0.01e −2t cos(9.8t) − .00204e −2t sin(9.8t) + .01 (16) 

The result is plotted in Figure 4.24.1. 

(c) The passengers will not like this ride because there are too many oscillations. when b = √ 
2 · km = 10000, the system will be critically damped, in this case the complete solution has 
the form: 

x(t) = Ae−ωnt + Bte−ωnt + F/k (17) 
x(0) = A + F/k (18) 
A = −F/k (19) 
A = −0.01 (20) 

ẋ(0) = −ωnA + −ωnBte
−ωnt + Be−ωnt (21) 

0 = −ωnA + B (22) 
B = ωnA (23) 
B = −0.1 (24) 

x(t) = −0.01e −ωnt − 0.1te−ωnt + 0.01 (25) 
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In order to find the acceleration for the under-damped case, differentiate equation 16 twice 
with respect to time, 

x(t) = −0.01e −2t cos(9.8t) − .00204e −2t sin(9.8t) + .01 (26) 

ẋ(t) = .10208e −2t sin 9.8t (27) 

ẍ(t) = e −2t cos 9.8t − .20416−2t sin 9.8t (28) 

The maximum acceleration will happen at t = 0+ 

ẍ(t = 0+) = 1 (29) 
(30) 

So the maximum acceleration is 1m/sec2 .
 

Similarly, for the critically damped case, differentiating equation 25 twice,
 

x(t) = −0.01e −ωnt − 0.1te−ωnt + 0.01 (31) 
−10t ẍ(t) = (1 − 10t)e (32) 

ẍ(0+) = 1 (33) 

So the accelerations will be the same. 

(d) From the step response, the 5% settling time is 1.35 sec in the under-damped case and 0.47 
sec in the critically-damped case. 
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0.004
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Figure 4.24.1: Step Response
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4.25 Kid-Skid
 

Figure 4.25.1: 
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Figure 4.25.2:
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Figure 4.25.3:
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4.26 Rolling Machine
 

Figure 4.26.1: 

341
 



Figure 4.26.2:
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4.27 Sunday Bike Ride
 

Figure 4.27.1: 
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Figure 4.27.2:
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Figure 4.27.3: 
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4.28 Compound Mass Spring Damper System 1 

(a) The free body diagram for the mass m is shown in Figure 4.28.1 and the free body diagrams 
for nodes n1 and n2 are shown in Figure 4.28.2. 

m
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F
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F
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x
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k
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) b
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Figure 4.28.1: Free body diagram for mass m
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Figure 4.28.2: Free body diagrams for nodes n1 and n2 

(b) We begin by writing the force balance equation for node n1, keeping in mind that the “effective 

346
 



� � � �
� � � �

� � � �

mass” for this node is 0. 

k2(x − n1) − k1n1 = mn1 n̈1 

k2x − (k2 + k1)n1 = 0 

k2x = (k2 + k1)n1 

k2 
x = n1 (1)

k2 + k1 

We do the same for node n2 

b2(ẋ − ṅ2) − b1ṅ2 = mn2 n̈2 

b2ẋ− (b2 + b1)ṅ2 = 0 

b2ẋ = (b2 + b1)ṅ2 

b2 
ẋ = ṅ2 (2)

b2 + b1 

Now we write out the force balance equation for the mass m. 

F1 − F2 − k2(x − n1) − b2(ẋ − ṅ2) − k3x − b3ẋ = mẍ

F1 − F2 − (k2 + k3)x − (b2 + b3)ẋ + k2n1 + b2ṅ2 = mẍ (3) 

We have equations for the positions n1(t) and n2(t), so we substitute equations (1) and (2) 
into (3) 

k2 b2
F1 − F2 − (k2 + k3)x − (b2 + b3)ẋ + k2 x + b2 ẋ = mẍ

k2 + k1 b2 + b1 

b2 k2 
2 2 mẍ+ b2 + b3 − ẋ+ k2 + k3 − x = F1 − F2

b1 + b2 k1 + k2 

b2(b1 + b2) b2 k2(k1 + k2) k2 
2 2 mẍ+ + b3 − ẋ+ + k3 − x = F1 − F2

b1 + b2 b1 + b2 k1 + k2 k1 + k2 

b1b2 k1k2 
mẍ+ + b3 ẋ+ + k3 x = F1 − F2

b1 + b2 k1 + k2 

mẍ+ beqẋ+ keqx = F1 − F2 (4) 

where 
k1k2 b1b2

keq = + k3 and beq = + b3
k1 + k2 b1 + b2 

Equation (4) is our final 2nd order differential equation, but it was a lot of algebra to get to. 
There is a simpler way to derive the equation if you first simplify the Free Body Diagrams. 
Looking back to the original problem diagram, we can simplify the two springs above the mass 
into one equivalent spring. Remember that the effective spring constant for springs in parallel 
is their summation, and the effective spring constant for springs in series is the reciprocal of 
of the summation of their inverses, simplified to be their product over their summation: 

k1k2
kparallel = k1 + k2 and kseries = (5)

k1 + k2 

This equivalent model is also valid for damping coefficients. We use equation (5) to redraw 
the free body diagram as shown below in Figure 4.28.3. 
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Figure 4.28.3: Force balance for mass m with equivalent constants 

We now use this diagram to write out the force balance equation: 

k1k2 b1b2
F1 − F2 − x − ẋ+ k3x + b3ẋ = mẍ

k1 + k2 b1 + b2 

b1b2 k1k2 
mẍ+ + b3 ẋ+ + k3 x = F1 − F2

b1 + b2 k1 + k2 

mẍ+ beqẋ+ keqx = F1 − F2 (6) 

Equations (4) and (6) are identical, but equation (6) is much easier to derive. 

(c) Notice that the differential equation in (6) is almost in a standard form.	 We can devide 
equation (6) through by the effective spring constant of the system to arrive at the standard 
form in equation (7), where f(t) is some set of forces. 

m beq F1 − F2 
ẍ+ ẋ+ x = 

keq keq keq 

1 2ζ 
ẍ+ ẋ+ x = f(t)	 (7)

ω2 
n ωn 

By comparing these equations, we can come up with expressions for ωn and ζ, and plug in 
the appropiate system values for the numberical answers. 

keq
ωn = = 100 [rad/sec] 

m 
beq

ζ = = .05 
2 keqm 

ωd = ωn 1 − ζ2 = 99.875 [rad/sec] 

The poles for underdamped second order systems are located at s = −ζωn ± ωd. The s-plane 
plot of this system is shown in Figure 4.28.4. 
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Figure 4.28.4: S-plane plot of system poles 

(d) The general form for the solution x(t) of equation (6) is 

x(t) = Ae−σt cos ωdt + Be−σt sin ωdt 

where σ = ζωn. We find A by plugging in the initial condition x(0) = 10−2: 

Ae−σ0 cos ωd0 + Be−σ0 sin ωd0 = 10−2 

A = 10−2 

B is found by plugging in the intial condition ẋ(0) = 0: 

Ae−σt cos ωdt + Be−σt sin ωdt = x(t) 
−σt e (−Aωd sin ωdt − Aσ cos ωdt) + (Bωd cos ωdt − Bσ sin ωdt) = ẋ(t) 

−Aσ + Bωd = 0 

Aσ 
B = = 10−2 σ 

ωd ωd 

Use these results to plot x(t) in matlab. The plot is shown in Figure 4.28.5. 
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Figure 4.28.5: Plot of x(t) when x(0) = 10−2, ẋ(0) = 0 
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4.29 Compound Mass Spring Damper System 2 

Begin by taking equation (4) from the solution of Problem 4.28 as the force balance in this problem: 

mẍ+ beqẋ+ keqx = F1 − F2 

where 
k1k2 b1b2


keq = + k3 and beq = + b3

k1 + k2 b1 + b2
 

The problem states that F1 = 10 [N], F2 = 0 [N], and x(0) = ẋ(0) = 0. Rewrite the force balance 
to be 

mẍ+ beqẋ+ keqx = 10 

The solution to a driven second order differential equation will be the sum of the particular solution 
and the homogeneous solution. Start by finding the particular solution. Guess that xp(t) will have 
the form xp(t) = C, ẋp(t) = 0. 

mẍp + beqẋp + keqxp = 10 

0 + 0 + keqxp = 10 
10 

xp = 
keq 

We know the homogeneous solution of this equation from the solution of Problem 4.28: 

xh = Ae−σt cos ωdt + Be−σt sin ωdt 

The total solution is the sum of the particular and homogeneous solutions. 

10 
x(t) = Ae−σt cos ωdt + Be−σt sin ωdt + 

keq 

we find the constants A and B by plugging in the initial conditions x(0) = 0 and ẋ(0) = 0: 

10 
Ae−σ0 cos ωd0 + Be−σ0 sin ωd0 + = 0 

keq 

10 
A + = 0 

keq 

10 
A = − 

keq 

and 

10 
Ae−σt cos ωdt + Be−σt sin ωdt + = x(t)

keq 
−σt e (−Aωd sin ωdt − Aσ cos ωdt) + (Bωd cos ωdt − Bσ sin ωdt) = ẋ(t) 

−Aσ + Bωd = 0 

Aσ 10 σ 
B = = − 

ωd keq ωd 
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A sketch of this solution is found in Figure 4.29.1
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Figure 4.29.1: Plot of x(t) when x(0) = 0, ẋ(0) = 0, F1 = 10 [N] 
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4.30 Wind Induced Building Vibrations
 

Figure 4.30.1: 
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Figure 4.30.2:
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Figure 4.30.3: 
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5 Electrical Systems 

5.1 Camera Flash Circuit 

The solution for this problem is not available. 
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5.2 Batteries and Capacitors 

(a) The short circuit current Isc is dependent of the battery internal resistance as follows: 

1.5V 
Rb = 

Isc 

1.5V 
Rb = 

5.7A 
Rb = 0.26 Ω 

(b) The power P dissipated will be as follows: 

P = V Isc 

P = (1.5V )(5.7A) 
P = 8.55W 

The power is being dissipated at the battery internal resistance, heating up the battery as a 
consequence. 

(c) In one time constant τ = RlC the capacitor voltage should drop to 37 percent. So 

τ = 10 min 

τ = 600 sec 
600 sec 

Rl = 
120 ∗ 10−6 F 

Rl = 5 ∗ 106 Ω 

(d) Circuit diagram as follows:
 

-

+

+

-

+

Figure 5.2.1: Circuit diagram of battery charging capacitor
 

(e) Making the analysis using two loop currents we have the following:
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1.5V − vc
I1 = 

Rb 
vc

I2 = 
Rl 

dvc 
I1 − I2 = C 

dt
 

Replacing I1 and I2 we have the following:
 

dvc
(RbRl)C + (Rb + Rl)vc − (1.5V )Rl = 0 
dt 
dvc156 + 5 ∗ 106 vc − 7.5 ∗ 106 = 0 
dt 

(f) Homogenous solution vc = Aest and dvc = Asest, replacing dt 

156Asest + 5 ∗ 106Aest = 0 

s = −32x103 

Particular solution vc = Aest + B and dvc = Asest, with boundary condition vc(t = 0) = 0, dt 
replacing 

A = −B 

B = 1.5V 

A = −1.5V 

−32.1∗103
So vc = 1.5(1 − e t) 

358
 



0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−4

0

0.5

1

1.5
Capcitor voltage vs. time when charged by AA Battery

time (sec)

vc
 (

V
)

Figure 5.2.2: Charging capacitor 

The system pole is located at s = −32.1 ∗ 103, as shown on figure 5.2.3 
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Figure 5.2.3: Pole location 

(g) For the discharging capacitor we have the following 

I = 
−dvc 

C 
dt 

I = 
vc 

Rl 

vc = Aes(t−t1) 

dvc = Ases(t−t1) 

dt 
Aes(t−t1) = −RlCAse

s(t−t1) 

−1 
s = 

RlC 
−1 

s = 
600 
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Figure 5.2.4: Discharging capacitor 

The system pole is located at s = −1.67 ∗ 10−3, as shown on figure 5.2.5 
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Figure 5.2.5: Pole location 
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5.3 Loaded Motor 

The solution for this problem is not available. 
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6 Fluid Systems 

6.1 Rotational Fluid System 

a) 

J

T1

T
2

(t)
2 

c
1

J

c
2

(t)
1 

(t)
2 

Figure 6.1.1: Freebody diagram of Inertia and Schematic of system. 

The free body diagram for the inertia is shown in Figure 6.1.1 along with a schematic of the 
dynamic elements in this problem. As can be seen, the inertia has two torques acting on it: 
T1 generated by the damper c1 between the input and the inertia and T2 generated by the 
damper c2 between the inertia and ground. The schematic drawing is helpful but not required 
in the solution. 

(b) Using the FBD from part a, we can write the following relationship: 

ΣT = JΩ̇2 = T1 + T2 

This is where the schematic becomes helpful. By inspection, we can work out the following 
relationships 

T1 = c1(Ω1 − Ω2) 
T2 = −c2Ω2 

Substituting for T1 and T2 yields the following 

JΩ̇2 = c1(Ω1 − Ω2) − c2Ω2 ⇒ JΩ̇2 + (c1 + c2)Ω2 = c1Ω1 
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(c) The input to the system has been defined as Ω1(t) = us(t) thus the differential equation for 
this system become 

JΩ̇2 + (c1 + c2)Ω2 = c1us(t) 

This differential equation (DE) matches that for a first order forced response. We know the 
solution to this DE is of the form 

Ω2(t) = Ωh(t) + Ωp(t) where 

Ωp(t) = Ωss = 
c1 

c1 + c2 
(Particular solution) 

Ωh(t) = Ae−st (Homogeneous solution) 

s = − 
c1 + c2 

J 
Using initial conditions 

Ω2(0) = 0 = A + 
c1 

c1 + c2 
⇒ A = − 

c1 

c1 + c2 

c1+c2− tΩ2(t) = 
c1 1 − e J 

c1 + c2 

(d) We determined earlier that 

Ωss = 
c1 

c1 + c2 

Looking carefully at out schematic of the system, we know that the torque from the shaft 
acting on the inertia is T1. Since, the torques on either side of the damper need to be equal, 
we know the torque acting on the shaft is equal and opposite to T1. Since the system is in 
steady state, we know that the velocity of the shaft is constant which means that the sum of 
torques acting on the shaft equal 0. 

ΣTshaft = 0 = Tin − T1 ⇒ Tin = T1 

We know that 

T1 = c1(Ω1 − Ω2) 
Ω1 = us(t) = 1 

Ω2 = Ωss = 
c1 

c1 + c2 

c1 c1c2Thus T1 = c1 1 − = 
c1 + c2 c1 + c2 

More generally T1 = 
c1c2 Ω1 
c1 + c2 
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6.2 Fluid Leak 

The solution for this problem is not available. 
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6.3 Where’d the water go? 

(a) Use the parameters R = 1.5·109 [Pa sec/m3], and L = 7·106 [Pa sec2/m3]. Begin by sketching 
the equivalent circuit diagram as shown below. 

P
s
(t)

L R

C

+

-

 

q
n

Figure 6.3.1: Shower equivalent circuit 

qn is the water flow through the shower nozzle. We need a differential equation in terms of 
the nozzle flow. Note that the capacitance in this circuit can be neglected as it is effectively 
short-circuited by the shower nozzle. Write out the loop equation for this circuit: 

Ps(t) = PR + PL 

Use the constitutive relationships for the fluidic resistor and fluid inertance: 

PR = qRR 

dqL
PL = L

dt 

note that qR = qL = qn. Substitute these equations back into the loop equation: 

dqL
Ps(t) = qRR + L

dt 
1 L dqL
Ps(t) = qR + 

R R dt 

the solution to this standard first order differential equation takes the form 

qn(t) = Ae−t/τ + B where τ = 
L 
R 

Our initial condition is that Ps(0) = 3 · 105 [Pa]. Plugging this into our differential equation 
gives 

3 · 105 

qn(0) = = 2 · 10−4 [m3/sec] 
1.5 · 109 

also, the final condition must be that qn∞ = 0. Plugging this into the solution to the 
differential equation gives A = 2 · 10−4 and B = 0. The final solution is: 

−t/.004667 qn(t) = 2 · 10−4 e 

The flow will fall to below 1% of its inital value after 5τ . This is approximately .023 [s]. The 
sketch of the shower flow transient is shown in Figure 6.3.2. 
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Figure 6.3.2: Shower flow transient 

Because the shower nozzle is modeled as a switch, there is no pressure drop across the nozzle 
and therefore the pressure at the nozzle is atmospheric pressure, and this remains constant. 
The sketch of this plot is shown Figure 6.3.3. 
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Figure 6.3.3: Shower pressure transient 

(b)-(d) Don’t worry, nothing to answer here. 

367
 



7 Thermal Systems 

7.1 Thermal Block Question 

See Professor Trumper’s Notes: Chapter 1 for some information on modeling thermal systems. A 
diagram depicting the idealized block outside of the oven is shown in Figure 7.1.1. 

Tamb

Tblock�



c=385 J/(kgoC)


m=0.1 kg 
q

Figure 7.1.1: Diagram of copper block out of oven. 

The ambient temperature surrounding the block is given as Tamb, the internal temperature of the 
block is given as Tblock, and the heat flow from the block to the environment is given as q. The 

Jspecific heat of copper (c) is given as 385 kgoC , and the mass of the block is 0.1 kg. 
The energy associated with the change of the block’s temperature is given by 

CΔTblock (1) 

where C is the thermal capacitance of the block given by mc. The energy associated with heat 
transfer for a period of time Δt is given by 

qΔt. (2) 

In this idealized model, the heat loss is balanced exactly by the change in temperature of the block. 
Thus, the instantaneous energy/heat balance is given by 

mcdTblock = −qdt. (3) 

The negative sign in front of the q is due to the fact that the heat is flowing out of the block. If 
you were to form a control volume around the block, heat flowing in would have a positive sign. 
According to the way the picture is drawn, the heat flow, q, is flowing outwards. In addition, 
the heat flow, q, will be modeled as linearly proportional to the difference between the block 
temperature and ambient temperature as 

Tblock − Tamb 
q = (4)

R 

where R is the thermal resistance between the block and the environment. By substitution we have 

mcdTblock = qdt (5) 
Tblock − Tamb = − dt (6)

R 
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Therefore, the governing equation is 

dTblock 
RC + Tblock = Tamb (7)

dt 
where the time constant, τ , for the system is given by RC. 
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Figure 7.1.2: The block temperature (Tblock) is plotted against time (t). The ambient temperature 
is given by Tamb. 

Going back to Figure 7.1.2 we can calculate the time constant by estimating the amount of time 
required for the block to decay by 63% of the difference between the initial block temperature and 
the ambient temperature. This occurs at approximately 559 K after a time interval of 600 seconds. 

JTherefore, the time constant for the system is 600 seconds. With τ = RC and C=38.5 oC , the 
oCthermal resistance, R, equals 15.6 J/s . 
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7.2 The Hot Copper Block 1 

(a) First, draw a diagram which shows heat flow through the system.	 It is useful to think about 
heat flowing from heat capacitances to other heat capacitances through thermal resistances. 
This model is shown in Figure 7.2.1. 

T
w

T
b

R
bw

R
wa

C
B C

W

q
bw

q
wa

T
a

Figure 7.2.1: Thermal model 

We need to use the constitutive relationships for thermal elements to write out the governing 
equations. Remember that 

dT 
C = q
dt 

dTwhere C is thermal capacitance, refers to the time derivative of the temperature of the dt 
capacitance and q is the heat flow into the capacitance. Also 

T = qR 

where T is the temperature drop across the resistance and R is the thermal resistance. An 
important note: We need to include the mass of the material to calculate the thermal capac­
itances in these equations, as the units for C are [J/◦C] and you are given the specific heat 
of the copper and water in [J/kg ◦C]. Thermal capacitance is derivied by multiplying the 
specific heat times the mass. Using these equations and Figure 7.2.1, write out the governing 
equations: 

dTb
CB = −qbw	 (1)

dt 
dTw

CW = qbw − qwa	 (2)
dt 

(Tb − Tw) = qbwRbw (3) 
(Tw − Ta) = qwaRwa	 (4) 

combine equations (1) through (4) to the derivied two equations in state space form as: 

dTw 1	 1 
= (Tb − Tw) − (Tw − Ta)	 (5)

dt RbwCW RwaCW 

dTb 1 
= − (Tb − Tw)	 (6) 

dt RbwCB 
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(b) To transform equations (5) and (6) into a single 2nd-order differential equation in Tw(t), we 
need to eliminate Tb from equations (5) and (6). Start by re-arranging (5): 

dTw Rbw
RbwCW + (Tw − Ta) + Tw = Tb (7)

dt Rwa 

and take the time derivative 

d2Tw Rbw dTw dTa dTw dTb
RbwCW + − + = (8)

dt2 Rwa dt dt dt dt
 

combine equations (7) and (8) into (6), rembering that dTa = 0:
 dt ⎧ ⎪⎩
RbwCW Ta 

⎫ ⎪⎭

d2Tw Rbw dTw Rbw dTa −1 dTw Rbw Rbw+ 1
 +
 −
 +
RbwCW Tw −
=
 
dt2 Rwa dt Rwa dt RbwCB dt Rwa Rwa 

d2Tw Rbw CW dTw 1 Rbw dTa 1 
RbwCW + + 1 + + Tw = + Ta

dt2 Rwa CB dt RwaCB Rwa dt RwaCB 

d2Tw dTw
RbwCW RwaCB + (RbwCB + RwaCB + RwaCW ) + Tw = Ta

dt2 dt 
(9) 

(c) Equation (9) is of the form 
mẍ+ bẋ+ kx = f(t) 

we need to find the roots to figure out what the solution will look like. 
√ 

−b ± b2 − 4mk 
s1, s2 = 

2m 
s1 = −0.2621[sec−1] 

s2 = −1.3878 · 10−5[sec−1] 

This means the solution takes the form 

Tw(t) = Aes1t + Bes2t + C 

To find the constants A, B and C, we need three known states. We know that Tw(0) = Ta = 
25◦C. The other initial condition is found by evaluating (5) at t = 0 

dTw(0) 1 1 
= (Tb(0) − Tw(0)) − (Tw(0) − Ta(0))

dt RbwCW RwaCW 
95 − 25 1 

Ṫ 
w(0) = = [◦C/sec] 

RbwCW 6

we also know that T∞ = Ta, plugging in the initial conditions yields two equations: 

A + B + C = 25 
1 

s1A + s2B = 
6 

C = 25 

371
 

( )

( )
( )



therefore our constants are A = −0.6359, B = 0.6359, and C = 25. The total solution is thus
 

−1.2829·10−5t − eTw(t) = .6359(e −0.0284t) + 25 

The system poles are shown in Figure 7.2.2 
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Figure 7.2.2: System Poles 

(d) Figure 7.2.3 shows the plots of Tw(t) over both a long and a short time scale. The plots look 
like this because the copper block temperature equalizes with the water temperature very 
quickly. Then, over a much longer time (on the order of two days; this must be a really good 
vacuum bottle!), the water temperature equilizes with the ambient temperature through heat 
losses through the walls of the vacuum bottle. You can see the effects of the time constants 
in the figures. The small time constant has no important effect beyond about 50 seconds, 
where the longer time constant dominates the response after that. 
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Figure 7.2.3: Plot of Tw(t) 

(e) If the block starts out at only 60◦C, we need to change the initial condition found with 
equation (5). It now becomes 

60 − 25 1 
Ṫ 

w(0) = = 
RbwCW 12 

Figure 7.2.4 show the difference from the original response. The original response is dotted. 
Note that since the block termperature difference to ambient has been lowered by a factor of 
2, this response is one half the earlier response. 
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Figure 7.2.4: Plots of Tw(t), Tb(0) = 60◦C 
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7.3 The Hot Copper Block 2
 

(a) First, draw a diagram which shows heat flow through the system.	 It is useful to think about 
heat flowing from heat capacitances to other heat capacitances through thermal resistances. 
However, because the heater is embedded in the copper block, we model the resistance between 
the block and the heater to be 0. This model is shown in Figure 7.3.1. 

T
w

T
b

R
bw

R
wa

C
B C

W

q
bw

q
wa

T
a

q
in

Figure 7.3.1: Thermal model 

We need to use the constitutive relationships for thermal elements to write out the governing 
equations. Remember that 

dT 
C = q
dt 

dTwhere C is thermal capacitance, refers to the time derivative of the temperature of the dt 
capacitance and q is the heat flow into the capacitance. Also 

T = qR 

where T is the temperature drop across the resistance and R is the thermal resistance. An 
important note: We need to include the mass of the material to calculate the thermal capac­
itances in these equations, as the units for C are [J/◦C] and you are given the specific heat 
of the copper and water in [J/kg ◦C]. Thermal capacitance is derivied by multiplying the 
specific heat times the mass. Using these equations and Figure 7.3.1, write out the governing 
equations: 

dTb
CB = qin − qbw	 (1)

dt 
dTw

CW = qbw − qwa	 (2)
dt 

(Tb − Tw) = qbwRbw (3) 
(Tw − Ta) = qwaRwa	 (4) 

combine equations (1) through (4) to the derivied two equations in state space form as: 

dTw 1	 1 
= (Tb − Tw) − (Tw − Ta)	 (5)

dt RbwCW RwaCW 

dTb 1 qin = − (Tb − Tw) +	 (6)
dt RbwCB CB 
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To transform equations (5) and (6) into a single 2nd-order differential equation in Tw(t), we 
need to eliminate Tb from equations (5) and (6). Start by re-arranging (5): 

dTw Rbw
RbwCW + (Tw − Ta) + Tw = Tb (7)

dt Rwa 

and take the time derivative 

d2Tw Rbw dTw dTa dTw dTb
RbwCW + − + = (8)

dt2 Rwa dt dt dt dt 

combine equations (7) and (8) into (6), rembering that dTa = 0:dt 

d2Tw Rbw dTw Rbw dTa
RbwCW + + 1 − = 

dt2 Rwa dt Rwa dt ⎧ ⎪⎪⎩


⎫ ⎪⎪⎭

−1
 dTw Rbw Rbw qin

RbwCW +
 Tw −
 Ta +
 
RbwCB dt Rwa Rwa CB 

d2Tw Rbw CW dTw 1 Rbw dTa 1 qin
RbwCW + + 1 + + Tw = + Ta + 

dt2 Rwa CB dt RwaCB Rwa dt RwaCB CB 

d2Tw dTw
RbwCW RwaCB + (RbwCB + RwaCB + RwaCW ) + Tw = Ta + qinRwa (9)

dt2 dt 

Equation (9) is the governing differential equation. 

(b) Equation (9) is of the form 
mẍ+ bẋ+ kx = f(t) 

we need to find the roots to figure out what the solution will look like. 
√ 

−b ± b2 − 4mk 
s1, s2 = 

2m 
s1 = −0.2621[sec−1] 

s2 = −1.3878 · 10−5[sec−1] 

This means the solution takes the form 

Tw(t) = Aes1t + Bes2t + C 

To find the constants A, B and C, we need three known states. We know that Tw(0) = 
Tb(0) = Ta = 25◦C. The other initial condition is found by evaluating (5) at t = 0 

dTw(0) 1 1 
= (Tb(0) − Tw(0)) − (Tw(0) − Ta(0))

dt RbwCW RwaCW 
25 − 25 

Ṫ 
w(0) = = 0[◦C/sec]


RbwCW
 

we also know that Tw(∞) = Ta + qinRwa, plugging in the initial conditions yields two equa­
tions: 

A + B + C = 25 

s1A + s2B = 0 

C = 25 + 4 · 17 = 93 
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therefore our constants are A = 3.6 · 10−3 , B = −68.0036, and C = 93. The total solution is 
thus 

−1.3878·10−5
Tw(t) = 3.6 · 10−3 e −0.2621t − 68.0036e t + 93 

(c) Figure 7.3.2 shows the plots of Tw(t) over both a long and a short time scale. The small time 
constant has no important effect beyond about 50 seconds, where the longer time constant 
dominates the response after that. The script thermalblock.m finds the system poles and 
plots the response on both a small and large time scale. 
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Figure 7.3.2: Plot of Tw(t) 
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7.4 Transistor on heat sink
 

(a) As always, first begin by drawing a figure. In this case, draw the circuit equivalent of this 
system. The equivalent circuit is shown in Figure 7.4.1. 
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Figure 7.4.1: Transistor thermal system equivalent circuit 

Because this is steady state, we do not need to worry about thermal capacitances at the 
moment. We need the constitutive relationships for the devices: 

Td − Tc = 50 · Rdc 

Tc − Ts = 50 · Rcs 

Ts − Ta = 50 · Rsa 

rearranging these equations and plugging in the numerical values leads to 

Ts = Ta + 50 · Rsa = 50◦C 

Tc = Ts + 50 · Rcs = 60◦C 

Td = Tc + 50 · Rdc = 65◦C 

(b) Now draw another picture with the thermal capacitance of the heat sink added in. This new 
circuit equivalent is shown in Figure 7.4.2. 
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Figure 7.4.2: Transistor thermal Equivalent circuit with heatsink thermal capacitance
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Why is the thermal capacitance in parallel with it’s associated resistance? Imagine if they 
were in series. At steady state, there is no heat flow through the capacitance. If they 
were connected in series, there would be an open circuit with no heat flow, which would be 
impossible for this thermal system. The thermal capacitance is simply the specific heat times 
the mass: Cs = 0.90 · 500 = 450 [J/◦C] (remember that ◦C = ◦K as far as magnitude is 
concerned). The constitutive relation for the thermal capacitance is 

dTs − dTa dTs 
q = Cs = Cs

dt dt 

Write out the node equation at Ts 

dTs Ts − Ta 
qin = Cs + 

dt Rsa 

dTs
RsaCs + Ts = Rsaqin + Ta

dt 

This first order differential equation is the governing equation for the system. The general 
solution to this equation is 

Ts(t) = Ae−t/τ + B where τ = RsaCs 

First solve for the time 0 ≤ t ≤ 1. During this time, qin = 500 [W]. The initial and final 
conditions for this time frame are 

Ts(0) = 50◦C 

Ts(∞) = Ta + 500 · Rsa = 275◦C 

These conditions yield A = −225 and B = 275. The solution is 

Ts(t) = −225e −t/225 + 275 

Plug this solution into the constitutive relationships for the other devices to obtain other 
equations: 

Tc(t) = Ts(t) + 500 · Rcs = −225e −t/225 + 375 

Td(t) = Tc(t) + 500 · Rdc = −225e −t/225 + 425 

Now, there is something to note here. These equations don’t match the initial conditions of 
their respective steady state values. That is to say, these temperatures seem to “jump” from 
their steady state values to new values, and this doesn’t make sense. This happens because 
we have approximated these thermal capacitances to be zero, and therefore their associated 
time constants will be zero, and their responses will be infinitely fast. In the real world, we 
would have to take these capacitances into effect. 

Now attack the time frame 1 ≤ t ≤ ∞. All that will change is the value of qin to 50 [W]. The 
initial and final conditions will be 

Ts(1) = −225e −1/225 + 275 = 51◦C 

Ts(∞) = Ta + 50 · Rsa = 50◦C 
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These conditions yield A = 1 and B = 50. The solution is 

Ts(t) = e −t/225 + 50 

Plug this solution into the constitutive relationships for the other devices to obtain other 
equations: 

Tc(t) = Ts(t) + 50 · Rcs = e −t/225 + 60 

Td(t) = Tc(t) + 50 · Rdc = e −t/225 + 65 

The peak device temperature happens at t = 1: 

Td(1) = −225e −1/225 + 425 = 201◦C 

This would more than likely fry the transistor. 

A bigger heatsink would not help in this case. In the limiting case as Cs → ∞, Td(t) = 
200◦C. This is because there must be a temperature difference that follows the constituent 
relationship Td − Ts = .3 · 500 = 150◦C. The device will fry just as easily at 200 ◦C as it would 
201 ◦C, so even the biggest heat sink won’t help this chip. Smaller thermal resistances would 
though. The plots of the temperature transients are shown below. 

380
 



0 0.2 0.4 0.6 0.8 1
200

200.2

200.4

200.6

200.8

201

time [s]

T d(t)
 [°

 C
]

0 0.2 0.4 0.6 0.8 1
150

150.2

150.4

150.6

150.8

151

time [s]

T c(t)
 [°

 C
]

0 0.2 0.4 0.6 0.8 1
50

50.2

50.4

50.6

50.8

51

time [s]

T s(t)
 [°

 C
]

0 200 400 600 800 1000
65

65.2

65.4

65.6

65.8

66

time [s]

T d(t)
 [°

 C
]

0 200 400 600 800 1000
60

60.2

60.4

60.6

60.8

61

time [s]

T c(t)
 [°

 C
]

0 200 400 600 800 1000
50

50.2

50.4

50.6

50.8

51

time [s]

T s(t)
 [°

 C
]

Figure 7.4.3: Plots of Temperature transients
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8 Circuits 

8.1 RC Transfer Function 
1(a) Begin by combining R2 and C into an equivalent impedance Zeq = R2 + . Sum the currents Cs 

at the node between R1 and R2
 

Vi(s) − Vo(s) Vo(s)
= 
R1

1R2 + Cs 

Vi(s) 1 1 
= Vo(s) + 

R1 R1 R2 + 1 
Cs 

1
Vo(s) R1= 1 1Vi(s) R1 

+ 1R2+ 
Cs 

Vo(s) R2Cs + 1 
= 

Vi(s) (R1 + R2)Cs + 1 

This transfer function is an important result. When we find the equivalent impedance, the 
circuit becomes a voltage divider. In a voltage divider, the voltage drop across any resistor 
is simply its resistance divided by the total resistance seen at the input terminals multiplied 
by the input voltage. This is also true for impedances. The voltage we wanted to solve for 

1was across the equivalent impedance Zeq = R2 + . The total impedance seen by the input Cs 
1voltage source is Ztotal = R1 + R2 + . This becomes Cs 

R2 + 1Zeq Cs (s) = Vi(s) = Vo 1Ztotal R1 + R2 + Cs 

Vo(s) R2Cs + 1 
= 

Vi(s) (R1 + R2)Cs + 1
 

This produces the same transfer function (with much less work).
 

(b)
 

1
 
z1 = − = −8.33 

R2C 
1 

p1 = − = −6.67
(R1 + R2)C 
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Figure 8.1.1: Pole Zero Plot 

(c) This solution is not available. 
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8.2 RLC Transfer Function
 

(a) Using the voltage divider relationship: 

1Zeq Cs Vo(s) = Vi(s) = Vi(s)
Ztotal R + Ls + 1 

Cs 

Vo(s) 1 
= 

Vi(s) LCs2 + RCs + 1 

(b) 

1 
C = 

ω2 = 10−8 [F]
Ln

2ζ 
R = = 100 [Ω] 

ωnC 

The characteristic equation is 10−10s2 + 10−6s + 1 = 0. The roots (and therefore the poles) 
are 

s1,2 = −5000 ± 99875i 

In polar form, these poles become 

s1,2 = 105∠π ± 1.52077 
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Figure 8.2.1: System Poles 

(c) The step response for this system with values is shown in Figure 8.2.2. 
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Figure 8.2.2: Step Response 

(d) This solution is not available. 
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8.3 Bandpass Filter 

= LdiL(a) Using KCL, the current is i = iC + iR + iL. The output voltage is vR . The current dt 
= C dvrin the capacitor is iC . The current in the resistor is iR = vr/R. The current in the dt 

inductor is iL = i − iC − iR. Substituting for iL into the constitutive relation for the inductor, 
we obtain the governing differential equation 

d2vR dvR di 
RLC + L + RvR = RL 

dt2 dt dt 

(b) Taking the Laplace Transform, we find the transfer function is the impedance 

VR(s) RLs 
Z(s) = = 

I(s) RLCs2 + Ls + R 

(c) To find the damping ratio and natural frequency, we compare the characteristic equation 
(RLCs2 + Ls + R = 0) to the canonical form (s2 + 2ζωns + ω2 = 0). Thus, we find n 

1 1 L 
ωn = √ and ζ = 

LC 2R C 

The zero is located at sz = 0. The poles are located at 

−1 1 2 4 
sp = ± −

2RC RC LC 

(d) Using the given values (R = 50kΩ, C = 10pF, and L = 3.14815 × 10−7H, we find ωn = 
563.6 × 106 rad/sec = 89.7MHz and ζ = 0.18. 

(e) The Bode plot is shown in Figure 8.3.1 The circuit is called a bandpass filter because it 
passes signals with a frequency in a band centered at 89.7MHz. Frequency content away from 
this band is attenuated. The frequency 89.7MHz is frequency of the Boston radio station 
WGBH-FM. 
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Figure 8.3.1: Bode Plot 

(f) If radio stations are separated by at least 400kHz,	 we must examine the attenuation at 
89.3MHz and 90.1MHz. The magnitude of the transfer function is 

(RLω)2 
|H(jω)| = 

(R(1 − LCω2) + 1)2 + (Lω)2 

The peak magnitude (f = 89.7MHz) is 5 × 104 . The magnitude at 89.3MHz is 1.85 × 104 . 
The magnitude at 90.1MHz is 1.85 × 104 . The attenuation of the neighboring radio stations 
is shown in Figure 8.3.2. 
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8.4 LC Circuit Differential Equations 

(a) Using KCL at the node between the inductor and capacitor with the assumed currents both 
positive into the node gives the following: 

iL + iC = 0 (1) 

1 
iL = vLdt 

L 
dvc

iC = C 
dt 

Equation (1) must be differentiated before substituting for the currents and from the direction 
of our assumed currents, vL = vi − vo and vC = 0 − vo. The governing differential equation 
is then 

d2vo vo vi+ = (2)
dt2 LC LC 

√ 
(b) The Laplace transform of Equation (2), with ωn = 1/ LC, initial rest and some rearranging, 

is 
ω2 

n vo(s) = vi(s) 
s2 + ω2 

n 

With the input voltage a unit step and after performing partial fraction decomposition 

1 s 
vo(s) = − 

s s2 + ω2 
n 

The inverse Laplace transform reveals the output voltage as a function of time after substi­√ 
tuting ω = 1/ LC
 

t
 
vo(t) = 1 − cos √ 

LC 
Note in the period of the output voltage in Figure 8.4.1 

0

0
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O
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v o)

Output Voltage

2π(LC)1/2

Figure 8.4.1: Labeled plot of the output voltage
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8.5 Equivalent Impedance 

The equivalent impedance of the circuit is 

Zeq = ZL + (ZR1 + ZR2)||(ZC1||ZC2) (1) 

But realize the series resistive impedance, ZR1 + ZR2, can be simplified into an equivalent resistive 
impedance by R12 = R1 + R2 and ZR12 = ZR1 + ZR2. Also, the parallel capacitors can be replaced 
by an equivalent capacitance C12 = C1 + C2. The impedance of the equivalent capacitor is then 
ZC12 = ZC1||ZC2. Equation (1) is now simplified to 

Zeq = ZL + (ZR12||ZC12) 

Substitute ZL = Ls, ZR12 = R12, and ZC12 = 1/C12s gives 

R12(1/C12s)
Zeq = Ls + 

R12 + 1/C12s 

Now expand the R12 and C12 substitutions, then simplify and 

L (R1 + R2) (C1 + C2) s2 + Ls + (R1 + R2)
Zeq = 

(R1 + R2) (C1 + C2) s + 1 
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8.6 Circuit Response
 

From Prof. Trumper’s handouts and lecture, we know that the solution to any differential equation 
is the sum of the homogenous and particular solutions. 

(a) The differential equation for ic is 

dic dvin
RC + ic = C 

dt dt 
vin = u(t) 
dvin = δ(t)
dt 

dicthus for t > 0 RC + ic = 0 
dt 

t

thus for t > 0 ic(t) = Ae− 
RC 

where A = i(0+) 
vin(0) − vc(0)

and i(0+) = 
R 

1 − t

i) i(t) = e RC 

R 
9 − t

ii) i(t) = − e RC 

R 
iii) i(t) = 0 
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iii

Figure 8.6.1: Step Response for Part (a)
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(b)
 

dvL dvin
L + RvL = L 
dt dt 

vin = u(t) 
dvin = δ(t)
dt 

dvLthus for t > 0 L + RvL = 0 
dt 

Ae− Rt 
thus for t > 0 vL(t) = L 

where A = vL(0+) 
and vL(0+) = vin(0) − RiL(0) 

− Rt 
i) v(t) = e L 

− Rt 
ii) v(t) = −9e L 

iii) v(t) = 0 
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Figure 8.6.2: Step Response for Part (b)
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(c)
 

L 
R 
dvL 

dt 
+ vL = L 

diin 

dt 

for t > 0 
L 
R 
dvL 

dt 
+ vL = 0 

for t > 0 vL(t) = Ae− Rt 
L 

iin(0) = iR(0) + iL(0) = iR(0) + 0 

vR(0) = vL(0) = A = iinR 

vL(t) = Re− Rt 
L 

Step Response
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Figure 8.6.3: Step Response for Part (c) 

(d) 

dvc
RC + vc = Riin

dt 
t 

vc(t) = Riin + Ae− 
RC 

vc(0) = 0 → A = −R 
− t 

vc(t) = 1 − e RC R 
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Step Response
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Figure 8.6.4: Step Response for Part (d) 

(e) (a) 

Vc 

Vin 
= 

1 
Cs 

R + 1 
Cs 

= 
1 

RCs + 1 

Ic 

Vin 
= 
CsVc 

Vin 
= 

Cs 
RCs + 1 

(b) 

VL = 
Ls 

Vin R + Ls 

(c) 

Iin = 
VL 

R 
+ 
VL 

Ls 
VL = 

LRs 
Iin R + Ls 

(d) 

Iin = 
Vc 

R 
+ 
Vc 
1 

Cs 

Vc 

Iin 
= 

R 
RCs + 1 
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8.7 LRC Circuit 1
 

-

+

Ω

Ω

Figure 8.7.1: LRC Circuit 

(a) v1 = 0.5 V, v2 = 0 V, il = 0.5 A, ic = 0 

(b) 

v1(0+) = vc(0−) = 0.5V 

dv1 ic(0+) −(iL(0+) + iR(0+)
(0+) = dv1dt(0+) = = 

dt C C 
vc(0+)

iR(0+) = = 0.5A 
R 

iL(0+) = iL(0−) = 0.5A 
dv1 (0+) = −1 
dt 

(c) 

ic dv1 
v1 = vc = vc(0) − ⇒ C = −ic

sC dt 
vc vc

ic = iR + iL = + 
R R + Ls 

dv1 vc vc d2v1 dv1
C = − − ⇒ RLC + (R2C + L) + 2Rv1 = 0 
dt R R + Ls dt2 dt 

d2v1 dv1+ 2 + 2v1 = 0 
dt2 dt
 

v1(t) = 0.707e −t sin (t + 3π/4)
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8.8 LRC Circuit 2
 

(a) The node equations are 

v1 v1 − v20 = is − − ic − (1)
1Ω 1Ω 

v1 − v20 = − iL (2)
1Ω 

for nodes v1 and v2 respectively. The constituent relationships for the capacitor and inductor 
are 

dvc dv1
ic = C = (3)

dt dt 
diL 

vL = L = v2 (4)
dt 

These are the 4 main equations that we need to solve this problem. We need to find v2 in 
terms of v1. Begin by differentiating (2) and plugging in equation (4). 

dv1 dv2− = v2 (5)
dt dt 

Substitute equation (3) into equation (1) and differentiate 

dv10 = is − v1 − − v1 + v2 (6)
dt 

dis d2v1 dv1 dv2 = + 2 − (7)
dt dt2 dt dt 

plug equation (5) into (7) 

dis d2v1 dv1 = + + v2
dt dt2 dt 

dis d2v1 dv1 
v2 = − − (8)

dt dt2 dt 

Finally, substitute (8) into (6) to obtain the final differential equation. 

dis d2v1 dv1+ is = + 2 + 2v1
dt dt2 dt 

(b) is = 1 A, v1 = 0.5 V, v2 = 0 V, il = 0.5 A, ic = 0 A. 

(c) 

dis d2v1 dv1+ is = + 2 + 2v1
dt dt2 dt 

I(s)(s + 1) − is(0−) = V1(s) s 2 + 2s + 2 − sv1(0−) − v̇1(0−) − 2v1(0−) 

I(s) − is(0−) + v1(0−)(s + 2) + v̇1(0−)
V1(s) = 

s2 + 2s + 2 
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Plug in the initial conditions is(0−) = 1, v1(0−) = .5, and v̇1(0−) = 0. Also, I(s) = 0. 

−1 + .5(s + 2) 
V1(s) = 

s2 + 2s + 2 
.5s 

= (9) 
s2 + 2s + 2 

Equation (9) does not appear in our Laplace transform table. We must manipulate it until 
it matches a standard form. 

.5s 
V1(s) = 

s2 + 2s + 2 
.5s 

= 
(s + 1)2 + 12 

s + 1 1 
= .5 − .5

(s + 1)2 + 12 (s + 1)2 + 12 

Now we have the transform in a form available on the table. The final equation is then: 

−te
v1(t) = (cos t − sin t)

2 

(d) The plot is shown in Figure 8.8.1. 
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Figure 8.8.1: Plot of v1(t) 
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V1(s)(e) Begin by finding the transfer function by using a current divider relationship after Is(s)

combining the inductor and resistor into a single impedance. 

1 1 1 
Is(s) = V1 + + 1R + Ls R 

Cs 

V1 = 
1 + s 

Is(s) s2 + 2s + 2 

To find IL(s) 
Is(s) , recognize that 

IL(s) 
= 
IL(s) V1(s) 

Is(s) V1(s) Is(s) 

Thus, all we need is a relationship between V1 and IL to obtain the correct transfer func­
tion. Impedance provide that when we combine the resistor and the inductor into a single 
impedance. 

IL(s)(R + Ls) = V1(s) 
IL(s) 1 

= 
V1(s) R + Ls 

This works out because the resistor and inductor are in series, and thus the current through 
them are equal. Therefore 

IL(s) IL(s) V1(s) 1 
= = 

Is(s) V1(s) Is(s) s2 + 2s + 2 
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8.9 LR Circuit Step
 

 

V
i

L R
1

R
2

V
o

+

-

+ +- -
V

L V
R1

i

Figure 8.9.1: Circuit Diagram 

(a) First, write out constituent relationships for each element: 

diL
VL = L (1)

dt 
VR1 = iR1R1 (2) 

VR2 = Vo = iR2R2 (3) 

From the circuit diagram in Figure 8.9.1, notice that 

i = iL = iR1 = iR2 (4) 

However, we want the differential equation to be in terms of Vi and Vo. Apply KVL to the 
entire circuit loop to obtain 

Vi − VL − VR1 − Vo = 0 (5) 

To get an expression for VL, differentiate equation (3) with respect to time and substitute 
into equation (1), taking into account (4): 

L dVo
VL = (6)

R2 dt
 

To get an expression for VR1, substitute equation (3) into equation (2):
 

R1

VR1 = Vo (7)

R2 

Substitute equations (6) and (7) back into (5) to obtain the differential equation 

L dVo R1
Vi − − Vo − Vo = 0 

R2 dt R2
 

L dVo R1
+ 1 + Vo = Vi
R2 dt R2 
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To find the transfer, substitue sV (s) for each derivative to obtain: 

L R1
Vo(s) s + 1 + = Vi(s)

R2 R2 

Vo(s) 1 
H(s) = = 

Vi(s) L s + 1 + R1 
R2 R2 

R2 1 
H(s) = 

R1 + R2 
L s + 1 R1+R2 

The final form of H(s) is the same as the form above it. However, it is in standard form for 
easier manipulation later. The pole zero plot is shown below. 
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Figure 8.9.2: Pole Zero plot of circuit 

(b) To find R1, apply the Final Value Theorem to the transfer function, using the final value .1 
as obtained from the graph. Remember that the Laplace Transform of the unit step function 
is 1 . s 

R2 1 1 
Vo(∞) = .1 = lim s · · 

s→0 R1 + R2 
L s + 1 s 

R1+R2 

R2 
.1 = 

R1 + R2 

R1 = 9000[Ω] 
LTo find L, recognize that τ = from the standard form of a transfer function for an R1+R2 

1exponential decay . τ is found from the graph to be 1 · 10−4 seconds. τs+1 

L
1 · 10−4 = 

R1 + R2 

L = 1 [H] 
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(c) The value M is the magnitude of the transfer function evaluated at s = jω, and the vaule 
φ is the phase of the transfer function evaluated at s = jω. The magnitude of the transfer 
function is 

Vo(jω) 1 |H(jω)| = = 
Vi(jω) 

R1 
2 

L 
2 

+ 1 + ωR2 R2 

1 
= 

100 + 1 
106 ω2 

The phase of the transfer function is 

�H(jω)
∠H(jω) = tan−1 

�H(jω) 
L ωR2= − tan−1 

R1 + 1 R2 

ω 
= − tan−1 

10000 

(d) The bode plot is shown in Figure 8.9.3. The DC gain is the magnitude of the transfer function 
as ω → 0, which is 0.1. The high-frequency asypmtotic gain is the magnitude of the transfer 
function as ω →∞, which is 0. 
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Figure 8.9.3: Bode Plot, M and φ
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9 Op Amps 

9.1 Opamp Arithmetic 

The solution for this problem is not available. 
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9.2 Inverting Op-Amp 

The solution for this problem is not available. 
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9.3 Opamp Transfer Function 

The solution for this problem is not available. 
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9.4 Op-Amp Differentiator 1 

In this problem, we examine a practical differentiator. Notice that the second op-amp circuit is 
simply a unity gain inverter. The transfer function of the circuit is 

Vo(s) RCs 
= 

Vi(s) R1Cs + 1 

(a) The zero of the transfer function occurs at	 sz = 0. The pole occurs at sp = −1/R1C = 
−0.5rad/s. 

(b) The magnitude and phase of the transfer function are found by evaluating the transfer function 
at s = jω. The magnitude is 

RCω 0.2ω 
M = = 

(R1Cω)2 + 1 (2ω)2 + 1 

The phase is 
φ = 

π − arctan R1Cω = 
π − arctan(2ω)

2	 2 

(c) The step response is given in Figure 9.4.1. An ideal differentiator has a transfer function of 
1 . This transfer function is not ideal because of the resistance R1. An ideal differentiator has s 
no pole, only a zero. The step response of an ideal differentiator is an impulse. 
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Figure 9.4.1: Step Response
 

(d) The Bode plot is given in Figure 9.4.2. The breakpoint frequency, also known as the corner 
frequency, is identical to the pole location. The corner frequency is used for sketching the 
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asymptotes of the magnitude portion of the Bode plot. At the corner frequency, the transfer √ 
2
function has a value of 10 . At the corner frequency, actual plot is 3 decibels below the 2
√ 

2
asymptote (20 log ≈ −3).2
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9.5 Op-Amp Proportional plus Integral Controller 

We are asked to analyze a Proportional plus Integral (PI) circuit. The transfer function for this 
circuit is 

Vo(s) Rf Cs + 1 
= − 

Vi(s) RiCs 

(a) The pole occurs at sp = 0. The zero is located at sz = −1/Rf C = −1. 

(b) The magnitude and phase of the transfer function are found by evaluating the transfer function 
at s = jω. The magnitude is 

√ 
(Rf Cω)2 + 1 ω2 + 1 

M =	 = 
RiCω 0.1ω 

The phase is 
3π 3π 

φ = arctan Rf Cω − = arctan ω −
2	 2 

(c) The step response is given in Figure 9.5.1.	 The transfer function for a PI circuit may be 
written as 

KI
HPI (s) = Kp + 

s 
The transfer function may be re-written as 

Vo(s) 
Vi(s) 

= − 
Rf 

Ri 
− 

1 
RiCs 

The step response will have a non-zero initial value and then grow linearly with time.
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Figure 3: Problem 2: Step response.Figure 9.5.1: Step Response
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(d) The Bode plot is given in Figure 9.5.2. The breakpoint frequency, also known as the corner 
frequency, is identical to the zero location. 
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9.6 Op-Amp Circuit Design 1 

We want to design an non-inverting summing circuit whose output is 

Vo = 5V1 + 3V2 − 10V3 

V3

R5

R4 Vout

R1

R2

R3

V2

V1

Figure 9.6.1: Summing Amplifier 

We should use the principle of superposition, and we must realize that for adding voltages, we 
should have the inputs go to the non-inverting terminal and subtracting a voltage inputs should go 
to the inverting terminal. The non-inverting configuration gives the addition of V1 and V2, while the 
inverting configuration gives the subtraction of V3. Together, they can realize the given equation. 
The circuit in Figure 9.6.1 gives the desired output for appropriately chosen resistors. 

As always, we start with the equation Vo = A(s)[V+ − V−] and find V+ and V−. We then plug them 
back into the equation. Using superposition (i.e. setting Vo = 0 and solving for V−, then setting 
V3 = 0 and solving for V−, and summing the two) gives 

R4 R5
V− = Vo + V3

R4 + R5 R4 + R5 

Using the voltage divider and superposition, we find 

R2//R3 R1//R3
V+ = V2 + V1

R2//R3 + R1 R1//R3 + R2 

R2R3 R1R3 = V2 + V1
R2R3 + R1(R2 + R3) R1R3 + R2(R1 + R3)

Plugging these values back into the equation and solving for Vo, with A(s) having infinite gain, 
gives 

R4 + R5 R1R3 R2R3 R5
Vo = V1 + V2 − V3

R4 R1R3 + R2(R1 + R3) R2R3 + R1(R2 + R3) R4 + R5 
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The V3 coefficient gives us the constraint that R5/R4 = 10. We arbitrarily choose R4 = 1kΩ and 
this then sets R5 = 10kΩ. We then choose R3 = 1k, and this leaves 2 equations and 2 unknowns 
for the coefficients of V1 and V2. Solving the system of equations gives R1 = 1kΩ and R2 = 600Ω. 
The final solution has the following form: 

Vo = K [C1V1 + C2V2 − C3V3] 

where K = 11, C1 = 0.4545, C2 = 0.2727, and C3 = 0.9091. 
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9.7 Op-Amp Block Diagram 

The solution for this problem is not available. 
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9.8 Op-Amp Circuit Design 2
 

Vin

R2

R1

C1

C2

Vout

Figure 9.8.1: Circuit implementation of first stage 

The circuit in Figure 9.8.1 gives one implementation for the desired output for appropriately chosen 
resistors and capacitors. There is more than one possible design. 

As presented in tutorials, the circuit without the C2 capacitor gives a pole at the origin and a zero. 
This leaves us to figure out how to get an additional pole. The impedance of a capacitor is 1/Cs 
so that may be a good starting point to achieving a pole. We add a capacitor in parallel with the 
capacitor and resistor in series and this does the trick. 

The impedance across the negative and output terminals is 

R2Cs + 1 
Z = 

s(R2C1s + C1 + C2) 

We know that for an inverting op using the infinite gain model, Vout/Vin = Z/R1. The transfer 
function then reduces to 

Vo 1 R2Cs + 1 
= − 

R2C1C2Vin R1(C1 + C2) s + 1 C1+C2 

We choose C1 = 0.01µF and that sets R2 = 100kΩ. Solving the rest of the equations, we get 
C2 = 1.11nF and R1 = 900kΩ. 

Finally, we add a negative unity gain buffer to invert the signal and make it positive overall. This 
circuit is cascaded onto the first and it is shown in Figure 9.8.2. 
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R
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Vout

Figure 9.8.2: Negative unity gain buffer
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9.9 Op-Amp Differentiator 2 

The op-amp output is Vout = A(s)(V+ − V−). 

(a) Because the op-amps have a low output impedance, we may model the system as two blocks 
cascaded (see Figure 9.9.1). 

R
1

R

C

+

 
_

V
i +

 
_

V
1

V
o

R
2

R
2

+

 
_

Figure 9.9.1: Cascaded Block Circuit 

First, consider the differentiator block. Using the voltage divider relation and the principle 
of superposition, the voltage at the inverting terminal is 

1R1 + Cs R 
= V1 +V− 1 1 Vi 
R1 + R + R1 + R +Cs Cs 

The voltage at the non-inverting terminal is zero. The amplifier outputs V1 = A(s)(−V−). 
The block diagram for this part of the circuit is given in Figure 9.9.2. 

A(s)

_
V

1
V

i
-V

-

 
_

R
1
Cs + 1

(R+R
1
)Cs + 1

RCs

(R+R
1
)Cs + 1

Figure 9.9.2: Block Diagram 

Next, consider the inverting amplifier part of the circuit. The voltage input is V1. The voltage 
at the non-inverting terminal is zero. The voltage at the inverting terminal is 

Vo + V1
V− = 

2 

The output voltage of the op-amp is Vo = −A(s)V−. The block diagram is shown in Figure 
9.9.3. 
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A(s)
_

V
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V
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-V
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_ 2

Figure 9.9.3: Block Diagram for Inverting Amplifier 

To obtain the total block diagram, we simply cascade the two blocks. In general, we cannot 
simply cascade two systems because there will interaction between the two systems. With two 
cascaded blocks, the second block has no effect on the first. However, because the op-amps 
have a very small output impedance, we may cascade the two blocks. The total block diagram 
is shown in Figure 9.9.4. 

A(s)
_

V
o

 
_ 2

A(s)

_
V

i

 
_

R
1
Cs + 1

(R+R
1
)Cs + 1

RCs

(R+R
1
)Cs + 1

Figure 9.9.4: Block Diagram of Cascaded System 

(b) Assuming A(s) = g/s, the transfer function for the first block (practical differentiator) is 

−A(s)RCs 
H1(s) = 

(R + R1)Cs + 1 + A(s)(R1Cs + 1) 

−A(s) 
2H2(s) = 

1 + A(s) 
2 

Substituting A(s) = g/s, we obtain
 

−gRCs
 
H1(s) = 

s (R + R1)Cs + 1 + g(R1Cs + 1) 

and 
−1 

H2(s) = 2 s + 1 g 

The total transfer function is
 

Vo(s) 1.257 × 107s
 
= 

Vi(s) 7.003 × 10−8s3 + 6.2s2 + 1.257 × 108s + 6.283 × 107 
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(c) The pole-zero plot is shown in Figure 9.9.5.
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Figure 9.9.5: Pole Zero Plot 

The zero is located at sz = 0. The poles are located at sp = −0.5, −3.1437×107 , −5.7096×107 . 
The dominant pole is s = −0.5. The transfer function for the dominant roots is of the form 

s 
H(s) = 

s + 0.5 

In other words, the approximate transfer function is a non-ideal differentiator. The step 
response for the approximate system is shown in Figure 9.9.6. 
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Step Response
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Figure 9.9.6: Step response ignoring higher-order dynamics 

(d) The step response of the exact transfer function is shown in Figure 9.9.7.	 We see that step 
response is the same as for the system including only the dominant dynamics except for the 
first .02 seconds. The reason that the actual system takes a finite amount of time to approach 
the ideal behavior is because of the high frequency dynamics. As seen from the Bode plot 
(see Figure 9.9.8), the system has a very small response at high frequencies (above 1MHz). 
The step response excites all frequencies, but the contribution to the response is very small 
when the dynamics of the op-amps are considered. 
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Figure 9.9.7: Step response of exact transfer function
 

Bode Diagram
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Figure 9.9.8: Bode Plot of full Transfer Function
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9.10 RC Op-Amp Frequency Response
 

8-

+
+

-
Vi

R1

+

-

Vo

R2
C2C1R3

Z1
Z2

-1

-1

5

200 2000 5000

Vo

Vi

A

Figure 9.10.1: RC Op-Amp Circuit 

(a) Figure 9.10.1 shows the circuit for this problem.	 I solved this using impedance methods. 
Both Z1 and Z2 share the same current i. With a(s) = ∞, we can make the assumption that 
V − = 0. 

−11 C1s R1R3C1s + R1
Z1	 = + = 

R1 R3C1s + 1 C1(R1 + R3)s + 1 
1 R2C2s + 1 

Z2	 = R2 + = 
C2s C2s 

C1(R1 + R3)s + 1 
I =	 Vi

R1R3C1s + R1 

C2s 
I = − Vo

R2C2s + 1
Vo (R2C2s + 1)(C1(R1 + R3)s + 1) 

=	 −
Vi C2s(R1R3C1s + R1) 

(b) Our transfer function has two poles and two zeros.	 We need to associate these poles and 
zeros with the breakpoints on the frequency response. We have a pole at the origin which 
is associated with the initial negative slope. We then have a zero at 200 r/s (slope goes to 

420
 

( )



zero). We then have a 2nd zero at 2000 r/s and the 2nd pole at 5000 r/s. To start with we 
note that the low frequency response is dominated by the pole at the origin. We can express 
the low frequency magnitude as 

1 
M(jω) = 

C2R1ω 

Since we are given R1 if we know the magnitude at some low frequency we can find C2. Well 
we know the magnitude at 200 is 5 and thus using just the low frequency asymptote 

1 1
5 = → C2 = = 0.1µF

R1C2200 5 ∗ 10000 ∗ 200 

Now we can tie the (R2C2s + 1) zero or (C1(R1 + R3)s + 1) with the breakpoint at 200. I 
chose the following: 

1 1
200 = → R2 = = 50 kΩ. 

R2C2 200 ∗ 0.1E − 6 

Now all that is left is the zero at 2000 and the pole at 5000, thus: 

1
2000 = 

C1(R1 + R3) 
1

5000 = 
R3C1 

2000C1(R1 + R3) = 5000R3C1 → 3000R3 = 2000R1 

2 
R3 = R1 = 6667 Ω 

3
1 

C1 = = 0.03µF
5000 ∗ R3 

Now we need to figure out A. Well we know that the slope of magnitude between 2000 and 
5000 is +1. Thus 

10log(5)+ΔxA = 

Δx = log(5000) − log(2000) = 3.699 − 3.301 = 0.395 

A = 10(0.7+0.395) = 12.5 

Alternately, you could use the fact that at high frequencies 

R2(R1 + R3) 50000(16667)
M(ω) = = = 12.5 

R1R3 10000 ∗ 6667 

Figure 9.10.2 shows the actual frequency response of this circuit with the asymptotes.
 
If you choose to set the first zero using (C1(R1 + R2)s + 1) you would get the following
 
component values:
 

R2 = 5000 Ω 

R3 = 417 Ω 

C1 = 0.48 µF 
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10 Differential Equations 

10.1 Differential Equations 1 

(a) 500 ̇y + 1000y = 0 

dyh s1t yh(t) = c1e 
s1tand = c1s1e 

dt 
500c1s1e s1t1000c1e s1t = 0 

(500s1 + 1000)c1e s1t = 0 

therefore s1 = −2 

2.003 
Fall 2003 

PS 1 
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d) Using units of meters for y, we have the following plot: 

 

Re 

Im 

-2 

x 

Figure 10.1.1: Plot of poles for part (a) 

(b) y(−3) = 10 

s1t yh(t) = c1e 

c1e 
6 = 10 

10 
c1 = 

6e
10 −2t yh(t) = e
6e

(c) yh(t) < 10−6 

10 −2t e < 10−6 
6e

−2t 6 e < 10−7 e 

−2t < ln(10−7 e 6) 
t > 5.06 

(d) Using units of meters for y, we have the following plot shown in Figure 10.1.2, made with the 
script ‘diff2sol.m’ found at the end of the solution. 

423
 



-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

10

20

30

40

50

60

70

80
500dy/dt+1000y=0 with y(-3 s)=10 m

time (s)

po
si

tio
n 

(m
)

Figure 10.1.2: Plot for Part (d) 

(e) One physical system would be a spring-dashpot system like the one modeled in Lab 1. The 
variable y would represent the displacement in units of meters (m). The dashpot would have 
a viscous damping constant (b) of 500 Ns/m, and the spring would have a spring constant (k) 
of 1000 N/m. First order systems are not just limited to springs and dashpots but describe 
electrical systems, fluid flow, and many other natural behaviors. Figure 10.1.3 is taken from 
the ActivLab website. 

y(t)
b

Figure 10.1.3: Physical System
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10.2 Differential Equations 2 

(a) ÿ + 10ẏ + 10000y = 0 

k b 
ωn = and ζ = √ and ωd = ωn 1 − ζ2 

m 2 km 

so 

ωn = 100rad/s 
ζ = 0.05 

ωd = 99.9rad/s 

(b) y(0.1) = −3 and ẏ(0.1) = 0 

From lecture for an underdamped system: 

−σt yh(t) = c1e cos ωdt + c2e 
−σt sin ωdt 

so 
−σt ẏh(t) = −c1σe−σt cos ωdt − c1ωde 

−σt sin ωdt − c2σe
−σt sin ωdt + c2ωde cos ωdt 

From part (a), we know ωn, ζ, and ωd. We also know σ = ζωn. Therefore we can solve for c1 

and c2 based on the initial conditions. 

c1 = 4.051 

c2 = 2.848 

(c) 
-0.5 0 0.5 1

-60

-40

-20
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60
d2y/dt2+10dy/dt+1000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)= -3 m

time (s)
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n 
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)

Figure 10.2.1: Plot of Position vs. time 

We can zoom in on the plot shown in Figure 10.2.1 near the given initial conditions to look 
at ẏ and y at t = .01s. This zoomed plot is shown in Figure 10.2.2. 

425
 

√ √



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

-4

-3

-2

-1

0

1

2

3

4

d2y/dt2+10dy/dt+1000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)= -3 m

time (s)

po
si

tio
n 

(m
)

Figure 10.2.2: Zoomed Plot of Position vs. time 

If we look at Figure 10.2.2 at t = 0.1s, we can see that the position is approximately -3 m. 
Because the position curve is at a peak, we can also conclude that the velocity ẏ is 0. 

(d) One physical system would be a mass-spring-dashpot system like the one shown below. The 
variable y would represent the displacement in units of meters (m). The dashpot would have 
a viscous damping constant (b) of 10 Ns/m, the spring would have a spring constant (k) of 
10000 N/m, and the mass (m) would be 1 kg. Second order systems are not just limited 
to masses, springs, and dashpots but describe electrical systems, fluid flow, and many other 
natural behaviors. Figure 10.2.3 below is taken from the ActivLab website. 
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b

y(t)

Figure 10.2.3: Physical System
 

427
 



  
10.3 Differential Equations 3
 

(a) ÿ + 200ẏ + 10000y = 0
 

ωn = 
k 
m 

and ζ = 
b 

2 
√ 
km 

and ωd = ωn 1 − ζ2 

so 

ωn = 100 rad/s 
ζ = 1 

ωd = 0 rad/s 
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Figure 10.3.1: Poles for Part (a) 

(b)	 y(0) = 1 and ẏ(0) = 1 

For the critically damped case: 

−σt yh(t) = c1e 
−σt + c2te

−σt + c2e 
−σt ẏh(t) = −σc1e −σt − σc2te

σ = ζωn 

so 
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c1 = 1 given y(0) = 1 
c2 = 101 given ẏ(0) = 1 

therefore 
−100t yh(t) = e −100t + 101te

Looking at the last plot of Figure 10.3.2, we can see that both ẏ(0) and y(0) are 1 at t = 0. 
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Figure 10.3.2: Plots for Part (b)
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10.4 Euler’s Theorem 1 

Three Forms of Eulers Theorem: 

ejφ = cos φ + j sin φ⎫⎭ 
⎧⎩ jωt −jωte +ecos φ =
 2 ⎧⎩


⎫⎭
jωt−e−jωtesin φ =
 2j 

(a) 

jωt + c ∗ −jωt	 ∗ ce e = A cos ωt + B sin ωt where c = α + jβ and c = α − jβ
 
jωt + c ∗ −jωt
 ce e	 = c(cos ωt + j sin ωt) 

= (α + jβ)(cos ωt + j sin ωt) + (α − jβ)(cos ωt − j sin ωt) 
= α cos ωt + jα sin ωt + jβ cos ωt − β sin ωt + α cos ωt − jα sin ωt − jβ cos ωt − β sin ωt 

= 2α cos ωt − 2β sin ωt 

= A cos ωt + B sin ωt 

so 

A −B 
α = and	 β = 

2	 2 
A B A B∗ c = − j and c = + j
2 2 2 2
 

Or, if you don’t like that method:
 

= A
 

⎧ ⎪⎪⎩
 
e
jωt + e

2
 

−jωt 
⎫ ⎪⎪⎭
+ B
 

⎧ ⎪⎪⎩
 
e


⎫ ⎪⎪⎭
 
jωt − e−jωt 

A cos ωt + B sin ωt
 
2j
 

⎧ ⎪⎩
A	 Bjωt + e −jωt jωt − e −jωt= e + e
2	 2j⎧ ⎪⎩


⎫ ⎪⎭

⎫ ⎪⎭


A B
 A B
 
e
jωt + −jωt+
 +
=
 e


2
 2j
 2
 2j
 

therefore 

A B	 A B∗ c = +	 c = −
2 2j 2 2j 
A Bj A Bj

= +	 = −
2 2jj 2 2jj 
A B A B 

= − j	 = + j
2 2	 2 2 

∗where c is the complex conjugate of c. 

c =
 7 − j and c
 ∗ =
 7 + j
(b)
 2 2

(c) Using units of meters for A and B and rad/s for ω, we get the plots seen in Figure 10.4.1. 
The following MATLAB script creates this plot. 
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Figure 10.4.1: Plots for Part (c)
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10.5 Euler’s Theorem 2 

(a) 

M cos ωt + φ = M
 

⎧ ⎪⎪⎪⎩
 
j(ωt+φ) + e−j(ωt+φ)e

2
 

⎫ ⎪⎪⎪⎭
 

M jωt jφ + e −jωt −jφ= e e e
2 
M Mjωt jφ + −jωt −jφ= e e e e
2 2 

From Problem 10.4: ⎧ ⎪⎪⎩
 
e


⎫ ⎪⎪⎭
+ B
 

⎧ ⎪⎪⎩
 
−jωt 
⎫ ⎪⎪⎭
 

jωt + e−jωt jωt − ee

A cos ωt + B sin ωt = A
 

2
 2j
 

so
 ⎧ ⎪⎩

⎫ ⎪⎭


⎧ ⎪⎩

⎫ ⎪⎭


A B
 M
 A B
 M−jωt −jφ −jωt e =jωt =
 jφ jωt e and+
 −
e
 e
 e
 e

2
 2j
 2
 2
 2j
 2
 ⎧ ⎪⎩


⎫ ⎪⎭

⎧ ⎪⎩


⎫ ⎪⎭

A B
 M
 A B
 M −jφjφ+
 −
=
 =
e
 e

2
 2j 2
 2
 2j 2
 

therefore 

M A B
(cos φ + j sin φ) = − j

2 2 2 
M cos φ = A 

M sin φ = B 

M2 cos φ2 + sin φ2 = A2 + B2 

−B 
tan φ = 

A 

(b) 
�{c}

M = 4( �{c})2 + 4( �{c})2and tan φ = 
�{c}

M is the amplitude of the waveform in Problem 10.4. 
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10.6 Force Steps
 

In this problem, we examine the behavior of the three basic mechanical elements when a step force 
is applied. Assuming zero initial position and velocity of the elements, for the mass 

mẍm = us(t) (1) 
t 1 1 

ẋm = vm = us(t)dt = t (2) 
m m−∞ 

t 1 1 2 xm = tdt = t (3) 
−∞ m 2m 

For the spring, 

us(t) = fk(t) = kxk(t) (4) 
1 

xk(t) = us(t) (5)
k 

d 1 
vk(t) = xk(t) = δ(t) (6)

dt k 
For the dashpot, 

fc(t) = cẋc = us(t) (7) 
1 

ẋc = vc = us(t) (8) 
c 

t 1 t 
xc = us(t)dt = (9) 

c c−∞ 

0

5

10
velocity of mass

0

50
position of mass

0

1

2
velocity of spring

0

1

2
position of spring
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2
velocity of dashpot
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0
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position of dashpot

Figure 10.6.1: Step Response of Mass, Spring and Dashpot
 

433
 

∫
∫

∫



10.7 Input for Zero Output 

The solution for this problem is not available. 
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10.8 Zero Input Response
 

In this problem we would like to solve for the Zero Input Response (ZIR) of the systems given. 
First, we start with the rotational system. The governing equation is 

dω c1 + c2+ ω = 0 
dt J 

Solving this equation, we obtain 
ω(t) = Ae−t/τ 

where τ = J/(c1 + c2) and A is determined from initial conditions. Using the initial condition 
θ̇(0) = ω(0) = ω0 we find A = ω0. To solve for the position θ(t), we integrate ω(t) to find 

ω0 −t/τ + Cθ(t) = − e 
τ 

Using the initial condition θ(0) = θ0, we find C = ω0 Thus, the total response is τ + θ0. 

θ(t) = θ0 + 
ω0 1 − e −t/τ 

τ 

For the translational system, we begin with the governing equation 

Mẍ+ (c1 + c2)ẋ + (k1 + k2)x = 0 

with the initial conditions x(0) = x0 and ẋ(0) = v0. Dividing the equation by M , we find the 
natural frequency to be 

k1 + k2
ωn = 

M 

The damping ratio is 
c1 + c2

ζ = 
2 M(k1 + k2) 

Assuming the system is underdamped (ζ < 1), we find the damped natural frequency to be 

k1 + k2 (c1 + c2)2 
ωd = ωn 1 − ζ2 = − 

M 4M2 

To solve for x(t), we assume a harmonic solution x(t) = Aest . The governing equation simplifies to 
an algebraic equation 

ms 2 + (c1 + c2)s + (k1 + k2) = 0 

or equivalently, 
s 2 + 2ζωns + ω2 = 0 n 

Solving this quadratic equation, we obtain 

c1 + c2 (c1 + c2)2 k1 + k2
ω = −ζωn ± jωn 1 − ζ2 = − ± −

2M 4M2 M 

Assuming the underdamped solution, the response x(t) is 

s2t x(t) = A1e 
s1t + A2e 

435
 

( )

√

√

√ √

√ √



�    �

   
�  �

At t = 0, we have 

x(0) = x0 = A1 + A2 and ẋ(0) = v0 = A1s1 + A2s2 

After some algebra, we arrive at the solution 

v0 + ζωnx0−ζωnt x(t) = e x0 cos( 1 − ζ2ωnt) + sin( 1 − ζ2ωnt) 
ωn 1 − ζ2 

Other convenient forms exist. For example, we could combine the cos and sin terms into a single 
cos term with a phase. 

−ζωnt x(t) = X0e cos 1 − ζ2ωnt − φ 

where
     


⎞⎛ 
2 

v0 + ζωnx0 x0and
 φ = tan−1⎝
 ⎠
2 +
X0 = x
0 v0+ζωnx0√ 
ωn 1−ζ2 

ωn 1 − ζ2 
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10.9 Zero Step Response 1 

The forced-response with zero initial conditions is composed of the particular solution and the 
homogeneous solution. 

First, we solve the rotational system. The governing equation is 

dω c1 + c2 us(t)+ ω = 
dt J J 

1 Ae−t/τThe particular solution is given by ωp = . The homogeneous solution is ωh = . The c1+c2 

total solution is 
1 

ω(t) = Ae−t/τ + 
c1 + c2 

Using the initial condition that ω(0) = 0, we obtain 

1 
ω(t) = 1 − e −t/τ 

c1 + c2 

Integrating this equation, and using the initial condition that θ(0) = 0, we obtain 

−t/τ − 1θ(t) = 
t 

+ 
τ

e 
c1 + c2 c1 + c2 

where τ = J/(c1 + c2). 

For the translational system, the particular solution is xp = F/(k1 + k2). The total solution is 

s2t x(t) = 
F 

+ A1e 
s1t + A2e 

k1 + k2 

Solving using the initial conditions, we obtain 

F −jζ 
A1 = − 1

2(k1 + k2) 1 − ζ2 

F jζ 
A2 = − 1

2(k1 + k2) 1 − ζ2 

After some algebra, we obtain 

F ζ sin ωdt−ζωnt x(t) = 1 − e cos ωdt + 
k1 + k2 1 − ζ2 

c1+c2where ζ = , ωn = (k1 + k2)/M , and ωd = ωn 1 − ζ2. Again, various equivalent forms may 2Mωn 

be found using trigonometric identities. 
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10.10 Zero Step Response 2 

(a) The unit step response for the rotational system is given in Figure 10.10.1.	 To aid in the 
sketching the response, find the difference between ωpt and x(t) as t → ∞. This quantity 
represents the vertical distance between ωpt and x(t) in the response. The initial slope is zero 
because the initial velocity is zero. 

The unit step response for the translational system is given in Figure 10.10.2. To aid in 
sketching, draw the envelope defined by the real part of s and use the damped natural 
frequency to determine how fast the response oscillates inside of the envelope. We also know 
from the initial conditions that the initial slope is zero because the initial velocity is zero. 

Step Response
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Figure 10.10.1: Sketch of the step response for the rotational system
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Figure 10.10.2: Sketch of the step response for the translational system 

(b) The unit step response for the rotational system is given in Figure 10.10.3. The step response 
for the translational system is given in Figure 10.10.4. Both responses were made with the 
Matlab script ‘zsrsol.m’ found at the end of this solution. 
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Figure 10.10.3: Unit step response θ(t) for the rotational system
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Figure 10.10.4: Unit step response x(t) for the translational system
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10.11 Nonlinear String System 

The solution for this problem is not available. 
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10.12 Homogenous and Particular Solutions 

(a) Figure 10.12.1 shows the model for inertia and damper system.	 The arrows in the figure 
show the reference directions for the physical variables. Separating the model into parts for 
each element, we can get the free body diagram as in Figure 10.12.2. Note the two Td have 
equal values but opposite directions, because they are a pair of acting force and reacting force. 

According to Newton’s second law, we can derive the differential equation for the inertia 
element: 0 

Iω̇ = T = Tin − Td.	 (1) 

For the damping, the constitute relation is: 

Td = Cω	 (2) 

Combining equation 1 and 2, we can get 

Iω̇ + Cω = Tin	 (3) 

ω
in

Figure 10.12.1: System Model
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d

d

ω

Figure 10.12.2: Free Body Diagram 

(b) The characteristic equation is 
Is + C = 0 (4) 

The solution is s = −C , so the homogenous solution is ωh = Aest = Ae−I 
I
C t . The parameter 

A will be determined by the initial condition. To get the particular solution for input Tin = 
Kus(t), we guess that the solution has the form ωp = B. Plugging it into equation 3, we get 
B ∗ C = K. So B = K/C, and the particular solution is ωp = K/C. The complete solution is 

K 
+ Ae− I

C t (5)ω = 
C 

With the initial condition, we have 

ω0 = 
K 
C 

+ A. (6) 

A = ω0 − 
K 
C 
. (7) 

The complete solution is 
K
 K
 

ω = (ω0 − )e
 − I
C t + 

C
 C
 
. (8)
 

KWhen ω0 = , there will be no transient. C 
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(c) For K = 10−2Nm , I = 0.000317kg − m2 and c = 0.0011N − m − sec/rad, 
(i) when ωo = 0rad/sec, ω = −9.0909e−3.4700t + 9.0909, 
(ii) when ωo = 40rad/sec, ω = 30.9091e−3.4700t + 9.0909.
 
The result is plotted in Figure 10.12.3.
 

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

time [sec]

an
gu

la
r 

ve
lo

ci
ty

  [
ra

d/
se

c]
Initial velocity=0[rad/sec]
Initial velocity=40[rad/sec]

Figure 10.12.3: Step Response 

(d)	 (i) For cosine input, we guess that the particular solution takes the form of ωp = B1cos(Ωt)+ 
B2sin(Ωt). Plugging it back into the differential equation 3, 

I ∗ (−ΩB1sin(Ωt) + ΩB2cos(Ωt)) + C ∗ (B1cos(Ωt) + B2sin(Ωt)) = Kcos(Ωt) (9) 
−ΩIB1 + CB2 = 0 ΩIB2 + CB1 = K (10) 

B1 =	 
KC 

(11)
C2 + I2Ω2 

KIΩ 
B2 = (12)

C2 + I2Ω2 

The complete solution is 
KC KIΩ 

ωp = cos(Ωt) + sin(Ωt)	 (13)
C2 + I2Ω2 C2 + I2Ω2 

(ii) In complex fomat, the cosine input can be expressed as Tin = KcosΩt = Re{KejΩt}, we 
guess that the particular solution takes the form of ωp = Re{BejΩt} . Plugging it back 
into the differential equation 3, 

Re{(BI(jΩ) + CB)ejΩt} = Re{KejΩt} (14) 
K 

B =	 (15)
C + jΩI 
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The complete solution is 

K 
ωp = Re{ ejΩt} (16)

C + jΩI 
KC KIΩ 

= cos(Ωt) + sin(Ωt) (17)
C2 + I2Ω2 C2 + I2Ω2 

(e) The complete solution is 

ω = ωh + ωp (18) 
KC KIΩ
 

= Ae− I
C t + cos(Ωt) +
 sin(Ωt) (19)
 

C2 + I2Ω2 C2 + I2Ω2 

KC For zero initial condition, we can get A = −
C2+I2Ω2 , 

KIΩ
KC −
I
C t) + (cos(Ωt) − e
 sin(Ωt) (20)
ω = 

C2 + I2Ω2 C2 + I2Ω2 

(21) 

The total solution is plotted in Figure 10.12.4. From the figure we can see that the out­
put amplitude at Ω = 0.5rad/sec is much larger than the output at Ω = 20rad/sec. For 
Ω = 0.5rad/sec, the homegeous solution have significant effect in the first cycle. For Ω = 
20rad/sec, the effect of the homegeous solution is negligible. From the total solution expres­
sion, at high frequency the system significantly attenuate the output sinusoidal magnitude , 
“sin” component will dominate the output and thus the phase shift will be 90 degree. 
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Figure 10.12.4: Sinusoidal Response
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11 Frequency Response
 

11.1 Circuit Bode Plots 

The solution for this problem is not available. 
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11.2 Sketch Bode Plots
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Figure 2: Frequency response for G(s) = 5s+1
s+10

x2(t) = A

∣∣∣∣X2

U
(jω)

∣∣∣∣ sin
(

ωt + � X2

U
(jω)

)
∣∣∣∣X2

U
(jω)

∣∣∣∣ =
k2√

(k1k2 − b1b2ω2)2 + ([k1b2 + b2(k1 + k2)]ω)2

� X2

U
(jω) = − tan−1

(
[k1b2 + b1(k1 + k2)]ω

k1k2 − b1b2ω2

)

Problem 2

Figures 2-6 show the frequency response plots for this problem. The solid
black line on the plots is the asymptotic frequency response, while the
dashed red line is the actual frequency response. In order to sketch, the
frequency response you need to determine the frequencies of the poles and
zeros of the transfer function. You also need to find the magnitude of at
least one frequency often either at ω = 0 or ∞.
A) G(s) = 5s+1

s+10 = 5 s+0.2
s+10 , pole @ -10, zero @ -0.2. |G(0)| = 0.1,

|G(∞)| = 5.
B) G(s) = 5s+1

s2+3s+1
= 5 s+0.2

(s+0.38)(s+2.62) , poles @ -.38 and -2.62, zeros @ -0.2,
|G(0)| = 1, G(∞) = 0
C) G(s) = s+10

(s+2)(s2+10s+100)
, poles @ -2 and -5±8.66j, ωn1 = 10 , zeros @

-10, |G(0)| = 1/20, G(∞) = 0

Figure 11.2.1: 
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Figure 3: Frequency response for G(s) = 5s+1
s2+3s+1
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Figure 11.2.2:
 

448
 



 
   

11.3 LC Circuit Frequency Response 

(a) It is easiest to use impedances for this problem. Combine the capacitor and inductor into an 
equivalent impedance Z. 

Ls LsCs Z = = 
Ls + 1 LCs2 + 1 

Cs 

The constitutive relationship for this equivalent impedance is Vz(s) = ZIZ (s). By definition, 
VZ (s) = Vc(s) and IZ (s) = Is(s). Combine these equations and take the inverse Laplace 
transform to derive the differential equation. 

Ls 
Vc(s) = Is(s)

LCs2 + 1
(LCs2 + 1)Vc(s) = LsIs(s) 

LCv̈c + vc = Lİ 
s 

The characteristic equation for this differential equation is LCs2 + 1. This is of the standard 
1 2 + 2ζform 

ω2 s + 1. This yields ωnn 

1 
ωn = [rad/sec] 

LC 
ζ = 0 

1 1 
ωd = 1 − ζ2 = [rad/sec] 

LC LC 
σ = ζωn = 0 [1/sec] 

The pole zero plot is shown in Figure 11.3.1 

LC

1

LC

1_

Re

Im

Figure 11.3.1: Pole Zero Plot 

(b) Start with the differential equation and take the Laplace transform, including initial condi­
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tions.
 

LCv̈c + vc = Lİ 
s 

Vc(s)(LCs2 + 1) − LCvc(0−) − LCv̇c(0−) = LsI(s) − I(0−) 

LsI(s) + LCv̇c(0−)
Vc(s) = 

(LCs2 + 1) 

We need an expression for v̇c(0−). We know that iL(0−) = −1 [A]. Summing currents at the 
top node with Is = 0, we find that ic = −iL = 1 [A]. By using the constitutive relationship 
for a capacitor we find that v̇c(0−) = 1/C. Therefore 

LsIs(s) + L 
Vc(s) = 

(LCs2 + 1) 

Substitute Is(s) = 1/s and take the inverse Laplace transform to find an expression for vc(t). 

2L 
Vc(s) = 

(LCs2 + 1) 
2 
C= 1 s2 + LC 

1 
L LC

= 2 
2 + 1C s LC 

vc(t) = 2 
L 
C 

sin 
1 
LC 

t 

This function is plotted in Figure 11.3.2 

2

C LC

2

C LC
_

V
c
 [V]

t [s]

T = 2π   LC

Figure 11.3.2: Step Response with vc(0) = 0 [V] and iL(0) = −1 [A] 
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(c) M is simply the magnitude of the transfer function evaluated at s = jω.
 

Vc(s) Lω 
M = = 

Is(s) |1 − LCω2| 

The phase is 

φ = tan−1 Lω − tan−1 0 
0 1 − LCω2 

1 1
= 90◦, ω2 < and − 90◦, ω2 > 

LC LC 

(d) The plot is shown in Figure 11.3.3
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11.4 LRC Circuit Frequency Response
 

(a) It is easiest to use impedances for this problem. Combine the resistor, capacitor and inductor 
into an equivalent impedance Z. 

1 
Z = R//Ls// 

Cs 
1 1 1 

= + + Cs 
Z R Ls 

1 
Z = 1 1+ + Cs R Ls 

Ls 
= 
LCs2 + L s + 1 R 

The constitutive relationship for this equivalent impedance is Vz(s) = ZIz(s). By definition, 
Vz(s) = Vc(s) and Iz(s) = Is(s). Combine these equations and take the inverse Laplace 
transform to derive the differential equation. 

Vc(s) = 
Ls 

Is(s)
LCs2 + L s + 1 R 

(LCs2 + 
L
s + 1)Vc(s) = LsIs(s)

R 
L 

LCv̈c + v̇c + vc = Lİ 
s

R 

The characteristic equation for this differential equation is LCs2 + L s + 1. This is of the R 
1 2 + 2ζstandard form s + 1. This yields 

ω2 ωnn 

1 
ωn = [rad/sec] 

LC
 

Lωn 1 L
 
ζ = = 

2R 2R C 
2 

1 1 L 1 1 
ωd = 1 − = − [rad/sec] 

LC 2R C LC 4R2C2 

1 
σ = ζωn = [1/sec] 

2RC
 

The pole zero plot is shown in Figure 11.4.1
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Figure 11.4.1: Pole Zero Plot 

(b) With zero initial conditions, the transfer function of this system is simply the system’s equiv­
alent impedance. Substitute Is(s) = 1/s and take the inverse Laplace transform to find an 
expression for vc(t). 

Vc(s) Ls 
= 

Is(s) LCs2 + L s + 1 R 

Vc(s) = 
L 

LCs2 + L s + 1 R 
1 

= C 

s2 + 1 
RC s + 1 

LC 

1 
1 

LC − 1 
4R2C2 

= 
C 1 

LC − 1 
4R2C2 

s + 1 
2RC 

2 + 1 
LC − 1 

4R2C2 

vc(t) = 
C 1 

LC 

1 

− 1 
4R2C2 

e − t 
2RC sin 

1 
LC 

− 
1 

4R2C2 t 

This function is plotted in Figure 11.4.2
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Figure 11.4.2: Step Response with vc(0) = 0 [V] and iL(0) = −1 [A] 

(c) M is simply the magnitude of the transfer function evaluated at s = jω. 

Vc(s) Lω 
M = = 

Is(s) L 2(1 − LCω2)2 + ωR 

The phase is 

L ωRφ = tan−1 Lω − tan−1 

0 1 − LCω2 

L ωR= 90 − tan−1 

1 − LCω2 

(d) The plot is shown in Figure 11.4.3. The peak frequency occurs when the system is excited at 
1its natural frequency wn = = 105 [rad/sec]. The peak magnitude is found by plugging LC 

in ω = 105 into the magnitude expression. This evaluates to R. 
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11.5 Pole-Zero Plots 

The solution for this problem is not available. 
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12 Signals, Transforms, and Transfer Functions 

12.1 First Order Zeros 

In this problem, we are asked to consider a system with a differential equation 

τ ẏ + y = au̇+ u (1) 

The system has pole at s = −1/τ and a zero at s = −1/a. 

(a) Integrate the equation from 0− to 0+, we get
 

t=0+ t=0+
 

(τ ẏ + y)dt = (au̇+ u)dt (2) 
t=0− t=0− 

τ(y(0+) − y(0−)) = a(u(0+) − u(0−)) (3) 
a a 

y(0+) = u(0+) = (4) 

τ

τ τ 

The particular solution and the homogenous solution are: 

yp(t) = 1 (5) 

yh(t) = Ae− t 
(6)
 

The complete solution is
 

y(t) = yp(t) + yh(t) = 1 + Ae−
t 
τ (7)
 

Combining the initial condition 

y(0+) = 
a 
τ 

= 1 + A (8) 

A = 
a 
τ 
− 1 (9) 

a −y(t) = 1 + ( − 1)e 
τ
 

t 
τ (10)
 

(b) Figures 12.1.1 and 12.1.2 give the response and pole-zero plots.
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Figure 12.1.1: Step response and pole-zero plots for a =0.05, 0.09, 0.11. (a) Step response for 
a = 0.05. (b) Pole-zero plot for a = 0.05. (c) Step response for a = 0.09. (d) Pole-zero plot for 
a = 0.09. (e) Step response for a = 0.11. (f) Pole-zero plot for a = 0.11. 
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Figure 12.1.2: Step response and pole-zero plots for a =1, -1, -0.1. (a) Step response for a = 1. 
(b) Pole-zero plot for a = 1. (c) Step response for a = −1. (d) Pole-zero plot for a = −1. (e) Step 
response for a = −0.1. (f) Pole-zero plot for a = −0.1. 

(c) Figure 12.1.3 shows that as a → τ , H(s) → 1. 
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Figure 12.1.3: Step response and pole-zero plots for a → τ = 0.1. 

(d) We want to show that a zero causes certain exponential inputs to have zero response. We 
s1tconsider an exponential input of the form u(t) = e . We begin the equation in the time 

domain 
τ ẏ + y = au̇+ u (11) 

If we desire y = 0, then au̇+ u must equal zero for all time. Therefore, the input must be 

u(t) = Ae−t/a (12) 

Comparing this input with u(t) = es1t, we find that s1 = −1/a . In the complex plane, the 
zero and s1 are in the same location. 

(e) The response is the same as part (a). 
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12.2 Laplace Practice 

The Laplace Transform of x(t)is defined as 

∞ 

L[x(t)] = X(s) = x(t)e −stdt 
0 

therefore 

∞ T ∞ 

W (s) = e −stdt − 0dt + e −stdt 
0 0 T 

1 ∞ 1 ∞ 
−st −st= − e − 0 + − e 

s s0 T 
1 1 −sT= − e 
s s 
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12.3 Step-Zero 

In this problem, we consider the second-order system with a real zero 

s/αζ + 1 
H(s) = (1) 

s2 + 2ζs + 1 

A useful way method of analyzing the behavior of this transfer function is to write it as a sum of 
two transfer functions 

s/αζ 1 
H(s) = + (2) 

s2 + 2ζs + 1 s2 + 2ζs + 1 

If we define H1(s) as 
1 

H1(s) = (3) 
s2 + 2ζs + 1 

and H2(s) as 
s 

H2(s) = = sH1(s) (4) 
s2 + 2ζs + 1 

then we notice that H2(s) is the derivative of H1(s) in the Laplace domain. Thus, we may write 
the transfer function as 

s 
H(s) = + 1 H1(s) (5)

αζ 

For our purposes, we consider only negative real zeros. If the zero is close to the imaginary axis, 
then the transfer function closely resembles the derivative term only. If the zero is far away from 
the origin, then the H(s) behaves primarily like H1(s). Using partial fractions, we find that step 
response is given by 

−ζt 1 ζ 
y(t) = 1 + e − sin 1 − ζ2t − cos 1 − ζ2t (6) 

aζ 1 − ζ2 1 − ζ2 
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12.4 Laplace to Time
 

(a) This transform is simple enough to be in most tables. However, we can simplify it with partial 
fractions: 

1 C D 
Y (s) = = +

(s + a)(s + b) s + a s + b 

find the constants C and D by setting s = −a and s = −b 

1 C D 
= +

(s + a)(s + b) s + a s + b 

1 = C(s + b) + D(s + a) 
1 

C = 
b − a 

1 
D = 

a − b 

therefore 

1 1 1 1 
Y (s) = − 

b − a s + a b − a s + b 

1By looking up the inverse Laplace Transform of , we find the total solution y(t)s+b 

1 −at − e −bt y(t) = e 
b − a 

(b) First, note that the transform is 

s 
Y (s) = 2s + 2ζ s + 1 

ω2 ωnn 

ω2 

= s · n 

s2 + 2ζωns + ω2 
n 

This Laplace Transform is in a standard form, but not on all tables. We will solve this 
problem using the property 

df 
= sF (s) − f(0)

dt 

therefore 

d ωn 
y(t) = e −ζωnt sin ωn 1 − ζ2t 

dt 1 − ζ2 

ζω2 
−ζωnt n= ω2 e cos ωn 1 − ζ2t − e −ζωnt sin ωn 1 − ζ2tn

1 − ζ2 

remember that for this form to be correct, ζ must be less than 1. 
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12.5 Time to Laplace 

(a) This function is one of the most widely used in dynamic systems, so memorize it’s transform! 

1 
Y (s) = 

s + a 

(b) 

ωd
Y (s) = 

(s + σ)2 + ω2 
d 

(c) 

s + σ 
Y (s) =
 2( )2+ +σ ωs d 
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12.6 Laplace Transform
 

Each term of X(s) can be evaluated directly using the Table of Laplace Transforms. 

L−1{b} = bδ(t) 

and   
L−1 −ata 

= 1 − e 
s(s + a)

The final result is then 
−atL−1 {X(s)} = bδ(t) + 1 − e 
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12.7 Signal in Time and Frequency Domain
 

(a) Sketch of x(t).
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Figure 12.7.1: Signal x(t) plotted as a function of time 

(b) Simplify the expression in to a sum of terms, 

−t −1 −t −1 x(t) = e us(t) − e us(t) − e us(t − 1) + e us(t − 1) 

Now take the Laplace transform of the first, second and fourth terms, 

−1 −1 −s1 e −t e e
X(s) = − − Le us(t − 1) + (1) 

s + 1 s s 

The third term requires some massaging to get it in a form available on the table. The term 
−1can be modified into the form of a time delay, by factoring out e .   

−t −1L −(t−1)L e us(t − 1) = e e us(t − 1)

Now applying the Laplace Transform for a time delay from the table
   −1 −se e−1L −(t−1)e e us(t − 1) = 
s + 1 

Substituting this piece back into Equation (1) gives the solution
 

−1 −1 −s −1 −s1 e e e e e
X(s) = − − + 

s + 1 s s + 1 s 
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12.8 Transfer Function and Time Constants
 

(a) The transfer function for the circuit is easily found using the impedance method. 

R1
Zeq1 = R1||C1 = 

R1C1s + 1
 

and Zeq2 is similar. The circuit is now a voltage divider with complex impedances.
 

Zeq1 
vo(s) = vi(s)

Zeq1 + Zeq2 

Simplifying results in the transfer function
 

vo(s) R1(R2C2s + 1)
 
= 

vi(s) R1R2(C1 + C2)s + R1 + R2 

To get the transfer function in the desired form we factor R1 + R2 out of the denominator, 
while the numerator is already in the desired form. We now have 

vo(s) R1 R2C2s + 1 
= 

R1R2(C1+C2)vi(s) R1 + R2 + 1 R1+R2 

so 
R1

K = 
R1 + R2 

τ1 = R2C2 

R1R2(C1 + C2)
τ2 = 

R1 + R2
 

Using the Laplace initial value theorem with vi = 1/s
 

1 R1 R2C2s + 1
 
vo(0+) = lim svo(s) = lim s 

s→∞ s→∞ s R1 + R2 R1R2(C1+C2) s + 1 R1+R2 

After simplifying, we can now factor s out of the numerator and denominator, which cancel, 
resulting in 

R1 R2C2 + 1/s 
vo(0+) = lim 

s→∞ R1 + R2 R1R2(C1+C2) + 1/sR1+R2 

Now when taking the limit, the second terms in the numerator and denominator go to zero, 
and after simplifying 

C2 
vo(0+) = 

C1 + C2
 

Using the Laplace final value theorem with vi = 1/s
 

1 R1 R2C2s + 1
 
v(∞) = lim svo(s) = lim s 

R1R2(C1+C2)s→0 s→0 s R1 + R2 s + 1 R1+R2 

and simplifying 
R1 

v(∞) = 
R1 + R2 
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The x in Figure 12.8.1 shows the pole location and the o shows the zero location. Plotting is 
made possible by assuming τ1 > τ2, but assuming τ1 < τ2 would have been just as valid for 
plotting purposes. 

Re

Im

-1/τ2 -1/τ1

Figure 12.8.1: Plot of pole and zero of system in terms of τ1 and τ2 

When R1C1 = R2C2 the circuit becomes a voltage divider independent of frequency. 

(b) Letting vi(s) = 1/s, a unit step, and assuming initial rest conditions, and continuing with 
the K, τ1, τ2 form, 

K(τ1s + 1) 
(s) = vo

s(τ2s + 1) 

In order to calculate vo(t), we first perform partial fraction decomposition, which results in 
the following: 

K K(τ1 − τ2) 
vo(s) = + 

s τ2(s + 1/τ2) 

We can now calculate the inverse Laplace transform for each term directly from the Table of 
Laplace Transforms. 

K(τ1 − τ2) −t/τ2L−1 {vo(t)} = Kus(t) + e 
τ2 

After substituting K, τ1, and τ2 in we have vo(t) as a function of R1, R2, C1, and C2 for a 
step input. 

−t(R1+R2)R1 C2 R1 R1R2(C1+C2)vo(t) = us(t) + − e 
R1 + R2 C1 + C2 R1 + R2 

The step response and pole locations are now plotted for the following sets of parameter 
values: 

(i) R1 = 1kΩ, R2 = 9kΩ, C1 = 1µF , C2 = 9µF 

(ii) R1 = 1kΩ, R2 = 9kΩ, C1 = 9µF , C2 = 1µF 

(iii) R1 = 9kΩ, R2 = 1kΩ, C1 = 9µF , C2 = 1µF 
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Figure 12.8.2: Step response and pole locations for case (i)
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Figure 12.8.3: Step response and pole locations for case (ii). Pole and zero are collocated.
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Figure 12.8.4: Step response and pole locations for case (iii)
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12.9 Fourier Series Input
 

Figure 12.9.1: 
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Figure 12.9.2:
 

473
 



%2.003 Problem Set #9  
%Problem 3 

T=0.628;
w=2*pi/T*[1 3 5 7 9];

%Defining laplace variable 
s=tf('s'); 

%G1(s)
K=10;
tau=20;
G1s=K/(tau*s+1);
figure(1);
bode(G1s,{10^-3,100});
title('Bode plot of G1(s)'); 

%G2(s)
K=1;
tau1=25;
tau2=10;
G2s=K/(tau1*s+1)/(tau2*s+1); 
figure(2);
bode(G2s,{10^-3,100});
title('Bode plot of G2(s)'); 

%G3s
zeta=0.5; 
wn=50;
G3s=s*wn^2/(s^2+2*zeta*wn*s+wn^2); 
figure(3);
bode(G3s);
title('Bode plot of G3(s)'); 

%G4s
K=1;
tau=0.01;
zeta=1; 
wn=100;
zetaz=0.05;
wzn=10;
G4s=K/(tau*s+1)*(s^2+2*zetaz*wzn*s+wzn^2)/(s^2+2*zeta*wn*s+wn^2); 
figure(4);
bode(G4s);
title('Bode plot of G4(s)'); 

Figure 12.9.3:
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Bode Diagram
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12.10 Spring Mass System 

(a)
 

f(t) = u(t − 2) − u(t − 10)
 

F (s) = 
1
(e −2s − e −10s)
 
s 

(b) 

mẍ+ bẋ+ kx = f(t) = u(t − 2) − u(t − 10) 
The Laplace transform of this system is 

1 −2s − e −10s)m[s 2X(s) − sx(0) − ẋ(0)] + b[sX(s) − x(0)] + kX(s) = (e 
s 

Assuming x(0) = ẋ(0) = 0 

(ms 2 + bs + k)X(s) = 
1
(e −2s − e −10s) 
s 

1 −2s − e −10s)X(s) = (e 
s(s2 + s + 1)

The inverse laplace transform of 1/(s(s2 + s +1)) can easily be seen to be a decaying sinusoid. 
−2s −10se and −e are just time delays in the real time. Thus
 

1 1
 L−1 = 1 − √ e −0.5t sin( 1 − 0.52t + φ) 
s(s2 + s + 1) 1 − 0.52 

x(t) = u(t − 2)[1 − 
1 √ 

1 − 0.52 
e −0.5(t−2) sin( 1 − 0.52(t − 2) + φ)] 

−u(t − 10)[1 − 
1 √ 

1 − 0.52 
e −0.5(t−10) sin( 1 − 0.52(t − 10) + φ)] 

φ = tan−1( 1 − 0.52/0.5) 
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Figure 12.10.1: x(t) for Part c
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(c) Well there are a couple of ways to get this plot using Matlab. One is to use the lsim command 
in which you specify the system transfer function (we have not talked about this in class yet), 
the input vector (0 t<2, 1 2<t<10, 0 t>10), and the calculation time vector (t=[0:0.01:20]). 
Note this method determines the solution by integrating from one time step to the next, thus 
for ”Good” results you need to have a relatively fine time vector. The advantage of this 
method is a relatively compact .M file. 

I calculated the response by nesting an if loop inside a for loop and calculated the exact 
response for each time index. I used the script ‘springmasssol.m’ at the end of this solution. 
Figure 12.10.1 shows the resulting plot. 

(d) The plot is basically the sum of two separate decaying sinusoids. By this I mean, the dynamic 
response to the first step input has largely died away before the response to the negative step 
begins. 

(e) If the pulse were 2 sec.	 instead of 8 sec., the two sinusoids would act destructively with each 
other. The exact response would depend on the phase of the two sinusoid relative to one 
another but the system would not reach 1 but still oscillate about zero. Figure 12.10.2 shows 
this response. 
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Figure 12.10.2: x(t) for Part e
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12.11 Transfer Function 

(a) The zeros are located at 

s1 

s2 

s3 

= 

= 

= 

−1 

−10 

−99 

The poles are located at 

s1,2 

s3,4 

= 

= 

−0.5 ± 0.866j 
−0.5 ± 7.053j 
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Figure 12.11.1: Pole zero plot 

(b) Figure 12.11.1 shows the pole/zero plot for this system. 

(c) From the pole locations, we know that the response will be a sum of sinusoids with a damped 
natural frequency of 0.87 r/s and 7 r/s. The higher frequency sinusoid is more lightly damped 
but since σ is the same for both sinusoids, they will decay out in the same time period. 
In this case, we would might assume that the energy contained in each of the sinusoids is 

dxapproximately equal. Since kinetic energy is 1 mv2 and v = = ωd cos ωdt, we would expect 2 dt 
the magnitude of the faster sinusoid to be smaller than the magnitude of the slower sinusoid. 
Thus the response will look like a large slow sinusoid with a smaller faster sinusoid added on 
top. The impact of the zeros is a little harder to predict. The zero at -100 is so fast that any 
effect will be over so quickly that it will not effect the shape of the response. The zeros as 
-1 and -10 will impact the system response. Generally, zeros near the frequency of a complex 
pole pair cause the system to overshoot more than predicted by the pole pair ζ. Thus the 
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zero at -10 will cause the 7 r/s sinusoid to overshoot more than predicted while the zero at -1 
will cause the 0.86 r/s sinusoid to have more overshoot. Note: if the zeros were in the right 
half plane they would cause the system to initially move in the negative direction. 

(d) Figure 12.11.2 shows the step response for this system.	 My Matlab code for this problem is 
shown at the end of the solution in an m-file called “tfsol.m”. 

0 2 4 6 8 10 12

0

5

10

15

20

25

30

Step Response

Time (sec)

A
m

p
li
tu

d
e

Figure 12.11.2: Step Response
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13 Controls
 

13.1 Rooftop Antenna 

(a) To start this problem we need to break the analysis into steps. In step 1, we analysis antenna 
system. Figure 13.1.1-A shows shows the free body diagram for the antenna. The control 
torque Tm and a disturbance Td act on the antenna inertia: 

Tm + Td
Jω̇o = Tm + Td → ωo = 

Js 
ωo

θo = 
s 

The equivalent block diagram is shown beside the FBD. Next, we need to evaluate the motor. 
Figure 13.1.1-B shows the circuit model of the motor: 

Vm =	 RaIa + 10ωo 

Vm − 10ωo
Ia = 

Ra 

Tm =	 KmIa 

The equivalent block diagram for the motor is shown next to the circuit. We can now combine 
the block diagrams in Figure 13.1.1 -A&B to form the block diagram in Figure 13.1.1-C. The 
amplifier has the following characteristics: 

Vm = G(θi − θo) 

with the equivalent block diagram in Figure 13.1.1-D. Combining Figure 13.1.1 -C&D yields 
the block diagram for the complete system Figure 13.1.1-E. 

In order to find the transfer function Vo/Vi(s), we set the disturbance torque Td = 0. We 
start by reducing the inner loop of the block diagram to: 

Km
ωo RaJs Km
(s) = = 
Vm 1 + 10Km RaJs + 10KmRaJs 

We can now address the outer loop 

GKm
θo s(RaJs+10Km) GKm(s) =	 = 
θi 1 + GKm RaJs2 + 10Kms + GKm s(RaJs+10Km) 

To determine the transfer function θo/Td(s), we set θi = 0. It is helpful to reorganize the 
block diagram into the form shown in Figure 13.1.1-F. 

θo 
1 RaJs2(s) = 

Km 
= 

Td 1 + (G + 10s) RaJs2 + 10Kms + GKmRaJs2 
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Figure 13.1.1: Block diagrams for antenna analysis
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(b)
 

θo 100
(s) = 

θi 10s2 + 100s + 100 
s1 = −8.873 

s2 = −1.127 
−1.127tθo(t) = 1 + 0.145e −8.873t − 1.145e 

Figure 13.1.2 shows the pole map and step response for this system 
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Figure 13.1.2: Pole map ωo/ωi(s) and step response ωo(t) for u(t)ωi 

(c) The solid line in Figure 13.1.3 shows the frequency response. 
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Figure 13.1.3: Frequency response ωo/ωi(s) (solid line) and ωo/Td(s) (dashed line) 

(d) 

θo 5
(s) = 

Td 10s2 + 100s + 100 

θo(t) = 
1 

(1 + 0.145e −8.873t − 1.145e −1.127t)
20

The step response is identical to that shown in Figure 13.1.2 except the magnitude is scale 
down to 0.05. The frequency response is the dashed line in Figure 13.1.3. 

(e) The negative of the loop transmission for this system is 

GKm 100 
L(s) = = 

s(RaJs + 10Km) 10s2 + 100s 
ωc = 1 r/s 

φc = −95.8o → φm = 84.2o 
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Figure 13.1.4: Bode plot for the negative of the loop transmission L(s) for G=10. 

Figure 13.1.4 shows the bode plot of L(s). The crossover frequency ωc is the frequency where 
the magnitude of L(s) = 1 (0 dB). The phase margin φm = 180o − φc where φc is the phase 
of L(s) at ωc. 

(f) 

θo 1000
(s) = 

θi 10s2 + 100s + 1000 
s1,2 = −5 ± 8.66j 
θo(t) = 1 + 1.15e −5t sin (8.66t − 2.094) for u(t)ωi 

θo 5
(s) = 

Td 10s2 + 100s + 1000
 
1
 

θo(t) = (1 + 1.15e −5t sin (8.66t − 2.094)) for u(t)Td200
1000 

L(s) = 
10s2 + 100s 

ωc = 7.8 r/s 

φc = −128o → φm = 52o 

Figure 13.1.5 shows the pole map and step response for ωo/ωi with a G=100. The ωo/Td(s) 
step response is 1/200 the ωo/ωi step response. Figure 13.1.6 shows the frequency response for 
ωo/ωi (solid line) and ωo/Td(s) (dashed line). Figure 13.1.7 shows the bode plot of the negative 
of the loop transmission L(s). As we can see from the step response, increasing G speeds up 
the closed-loop dynamics and reduces the damping ratio of the response. Increasing G impacts 
the frequency response by increasing the range of frequencies for which the magnitude is at 
or near one. This means that the range of frequencies where we get good command following 
is increased. We also notice in the frequency response that the phase transition is sharper 
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for the higher gain system reflecting the reduced damping ration. Lastly we note, that the 
higher gain system rejects disturbance much better (10X better to be exact). Increasing the 
gain has transformed the two real poles into a complex pole pair. Further increasing the G 
will move the poles further up along the imaginary axis (i.e. increase ωd) without changing 
the real component of the pole (i.e. further reduce the damping ratio). 
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Figure 13.1.5: Pole map ωo/ωi(s) and step response ωo(t) for u(t)ωi for G = 100. 
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Figure 13.1.7: Bode plot for the negative of the loop transmission L(s) for G=100.
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(g)
 

θo 10000
(s) = 

θi 10s2 + 100s + 10000
 
s1,2 = −5 ± 31.2j
 
θo(t) = 1 + 1.01e −5t sin (31.2t − 1.73) for u(t)ωi 

θo 5
(s) = 

Td 10s2 + 100s + 10000
 
1
 

θo(t) = (1 + 1.01e −5t sin (31.2t − 1.73)) for u(t)Td2000
10000 

L(s) = 
10s2 + 100s
 

ωc = 30.7 r/s
 

φc = −162o → φm = 18o 

Figure 13.1.8 shows the pole map and step response for ωo/ωi with a G=1000. The ωo/Td(s) 
step response is 1/200 the ωo/ωi step response. Figure 13.1.9 shows the frequency response 
for ωo/ωi (solid line) and ωo/Td(s) (dashed line). Figure 13.1.10 shows the bode plot of the 
negative of the loop transmission L(s). 
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Figure 13.1.8: Pole map ωo/ωi(s) and step response ωo(t) for u(t)ωi for G=1000. 
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13.2 Lead Controller 

The solution for this problem is not available. 
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13.3 Third Order
 

Symmetrical mechanical drive. See Fig. 13.3.1. Two equal inertias I with equal linear friction 
coefficients B are coupled by a shaft with torsional stiffness Kc and torsional damping coefficient 
Bc. 

Coupler
I

θm θl

ωl

I

Motor Load

Tm ωm

Figure 13.3.1: Symmetrical Mechanical Drive 

(a) The fundamental requirements are: 
Geometrical Compatibility: Δθ = θm − θl, dΔθ/dt = ωm − ωl 

Constitutive Equations: Tk = KcΔθ, Td = BcdΔθ/dt, Tf,m = Bωm,
 
Tf,l = Bωl, TI,m = Idωm/dt, TI,l = Idωl/dt.
 

Torque Balance: Motor: TI,m = Tm − KcΔθ − Bωm − BcdΔθ/dt,
 
Load: TI,l = KcΔθ − Bωl + BcdΔθ/dt
 

In the following state equations , the first equation expresses the geometric compatibility 
requirement, the second equation is the result of inserting the constitutive equations into 
the torque balance for the motor, and the third is the result of substituting the constitutive 
equations into the torque balance for the load. ⎫⎧⎫⎧⎤⎡⎫⎧ 

Δθ 0 1 −1 Δθ 0
 ⎪⎪⎪⎬ 
⎪⎪⎪⎨ 

⎪⎪⎪⎬ 
⎪⎪⎪⎨ 

⎪⎪⎪⎬ 
⎪⎪⎪⎨ ⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
d
 −Kc −B+Bc Bc 

I I ωm 
1+ωm =
 TmI Idt
 ⎪⎪⎪⎩
 

⎪⎪⎪⎭
 
⎪⎪⎪⎩
 

⎪⎪⎪⎩
 
⎪⎪⎪⎭
 

⎪⎪⎪⎭
Kc Bc −B+Bc 
i 0
ωl ωlI I 
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(b) The new variables Δω and ωavg satisfy the following equations: 

2ωavg = ωm + ωl 

Δω = ωm − ωl 

By adding and subtracting these equations we find 

ωm = ωavg + Δω/2 

ωl = ωavg − Δω/2 

(c) We can construct the state equations for the new variables Δθ, Δω and ωavg one at a time. 
For Δθ, we have 

dΔθ 
= ωm − ωl = Δω 

dt
 
For Δω, we write
 

dΔω dωm dωl Kc B + Bc Bc Tm = − = − Δθ − (ωavg + Δω/2) + (ωavg − Δω/2) + 
dt dt dt I I I 

Kc B + Bc Bc− Δθ − (ωavg − Δω/2) + (ωavg + Δω/2)
I I I 

2Kc B + 2Bc Tm = − Δθ − Δω + 
I I I 

Similarly, for ωavg, we write 

dωavg 1 dωm dωl 1 Kc B + Bc Bc Tm = ( + ) = − Δθ − (ωavg + Δω/2) + (ωavg − Δω/2) + 
dt 2 dt dt 2 I I I I 

1 Kc B + Bc Bc+ Δθ − (ωavg − Δω/2) + (ωavg + Δω/2)
2 I I I 
B Tm = − ωavg + 
I I 

These state equations for the new variables can be arranged in matrices of a third-order 
sytem:
 ⎧ ⎪⎪⎪⎨
 

⎫ ⎪⎪⎪⎬
 

⎧ ⎪⎪⎪⎨
 
Δθ
 

⎧ ⎪⎪⎪⎨
 

⎫ ⎪⎪⎪⎬
 

⎫ ⎪⎪⎪⎬
 

⎤⎡ 
0 1 0
Δθ
 0
 ⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
d
 −B+2Bc−2Kc 

I I 0
 1 
IΔω
 Δω +
 Tm =
 

dt
 ⎪⎪⎪⎩
 
⎪⎪⎪⎭
 

⎪⎪⎪⎩
 
⎪⎪⎪⎩
 

⎪⎪⎪⎭
 
⎪⎪⎪⎭
10 0 −B

I
ωavg ωavg I 

or, as a combination of a second-order sub-system
 ⎧⎨
 
⎫⎬
 

⎧⎨
 
⎧⎨
 

⎫⎬
 
⎫⎬
 

⎤⎡ 
0 1
Δθ
 Δθ
 0
d
 ⎦⎣ +
 Tm =
 ⎩
 ⎭
 ⎩
 ⎩
⎭
 ⎭
dt
 1−B+2Bc−2Kc 

I IΔω
 Δω
 I 

describing the relative motion of the motor and the load, and a first-order sub-system
 

dωavg B 1 
= − ωavg + Tm

dt I I 

describing the average speed of motor and load. Both sub-systems have the motor torque 
as input, but the second-order sub-system is independent of the average speed ωavg, and the 
first-order sub-system is independent of the relative motion between the motor and the load. 
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(d) The first-order sub-system equation can be rewritten as
 

I dωavg Tm+ ωavg = 
B dt B 

from which we identify the decay time-constant
 

I 5e-5
 
τ = = = 0.5 sec 

B 1.0e-4
 

and the steady-state speed
 

Tm 6e-3
 
ωss = = = 60 rad/sec 

B 1.0e-4 

(e) From the second-order sub-system equations we identify 

2Kc B + 2Bc
ω2 = and 2ζωo = o I I 

from which we obtain the behavioral parameters of the second-order sub-system 

2(1.24e-2) 1.0e-4 + 2(2e-5) 
ωo = = 22.3 rad/sec and ζ = = 0.0629

5e-5 2(22.3)(5e-5) 
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13.4 Error Constants
 

A)

E

Y
(s) = −1

B)

E

R
(s) =

1
1 + KG(s)

Step E(s) =
1

s(1 + KG(s))

Ramp E(s) =
1

s2(1 + KG(s))

Parabola E(s) =
1

s3(1 + KG(s))

C) For this section G(0) = Kg.

Type 0 Type 1 Type 2
Step Input 1

1+KKg
0 0

Ramp ∞ 1
KKg

0
Parabola ∞ ∞ 1

KKg

Figure 13.4.1:
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13.5 System Type
 

A) Figure 1 shows the negative loop transmission for this system.
B) Note: To get a phase margin of 50o, we would need the crossover
frequency to be 14.9 r/s. It is not possible to get a crossover at 14.9 r/s
because of the peak from the complex pair of poles. If we set K=8.6 (the
gain needed to raise the magnitude of the loop transmission to 1 at 14.9
r/s), we find that the real crossover occurs at 16.9 r/s with a resulting
phase margin of 44o.

Kg = 1

Error =
1

K ∗ Kg
=

1
8.6

= 0.11

C) Figure 2 shows the loop transmission for the type 2 system. As we can
see, this is not a good thing to do since we now have system where the
phase is always below −180o. Now it is possible to get stable closed loop
systems where the loop transmission phase is below −180o but these
systems must have magnitudes less than 1 when the phase passes through
−180o. Since this system has 2 poles at ω = 0 we essentially have an open
loop gain of ∞ when we pass through −180o resulting in an unstable
closed loop system.

Figure 13.5.1:
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Figure 1: Bode diagram for Problem 2-A
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Figure 2: Bode diagram for Problem 2-C

Figure 13.5.2: 
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Figure 3: Intermidiate Bode plot for problem 2-D

D To get an error=2%, 0.02 ≤ 1
K → K ≥ 50. From part B, we know that

without the lag compensator is 8.6, so if we reduce the magnitude of the
transfer function by a factor of ten we will raise the required gain to 86
(this is greater than 50). The transfer function for a lag compensator is

Glag(s) = K
τs + 1
ατs + 1

For a lag compensator the pole occurs at a lower frequency than the zero,
thus for the region between the pole and the zero the lag compensator has
a -1 slope. We want to drop the magnitude by a factor of 10 (1 dec) so that
tells us that α = 10 so that the lag compensator acts over 1 decade. Now
we need to figure out τ . We do not want the phase of the lag compensator
to effect the phase at our desired crossover, so τ can be any value which
places the zero of the lag a decade or more below the crossover frequency.

τ ≥ 1
1.49

= 0.67

To make life easy, I have elected to make τ = 1. Figure 3 shows the bode
plot for tau = 1. As we can see, the magnitude is the where we wanted it
(required gain 86) but we have actually lost some phase. This is because
the lag compensator is close enough to have some impact on the phase. If I
were designing this for myself, I would just leave it but to fix this for the
problem set I have set tau = 2 and recovered all but 1o of phase. Figure 4
shows the negative loop transmission of this system with tau = 2, K = 86,
and α = 10.

Figure 13.5.3: 
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Figure 4: Bode plot for problem 2-D

On a design note here, I could get 0 steady state error by using the
following ”lag” compensator

Gc(s) = K
τs + 1

s
.

You may ask yourself, how is this different than changing the system to a
type 2 system. The answer is that because we have added a zero in
addition to the pole the phase of the system never actually equals −180o

at low frequencies, just gets really close. The major issue with this
approach is that if there are any un-modelled dynamics such as time delay
which cause the phase to decrease, the system will be unstable.
E Figure 5 shows the step response of the error function for the controller
designed in part d. Well the damping is much lower than expected and the
natural frequency is higher as well. The crossover frequency is higher than
expected due to the resonant peak as discussed in part b. In the case of
the lag controller, we find that not only is the actual crossover frequency
about 16.5 r/s but that lag controller has further reduced our phase
margin to 36o.
F Figure 6 shows the error of my controller to a ramp input. Since, I
designed my controller to have an error less than 2% and my actual error
is about 1.6% I am happy. If customer (Prof. Hardt) really wanted 1% he
should have told me that before I built the thing.

Figure 13.5.4:
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Figure 6: Error to a ramp input

Figure 13.5.5:
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13.6 Unity Feedback
 

Figure 13.6.1: 
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Figure 13.6.2:
 

504
 



13.7 P and PI Controllers 

The solution for this problem is not available. 
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14 Motors and Transformers 

14.1 Locked Load 

With the load clamped so that it cannot rotate, the application of motor torque causes twisting 
of the coupler and oscillation of the rotor. The system consists of the motor rotor with moment 
of inertia Ir and the coupler with linear torsional stiffness Kc and linear damping with damping 
coefficient Bc, acted on by the motor torque Tm and a frictional motor torque with linear damping 
coefficient Bm, as shown in Fig. 14.1.1. 

Tm

Ir

θm

Locked
     Load

Coupler

θm, ωm

Ir

Tm

Kcθm

BcωmBmωm

Figure 14.1.1: Motor Rotor connected to Locked Load by Elastic Coupler 

(a) The fundamental requirements are: 
Geometric compatibility: ωm = dθm/dt 
Constitutive equations: TI = Irdωm/dt, Tf = (Bm + Bc)ωm, Tk = Kmθm 

Torque balance: TI = Tm − Tf − Tk 

Take θm and ωm as state variables. Then one equation is provided by the geometric compati­
bility requirement. The second equation is obtained by substituting the constitutive equations 
into the torque-balance requirement to get 

dωm
Ir = Tm − (Bm + Bc)ωm − Kcθm

dt 

With Tm as the input and θm as the desired output, the standard form for a state-determined 
system 

d 
dt x = Ax + Bu 

y = Cx + Du 

becomes
 ⎧⎨
 
⎫⎬
 

⎤⎡ ⎧⎨
 
⎧⎨
 

⎫⎬
 
⎫⎬
0 1
 0
θm θmd
 ⎦⎣ +
 Tm =
 ⎩
 ⎭
 ⎩
 ⎩
⎭
 ⎭
dt
 −Kc −Bm+Bc 

Ir Ir 

1 
Ir 

ωm ωm 
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with output θm given by ⎧⎨
 θm 

⎫⎬
 
y = Cx + Du = { 1 0 }
⎩
 ωm 

⎭
 
+ 0 = θm 

(b) The behavioral parameters ωo and ζ appear in the matrix A of second-order systems in the 
following pattern
 ⎤⎡ 

0 1
 ⎦⎣A =
 (1)
 
−ω2 −2ζωoo 

By comparing the matrix A in the equation for the locked-load response with (1) we identify 
the the following relationships for the behavioral parameters 

Kc Bm + Bc
ω2 = and 2ζωo = o Ir Ir 

which lead to
 

Kc 1.24e-2 Bm + Bc 1e-4 + 2e-5
 
ωo = = = 15.75 rad/sec and ζ = √ = = 0.0762 

Ir 5e-5 2 KcIr 2 (1.24e-2)(5e-5) 

(i) The damped natural frequency is 

ωd = ωo 1 − ζ2 = 15.75 1 − (0.0762)2 = 15.70 rad/sec 

(ii) The decrement ratio for a damped sinusoidal oscillation, as defined in the Notes for 
Lecture 6, is the ratio of the amplitudes of two successive peaks. The time increment 
between two such peaks is half of the period of the damped oscillation. The envelope of 

1the damped oscillation decays in proportion to exp(−ζωot), so with t = Td = π/ωd the 2 
decrement ratio is 

πζ 0.0762π
dec ratio = exp(−ζωoπ/ωd) = exp(− ) = exp(− ) = 0.787 

1 − ζ2 1 − (0.0762)2 

(c) The dimensions of G1 are [torque/angular velocity]. Its units are N-m/r/s or N-m-s/r in the 
SI system of units. When the control algorithm (with ωsensed = ωm), 

TM = G1(r1 − ωm), 

is substituted in the state equations of the uncontrolled locked-load system, the resulting 
equations for the velocity-controlled system are ⎧⎨
 

⎫⎬
 
⎧⎨
 

⎧⎨
 
⎫⎬
 

⎫⎬
 
⎤⎡ 

0 1
 0
θm θmd
 ⎦⎣ +
=
 r1⎩
 ⎭
 ⎩
 ⎩
⎭
 ⎭
dt
 −Kc 
Ir 

−Bm+Bc+G1 
Ir 

G1ωm ωm Ir 

The input is changed from the motor torque Tm to the reference speed r1, and the Matrices A 
and B now depend on the gain G1. The undamped natural frequency ωo remains unchanged 
but the damping ratio now depends on the gain G1. By comparing the matrix A with (1) we 
identify 

Bm + Bc + G12ζωo = 
Ir 
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To obtain the value of G1 required to yield a critical;ly damped response, set ζ = 1 and solve 
for G1 

G1 = 2Irωo − Bm − Bc = 2(5e-5)(15.75) − 1e-4 − 2e-5 = 14.55e-4 N-m-s/r 

(d) The dimensions of G2 are [torque/angle]. Its units are N-m in the SI system of units. When 
the control algorithm (with θsensed = θm), 

TM = G2(r2 − θm), 

is substituted in the state equations of the uncontrolled locked-load system, the resulting 
equations for the position-controlled system are 

0 1 
⎡⎫⎬ 

⎧⎨ 
⎧⎨
 

⎧⎨
 
⎫⎬
 

⎫⎬
 
⎤
 

0
θm θmd
 ⎦⎣ +
=
 r2⎩
 ⎭
 ⎩
 ⎩
⎭
 ⎭
dt
 −Kc+G2 
Ir 

−Bm+Bc 
Ir 

G2ωm ωm Ir 

By comparing the matrix A in this equation with (1), we identify the following relationships 
for the behavioral parameters 

Kc + G2 Bm + Bc
ω2 = and 2ζωo = o Ir Ir 

Both the undamped natural frequency ωo and the damping ratio ζ now depend on the gain 
G2. 

(i) The undamped natural frequency is 

Kc + G2
ωo = 

Ir 

(ii) The damping ratio is
 
Bm + Bc Bm + Bc


ζ = = 
2Irωo 2 (Bm + G2)Ir 

(e) The control algorithms can be implemented by ordinary mechanical elements connected be­
tween a desired-motion driver and the motor rotor. 

(i) The velocity feedback control algorithm 

Tm = G1(r1 − ωm) 

states that a torque is applied to the rotor which is proportional to the difference in 
speeds between the motion driver and the rotor. A linear friction element connected 
between the motion driver and the rotor would apply this same torque if its damping 
coefficient were G1. 

(ii) The position feedback control algorithm 

Tm = G2(r2 − θm) 

states that a torque is applied to the rotor which is proportional to the difference in 
angular position between the motion driver and the rotor. A linear torsional spring 
connected between the motion driver and the rotor would apply this same torque if its 
stiffness were G2. 

A drawback of these mechanical implementations is the necessity of constructing a mechanical 
motion driver to provide the information about the desired motion. 
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14.2 Motoring with a Capacitor 

Figure 14.2.1 shows the free body diagram for this problem. Note: I have applied all of the torques 
in the positive direction. 

τm τin

ω

J

vm=Kω
vc=q/C

Figure 14.2.1: Free Body Diagram and Circuit Diagram 

(a) Based on the free body diagram 

Jω̇ = τin + τm 

τm = Kim 

Jω̇ = τin + Kim 

(b) Evaluating the circuit results in 

0 = Vm + Vc → Vm = −Vc 

q = imdt 

q 1 
Vc = → Vc = imdt 

C C 

Vm = Kω 

1 im− imdt = Kω → = −Kω̇
C C 

im = −KC ω̇

(c) 

Jω̇ = τin − K2Cω̇

J + K2C ω̇ = τin 

(d) The equivalent mechanical model would be Jeqω̇ = τin where Jeq = J + R2C. This is true 
because the capacitor acts to increase the apparent inertia of the motor rotor. 
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(e)
 

L J + K2C ω̇ = Ω(s) J + K2C + J + K2C ω(0) 
ω(0) = 0
 

1
 L{u(t)} = 
s
 

Ω(s) 1
 
= 

2τ(s) (J + K2C)s

Ω(s) t
 L−1 = 
τ(s) (J + K2C) 
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14.3 Leadscrew with Translating Stage
 

When the system is moving, the lead-screw will exert a force F1 retarding the motion of the mass. 
The mass will in turn exert a torque T on the lead-screw retarding it’s motion. The equations of 
motion for the carriage and lead-screw will be 

Mẍ = F − F1 − c2ẋ− k2x (1) 

Jθ ̈= T − c1θ̇ − k1θ (2) 

We need a relationship between x and θ. From the definition of the pitch p, each revolution of the 
lead-screw will advance the carriage 10−2 [m]. One revolution is 2π [rad], therefore 

x = 
p
θ = Nθ where N = 

p 
(3)

2π 2π 

Because the lead-screw is said to be ideal (no friction present), there is 100% efficiency in power 
conversion from the linear to the rotational domain. Therefore 

F1x = Tθ 

T 
F1 = (4)

N 

Take the Laplace transforms of equations (1) and (2) to get 

F (s) − F1(s) = Ms2 + c2s + k2 X(s) (5) 

T (s) = Js2 + c1s + k1 θ(s) (6) 

Combine equations (3) through (6) and solve for the transfer function 

1 
F (s) − Js2 + c1s + k1 X(s) = Ms2 + c2s + k2 X(s)

N2 

X(s) 1 
= 

F (s) J c1 k1m + s2 + c2 + s + k2 +N2 N2 N 2 
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14.4 Mass Pulley System
 

(a) As the pulley rotates clockwise, we assume a no-slip interface between the string and the 
pulley, and therefore a length of string equal to Rθ must be “unwound” on the right hand 
side. The is clearly the distance the pulley moves upward, so x2 = Rθ. 

(b) Again we assume a no-slip interface and look at a rotation of θ radians. We already established 
both that the center of the pulley moves upward a distance Rθ and that the string length 
increases on the right hand side by a distance Rθ. That means the string length on the left 
hand side has decreased by Rθ. The position of the mass with respect to the center of the 
pulley is shorter (further upward) by Rθ, and the center of the pulley has moved upward itself 
by Rθ, so x1 = 2Rθ = 2x2. 

(c) We have already derived geometric equations which show (together) that all three variables 
(x1,x2, and θ) must be linearly coupled at all time. This means we can describe the dynamics 
of the system with a single equation of motion. Applying apply Newtons law at each inertia 
and mass (there are no other nodes): 

F

θ x
2

 T
2

x
1

 T
1

m
1

m
1
g

m
2
g

m
2
,J

R

Figure 14.4.1: Pulley Free Body Diagrams 

m1ẍ1 = T1 − m1g 

m2ẍ2 = F − T1 − T2 − m2g 

Jθ ̈= (T2 − T1)R 
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From the force balance at x1 and the geometric relation between x1 and x2, we can get an 
expression for T1 in term of x2: T1 = 2m1ẍ2 + m1g. Using this new expression, the torque 
balance, and the geometric relation between x2 and θ, we can write T2 as: 

T2 = T1 + 
J
ẍ2 = m1g + 2m1 + 

J
ẍ2

R2 R2 

Combining, we get: 

F − (2m1 + m2)g 
ẍ2 = 

J4m1 + m2 + 
R2 

The result is (of course) simply a constant acceleration (i.e. no damping or spring effect 
anywhere). 
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14.5 DC Motors
 

(a) 

Vm = KmΩ 

Vm = imR → im = 
Km 

R 
Ω 

T = Kmim Note: in this case the current leaving the motor thus negative 

T = − 
K2 

m Ω 
R 

(b) 

T1 = Km1I → I = 
T1 

Km1 

T2 = Km2I → T2 = 
Km2 

Km1 
T1 

V = Km1Ω1 = IR + Km2Ω2 

Ω2 = 
1 

Km2 
(Km1Ω1 − IR) 

= 
1 

Km2 
(Km1Ω1 − R 

T1 

Km1 
) = 

1 
Km2 

(Km1Ω1 − R 
T2 

Km2 
) 

(c) This system is just a transmission with losses. In the case of the motors, the system outputs 
equivalent torques and shows losses in the motor velocities. In most mechanical transmissions, 
the velocities will be equivalent with the losses showing up in the output torque. 
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14.6 Gear Train
 

θ
2 J

T
b

T
k

T
2

Figure 14.6.1: Freebody Diagram 

Figure 14.6.1 shows the freebody diagram for the inertia of the system. For this problem we 
can ignore all of the dynamics of the transformer except for the actual transformer. T2 is the 

r2transformed input torque T1. In my case I have drawn T2 such that T2 = T1. If you drew T2r1 

acting in the positive direction you would get T2 = − r2 T1. r1 

(a) The equation of motion for this system is 

Tb =	 bθ̇2 

Tk =	 kθ2 
r2

T2 = T1 
r1 

Jθ̈  
2 = −T2 − Tb − Tk 

r2
Jθ̈  

2 + bθ̇2 + kθ2 = − T1 
r1 
r2¨ θ2 + 1.25θ̇2 + 10θ2 = − T1 
r1 

To determine ζ and ωn, we ignore the input thus 
√ 

ωn = 10 = 3.16 

2ζωn = 1.25 → ζ = 0.198 ≈ 0.2 

(b) To determine the system equation in terms of θ1, we only need to note the characteristics 
of the transformer. With the directions as defined on the picture, we know that θ2 = − r1 θ1r2 

(Note: this is the inverse of the torque relationship). Since r1 and r2 are constants all the 
derivatives of θ1 and θ2 share the same relationship. Thus the characteristic equation becomes 

r1	 r2− (Jθ̈  
1 + bθ̇1 + kθ1) = − T1 

r2 r1 
2 r2(θ̈  

1 + 1.25θ̇1 + 10θ1) = T1 
r1 

You end up with the same coefficients in the characteristic equation, thus ζ and ωn are the 
same as part a. 
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(c) Figure 14.6.2 shows a sketch of the time response for θ1(t) and θ2(t) (for my sketch r2/r1 = 2). 
Note the two responses are in opposite directions with the same phase and frequency. The 
magnitudes are different by r2/r1. 

0 1 2 3 4 5 6 7 8 9

Time (sec)

A
m

p
li
tu

d
e

0

(r2/r1)

(r2/r1)2

θ1

θ2

Figure 14.6.2: Sketch of θ1(t) and θ2(t) 

(d) Since the system only contains dynamic elements on one side of the transformer, the trans­
former only effects the magnitude and sign of the system dynamics. If like in problem 1, the 
system contained dynamic elements on both sides of the transformer, the transformer would 
effect the dynamics of the system by scaling both the magnitude of the response and the 
equivalent values of the inertia, damping, and stiffness (see problem 1 where the equivalent 
inertia of the transformer is J1 + r1 J2).r2 
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14.7 Non-Ideal Transformer
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Figure 14.7.1: Freebody Diagrams 

To solve this problem we need to make a few assumptions about the model elements. First, we need 
to consider the springs connecting the inertia elements in the model. We are told to assume that 
k1 is very large, thus the input torque T1 is assumed to act directly upon J1. The next question we 
need consider is what to do with the damping caused by the bearings. In the case of the bearing 
in the upper left of the picture, the losses associated with this bearing clearly act directly between 
ground (θ̇ = 0) and the inertia J1. Less clear is how to handle the bearing in the center of the 
picture. Our first instinct would be to set this bearing to act between J2 and JL. We can see that 
this would be incorrect since the bearing drag would go to 0 when θ̇2 = θ̇3 (θ̇3 is the rotational 
velocity of J2). This is clearly incorrect since the bearing still generates a drag between the shaft 
and ground. There are three different assumptions we can make instead. One, we can have the 
bearing drag act between J2 and ground. Two, we could instead have the bearing drag act between 
JL and ground. Lastly, we could split the drag and have it act between ground and JL and J2. All 
are equally valid but I will solve the problem by splitting the drag between the two inertia. 

(a) Figure 14.7.1 shows the free body diagrams for the three inertias in the model.	 Note the 
inclusion of the torque TJ2 on inertias J1 and J2. This torque represents the torque through 
the gear transformer and will be solved algebraically later. All the other torques are expressed 
as follows (T1 is an input thus not accounted for here): 

Tb1 = b1θ̇1 

Tb2 = b2θ̇3 

Tk2 = k2(θ2 − θ3) 
Tb3 = b3θ̇2 
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The equations of motion then become 0 
Jθ ̈ = T 

¨ J1θ1 = T1 − Tb1 − TJ2 

¨ J1θ1 + b1θ̇1 = T1 − TJ2 

¨ J2θ3 = −TJ2 − Tb2 − Tk2 

¨ J2θ3 + b2θ̇3 + k2θ3 = k2θ2 − TJ2 

¨ JLθ2 = Tk2 − Tb3 

¨ JLθ2 + b3θ̇2 + k2θ2 = k2θ3 

(b) Now that we have written the equations of motion, we need to eliminate the unknown torque 
TJ2. To do this we apply our knowledge about the transformer which equate θ1andθ3. Specif­
ically: 

r1
θ3 = − θ1 

r2 

where r1 is the radius of J1 and r2 is the radius of J2. 

¨ J1θ1 + b1θ̇1 = T1 − TJ2 

¨ J2θ3 + b2θ̇3 + k2θ3 = k2θ2 − TJ2 
r1 ¨ (J2θ1 + b2θ̇1 + k2θ1) = −k2θ2 + TJ2 
r2 

r1 r1 r1¨ J1 + J2 θ1 + b1 + b2 θ̇1 + θ1 = T1 − k2θ2 
r2 r2 r2 

r1¨ JLθ2 + b3θ̇2 + k2θ2 = k2θ3 = −k2 θ1 
r2 

We can determine the transfer function by taking the Laplace transforms of remaining two 
equations of motion.    

Θ1(s) J1 + r1 J2 s
2 + b1 + r1 b2 s + r1 = T1(s) − k2Θ2(s)r2 r2 r2

T1(s)−ksΘ2(s)Θ1(s) = “ ” “ ” 
r1 r1 r1J1+ J2 s2+ b1+ b2 s+ k2r2 r2 r2  

r1Θ2(s) JLs
2 + b3s + k2 = −k2 Θ1(s)r2 

−k2 
r1 Θ1(s)

Θ2(s) = 
JLs

r2 
2+b3s+k2 

For simplicity, I am going to define the following transfer functions: 

1 
G1(s) = 

J1 + r1 J2 s2 + b1 + r1 b2 s + r1 k2r2 r2 r2 

r1−k2 r2G3(s) = 
JLs2 + b3s + k2 

(c) Figure 14.7.2 shows the block diagram for this system with the transfer functions as defined 
above. 
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Figure 14.7.2: Block Diagram 

(d) Using the block diagram, we see that 

G1(s)G3(s)
G(s) = 

1 + k2G1(s)G3(s) 
r1−k2 r2G(s) = 

r1[ J1 + r1 J2 s2 + b1 + r1 b2 s + r1 k2][JLs2 + b3s + k2] + k2 
2r2 r2 r2 r2 
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14.8 Equivalent Mass and Inertia 

(a) This problem is a little tricky.	 To solve it correctly you need to replace the mass with an 
equivalent force (fm) as shown in the figure. 

f

v

m
a b

f

v v'

fm

a b

Figure 14.8.1: Free Body Diagram for 1-a 

' fm = mv̇
' v v 

= − 
a b 

a' v = − v 
b 

fm = −ma
v̇
b 

af = −bfm 
2 

f = m
a

b2 v̇

2a
meq = m 

b2 

(b) This problem should be solved using a free-body diagram. You should note that all of the 
masses travel at the same velocity, thus you only need a free body diagrams for one wheel 
and the combined masses. 

M

m,J

fj fj

f

Cart Wheel

ω

r

fj

Figure 14.8.2: Free Body Diagram for 1-b
 

Note the force fj , this force is not a friction force, although it is created by the friction 
between the tire and road surface, it is the force required to accelerate the rotational inertia 
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of the wheel. From the figure,
 

On the cart ΣF = (M + 4m)ẍ = f − 4fj 

On one wheel ΣT = Jω̇ = fj r 
ẍ

No slip means v = ẋ = rω ⇒ ω̇ = 
r 

fj = 
J
ẍ

2r
J 

M + 4m + 4 ẍ = f
2r

Meq = M + 4m + 4 
J 
2r

(c) Once again you should be solving this problem using free body diagrams.	 Note that the first 
pulley does not have any inertia. From the FBD, 

Pulley #1 ΣT = 0 = r1(f1 − f2) + T 

Pulley #2 ΣT = Jω̇' 

Pulley 1

f1

f2

r
1

ω

f2

f1
ω'

r
2

J

Pulley 2

T

Figure 14.8.3: Free Body Diagram for 1-c
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14.9 Inertia in Geartrain 

The solution for this problem is not available. 
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14.10 Motor Driving Inertia Through Gear Train 

The solution for this problem is not available. 
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15 MATLAB and Simulink 

15.1 Matlab Spirograph 

(a) and (b) A gear of radius r2 turns inside a gear-faced hole of radius r0. The inner gear has a pen fixed 
at a radius r3 from its center. The resulting path of the pen is most easily described as that 
of the center of the gear (which just moves in a circular path) superimposed with the position 
of the pen with respect to the center of the gear. The angle between the fixed center of the 
outer hole and the center of the gear at any given time is θ1, while the corresponding angle 
from the center of the gear to the pen is θ3. θ3 and θ1 are proportional to one another. Figure 
15.1.1 shows the geometry of the gears (above) and the resulting path (below): 

r
0

r
2

r
3

pen

C
0

P
0

C
1

P
1

Figure 15.1.1: Geometry of gears and resulting paths 

Above, θ1 is shown as a dashed line for two locations, 0 and 90 degrees. Here, r0 = 7, r2 = 4, 
and r3 = 3, so that θ2 = (−4/3)θ1, shown as the lines connecting gear center, c, with pen 
location, p, for each of two locations of the inner gear. The figure below overlays the gear 
geometry with the resulting spirograph: 
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3
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Figure 15.1.2: Overlay of geometry of gears and resulting spirograph 

(c) The script spirographsol.m is avaliable at the end of the problem. 

(d) Your plots will vary. 

(c) You can convert the MATLAB script given into a MATLAB function by completing the 
following 2 steps: 

1) change the TOP LINE of the m-file into a function declaration (beginning with the word 
function) 

2) take out the lines in the m-file that defined the various radii (r0, r2 and r3) 

The m-file spisol.m below defines a spirographing function called spisol this file is found at 
the end of the problem. Note that the function has no output. (It will still plot the picture, 
however.) If we wished to define the vector of complex numbers describing the path as the 
output of the function, we could rewrite the top line of the function above as: 

function [position]=spisol(r0,r2,r3) 

The rest of the m-file would remain the same. To plot the example shown earlier, you would 
call the function as shown in Figure 15.1.1: 
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spi(7,4,3)

subplot(131); spi(4,3,2/3); axis off
subplot(132); spi(4,3,1); axis off
subplot(133); spi(4,3,4/3); axis off

subplot(131); spi(9,4,3); axis off
subplot(132); spi(9,5,4); axis off
subplot(133); spi(9,5,3); axis off

Figure 15.1.3: Spisol.m call and resulting plot
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15.2 MATLAB Plotting
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(a)

(b)

(c)

Figure 2: Problem 5: (a) 10 sin 100t, (b) e−t cos 100t, (c) Re{est}; s =
−1 + 10i.

Problem 5: The objective of this problem is to recognize the time scales
involved so that proper time range and sampling rates may be selected. For
sinusoidal functions or exponential functions with a complex exponent of
the form aeiωt, the period is given by

T =
2π
|ω| (36)

For decaying exponential functions of the form ae−bt the time constant is
given by

τ =
1
b

(37)

The function will be within 1% of its final value in 5τ . Therefore, one
must recognize the slowest timescale when plotting a function so that all
significant behavior will be shown. The graphs are shown in Figures 2 and
3.

Figure 15.2.1:
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Figure 3: Problem 5: (d) 5e−10t, (e) 5e10t, (f) 8e−100t − 5e−1000t.

Figure 15.2.2:
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15.3 Simulink Introduction 

The solution for this problem is not available. 
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15.4 Wackygraph 

(a) The m-file wackygraph.m creates a strange looking graph with many loops (see Figure 15.4.1). 
We are interested in understanding the effects of each parameter on the shape of the graph. 
Begin by examining the function being plotted: 

jθ1 jθ3position = (r0 + r1)e + r2e

Recall that a complex exponential is a circle when plotted in the the complex plane. r0 and r2 

are constants, but r1 is a function of θ1. Substituting relations given in the m-file, we obtain 
jθ1	 jθ1 −jg1θ1position = 2r0e + g2 sin(Nθ1)e + r2e	 (1) 

Therefore, we recognize that the diameter of the main figure is 2r0. This circle of main 
jθ1 −jg1θ1 jθ1diameter is modulated by two additional terms, g2 sin(Nθ1)e and r2e . g2sin(Nθ1)e

has the same angle θ1 as the main circle but the modulation changes as the angle changes. For 
−jg1θ1N > 1, the size of the perturbation changes faster than θ1. The other perturbation r2e

has a primary radius r2. The perturbation rotates in the opposite direction from the direction 
of tracing out the large circle of radius r0 and with a different speed based on the magnitude 
of g1 (see Figure 15.4.2 for a diagram explaining the variables). r1 is a dependent variable 
because it is calculated in the m-file. 

(b) Using Equation (1) we can separate position into its real and imaginary parts using	 z = 
rejθ = r cos θ + jr sin θ. We find the real part is 

Re(position) = 2r0 cos θ1 + g2 sin(Nθ1) sin θ1 + r2 cos(g1θ1) 

and the imaginary part is
 

Im(position) = 2r0sinθ1 + g2sin(Nθ1)sinθ1 − r2sin(g1θ1)
 

(c) To comment a MATLAB file, use the % symbol before the comments.	 A commented version 
of wackygraph.m is given below. 

−25 −20 −15 −10 −5 0 5 10 15 20 25

−20

−15

−10

−5

0

5

10

15

20

Figure 15.4.1: Wackygraph with default parameters.
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2r0

θ1

r2

g1θ1

g2 sin Nθ1

Figure 15.4.2: Diagram of the Wackygraph system. 

% wackygraph % 

DL Trumper 9/9/02 

r0 = 10; %define r0 
r2 = 1; %define r2 
N = 10; %define N 
g1 = 40; %define g1 
g2 = 0.2*r0; %define g2 
theta1 = [0:pi/1000:100*pi]; %define the vector theta1 
theta3 = -g1*theta1; %define the vector theta3 as proportional to theta1 
r1 = r0 + g2*sin(N*theta1); %calculate the vector r1 
position = (r0+r1).*exp(j*theta1) + r2*exp(j*theta3); %calculate position 
figure(1) %select the window Figure 1 
plot(position) %plot the variable position 
axis equal %force the x and y axes to be scaled equally 

We must use .* instead of . for element-by-element multiplication. Otherwise, Matlab returns 
the following error: 

??? Error using ==> *
 
Inner matrix dimensions must agree.
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(d) Various plots are given in Figure 15.4.3.
 

(e) A possible script is given below 

function wackyscript(r0, r2, g1, g2, N) 
%wackyscript(r0, r2, g1, g2, N) 
%Justin Verdirame 
%2.003 Problem Set 2 
%Fall 2002 
% 
%This function takes as input r0, r2, g1, g2, N and outputs 
%a plot based on wackygraph.m written by Prof Trumper. 
theta1 = [0:pi/1000:100*pi]; %define vector 
theta3 = -g1*theta1; %calculate vector theta3 
r1 = r0 + g2*sin(N*theta1); %calculate vector r1 
position = (r0+r1).*exp(j*theta1) + r2*exp(j*theta3); 
figure(1) %creates window for the plot if it does not exist 
plot(position) %plot vector 
axis equal %forces the x and y axes to have the same scaling 
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Figure 15.4.3: Wackygraph plotted with various parameters.
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16 Case Studies
 

16.1 CD Player 1 

(a) Let the outer radius of the CD be R, and let the radius of the hole be r. Let the mass density 
of the disc be ρ per unit area, and let the total mass of the CD be m. Then 

m = ρ(πR2) − ρ(πr2) = πρ(R2 − r 2) 

The moment of inertia is
 

1 1 1
 
ICD = ρ(πR2)( R2) − ρ(πr2)( r 2) = πρ(R4 − r 4)

2 2 2


and
 
1 1 m 1 
πρ(R4 − r 4) = πρ(R4 − r 4) = m(R2 + r 2)

2 2 πρ(R2 − r2) 2

Substitute R = 0.060 m, r = 0.0075 m, and m = 0.028 kg to get ICD = 5.12e-5 kg-m2 . 

(b) At steady state, the motor torque Tm is balanced by the frictional torque Tfric = Bmωss. If 
ωss is the same for the disc mounted and not mounted, the damping coefficient Bm must also 
be the same in both cases. In the transient, it is necessary to consider the complete dynamic 
analysis. The constitutive equations are 

dωm
TI = I and Tfric = Bmωm

dt 

where I is the total moment of inertia of the rotating parts, and the torque balance is 

TI = Tm − Tfric 

which lead to the differential equation 

dωm I dωm Tm
I + Bmωm = Tm or + ωm = 
dt Bm dt Bm 

from which we learn that the decay time-constant is τ = I/Bm. Now we are given the time it 
takes the spindle to reach 95% of ωss which is known to be 3 time-constants, for the spindle 
alone, and for spindle plus the mounted CD, so 

Ir 0.3 Ir + ICD 2.0 
τnoCD = = and τwithCD = = 

Bm 3 Bm 3
 

and, by subtraction to eliminate Ir, we find
 

ICD 2.0 − 0.3 3ICD
 = or Bm = = 9.04e-5 N-m-s/r 
Bm 3 1.7
 

This is the answer for both parts (i) and (ii).
 

(c) To estimate Ir, return to τnoCD and solve for Ir 

0.3 
Ir = BmτnoCD = 9.04e-5 = 9.04e-6 kg-m2 

3 

534
 

[ ]

( )



(d) The standard form for state-determined representation of a dynamic system is
 

d 
dt x = Ax + Bu 

y = Cx + Du 

where x is a column matrix of the state variables, u is a column matrix of the input variables, 
and y is a column matrix of the desired output variables. The parameters which govern the 
natural response of the system are contained in the square matrix A. The parameters which 
describe how the input is delivered are contained in B, the parameters which describe how the 
output depends on the state variables are contained in C, and the parameters which describe 
how the output depends directly on the input are contained in D. 

In the present case there is only one state variable ωm, one input Tm, and one output ωm, so 
all the matrices reduce to scalars. The state equation for ωm is 

dωm Bm 1 
= − ωm + Tm

dt Itotal Itotal 

where Itotal = Ir + ICD = (0.904 + 5.12)e-5 = 6.02e-5 kg-m2 . The matrices of the standard 
form reduce to the following scalars: 

Bm 1 
x = ωm, A = − , u = Tm, B = , y = ωm, C = 1, D = 0 

Itotal Itotal 
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16.2 CD Player 2 

(a) The dimensions of the parameter G are [torque]/[angular velocity], or [FLT], or [ML2/T]. In 
the SI system, the common unit is the Newton-meter per radian per second, or N-m-s. 

(b) Assume that ωsensed = ωm, and insert Tm = G(r − ωm) in the state equation in Problem 
16.1(d) to get
 

dωm Bm + G G
 
= − ωm + r 

dt Itotal Itotal 

as the state equation for the controlled system. Comparing this equation for the controlled 
system with the equation in 1(d) above, note that the input u has changed from a torque 
Tm to a speed r, and that, A has changed from −Bm/Itotal to −(Bm + G)/Itotal, and B has 
changed from 1/Itotal to G/Itotal. The system is still a first-order dynamic system but its 
behavior can easily be modified by adjusting the gain G. 

(c) The steady-state speed corresponding to 4 revolutions/second is	 ωss = 8π = 25.1 radi­
ans/second. 

(i) For the uncontrolled system, the motor torque required to maintain this speed is 

Tm = Bmωss = (9.04e-5)(8π) = 2.27e-3 N-m 

(ii) For the controlled system, the reference speed required to maintain the same speed is 

Bm + G 9.04e-5 + G 
r = ωss = 25.1 

G G 

(d) The decay time-constant for the uncontrolled system is τu = Itotal/Bm, while the decay time-
constant for the controlled systgem is τc = Itotal/(Bm + G). If the controlled system is to be 
five times faster than the uncontrolled system, it is necessary for τc = τu/5, or 

Itotal 1 Itotal = 
Bm + G 5 Bm 

from which we obtain
 
G = 4Bm = 4(9.04e-5) = 36.2e-5 N-m-s
 

(e) The scripts for this problem are found below.	 The symbol v in the script stands for the 
angular velocity ωm. After the equation is integrated to obtain ωm(t), the motor torque Tm 

is constructed from the control algorithm 

Tm = G(r − ωm) 

and plotted. See Fig. 16.2.1. 
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Figure 16.2.1: Transient Motor Torque under Velocity Feedback Control 

Note that the maximum motor torque occurs at t = 0 when ωm = 0. The magnitude of the 
maximum torque is 

Tm(0) = Gr = (Bm + G)ωss = (Bm + 4Bm)ωss = 5Bmωss = 11.35e-3 N-m 

Note that the five-fold increase in response speed is accompanied by a five-fold increase in 
maximum torque. 
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16.3 CD Player 3 

The equation of motion for the CD-player is 

dωm dωm Bm 1 
I + Bmωm = Tm or = − ωm + T 
dt dt I I 

where: (i) I = Ir when no disc is mounted on the spindle, or (ii) I = Ir + Id when a disc is mounted 
on the spindle. 

(a) Using the result of Problem 16.1 with Bm = 2B, the magnitude M(Ω) of the angular velocity 
response amplitude and the phase angle φ(Ω) for an input torque of Tm = Ta sin Ωt are 

Ta 1 IΩ 
M(Ω) = and φ(Ω) = − tan−1 

Bm Bm1 + ( IΩ )2 
Bm 

The zero-frequency limit of the magnitude M(Ω) is 

Ta
M(0) = 

Bm 

Since no specific value of the input torque amplitude Ta was given, we will express the the 
magnitude of the response in terms of the ratio M(Ω)/M(0). For the three frequencies 1 
rad/sec, 5 rad/sec, 15 rad/sec the magnitude ratios and phase angles are: 

(i) for no disc on the spindle (I = Ir = 9e-6e-6 kg-m2 , Bm = 9e-5 N-m/r/s),
 

M(1) 1 (9e − 6)(1)

= = 0.995 and φ = tan−1 = 5.71 deg 

M(0) 1 + ( (9e−6)(1) )2 9e − 5 
9e−5 

M(5) 1 (9e − 6)(5)
= = 0.894 and φ = tan−1 = 26.6 deg 

M(0) 1 + ( (9e−6)(5) )2 9e − 5 
9e−5 

M(15) 1 (9e − 6)(15)
= = 0.555 and φ = tan−1 = 56.3 deg 

M(0) 1 + ( (9e−6)(15) )2 9e − 5 
9e−5 

(ii) for a disc on the spindle (I = Ir + Id = 5.9e-5 kg-m2 , Bm = 9e-5 N-m/r/s), 

M(1) 1 (5.9e − 5)(1)
= = 0.647 and φ = tan−1 = 33.2 deg 

M(0) 1 + ( (5.9e−5)(1) )2 9e − 5 
9e−5 

M(5) 1 (5.9e − 5)(5)
= = 0.1671 and φ = tan−1 = 73.0 deg 

M(0) 1 + ( (5.9e−5)(5) )2 9e − 5 
9e−5 

M(15) 1 (5.9e − 5)(15)
= = 0.0564 and φ = tan−1 = 84.2 deg 

M(0) 1 + ( (5.9e−5)(15) 9e − 5)2 
9e−5 
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(b) The low-frequency asymptote for M(Ω)/M(0) is unity, and the high frequency asymptote 
is M(Ω)/M(0) = Bm/IΩ. These two asymptotes intersect at the break frequency Ωbreak = 
Bm/I. The numerical values are: 

(i) Ωbreak = 9e-5/9e-6 = 10 rad/sec when no disc is mounted on the spindle. 

(ii) Ωbreak = 9e-5/5.9e-5 = 1.525 rad/sec when a disc is mounted on the spindle. 
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Figure 16.3.1: Magnitude Ratio for CD-Player
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Figure 16.3.2: Phase Angle for CD-Player 

(c) Bode plots for Case (i) and Case (ii) are shown in Fig. 16.3.1 for magnitude and in Fig. 
16.3.2 for phase angle. These plots were obtained by running MATLAB scripts similar to the 
one shown in the solution to Problem 4.21. 

(d) The decay time-constant for the CD-player is τ = I/Bm. The time for 98% of the transient 
to decay is 4τ = 4I/Bm. This time is a natural property of the system and is independent 
of the frequency Ω of the applied oscillating torque Tm. This time does, however, depend on 
the value of I which depends on whether a disc is mounted or not. 

(i) With no disc mounted the time to reach steady state is 4(9e-6)/(9e-5) = 0.4 seconds. 

(ii) With a disc mounted the time to reach steady state is 4(5.9e-5)/(9e-5) = 2.62 seconds. 
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16.4 Pinewood Derby 1
 

(a) The potential energy PE of a mass m elevated a distance h in the gravity field is PE = mgh. 
In SI units the 5 ounce mass is 5/16 pounds = (5/16)(0.4536 kg/pound) = 0.1418 kg. The 
3 foot elevation h = 3(0.3048 meters/foot) = 0.914 meters, and the acceleration of gravity is 
9.81 m/s2 . The energy available to move the racecar is 

mgh = (0.1418)(9.81)(0.914) = 1.271kg (m/s)2 = 1.271newton meters = 1.271Joules 

16 feet

6 inches

3 
fe

et

alpha

Figure 16.4.1: Pinewood Derby 

(b) If the center of mass is at the front of the car, its elevation is h = 0.914m and the available 
potential energy is as calculated in (a). When the car is rolling on the level portion of the 

1track this energy has been transformed into kinetic energy KE= mv2, so the maximum 2 
velocity is
 

v = 2PE/m = 2gh = 2(9.81)(0.914) = 4.24 m/s
 

(c) If the center of mass is at the rear of the car its elevation is 

6 6 3 
h = 0.914 + (0.3048) sin(alpha) = 0.914 + (0.3048)( ) = 0.943 m 

12 12 16


and the maximum velocity on the level portion of the track is
 

v = 2(9.81)(0, 943) = 4.30 m/s 

a 1.4 % increase in speed over the case where the mass center is at the front of the car. 

(d) The energy relations are silent regarding the time taken to effect the energy transformation. 
To introduce the time variable it is necessary to consider the equation of motion of the car. 
On the sloping section of track the force which accelerates the mass along the track is the 
component of the weight parallel to the track: mg sin(alpha). With no friction, this is the 
only force, and the equation of motion is 

mg sin(alpha) = m
dv 
dt 

541
 

√ √ √

√



 

 

Integrating this equation from the initial condition v = 0 at t = 0 yields 

v = gt sin(alpha) 

Let s represent distance down the track from the starting point, so that ds/dt = v. Then 
integrating the equation 

ds 
= gt sin(alpha) 

dt 
from s = 0 at t = 0 to s = L at time t = T yields 

1 
L = gT 2 sin(alpha) 

2

from which it follows that 
2L 

T = 
g sin(alpha) 

The time T to reach the bottom of the inclined track in case (c) is obtained by substituting 
L = 16.5 feet = (16.5)(0.3048)m = 5.09m and sin(alpha) = 3/16 to get 

2(5.09)
T = = 2.35 sec 

9.81(3/16) 
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16.5 Pinewood Derby 2 

At the limiting velocity vss, the retarding force bv just equals the component of the weight parallel 
to the track, mg sin(alpha), so 

mg sin(alpha) 
b = 

vss 

If vss = 2(4.30) = 8.60 m/s, then 

(0.1418)(9.81)(3/16)
b = = 0.0303 kg/sec 

8.60 
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16.6 Pinewood Derby 3 

Consider the equation of motion of a racecar with mass m on an incline of angle (alpha), acted on 
by the weight component parallel to the track, and by a viscous retarding force bv, as shown in 
Figure 16.6.1. 

v

m

bv

mg sin(alpha)

Figure 16.6.1: Racecar Dynamics Diagram 

dv 
m = mg sin(alpha) − bv 
dt 

or, after dividing through by m, and rearranging 

dv b 
+ = g sin(alpha) 

dt m 

This is the equation treated in the MATLAB scripts ‘carsol.m’ and ‘carviscsol.m’. 

(a) For part (a) use the data m = 0.1418 kg, (alpha) = inv sin 3/16 = 10.81 degrees, b = 0.0303 
kg/sec, and T = 2.35 sec to get the plot for Part (a). 
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Figure 16.6.2: Plot for Part (a) 

At the end of 2.35 seconds the speed of the car is 3.40 m/s. To indicate the effect of increas­
ing the weight, you can run the program again with all the same data, except with the mass 
increased to 0.1701 kg (6 ounces) to get a final velocity of 3.53 m/s at the end of 2.35 seconds. 

(b) The limiting speed or ‘terminal velocity’ established in Problem 16.5 is vss = 8.60 m/s. The 
speed which is 99.9 % of this is 8.591 m/s. To determine the time it takes to reach this speed, 
fix the values of m = 0.1418 kg, (alpha) = 10.81 degrees, and b = 0.0303 kg/sec, and run the 
program for a sequence of time intervals, iterating toward a final velocity of 8.591 m/s. For 
example, 

Try T = 10 secs, get V = 7.59 m/s
 

Try T = 20 secs, get V = 8.49 m/s
 

Try T = 30 secs, get V = 8.596 m/s
 

Try T = 29 secs, get V = 8.593 m/s
 

Try T = 28 secs, get V = 8.589 m/s
 

Try T = 28.5 secs, get V = 8.591 m/s
 

The time history of velocity in the 28.5 second interval is displayed in the plot for Part (b). 

The previous result is not very accurate because of round-off error. If we test the MATLAB 
progams with the given data, we find that for the very large times, T = 70 to T = 100, the 
final velocity is essentially constant at v = 8.61045 m/s; i.e., the program believes that the 
terminal velocity is not 8.60 m/s, but 8.61045 m/s. If we then iterate to a final velocity of 
8.602 m/s, which is 99.9% of 8.61045 m/s, we find that the time required is T = 32.5 sec, 
which is 14% larger than our previous result of 28.5 sec. 
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Figure 16.6.3: Plot for Part (b) 

16.7 Pinewood Derby 4 

(a) Replace	 fviscous by fdrag to get the free body diagram of the car mass acted on by the 
component of the weight, and the retarding form-drag force, shown below. 

AC
d v 2

 sgn (v) v

m

mg sin α

Figure 16.7.1: Model Diagram 

The equation of motion for the model is 

2m
dv 

= mg sin α − ACdv sgn v 
dt 
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(b) The dimensions of the force fdrag are [F ] = [M ][L]/[T 2]; the dimensions of the area A are 
2[L2]; the dimensions of the velocity squared v = [L2]/[T 2]; and the signum function is 

dimensionless. The dimensions of the parameter Cd are 

fdrag ML/T 2 

[Cd] = = = [M/L3]
Av2sgnv (L2)(L2/T 2) 

In SI units, the dimensions of Cd are kg/m3 . 

(c) On a horizontal track α = 0, and the only horizontal force acting on the mass is the retarding 
form-drag force. Starting with a positive velocity vo at t = 0, the mass will slow down, but 
will not reverse direction; i.e., v(t) will be non-negative, so the equation of motion can be 
written 

dv 
m = −ACdv 2 

dt 

The initial condition is v = vo at t = 0. The differential equation can be integrated by 
separating the variables v and t 

v tdv ACd = − dt
2v mvo 0 

−1 1 ACd+ = − t 
v vo m 

The time history of the speed of the car is obtained by solving the above equation for v(t). 

v(t) = 
vo 

1 + ACdvo t m 

Note that v(t) decreases smoothly with time, and asymptotically approaces the limit v = 0 
as t approaces infinity. 
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16.8 Pinewood Derby 5 

The differential equation for the model in which a car of mass m descends a very long inclined 
track with angle α under the influence of gravity and form drag is 

m
dv 

= mg sin α − ACdv 2sgn v 
dt 

as given at the beginning of Problem 16.7. 

(a) At the terminal velocity vss there is no longer any acceleration (dv/dt = 0), and the drag 
force is equal and opposite to the accelerating force component, so that
 

mg sin α
2 vss = 
ACd 

(b) If m = 0.1418 kg, α = 10.81 degrees = sin−1(3/16), and vss =8.60 m/s, then the product of 
the frontal area A and the drag coefficient Cd is
 

mg sin α (0.1418)(9.81)(3/16)

ACd = =	 = 0.00353 kg/m 

2v (8.60)2 

(c) To use the scripts ‘car2sol.m’ and ‘cardragsol.m’ to determine the time	 T for V to reach 
(0.999)(8.60) = 8.5914 m/s fix the inputs of m = 0.1418 kg, α = 10.81 deg, and ACd = 0.00353 
kg/m3n and then call ‘car2-sol’ and input various guesses for T , iterating toward “Final speed 
= 8.5914 m/s”. For example: 

Try T = 10 secs, get V = 8.362 m/s
 
Try T = 20 secs, get V = 8.594 m/s
 
Try T = 19 secs, get V = 8.5919 m/s
 
Try T = 18.9 secs, get V = 8.5917 m/s
 
Try T = 18.8 secs, get V = 8.5915 m/s
 
Try T = 18.7 secs, get V = 8.5913 m/s
 
Try T = 18.75 secs, get V = 8.5914 m/s (close enough)
 

This result is not very accurate, because of round-off error. The value 0.00353 kg/m obtained 
in (b) above for the parameter aCd was rounded off to three significant figures. If we assume 
that ACd is exactly equal to 0.00353 kg/m, and work backwards we find that vss is not exactly 
equal to 8.60 m/s but is actually 8.5958 m/s correct to five significant figures. If we repeat 
the exercise we find that at T = 17.45 sec, the final speed is 8.5872 m/s which is 99.9 % of 
8.5958 m/s. Both of the previous results assume that there are no errors in the integration 
carried out by MATLAB. MATLAB is pretty good, but it does make small errors which can 
accumulate over a long integration. If we let it run for long times T , we find that throughout 
the range from T = 35 secs to T = 70 secs, the final speed is essentially constant (to five 
significant figures) at 8.5970 m/s; i.e., MATLAB disagrees, in the fourth significant figure, 
with both vss = 8.6000 m/s and vss = 8.5958 m/s. 

(d) In Problem 4(b) of Problem 16.7, it was found that with viscous friction the time to reach 
99.9% of the terminal velocity was in the neighborhood of 28.5 to 32.5 seconds. Here, with 
form drag, the same speed is reached in about 17.45 to 18.75 seconds. With form drag 
(quadratic speed dependence) the terminal velocity is approached more quickly than is the 
case for viscous friction (linear speed dependence). The time histories of velocity for the two 
models are shown in the Fig. 2(d)-1. 
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Figure 16.8.1: Fig. 2(d)-1 

To explain why a car with quadratic drag approaches the terminal velocity more rapidly than a 
car with linear drag, compare the constitutive equations for the retarding forces as shown in Fig. 
16.8.2. At all speeds below the common terminal velocity there is less retardation with form drag 
than there is for viscous friction. This means that, when both cars have the same velocity, the 
car with form drag accelerates faster than the car with viscous friction. Now the the slopes of the 
velocity curves in Fig. 16.8.1 represent the accelerations of the cars. Thus at each speed, the form 
drag curve will have a steeper slope than the viscous friction curve. As a consequence the form 
drag curve must approach the terminal velocity more quickly than the viscous friction curve. 
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Figure 16.8.2: Fig. 2(d)-2 

NOTE re MATLAB technique: To plot two graphs in the same Figure, as in Fig. 2(d)-1. Run 
’car2sol’ to obtain a plot of viscous friction case. Then, in the MATLAB Command Window, type 
“hold on”. (this keeps the plot in the Figure screen). Next run ’car2sol’ (with the same time 
interval T ). The plot for the form-drag case then appears on top of the existing plot. To print 
captions such as ”Viscous Friction” on the interior of the plot, type, in the MATLAB Command 
Window, “gtext(’Viscous Friction’)”. When you hit ’return’ the cursor on the Figure turns into a 
giant cross which can be moved by the mouse. Then when you click the mouse the caption appears 
on the Figure starting from the intersection point of the cross. You can make as many additional 
plots as you wish, as long as ’hold’ is ’on’. To return to normal one-at-a-time plots, type “hold off” 
in the MATLAB Command Window. 
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16.9 Engine Block Vibration 1 

Weight of engine block W = 200 pounds, stiffness k = 18, 000 pounds/inch, damping coefficient 
b = 2 pounds /inch/second. Input force is f(t) = fa sin Ωt with fa = 2 pounds. 

m
y

f (t )

bk

Figure 16.9.1: Engine Block Subjected to Sinusoidally Varying Force 

Let y(t) be displacement of engine block from equilibrium position. Geometric compatibility re­
quires that the block velocity v(t) satisfy v = dy/dt. Restoring force is fk = ky, damping force 
is ffric = bv, input force is f(t) = fa sin Ωt, and Newton’s second law is fm = mdv/dt with 
m = W/g. When these constitutive equations are substituted in the force-balance requirement 
fm = f(t) − fk − ffric and v is replaced by dy/dt the result is the equation of motion 

d2y dy 
m + b + ky = fa sin Ωt 
dt2 dt 

(a) If the input force is considered to be the imaginary part of the complex excitation faexp(iΩt), 
it is appropriate to consider the steady-state response to be the imaginary part of the complex 
response Aexp(iΩt) where A is the complex amplitude of the response , which is to be found 
by requiring the complex response to satisfy the equation of motion. Substitution of y = 
Aexp(iΩt) into 

d2y dy 
m + b + ky = faexp(iΩt)
dt2 dt 

yields 
fa

A = 
k + iΩb − mΩ2 

(b) (i) At very low frequencies A → fa/k. 

(ii) At very high frequencies A → −fa/mΩ2 . 

(iii) The magnitudes of (b) and (c) become equal when Ω2 → Ω2 = k/m = ω2 .break o 
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(c) In terms of the behavioral parameters ωo and ζ defined by 

k b 
ω2 = and 2ζωo = o m m 

the ratio Z of A(Ω) to A(0), 

A(Ω) 1 
Z = = 

A(0) (1 − Ω
2 ) + i2ζ Ω 

ω2 ωoo 

is a convenient dimensionless form of the complex amplitude A. The engine displacement 
amplitude has its peak magnitude when |Z|2 is a maximum. Now 

1 |Z|2 = 
(1 − Ω

2 )2 + 4ζ2 Ω2 

ω2 ω2 
o o 

and its maximum occurs when its derivative with respect to Ω2/ω2 vanishes; i.e., wheno 

d|Z|2 Ω2 

= 2(1 − ) + 4ζ2 = 0 
dΩ2/ω2 ω2 

o o 

The solution of this equation for Ω yields 

Ωpeak = ωo 1 − 2ζ2 

(d) To evaluate |Z(Ωpeak)|, insert Ω2 = ω2(1 − 2ζ2) in the preceding expression for |Z|2 to get peak o 

1 1 |Z(Ωpeak)|2 = = 
4ζ4 + 4ζ2(1 − 2ζ2) 4ζ2(1 − ζ)2 

so that 
1 |Z(Ωpeak)| = 

2ζ 1 − ζ2 

For comparison, note that |Z(ωo)| = 1/2ζ. The actual peak occurs at a frequency that is 
smaller than the undamped natural frequency ωo by a factor of 1 − 2ζ2 and the magnitude 
of the peak is greater than the magnitude of the response at Ω = ωo by the factor 1/ 1 − ζ2. 
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Figure 16.9.2: Bode Plot of Magnitude of A(Ω)/A(0) in dB vs. Frequency Ratio Ω/ωo 
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Figure 16.9.3: Bode Plot of Phase Angle vs. Frequency Ratio Ω/ωo 
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(e) The Bode plots shown in Fig.2 and Fig.3 were obtained by running the script enginebodesol.m.
 

554
 



 

16.10 Engine Block Vibration 2 

Repeat Problem 16.9, but with f(t) = CΩ2 sin Ωt with C = 0.005 pound-sec2 . 

(a) Substitution of y = Aexp(iΩt) into 

d2y dy 
m + b + ky = CΩ2exp(iΩt)
dt2 dt 

yields 
CΩ2 

A = 
k + iΩb − mΩ2 

(b) (i) At very low frequencies A → CΩ2/k. 

(ii) At very high frequencies A → −C/m. 

(iii) The magnitudes of (b) and (c) become equal when Ω2 → Ω2 = k/m = ω2 .break o 

(c) In terms of the behavioral parameters ωo and ζ defined by 

ω2 = 
k 

and 2ζωo = 
b 

o m m 

the ratio Z of A(Ω) to A(∞), 

Ω2 

Z =
 
A(Ω)


o 

o 

ω2 

A(∞) (1 − Ω
2 ) + i2ζ Ω 

ω2 ωo 

=
 

is a convenient dimensionless form of the complex amplitude A. The engine displacement 
amplitude has its peak magnitude when |Z|2 is a maximum. Now 

Ω4 

|Z|2 = 
(1 − Ω

2 

ω2 

oω4 

)2 + 4ζ2 Ω2 

ω2 
oo 

and its maximum occurs when its derivative with respect to Ω2/ω2 vanishes; i.e., wheno 

Ω2 Ω2 Ω2 Ω4 Ω2 

2 [(1 − )2 + 4ζ2 ] − [−2(1 − ) + 4ζ2] = 0 
ω2 ω2 ω2 ω4 ω2 

o o o o o 

The solution of this equation for Ω2/ω2 yields o 

Ω2 1 
= 

ω2 
o 1 − 2ζ2 

so that 
Ωpeak = 

ωo 

1 − 2ζ2 

(d) To evaluate |Z(Ωpeak)|, insert Ω2 /ω2 = 1/(1 − 2ζ2) in the preceding expression for |Z|2 topeak o 
get 

1( )2 11−2ζ2 
|Z(Ωpeak)|2 = = 

(1 − 1 )2 + 4ζ2 4ζ2(1 − ζ)2 
1−2ζ2 1−2ζ2 
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so that 
1 |Z(Ωpeak)| = 

2ζ 1 − ζ2 

Comparing this result with that of Problem 16.9, we note that the actual peak here occurs at a 
frequency that is greater than the undamped natural frequency ωo by a factor of 1/ 1 − 2ζ2, 
but the magnitude of the peak is the same. It is greater than the magnitude of the response 
at Ω = ωo by the same factor 1/ 1 − ζ2. 
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Figure 16.10.1: Bode Plot of Magnitude of A(Ω)/A(0) in dB vs. Frequency Ratio Ω/ωo 
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Figure 16.10.2: Bode Plot of Phase Angle vs. Frequency Ratio Ω/ωo 

(e) The Bode plots shown in Fig. 16.10.1 and Fig. 16.10.2 were obtained by running the following 
script (adapted from the Script for Problem 16.9): 
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16.11 Engine Block Vibration 3 

The equation of motion 
d2y dy 

m + b + ky = f(t) = fa sin Ωt 
dt2 dt 

obtained in Problem 16.9 can be rewritten in the standard form for state-determined systems by 
taking y(t) and v(t) = dy/dt as state varibles and writing the state equations in matrix form ⎧⎨
 

⎫⎬
 
⎧⎨
 

⎧⎨
 
⎫⎬
 

⎫⎬
 
⎤⎡ 

0 1
 0
y
 y
d
 fa sin Ωt⎦⎣ +
=
 ⎭
⎩
 ⎩
⎭
⎩
 v
 ⎭
dt
 − k − b 1
 m
v
 m m 
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Figure 16.11.1: Engine Start-Up when Ω = Ωbreak/3
 

One of the desired outputs is the state variable y(t). The other outputs desired are Pin = f(t)∗v(t);
 

558
 



Pdiss = bv ∗ v; and Pstored = Pin − Pdiss. The values of the physical parameters are: 

m = 200 pounds = 90.7 kg 
k = 18, 000pounds/inch = 3.152e6 Newton/meter 
b = 2 pounds/inch/second = 350 Newtons/meter/second 
fa = 2 pounds = 8.90 Newtons 
Ωbreak/3 = 62.1 rad/sec = 62.1 rad/sec 
Ωbreak = 186.4 rad/sec = 186.4 rad/sec 
3Ωbreak = 559 rad/sec = 559 rad/sec 

The plots shown in Figs. 6-8 were obtained by running the following MATLAB scripts. The input 
script is called ‘engstartsol.m’ and the script called by ‘engstartsol.m’ is called ‘eqengstartsol.m’. 
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Figure 16.11.2: Engine Start-Up when Ω = Ωbreak 
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Figure 16.11.3: Engine Start-Up when Ω = 3Ωbreak 
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16.12 Plate On Springs 1
 

m yk

kc kc

Figure 16.12.1: Steel Plate on Springs 

The displacement yk measures the vertical extension of the four springs from the equilibrium 
configuration where the weight of the plate mg is balanced by initial compressive forces in the 
springs. The excess tensile force in each spring due to a displacement yk is fki = kcyk (i = 1, ···, 4). 
The total vertical spring force is fk = 4fki = 4kcyk = kyk. The constitutive equation for the mass 
is Newton’s law fm = mdvm/dt. When friction is absent and there is no external load, the force 
balance equation is simply −fk = fm, or 

dvm dvk−kyk = m , or − kyk = m 
dt dt 

on using the geometric compatibility condition vm = vk. The standard form of the differential 
equation (See Lecture notes of 9/15/99) is 

d2yk k
+ ( )yk = 0 

dt2 m 

Guess a solution of the form yk = A exp(λt), which leads to the characteristic equation 

λ2 + ω2 = 0 o 

where ω2 = k/m. The roots of the characteristic equation are +iωo and −iωo, and the general 
solution of the differential erquation is 

yk = A exp(iωot) + B exp(−iωt) 

An alternative form of the general solution can be obtained by introducing Euler’s formula exp(iωot) = 
cos ωot + i sin ωot. 

yk = C1cosωot + C2 sin ωot 

These two forms of solution are equivalent if the constants of integration are related as follows: 

1 
C1 = A + B A = (C1 + C2)2

1 
C2 = A − B B = (C1 − C2)2
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The given initial conditions are yk(0) = 0 and dyk/dt(0) = vo. Using the trigonometric form of the 
general solution, we have 

dyk 
yk = C1 cos ωot + C2 sin ωot and = −C1ωo sin ωot + C2ωo cos ωot 

dt 

Setting t = 0 yields 
C1 = 0 and C2 = 

vo 

ωo 

so the displacement history of the plate, starting from rest at the equilibrium position with the 
initial velocity vo is 

yk(t) = 
vo sin ωot 
ωo 
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16.13 Plate On Springs 2 

The unloaded plate system here is the same as that considered in Problem 16.12. The mass of the 
plate is m and the effective stiffness of the four springs is k. The natural frequency of the unloaded 
system is ωo where ω2 = k/m. When the book of mass m/2 is attached to the plate, the resulting 
system has mass 3m/2 and stiffness k, and its natural frequency of free oscillation is ω1 where 
ω2 = 2k/3m. The oscillations in both Case I and Case II involve motions with the book attached 1 
to the plate. The difference between Cases I and II lies in the initial conditions, not in the basic 
system. 

(a) The ratio of frequencies of Case I oscillations to unloaded plate oscillations is ω1/ωo = 2/3 = 
0.816. 

(b) The ratio of frequencies of Case II oscillations to unloaded plate oscillations is	 ω1/ωo = 
2/3 = 0.816. 

(c) In the (book + plate) system there is an additional gravity load of mg/2, so the equilibrium 
position of the (book + plate) system is beneath the equilibrium position of the unloaded 
plate by a distance of Δ = mg/2k. 

(d) In Case I the system starts from rest at the equilibrium position of the unloaded plate. 
Viewed from the equilibrium position of the (book + plate) system, the initial displacement 
yk(0) = Δ, and the initial velocity is dyk/dt(0) = 0. 

(e) In Case II there is an initial velocity dyk/dt(0) = −v1 imparted by the impact of the book 
upon the plate. This initial velocity can be determined by applying conservation of linear 
momentum to the impact. Immediately before the impact the plate has no momentum while 
the book has a downward momentum of 1/2mvo. Immediately after the impact the (book 
+ plate) has the downward momentum 3mv1/2. For these two momenta to be equal it 
is necessary that v1 = vo/3. The initial conditions for Case II are thus: yk(0) = Δ and 
dyk/dt(0) = −vo/3. 

(f) The general solution for both Case I and Case II is the same as the general solution for 
Problem 16.12, except that ωo is everywhere replaced by ω1. For Case I, the initial conditions 
require 

yk(0) = Δ = C1 and 
dyk 

dt 
(0) = 0 = C2ω1 

so that 
yk(t) = Δ cos ω1t 

where Δ = mg/2k, and ω2 = 2k/3m.1 
For Case II, the initial conditions require 

dyk 
yk(0) = Δ = C1 and (0) = −v1 = C2ω1

dt 

so that 
yk(t) = Δ cos ω1t − 

v1 sin ω1t 
ω1 

where Δ = mg/2k, v1 = vo/3, and ω2 = 2k/3m1 
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16.14 Mousetrap Dynamics 1 

The solution for this problem is not available. 
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16.15 Mousetrap Dynamics 2 

The solution for this problem is not available. 
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16.16 Mousetrap Dynamics 3 

The solution for this problem is not available. 
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16.17 Mousetrap Dynamics 4 

The solution for this problem is not available. 
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16.18 Hydraulic Elevator Design 

(a) As the elevator falls, there is both the constant force due to the acceleration of gravity and a 
damping force which is proportional to (and in a direction opposing) the velocity. 

ΣF = ma 

−mg − cv = ma 

cẋ+ mẍ = −mg 

Note that the x coordinate is defined to be positive in the up direction. Therefore, mg is in 
the negative x direction. The cv term must always act in opposition to the direction of the 
velocity. (If the mass is moving in the negative x direction, velocity is negative, and the force 
acts in the positive direction to slow the fall, for instance.) 

When the elevator suddenly fails, whatever force has been compensating for the force of 
gravity (from tension in elevator cables or force applied by the hydraulic lift, etc) suddenly 
disappears, resulting in a net step in force. Thus, the fall of the elevator can be well-modeled 
as a 1st order system with a step input: 

cẋ+ mẍ = −mg · us(t) 
1

(cs + ms 2)X(s) = −mgU(s) = −mg 
s 

X(s) = − 
mg 

s2(c + ms) 

Note that the velocity and acceleration are just the first and second derivatives of x(t): 

V (s) = sX(s) = − 
mg 

s(c + ms) 

A(s) = s 2X(s) = − 
mg 

c + ms 

The acceleration, A(s), should look familiar; it is just the Laplace domain representation of a 
1st order system. We know the response will start at some value (which we can find by using 
the I.V.T.) and go to some steady state value (which we can find by using the F.V.T.) via an 
exponential decay with some time constant. Rewriting A(s), 

mg/c 
A(s) = s 2X(s) = − m s + 1 c 

it should be clear to you that the time constant is: 

m 2000kg
τ = = = 1 [s] 

c 2000kg/sec 

568
 



Using the Initial Value Theorem: 

mg/c −gm/c 
A(0) = lim s = = −g = −9.8 [m/s2] 

s→∞ m s + 1 m/cc 

This is what wed expect from the basic physics. Using the Final Value Theorem: 

mg/c 
A(∞) = lim s = 0 [m/s2]m s→0 s + 1 c 

therefore 

−t a(t) = −9.8e [m/s2] 
v(t) = 9.8e −t + C1 [m/s] 

To match the initial condition that v(0)=0, 

v(t) = 9.8e −t − 9.8 [m/s] 

Position can be obtain by taking another integral: 

x(t) = −9.8e −t − 9.8t + C2 

Then we need to match i.c.s again: 

x(t) = −9.8e −t − 9.8t + 9.8 

You can use the step() function in MATLAB to plot the step response of a system (given its 
transfer function), rather than deriving it by hand (as above). 

Figure 16.18.1 are plots of position, velocity and acceleration. We can first solve to find the 
time at which the elevator has reached 10 meters. This happens at about t = 1.87 seconds 
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Figure 16.18.1: Plots of Position, Velocity and Acceleration 

The total force on a passenger must satisfy F = ma, where the acceleration is shown (over 
time) in the plot above, and the mass is 100 kg. 

(b) We can calculate the response of the elevator hitting the spring-damping system at the bottom 
of the shaft by calculating a FREE RESPONSE from the initial conditions and a FORCED 
RESPONSE due to a step in force (of the mass of the elevator times gravity). For conve­
nience, well redefine time such that t=0 when the elevator hits and x=0 where the elevator 
hits. 

To get the velocity to settle within .1 m/s as quickly as possible, well aim for a response which 
overshoots by just under 0.1 m/s. This would be close to critically damped. (The velocity at 
impact is about 8.3 m/s, so a response which slows down and then reverse to move upward 
at no more than 0.1 m/s would have an overshoot of about 1.2%.) 
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Its fine to have a response which overshoots by more than this amount, but note that this 
will generally increase the time needed for the system to settle. 

Figure 16.18.2 shows the response with the following parameters: 

k = 6990 [N/m] 
c = 2000 + 5300 [Ns/m] 
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Figure 16.18.2: Plot of Position, Velocity and Acceleration with k = 6990 [N/m] and c = 2000+5300 
[Ns/m] 
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Note that the acceleration requirement is barely met (under 20 m/s2) at t=0, and that the 
position goes down to a minimum value of almost 3 meters!! (Thats a large of deflection in 
the system...) 

The system settles to within 0.1 m/s in about 1.24 seconds. 

For a problem like this, you may find it convenient to write a MATLAB script or function, so 
you can iterate through possible solutions and develop at intuition about the dynamics of the 
system. (Here, since the system is allowed to overshoot, you can calculate the free and forced 
responses for an underdamped second order system as in 2.27, given the initial conditions 
(v=vhit) and step in force (m*g). 

Below is a second alternative which puts more importance on minimizing the maximum 
deflection. The settling time is a bit longer (2.4 sec; about 2x that of the previous solution). 
The maximum deflection is cut by about 40% (from 3m to 1.8m). Figure 16.18.3 shows the 
responses when k = 22, 500 [N/m] and c = 2000 [Ns/m]. 
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16.19 Servo Position Control 

The solution for this problem is not available. 
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16.20 Servo Frequency Compensation 

The solution for this problem is not available. 
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16.21 Servo Torque Disturbance 

The solution for this problem is not available. 
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16.22 Plate On Springs Damped 1 

The rigid plate of mass m is supported by four springs, each of stiffness kc and damping parameter 
bc. If yk is measured from the equilibrium position where 

m yk

kc kc
bc bc

f(t)

Figure 16.22.1: Plate on Springs with Damper 

the weight of the plate is balanced by the initial compression of the springs, the constitutive 
equations are 

dvm
fm = m fki = kcyki fbi = bcvbi (i = 1, · · ·, 4)

dt 
Geometric compatibility requires that, for (i = 1, · · ·, 4), 

dyki dyk 
yki = yk vm = vbi = = 

dt dt 

Because there are four springs, 

4 40 0 dyk dyk
fk = fki = 4kcyk = kyk andfb = fbi = 4bc = b

dt dt 
1 1 

Finally force balance requires that 
f(t) − fk − fb = fm 

which leads to the differential equation 

d2 dyk 
m

yk + b + kyk = f(t)
dt2 dt 

When the behavioral parameters ωo and ζ defined by 

k b b 
ω2 = 2ζωo = or ζ = √ o m m 4mk 
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are introduced, the equation takes the form 

d2yk dyk f(t)
+ 2ζωo + ωo 

2 yk = 
dt2 dt m 

(a) The desired behavioral parameters are	 ωo = 5Hz(2π rad/cycle) = 31.4 rads/sec and (i) 
ζ = 0.1, (ii) ζ = 0.5, (iii) ζ = 1.0, and (iv) ζ = 1.5. With the plate mass fixed at 5 pounds, 
or 5(0.4536) = 2.268 kilograms, the spring constant k must also be fixed at 

k = mω2 = 2.268(31.4)2 = 2236Newtons/meter o 

in order to keep the undamped natural frequency, given by ω2 = k/m, equal to 5 Hz. To o 
provide the desired values of ζ, the damping parameter b must be chosen to satisfy 

b b 
ζ = √ = or b = 2ζmωo = 2(2.268)(31.4)ζ = 142.4ζ 

2 km 2mωo 

The b-values for the four cases are: (i) 14.24 kg/sec; (ii) 71,2 kg/sec; (iii) 142.4 kg/sec; (iv) 
213.6 kg/sec. The decay time constants, τ = 1/ζω0, for the first three cases are: (i) 0.318 
secs: (ii) 0.0637 secs; (iii) 0.0318 secs. In Case (iv) the roots of the characteristic equation 
are λ = ωo(−ζ ± ζ2 − 1). The time constants are the negative reciprocals of the λ-values, 
so the longest time constant is the negative reciprocal of the smallest λ 

−1 
τlongest = − 31.4(−1.5 + (1.5)2 − 1) = 0.0834secs 

The duration of the time histories in the four cases are 5 times the corresponding time 
constants: (i) 1.59 secs; (ii) 0.319 secs; (iii) 0.159 secs; (iv) 0.417 secs. 
The damped natural frequency ωd, for cases with 0 < ζ < 1, is given by 

ωd = ωo 1 − ζ2 

For Case (i) ωd = 31.26 rad/sec for ζ = 0.1, and for case (ii) ωd = 27.21 rad/sec. For Cases 
(iii) and (iv), the eigenvalues are purely real, and ωd = 0. 

The data for the four cases in Part (a) are assembled in the Table below.
 
Case ζ k [N/m] b [N/m/sec] τ [sec] 5τ [sec] ωd [r/s] ζωo
 

(i) 0.1 2239 14.25 0.3183 1.592 31.26 3.124 
(ii) 0.5 2239 71.25 0.06365 0.3183 27.21 15.62 
(iii) 1.0 2239 142.5 0.03183 0.1592 0.0 31.42 
(iv) 1.5 2239 213.8 0.08332 0.4166 0.0 47.13 

In addition to these data, every case has m = 2.268 kg, fa = (5)(4.448) = 22.24 Newtons, 
and the initial conditions, yk(0) = 0 and vk(0) = 0. 

The time histories are obtained by inputting the above data into the MATLAB scripts. When 
0 < ζ < 1, Cases (i) and (ii), the script to be used is ’MassSprgDmpr1.m’. When ζ = 1, Case 
(iii), the script to be used is ’MassSprgDmpr2.m’, and when 1 < ζ, Case (iv), the script to 
be used is ’MassSprgDmpr3.m’. 
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Figure 16.22.2: Part (a)
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Figure 16.22.3: Part (a) 

The results are displayed in Fig. 16.22.2. In Fig. 16.22.2 the duration of each response was 
5 times the decay time constant of each case. An alternative comparison of the four Cases in 
Part (a) is displayed in Fig. 16.22.3 where all responses are plotted on the same time axis for 
a duration of 0.5 seconds. 

(b) The desired behavioral parameters are ωd = 31.42 rad/sec (5 Hz) with the following values 
of damping ratio: Case (i) has ζ = 0.1; Case (ii) has ζ = 0.3; Case (iii) has ζ = 0.5; Case (iv) 
has ζ = 0.7. From the definitions of ωd and ζ follow the formulas 

mω2 2ζmωd
k = d and b = 

1 − ζ2 1 − ζ2 

The data for Part (b) are assembled in the following Table.
 

Case ζ k [N/m] b [N/m/sec] τ [sec] 5τ [sec] ωd [r/s] ζωo
 

(i) 0.1 2262 14.32 0.3167 1.584 31.42 0.3167 
(ii) 0.3 2460 44.02 0.1012 0.5060 31.42 0.1012 
(iii) 0.5 2985 82.28 0.05513 0.2757 31.42 0.0551 
(iv) 0.7 4390 139.7 0.03247 0.1624 31.24 0.0325 
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In Part (b) all four Cases are handled by the MATLAB script ’MassSprgDmpr1.m’. The 
plots for durations of 5 times the decay time constant are displayed in Fig. 16.22.4. 
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Figure 16.22.4: Part (b)
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Figure 16.22.5: Part (b) 

An alternative plot in which all four cases are plotted against the same time scale for a 
duration of 0.5 seconds is displayed in Fig. 16.22.5. 

(c) The desired behavioral parameters are τ = 0.10 seconds with (i) ζ = 0.3, (ii) ζ = 0.5, (iii) 
ζ = 0.7, and (iv) ζ = 0.9. From the definitions of τ and ζ 

1 b 
τ = 2ζωo = 

ζωo m 

follow the formulas 
m 2m 

k = and b = 
ζ2τ2 τ 

The data for Part (c) are assembled in the following Table
 

Case ζ k [N/m] b [N/m/sec] τ [sec] 5τ [sec] ωd [r/s] ζωo
 

(i) 0.3 2520 45.36 0.1 0.5 31.80 10 
(ii) 0.5 907.2 45.36 0.1 0.5 17.32 10 
(iii) 0.7 462.9 45.36 0.1 0.5 10.20 10 
(iv) 0.9 280.0 45.36 0.1 0,5 4.843 10 
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In Part (c) all four cases are handled by the MATLAB script ’MassSprgDmpr1.m’. The 
responses for durations of 5 times the decay time constant are plotted against the same time 
axis in Fig. 16.22.6. 
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Figure 16.22.6: Part (c)
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16.23 Plate On Springs Damped 2 

The eigenvalues λ for the cases handled by ’MassSprgDmpr1.m’ (0 < ζ < 1) are complex conjugates 
of the form 

λ = −ζωo + iωd and λ = −ζωo − iωd 

The eigenvalues for the case handled by ’MassSprgDmpr2.m’ (ζ = 1) are a pair of repeated real 
roots: λ = −ωo and λ = −ωo. The eigenvalues for the case handled by ’MassSprgDmpr3.m’ (1 < ζ) 
are λ1 = ωo(−ζ + ζ2 − 1) and λ2 = ωo(−ζ − ζ2 − 1). The values of ζωo and ωd for the various 
cases are listed in the Tables in Problem 16.22. The eigenvalues in the upper half of the complex 
plane for Part (a) are plotted in Fig. 16.23.1. The complex roots for Cases (i) and (ii) have mirror 
image roots in the lower half-plane. 
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Figure 16.23.1: Eigenvalues for Part (a) 

The eigenvalues in the upper half of the complex plane for Part (b) are plotted in Fig. 16.23.2, and 
the eigenvalues in the upper half of the complex plane for Part (c) are plotted in Fig. 16.23.3. 
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Figure 16.23.2: Eigenvalues for Part (b)
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Figure 16.23.3: Eigenvalues for Part (c) 

It is instructive to compare the responses from Problem 16.22 with the locations of the eigenvalues 
for Parts (a)-(c). 
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16.24 Plate On Springs Damped 3 

Here the system of Problem 16.22 is excited, not by a suddenly applied force, but by the impact of 
a rubber ball at t = 0, which produces an initial velocity v(0) = vo. 

(a) The initial velocity is obtained by applying conservation of linear momentum to the impact. 

Downward momentum before impact = (2pounds)(10 ft/sec)
 
Downward momentum after impact = (5pounds)(vo) + (2pounds)(-3 ft/sec)
 

Equating these, yields vo = 5.2 ft/sec = 1.5850 m/s (for convenience, it has been assumed 
that the positive direction for yk and v = dyk/dt is downwards). 

(b) A damped natural frequency of 5 Hz with ζ = 0.3 is obtained with the parameters found for 
Case (ii) of Part (b) in Problem 16.22: k = 2460 N/m, and b = 44.02 N/m/s. 

(c) When these parameters, plus the conditions fa = 0, yk(0) = 0, and v(0) = 1.5850 m/s, are 
input to the MATLAB script ’MassSprgDmpr1.m’ the response history labeled ”Response to 
impact of ball” in Fig. 16.24.1 is obtained. 
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Figure 16.24.1: Comparison of responses
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(d) In Fig. 16.24.1 the response to the impact of the ball is compared to the response of the same 
system to a step-function force of 5 pounds (Case (ii) of Part (b) in Problem 16.22). In both 
cases the motion starts from the original equilibrium position of the system. In both cases the 
mass oscillates for a few cycles and comes to rest. The damped natural frequency and damp­
ing ratio is the same in both oscillations. The final rest position is the same as the original 
equilibrium position in the ball-impact case, while the final rest position in the step-function 
force case is the new equilibrium position under a constant load of 5 pounds. The initial 
velocity in the step-function force case is zero (displacement response starts with zero slope), 
while the initial velocity in the ball-impact case is large due to the impact (displacement 
response starts with a steep slope). For the particular magnitudes of the excitations given 
the oscillation in the ball-impact case is more intense than the oscillation due to the suddenly 
applied force. 
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16.25 Plate On Springs Damped 4 

Due to the application of a 1.0 Newton step-force, the system oscillates at its damped natural 
frequency ωd about the new equilibrium position yk = Δ. From the given Displacement Response 
plot, the equilibrium offset Δ can be estimated to be Δ = 4.4 x 10−4 meters. The damped natural 
frequency can be estimated by counting the cycles, 10, in 2.0 seconds, which gives a damped 
period Td = 0.2 seconds, and ωd = 2π/Td = 31.4 rad/sec. The logarithmic decrement LDR can 
be estimated by measuring the ratios of successive peak amplitudes. This is generally a difficult 
measurement to make accurately. One way to increase the accuracy is to make a large number of 
measurements based on different pairs of successive peaks, and average the results. Draw a line 
across the plot at y = Δ and measure the amplitudes of several peaks. Since only the ratio of 
successive peaks will be used, the measurements can be in terms of any convenient length unit. 
The measurements below are in millimeters. 

Station Amplitude Ratio 
0 6.22 − 
1 4.86 0.781 
2 4.00 0.823 
3 3.08 0.770 
4 2.56 0.831 
5 1.94 0.758 
6 1.68 0.866 

The average of these first six ratios is 0.805, so the estimate for the LDR is ln 0.805 = −0.217. 

(a) The estimated stiffness is 

fa 1.0 
k = = = 2270 Newtons/meter 

Δ 4.4 × 10−4 

(b) To estimate the mass m, when the stiffness k is known, it is necessary to know the undamped 
natural frequency ωo. At this point we know only the damped natural frequency ωd. We 
can postpone estimation of the mass m until the damping ratio ζ is estimated in (c) below, 
or we can assume, since more than ten cycles of oscillation are visible, that the damping is 
sufficiently light to permit us to make the approximation that ωo ≈ ωd, in which case 

k 2270 
m ≈ = = 2.30 kg 

ω2 (31.4)2 
d 

(c) To estimate the damping parameter b, we need to know the damping ratio ζ. The damping 
ratio follows from the log decrement ratio, LDR, according to the formula: 

LDR2 

ζ2 = 
π2 + LDR2 

Insertion of the estimation LDR = −0.217 yields ζ ≈ 0.069. (Note: With this value of ζ the 
undamped natural frequency is estimated as follows 

ωd 31.4 
ωo = ≈ = 31.5 rad/sec 

1 − ζ2 1 − (0.069)2 

With this estimate for ωo the mass m, previously estimated in (b) above at 2.30 kg, would 
now be estimated to be 2.29 kg. The damping parameter b is then estimated as 

b = 2ζωom ≈ 2(0.069)(31.5)(2.29) = 9.95 kg/sec, or 9.95 N/m/sec 
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16.26 Plate On Springs Damped 5 

With two plate-on-springs units face-to-face, the effective stiffness of the combined system is k = 
1000 N/m, and the effective damping parameter is b = 10 N/m/sec. For free vertical motion of 
the mass m = 2.0 kg, the displacement yk from the equilibrium position of the model satisfies the 
equation 

d2 dyk 
m

yk + b + kyk = 0 
dt2 dt 

(a) The undamped natural frequency ωo for the model is 

k 1000 ωo
ωo = = = 22.4 rad/sec, or fo = = 3.56 Hz 

m 2 2π 

(b) The damping ratio ζ for the model is
 

b 10
 
ζ = = = 0.1116

2ωom 2(22.4)(2) 

(c) The decay time constant for the model is
 

1 1
 
τ = = = 0.400sec 

ζωo (0.1116)(22.4) 
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16.27 Plate On Springs Damped 6 

To obtain a state-determined system, introduce the vertical velocity v of the plate. The geometrical 
compatibility requirement is 

dy 
= v 

dt 
The constitutive equations are 

fsprings = ky and fdamping = bv 

and the force balance requirement is 

fm = −fsprings − fdamping 

The dynamic state equations are two first-order differential equations for y and v 

dy 
= v 

dt 
dv 1 k b 

= f(t) − y − v 
dt m m m 

(a) The deflection Δ under the weight mg is Δ = mg/k so the mass m is given by 

kΔ (3000)(0.007) 
m = = = 2.14 kg 

g 9.81 

The undamped natural frequency is ωo = k/m = 3000/2.14 = 37.4 rad/sec, and the 
damping parameter is 

b = 2ζωom = 2(0.5)(37.4)(2.14) = 80.0 N/m/s 

(b) The dynamic state equations can be rewritten in matrix form ⎧ ⎪⎨
 
⎫ ⎪⎬
 

⎤⎡ 
0 1


⎧⎨
 
⎫⎬
 

⎧⎨
 
⎫⎬
 0
 y
 y
d
 ⎢⎣
 

⎥⎦
 +
=
 k b
 fa⎭
⎩
 ⎭
⎩
 ⎪⎩
 

⎧ ⎪⎨ 

⎪⎭dt
 − −
v
 v
 
m m m 

or 
d 

x = Ax + Bfa
dt 

where
 ⎫ ⎪⎬
 
⎤⎡ 

0 1

⎧⎨
 

⎫⎬
 0
y
 ⎢⎣
 
⎥⎦
x =
 A =
 B =
 1
k b
⎭
⎩
 v
 ⎪⎩
 ⎪⎭
− −
 

m m m 

where fa is the magnitude of the constant applied force. These equations can be integrated, 
from prescribed initial values of y and v at t = 0 by the MATLAB command ”ode45”. A 
possible script for doing this is displayed at the end of the problem. 

(c) When the scripts above are run with the following inputs 

m = 2.14 kg 
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k = 3000 N/m 

b = 80.0 N/m/s 

fa = mg = (2.14)(9.81) = 21.0 Newtons 

the following three plots are obtained for a time interval of T = 0.35 seconds. There is very 
little activity in the interval between t = 0.35 and t = 2.0 seconds. 
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Figure 16.27.1: Plot of Position vs. Time
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Figure 16.27.2: Plot of Velocity vs. Time
 

0 1 2 3 4 5 6 7 8 9

x 10
-3

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Velocity  vs. Displacement

Displacement  [meters]

V
el

ci
ty

  [
m

et
er

s/
se

co
nd

]

Figure 16.27.3: Plot of Velocity vs. Position
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16.28 Shipping Crate 1
 

Let x be the displacement of the engine with respect to the stationary crate. The effective stiffness 
of the two end elements is 2k, and the effective damping parameter is 2b. 

(a) The equation of motion for the engine is 

d2x dx 
m + 2b + 2kx = 0 
dt2 dt 

(b) The engine weight is W = 500 pounds. Its mass is m = W/g. The values of k and b can 
be deduced from the given values of damped natural frequency ωd = 2π and damping ratio 
ζ = 0.707 from the equations 

ωd 
2 2k 

ω2 = = and 2b = 2ζωoW/g o 1 − ζ2 W/g 

The undamped natural frequency is 

2π 
ωo = = 8.88 rad/sec 

1 − (0, 707)2 

and
 
Wω2 (500)(8.88)2
 

ok = = = 51.2 pounds/inch 
2g 2(386) 

The damping parameter is 

W 500 
b = ζωo = (0.707)(8.88) = 8.13 pounds/in/sec 

g 386 
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16.29 Shipping Crate 2
 

Fig. 16.29.1 shows an idealized model of the engine of mass m = W/g with shock-absorbing 
packaging, represented by the springs with stiffness k and damping parameter b, in a crate which 
is fixed to a truck. The velocity of the truck, with respect to an inertial reference frame, is vtruck, 
and the velocity of the engine, with respect to an inertial reference frame, is vengine. The relative 
displacement of the engine with respect to the crate is xrel. The origin for xrel is taken to be the 
equilibrium position of the engine in the motionless crate. In problems like this, where relative 
motion is involved, it is important to remember that Newton’s law only applies to motions with 
respect to an inertial reference frame 

k

b b

k

m

vtruck vengine

xrel

Figure 16.29.1: Model of Engine in Crate on Moving Truck 

(a) The geometric compatibility conditions are 

dxrel 

dt 
= vrel and vengine = vtruck + vrel
 

The constitutive equations are
 

dvengine 
fm = m , fspring = kxrel, and fdamping = bvrel 

dt 

and the force balance condition is 

fm = −2fspring − 2fdamping 

The six preceding equations constitute a mathematical model for the longitudinal motion of 
the engine with respect to the crate. 

(b) A single differential equation in terms of xrel can be derived by inserting the spring force 
fspring = kxrel and the damping force fdamping = bdxrel/dt in the force-balance equation, 
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along with fm expressed as fm = m(dvtruck/dt + d2xrel/dt
2). The result is 

d2xrel dxrel dvtruck 
m + 2b + 2kxrel = −m 

dt2 dt dt 

The form of this equation is similar to that for the equation for the displacement of the steel 
plate on springs. Here the unknown response is a relative displacement and the driving force 
is the negative of the force that would be required to give the engine the same acceleration 
as the truck. A single differential equation for the relative velocity of the engine with respect 
to the crate is obtained by differentiating every term in the preceding equation. 

d2 d2vrel dvrel vtruck 
m + 2b + 2kvrel = −m 

dt2 dt dt2 

(c) A state-determined system for the state variables xrel and veng can be obtained by expressing 
the forces in the force-balance equation of (a) in terms of xrel and vrel = veng − vtruck. The 
two first-order differential equations for the state-determined system are 

dxrel = veng − vtruck 
dt 

dveng k b b 
= − xrel − veng + vtruck 

dt m m m 

and the desired output is obtained from 

vrel = veng − vtruck 

In matrix form 
dX 

= AX + Bu with y = CX + Du 
dt 

with ⎧⎨
 xrel 

⎫⎬
 
⎤⎡ 

0 1
 
⎧⎨
 

⎫⎬
−1
 ⎦⎣X = A =
 B =
 C = { 0 1 } D = [−1]
⎭
⎩
 veng 
⎩
 ⎭
− k − b b 

m m m 

and y = vrel and u = vtruck. 
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17 Quiz Problems
 

17.1 Fun with Block Diagrams 

(a) 

T (s) = 
K 

s2 + 20s + K√ 
ωn = K 

√ 
2ζωn = 2 K = 20 

K = 100 

(b) 

Vout (s + 3)(6s + 1) 
= 

V1 (s + 3)(6s + 1) + (8s + 7) 
Vout (6s + 1) 

= 
V2 (s + 3)(6s + 1) + (8s + 7) 

(c) Solve using superposition 

Vout(6s 2 + 27s + 10) = V1(6s 2 + 19s + 3) + V2(6s + 1) 

6V̈ 
out + 27 V̇out + 10Vout = 6 V̈ 

1 + 19 V̇1 + 3V1 + 6(̇V )2 + V2 
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17.2 Complex Translation 

The solution for this problem is not available. 
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17.3 Cylinder Step Response 

The transfer function for this system is 

x(s) 1 
= 

f(s) meqs2 + cs + k 

k 
ωn = 

meq 

c
2ζωn = 

meq 

(a) From graph, we measure the following 

2π 
T ≈ 1.0s ⇒ ωd = = 6.28r/s 

T 
ωd = ωn 1 − ζ2 

0.75 − 0.5 
Mp ≈ 100 = 50 

0.5 
A 

ζ = √ = 0.215 
π2 + A2 

100 
A = ln = 0.693 

Mp 

ωn = 6.43r/s 

ω2 
n meq = = 4.8 ≈ 5kg 
k 

c = 2ζωnmeq = 13.8Ns/m ≈ 14Ns/m 

Alternately, you could determine ζ using the log decrement method. 

(b) 

I 
meq = m + 

2r
I = 0.5 kg m2 
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17.4 JKC Frequency Response 1 

The transfer function for this system is 

ω(s) k 
= 

φ(s) Js2 + cs + k 

k
Thus ωn = 

J 
c

2ζωn = 
J 

(a) There are a couple of ways to solve this part of the problem.	 First, you can read ωr = 9 r/s 
and Mp = 5 dB from the bode plot and use the following relationships 

1 
Mp = 

2ζ 1 − ζ2 

ωr = ωn 1 − 2ζ2 

to find ζ ≈ 0.3 and ωn ≈ 10 r/s. Or you can read ωn = 10 r/s directly from the phase plot 
(θ = −90◦) 

(b)	 k = 1500 Nm/r, c = 90 Nms/r 

(c) 

ω = 1.1 r/s θ(t) ≈ sin (1.1t + 0) 
ω = 10 r/s θ(t) ≈ 1.58 sin (10t − π/2) 
ω = 20 r/s θ(t) ≈ 0.3 sin (20t − 2.75) 
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17.5 Mass Spring Damper Dynamics 

The solution for this problem is not available. 
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17.6 Op-Amp Analysis 

(a) 

vo R2C1s = 
vi (R2C2s + 1)(R1C1s + 1) 

(b) 

R1C1ω 
M(ω) = 

(1 − R1R2C1C2ω2)2 + ((R1C1 + R2C2)ω)2 

(R1C1 + R2C2)ω 
φ(ω) = 90◦ − tan−1 

(1 − R1R2C1C2ω2) 

(c) Figure 17.6.1 shows the Bode plot for this system. 
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Figure 17.6.1: Bode Diagram 

(d) Figure 17.6.2 shows the pole-zero plot for this system. 
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Figure 17.6.2: Pole-Zero Plot
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17.7 RLC Circuit Analysis 

(a) 

Vo 

Vi 
= 

1 
LCs2 + RCs + 1 

(b) 

1 
ωn = 2 ∗ π ∗ 5000 = 31, 400 r/s = √ 

LC 
1 

L = = 0.001 H = 1 mH 
ω2 Cn

R 
= 2ζωn = 2 ∗ 0.707 ∗ 31, 400 

L 
R = 44.4 Ω 

(c) There are no zeros, poles at roots of 

1000 1 
s 2 + s + = 0 

0.001 1e − 6 ∗ 1e − 3 
s1 ≈ −1e6 

s2 ≈ −1e3 dominant pole 

xss = 1 
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Figure 17.7.1: Step Response for part (c)
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(d) The bode plot is shown in Figure 17.7.2
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Figure 17.7.2: Bode plot for part (d) 

(e) s = −1e3 = s2 

(f) (i) 

vo R2 = 
vi R2LCs2 + (R1R2C + L)s + R1 + R2 

(ii)
 

vo R2Cs + 1
 
= 

vi LCs2 + (R1 + R2)Cs + 1 
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17.8 Sailing for Engineers 

The solution for this problem is not available. 

605
 



17.9 Second Order Step Response 

The solution for this problem is not available. 
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17.10 Spring Damper Dynamics 

The solution for this problem is not available. 
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17.11 Derive Blocks for Op-amp Circuit 

The solution for this problem is not available. 
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17.12 Automobile Fender Spring/Damper System 

The solution for this problem is not available. 
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17.13 Cu Flywheel with Eddy Current Damper 

The solution for this problem is not available. 
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17.14 Current Driven RC Circuit 

The solution for this problem is not available. 
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17.15 Driven Mass Spring System 

The solution for this problem is not available. 
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17.16 Flywheel Driven by Hanging Mass 

The solution for this problem is not available. 
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17.17 Homogeneous Second Order DE 

The solution for this problem is not available. 
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17.18 Match Pole/Zero Plots with Step Response 

The solution for this problem is not available. 
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17.19 Opamp Block Transfer Functions 

The solution for this problem is not available. 
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17.20 Piston with 2nd Order Translation 

The solution for this problem is not available. 
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17.21 Pole Zero Bode Matching 

The solution for this problem is not available. 
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17.22 Power Semiconductor Thermal Problem 

The solution for this problem is not available. 
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17.23 Submersible Capsule Hoist System 

The solution for this problem is not available. 
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17.24 Transfer Function from Pole Zero Plot 

The solution for this problem is not available. 
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17.25 Vaccine Cooler 

The solution for this problem is not available. 
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17.26 Voltage Driven RRC Circuit 

The solution for this problem is not available. 
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17.27 Linear Mechanical System with Position Input 

The solution for this problem is not available. 
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17.28 Tank with Pump Inlet Lower than Outlet 

The solution for this problem is not available. 
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17.29 Thermal Power Chip Analysis 

The solution for this problem is not available. 
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17.30 Current Divider in Simple Network 

The solution for this problem is not available. 
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17.31 Voltage and Current Source Driving network 

The solution for this problem is not available. 

628
 



17.32 Rotary Motor with Damper 

The solution for this problem is not available. 

629
 



17.33 Patient Rehabilitation 

The solution for this problem is not available. 
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17.34 Delay Transfer Function 

The solution for this problem is not available. 
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17.35 Laplace and Complex Numbers 

The solution for this problem is not available. 
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17.36 Mechanical Stiffness 

The solution for this problem is not available. 
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18 Math Techniques 

18.1 Complex Expression Reduction 

(a) 

(2 + 3i)(4 − 5i) = 23 + 2i (1) 
2 + 3i 

= −0.1707 + 0.5366i (2)
4 − 5i 

(−6 + 7i) ∗ (3 + 7i) = −67.0000 − 21.0000i (3) 
−6 + 7i 

= 0.5345 + 1.0862i (4)
3 + 7i 

(b) First write the complex numbers in 

√ √ 
i arctan 1.5 ≈ 0.9828i2 + 3i = 13e 13e (5)√ √ 

i arctan −1.25 ≈ −0.8961i4 − 5i = 41e 41e (6)√ √ 
i(arctan(−7/6)+π) ≈ 2.2794i−6 + 7i = 85e 85e (7)√ √ 

i arctan(7/3) ≈ 1.1659i3 + 7i = 58e 58e (8) 

To compute products of complex numbers in polar form, we can use the mnemonic MMAA, 
Moduli Multiply Arguments Add, where the modulus of z = reiφ is r and the argument is φ. 
We find 

0.0867i(2 + 3i)(4 − 5i) = 23.0868e (9) 
2 + 3i i1.8788 = 0.5631e (10)
4 − 5i 

−2.8379i(−6 + 7i) ∗ (3 + 7i) = 70.2140e (11) 
−6 + 7i 1.1135i= 1.2106e (12)
3 + 7i 
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18.2 Complex Expressions
 

(1 + 2i)(3 − 4i) = 11 + 2i (22)
1 + 2i
3 − 4i

=
1 + 2i
3 − 4i

3 + 4i
3 + 4i

= −1
5

+
2
5
i (23)

(−6 + 4i)(5 + 7i) = −58 − 22i (24)
−6 + 4i
5 + 7i

= − 1
37

+
31
37

i (25)

Now we wish to write the complex numbers a + bi in polar form reiφ using

r =
√

a2 + b2 (26)

φ = arctan
b

a
(27)

When computing the angle φ, one must make sure that proper angle is cal-
culated based on which quadrant of the complex plane contains the complex
number (In Matlab, one may prefer to use the command atan2 instead of
atan.).

1 + 2i =
√

5ei arctan 2 ≈
√

5e1.1071i (28)
3 − 4i = 5ei arctan(−4/3) ≈ 5e−0.9273i (29)

−6 + 4i = 2
√

13ei arctan(−2/3) ≈ 2
√

13e2.5536 (30)
5 − 7i =

√
74ei arctan(−7/5) ≈

√
74e−0.9505i (31)

To compute products of complex numbers in polar form, we can use the
mnemonic MMAA, Moduli Multiply Arguments Add, where the modulus
of z = reiφ is r and the argument is φ. We find

(1 + 2i)(3 − 4i) = 5
√

5e0.1798i (32)
1 + 2i
3 − 4i

=
√

5
5

e2.0344i (33)

(−6 + 4i)(5 + 7i) = 2
√

962e1.4931i (34)

−6 + 4i
5 + 7i

= 2

√
13
74

e−2.7791i (35)

Figure 18.2.1:
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18.3 Matrix Operation Practice
 

Part (a)

−5


1

2
3


 =


 −5
−10
−15




Part (b)

(
1 2 3

) 
9

8
0


 = 25

Part (c) 
1

2
3


 (

9 8 0
)

=


 9 8 0

18 16 0
27 24 0




Part (d), the roots of s2 + 2s + 3 are

s = −1 ±
√

2i

Figure 18.3.1:
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19 Recitation Problems
 

19.1 Recitation 1 Problem
 

637
 



�  �

 
 

19.2 Recitation 2 Problem 

(a) From class notes the characteristic equation is: 

mẍ+ bẋ+ kx = 0 

The roots/eigenvalues of this equation are at (using a shorter notation than class): 
√ 

b b2 − 4mk 
s1,2 = − ±

2m 2m 

A simple check shows that the roots are distinct and imaginary (b2 − 4mk = −4 × 106), so 
we can write the solution in the form: 

x(t) = c1e 
s1t + c2e 

s2t = 2e −σt (α cos ωdt − β sin ωdt) 

Evaluating the homogeneous response at t = 0 we have: 

1 
x(0) = x0 = 2α or α = x02

Differentiating the homogeneous response and evaluating at t = 0 (see Chapter 1 for all the 
details): 

ẋ0 + σx0 
ẋ(0) = ẋ0 = 2(−σα − βωd) or β = − 

2ωd 

1Case 1: x0 = 0 and ẋ0 = 1 Plugging in values we get α = 0 and β = −2ωd 
which leads to: 

1 
x(t) = e −σt sin ωdt 

ωd 

ζCase 1: x0 = 1 and ẋ0 = 0 Plugging in values we get α = .5 and β = − √ which leads 
2 1−ζ2 

to: 

ζ−σt x(t) = e cos ωdt + sin ωdt 
2 1 − ζ2 

(b) 

b 1 
ζ = √ = √ = .707 

2 km 2 
√ 

ωn = 
k 

= 2 2 = 2.8242 [rad/sec] 
m √ √ 

ωd = ωn 1 − ζ2 = 2 2( 1 − .5) = 2 [rad/sec] 
1 √ 

σ = ζωn = √ 2 2 = 2 [rad/sec] 
2 

1 
τ = = .5 [sec] 

σ 
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Figure 19.2.1: Nominal case, x0 = 0, ẋ0 = 1, ζ = 0.707 
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Figure 2. Close-up of nominal case, x(0)=0, v(0)=1, zeta = 0.707 showing 
the initial velocity is equal to the slope. Figure 19.2.2: Close up Nominal case, x0 = 0, ẋ0 = 1, ζ = 0.707 show that the initial velocity is 

equal to the slope 
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Figure 3. Nominal case, x(0)=1, v(0)=0, zeta = 0.707 showing non-zero 
initial position, zero initial velocity 

3) Is the system undamped, underdamped, critically-damped, overdamped 
(or just right)? 

Answer: The damping ratio 707. is between zero and one so by 
definition the system is underdamped. Professor Dubowsky jokes that the 
value of .707 is “just right” because it is the best compromise between 
speed of response and overshoot. 

4) From the homogeneous response determine if the system is stable, 
marginally stable, or unstable. Does this match your physical intuition? 

Answer: The exponential envelope term is  te . The attenuation is 
always greater than zero, so this decaying exponential is stable and will 
not increase without bounds, which matches our physical intuition that a 
shock absorber’s purpose is to decrease motion. 

Figure 19.2.3: Close up Nominal case, x0 = 1, ẋ0 = 0, ζ = 0.707 showing non-zero initial position, 
zero initial velocity 

(c) The damping ratio ζ = .707 is between zero and one so by definition the system is under-
damped. Professor Dubowsky jokes that the value of .707 is “just right” because it is the 
best compromise between speed of response and overshoot. 

−σt (d) The exponential envelope term is e . The attenuation σ is always greater than zero, so 
this decaying exponential is stable and will not increase without bounds, which matches our 
physical intuition that a shock absorber’s purpose is to decrease motion. 

(e) See the following plots, which all have the same mass and spring constant, but different 
dampers b. Initial conditions are x0 = 0, ẋ0 = 1. All the following curves are drawn to the 
same scale. 

640
 



5) What if the shock absorber is leaky? Discuss what happens to the system 
as b changes. 

Answer: See the following plots, which all have the same mass and 
spring constant, but different dampers b. Initial conditions are x(0)=0, 
v(0)=1. All the following curves are drawn to the same scale. 
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Nominal Case: x(0)=0, v(0)=1

Figure 4. Nominal case, x(0)=0, v(0)=1, zeta = 0.707, mNsb /3102 .
Replotted to show the same scale as the other plots with varying damper b. Figure 19.2.4: Nominal case, x0 = 0, ẋ0 = 1, ζ = 0.707, b = 2 × 103 [Ns/m]. Replotted to show the 

same scale as the other plots with varying damper b. 
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Underdamped, b=1/4 * nominal b, x(0)=0, v(0)=1

Figure 5. Smaller damping than nominal case, x(0)=0, v(0)=1, zeta = 0.18, 
mNsbnewb /50025.0 .Figure 19.2.5: Smaller damping than nominal case, x0 = 0, ẋ0 = 1, ζ = 0.18, bnew = .25b = 500 

[Ns/m]. 
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Figure 6. Undamped case x(0)=0, v(0)=1, zeta =0, 0newb .
Figure 19.2.6: Undamped case, x0 = 0, ẋ0 = 1, ζ = 0, bnew = 0 [Ns/m]. 
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Figure 19.2.7: Critically damped case, x0 = 0, ẋ0 = 1, ζ = 1, bcritical = 2 km = 2.83 × 103 [Ns/m]. 
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Figure 8. Overdamped, x(0)=0, v(0)=1, zeta = 1, 
mNscriticalbnewb /31066.52 .

6) What happens when you drive down Massachusetts Avenue and hit a 
pothole? Think about the forced response. 

Answer: A pothole acts as an impulse, so the forced response is the 
impulse response. 

7) If you were designing the suspension for a car, which damping behavior 
(undamped, underdamped, critically-damped, overdamped) would you 
choose and why? For a sports car? For grandma’s Cadillac? For a pickup 
truck?

Answer:

Sports car: Want a fast response and tight handling. 

Grandma’s Caddy: Want a soft, cushy ride, could accept slower response 

Figure 19.2.8: Overdamped case, x0 = 0, ẋ0 = 1, ζ = 1, bnew = 2bcritical = 5.66 × 103 [Ns/m]. 

(f) A pothole acts as an impulse, so the forced response is the impulse response. 

(g) Sports car: Want a fast response and tight handling. 
Grandma’s Caddy: Want a soft, cushy ride, could accept slower response. 
Pickup Truck: The load (mass) may increase, so pick a damping ratio that still gives a good 
response if the mass is larger. Could do some calculations... 
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19.3 Recitation 3 Problem
 

(a) The second-order differential equation for this system is: 

Jθ ̈+ bθ̇ + kθ = T 

The characteristic equation is the unforced part: 

Jθ ̈+ bθ̇ + kθ = 0 

This can also be written in the standard form (from class): 

1 2ζ T (t)¨ θ + + θ = f(t) = 
ω2 

n ωn k 

(b) 

b 
ζ = √ 

2 kJ 

k 
ωn = 

J 

ωd = ωn 1 − ζ2 

(c) Shown below is the MATLAB plot, using T0 = 10 [Nm] 
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4) Define the maximum value of the angular displacement θ . Add it to 

the sketch. 
 

For this class, pM is overshoot (not percent overshoot as elsewhere). 
Could calculate by finding derivative and looking for first zero, but 
too complicated for everyday use. 

0.53
21 =

−
=

−
= −ζ

ζ
π

ω

σπ

eepM d  

Compare to Mp approximation (valid because 6.00 <<ζ ) 

67.0
6.0

1 =−≈ ζ
pM  

2.3==
d

pt ω
π seconds 

  
5) Define rise time. Show rise time on the sketch. 
 

Figure 19.3.1: Angular displacement vs time for the swinging door.
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(d) For this class,	 Mp is overshoot (not percent overshoot as elsewhere). Could calculate by 
finding derivative and looking for first zero, but too complicated for everyday use. 

√ ζ−π−σπ/ωdMp = e = e 1−ζ2 = .53
 

Compare to Mp approximation (valid because 0 < ζ < 0.6)
 

Mp ≈ 1 − 
ζ 

= 0.67

0.6 

tp = 
π 

= 3.2 [s] 
ωd 

(e) Rise time is the time it takes for the response to go from 10% to 90% of the final value. 

1.8 
tr = = 1.8 [s] 

ωn 

(f) For this figure, the 1% settling time is 

4.6∼ts = = 23 [s] 
ζωn 

(g) 

θ(t) = θp(t) + θh(t)
 
T0


θp(t) = us(t)
k 
T0	 σ T0 ωn−σt	 −σt θh(t) = − e cos ωdt + sin ωdt = − e sin ωdt + ϕ 
k	 ωd k ωd 
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19.4 Recitation 4 Problem
 

(a) Just one.	 We say this system has one degree-of-freedom (DOF). There are multiple choices 
for the independent variable such as h1, h2 or the pressure at the bottom of tank 1 P1. 

(b) Answers will vary. 

(c) The volume of fluid V is constant, so h1A + h2A = V = 2Aheq where heq is the equilibrium 
position of the fluid. We can rewrite this as h2 = 2heq − h1. Note also that ḣ1 + ḣ2 = 0. 

(d) The pressure at the bottom of the tank 1 is P1 − Pa = ρgh1. Again for tank 2 P2 − Pa = ρgh2. 
Note that atmospheric pressure Pa has a slightly different notation than Pascals, the SI units 
for pressure are [N/m2]. 

(e) Define q positive inward, q1 flowing into tank 1, q2 flowing into tank 2. Flow into and out of 
tube is conserved q1 + q2 = 0. Resistance in the tube is modeled as 

1 ρg 
q1 = (P1 − P2) = (h1 − h2)

R R 

˙(f) Change in volume in tank 1 V1 = h1A equals flow q1 = h1A. The same is true for tank 2 
˙q2 = h2A. Is the sign correct? Yes, if q1 goes up, so does h1. Combining: 

RA 
ḣ1 + h1 = heq2ρg 

˙Could also define h1 = heq + hΔ which leads to hΔ = h1 − heq and ḣΔ = h1 Or 

RA 
ḣΔ + hΔ = 0 

2ρg 

(g) First-order system so no oscillations. 

(h) Time constant	 τ = RA/2ρg doesn’t depend on height, so initial amount of fluid doesn’t 
change how quickly the system responds. 

To double τ , double resistance in tube or double area of tanks, or change the fluid to one that 
has half the density (or move experiment to another planet and reduce g). 

(i) This system has a dissipative element R and a spring-like element due to the potential energy, 
but even though some mass moves quickly through the tube the bulk of the mass moves very 
slowly, kinetic energy is small, and we essentially have a spring-damper first-order system. 

All the liquid in the tube in class moved together, so that system was an equivalent spring­
mass-damper. 
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19.5 Recitation 5 Problem 

(a) x = Rθ 

(b) The results are summarized below. 

Spring 
Mass 

Inertia 
Translational Damper 
Rotational Damper 

P E = 1 
2 ktx

2 

KE = 1 
2 m ̇x2 

KE = 1 
2 Jθ̇

2 

P = bt ẋ2 

P = bω θ̇2 

Fk = ktx 
F = mẍ 
T = J ̈  θ 
Fb = bt ẋ 
Tb = bω θ̇ 

(c) 

1 1 1 1 1 1 
KE = mẋ2 + Jθ̇2 = mR2θ̇2 + Jθ̇2 = mR2 + J θ̇2 = Jeq θ̇

2 

2 2 2 2 2 2
1 1 1 12 ktR

2θ2 θ2 θ2PE = ktx = = ktR
2 = keq2 2 2 2

P = btẋ
2 + bω θ̇

2 = btR
2θ̇2 + bω θ̇

2 = (bω + btR
2)θ̇2 = beq θ̇

2 

(d) 

¨ Jeqθ = −beq θ̇ − keqθ + T 

(J + mR2)θ ̈+ (bω + btR
2)θ̇ + (ktR

2)θ = T 

(e) 

Jeq = J + mR2 

beq = bω + btR
2 

= ktR
2keq 

(f) 

ktR2 
ωn = keq/Jeq = 

J + mR2 

2ζ beq= 
ωn keq 

beq bω + btR2 

ζ = = 
2 keqJeq 2 ktR2(J + mR2) 

(g) For large R, translational terms dominate 

kt bt
ωn → and ζ → √ 

m 2 ktm 

(h) 

Jeq beq keq
ẍ+ ẋ+ x = T 

R R R
 

ωn and ζ remain the same.
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(i) The response is shown in Figure 19.5.1.
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Figure 19.5.1: Underdamped Step Response
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19.6 Recitation 6 Problem
 

(a) Start by redrawing the circuit with current definitions and node names.
 

Solution - Discussion Problem  
Recitation 6 – March 11, 2005 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
 

CR2

R1

Vin

+

-
-

+

νο

R3

 
 
The circuit in the figure consists of a voltage source, a capacitor and three 
resistors.  
 

(a) Find the differential equation for this circuit in terms of oν . 

CR2

R1

Vin

+

-
-

+

νο

R3

+

+
+

+

-
-

-

-
νR3

νR2

νR1

νC

iR3

iC
iR2

iR1

Node A

Node BνΒ

νΑ

  

Figure 19.6.1: RC Circuit with node names 

Elemental Equations: 

vR1 dvC
iR1 = iC = C 

R1 dt 
vR2 vR3

iR2 = iR3 = 
R2 R3 

Voltages: 

vo = vC vB = vR3 

vC = vA − vB vR1 = vR2 = Vin − vA 

Node Equations: 

vR1 vR2 dvC
iR1 + iR2 − iC = 0 → + − C = 0 

R1 R2 dt 
dvC vR3

iC − iR3 = 0 → C − = 0 
dt R3 

After the algebra: 

R1R2 dvo
R3 + C + vo = Vin

R1 + R2 dt 

(b) 

− t 

vo(t) = Vin + Ae Req C 

vo(0) = Vin + A = 0 → A = −Vin 

− t 

vo(t) = Vin 1 + e Req C 
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(c) 

R1R2
Req = R3 + 

R1 + R2 
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19.7 Recitation 7 Problem
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19.8 Recitation 8 Problem
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19.9 Recitation 9 Problem
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19.10 Recitation 10 Problem
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19.11 Recitation 10A Problem
 

(a) We have the following closed-loop transfer function.
 

A 1 
x(s) s + B s+1 A + Bs 

= = 
A 1 s2 + (B + 1)s + Axref (s) 1 + + B s s+1 

In order to have the poles at s = −10 ± 100j, we must have
 

s 2 + (B + 1)s + A = (−10 + 100j)(−10 − 100j)
 

= s 2 + 20s + 1.01 × 104
 

therefore
 

B = 19
 

A = 1.01 × 104
 

(b) We have the following closed-loop transfer function. 

A 1 
x(s) s + B 

(s+1)(10−4s+1) 1.01 × 104 + 19s 
= = 

xref (s) A 1 10−4s3 + 1.0001s2 + 20s + 1.01 × 104
1 + + B s (s+1)(10−4s+1) 

Its roots are 

s = −9.982 × 103 

s = −9.51 ± 100.1j 

Note that the dominate poles in the second system are very close to the poles in the first 
system, and we expect them to exhibit similar behavior. 

(c) For the second transfer function, note that 

x(s) −18.05 18.05s + 1.0137 × 104 

= + 
xref (s) s + 9.982 × 103 s2 + 19s + 2.0118 × 104 

Figure 19.11.1: System 1 Bode Plot
 

655
 

( ) ( )
( )

( ) ( )
( ) ( )

(
)(



Figure 19.11.2: System 2 Bode Plot
 

Figure 19.11.3: Step Response 

Note that the step responses are virtually identical and the only differences are with high 
frequency input. 
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19.12 Recitation 11 Problem
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19.13 Recitation 12 Problem
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19.14 Recitation 13 Problem
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20 Recitation Quizzes 

20.1 Recitation 1 Quiz 

(a) Combining and rearranging the 4 given equations, we get 

AR 
ḣ + h = 0 

ρg 

(b) The form of the equation is τ ḣ+ h = 0. Therefore
 

AR
 
τ = 

ρg 

−t/τ −1 −2.3(c) The form of the solution is h(t) = h0e . Remembering that e = .37 and e = .1, after 
one time constant h(t = τ) = .37h0, after 2.3 time constants h(t = 2.3τ) = .1h0. 
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20.2 Recitation 2 Quiz
 

Solution        
 
2.003 Modeling, Dynamics, and Control I 
Massachusetts Institute of Technology 
Recitation Quiz 2  
February 11, 2005   

0 2 4 6 8 10 12 14 16 18
-40

-30

-20

-10

0

10

20

30

40

time (seconds)

am
pl

itu
de

 (m
illi

m
et

er
s)

T 

τ

 
 
Consider the plot shown above of the homogeneous response of a second-
order system: 

02 2 =++ xxx nn ωζω  

Estimate the undamped natural frequency nω , the damping ratioζ , 
and the initial position x(0).  
 

Answer: The period 2≈T seconds, so ππω ==
Td
2

. The natural 

frequency dn ωω ≈ , particularly for this system which is underdamped, so 
πωn = . The damping ratio is found from the time constant of the 

Figure 20.2.1: Second Order Response 

2πThe period T ≈ 2 seconds, so ωd = = π. The natural frequency ωn ≈ ωd, particularly for this T 
system which is underdamped, so ωn = π. The damping ratio is found from the time constant of 

1 1the exponential envelope, τ = = , where τ ≈ 6.25 seconds taken from the graph, leading to σ ζωn 
1 1ζ = = = .05. The initial position is read directly from the graph, x(0) = 20 mm. ωnτ 6.25π 

The system is underdamped. 
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20.3 Recitation 3 Quiz
 

(a) The sketch is shown below.
 

Solution - Recitation Quiz 3 - February 18, 2005 
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Massachusetts Institute of Technology 
    

b
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The system shown in the figure has the first-order differential equation: 
  
   Fbvvm =+  
 
where m  is the mass, b  is the damping coefficient, x  is the displacement of 
the mass, xv =  is the velocity of the mass, and the force F is given by a step 
function: 

)()( 0 tuFtF s=  
 

with magnitude 0F  constant. Assume zero initial position ( 00 =x ) and zero 
initial velocity ( 00 =v ). 

(a) Sketch the velocity of the mass as a function of time:    
(b)  

     )t/τe/b(1Fv(t) 0
−−=           m/bτ =  

0 tau 2 tau 3 tau 4 tau

0.63 F0/b

F0/b

time

V
el

oc
ity

 
 

(c) What is the velocity of the mass at steady state?   /bF)v( 0=∞  Figure 20.3.1: Plot of velocity vs time 

(b) v(∞) = F0/b 
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20.4 Recitation 4 Quiz
 

(a) The free body diagram for the pulley is shown below (along with the free body diagrams for 
the rest of the system). Note that as drawn, Fk = −kx and Fb = −bẋ. 

Solution - Recitation Quiz 4 - February 25, 2005  
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The mechanical system shown in the figure consists of a pulley of radius R 
suspended from the ceiling by a spring and a damper. A cable runs over the 
pulley and is attached to ground on the right and a hanging mass m on the 
left. The vertical position of the center of the pulley is x, the vertical position 
of the mass is y, and the rotational angle of the pulley is θ . Note also that 
gravity acts in a downward direction. 
 
Assume that the mass of the pulley, cable and support is negligible, the 
pulley rotates without friction, and that there is no slip between the pulley 
and the cable. 

(a) Draw a free body diagram for the pulley. All the piece are shown here 

x y

x

Pulley

Hanging MassSupport

Spring-Damper

Fk

Fk

Fb

Fb

F

F

T1

T1

T2

mg

 
Note that as drawn, kxFk −=  and xbFb −= . 

(b) What is the relationship between x and y?   y = 2x 
Figure 20.4.1: Free body diagrams 

(b) y = 2x 
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20.5 Recitation 5 Quiz
 

(a) The free body diagrams are shown below.
 

Solution - Recitation Quiz 5 - March 04, 2005 
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Massachusetts Institute of Technology 
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m kt
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A rack and pinion converts rotational motion to translational motion and 
vice-versa. The tracking mechanism in the CD player passed around in class 
contained a rack and pinion.  
 
The figure shows a lumped model where the angular position of the pinion 
gear is given by θ . The combined shaft and gear inertia is given by J, the 
rotational damping on the shaft is given by ωb and the applied torque T(t) is a 
function of time. The rack position is x, the mass of the rack is m, the linear 
damping acting on the rack is given by tb , and the linear spring constant is 
tk . Assume that there is adequate room for the rack to roll back and forth. 

 
(a) Draw free body diagrams for the rack and for the pinion. 

 

θ

Rack

T
Pinion

Ft
x

ktxbtx
.btx
.

Ft Tt=RFt

bωθ

 
Figure 20.5.1: Free body diagrams 

(b) x = Rθ 

(c) Start with the standard force balancing equations. 

Jθ ̈= T − bω θ̇ − RFt 

and 

mẍ+ btẋ+ ktx = Ft 

use part (b) to modify this equation 

mRθ ̈+ btRθ̇ + ktRθ = Ft 

Combine this and the first equation to obtain 

(J + mR2)θ ̈+ (bω + btR
2)θ̇ + (ktR

2)θ = T 
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20.6 Recitation 6 Quiz
 

Elemental Equations: 

Voltages: 

iR1 = 
vR1 

R1 

iR2 = 
vR2 

R2 

iC = C 
dvC 

dt 

vo = vC 

vR1 = vR2 = Vin − vo 

Node Equations: 

iR1 + iR2 − iC = 0 → 
vR1 

R1 
+ 
vR2 

R2 
− C 

dvC 

dt 
= 0 

After the algebra: 

R1R2 

R1 + R2 
C 
dvo 

dt 
+ vo = Vin 
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20.7 Recitation 7 Quiz
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20.8 Recitation 8 Quiz
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20.9 Recitation 9 Quiz
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20.10 Recitation 10 Quiz
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